MATLABSimulink和控制系统仿真实验报告
MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告第一篇:MATLAB与控制系统仿真实验报告《MATLAB与控制系统仿真》实验报告2013-2014学年第 1 学期专业:班级:学号:姓名:实验三 MATLAB图形系统一、实验目的:1.掌握绘制二维图形的常用函数。
2.掌握绘制三维图形的常用函数。
3.熟悉利用图形对象进行绘图操作的方法。
4.掌握绘制图形的辅助操作。
二、实验原理:1,二维数据曲线图(1)绘制单根二维曲线plot(x,y);(2)绘制多根二维曲线plot(x,y)当x是向量,y是有一维与x同维的矩阵时,则绘制多根不同颜色的曲线。
当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
(3)含有多个输入参数的plot函数plot(x1,y1,x2,y2,…,xn,yn)(4)具有两个纵坐标标度的图形plotyy(x1,y1,x2,y2)2,图形标注与坐标控制1)title(图形名称);2)xlabel(x轴说明)3)ylabel(y轴说明)4)text(x,y图形说明)5)legend(图例1,图例2,…)6)axis([xmin xmax ymin ymax zmin zmax])3, 图形窗口的分割 subplot(m,n,p)4,三维曲线plot3(x1,y1,z1,选项1,x2,y2,选项2,…,xn,yn,zn,选项n)5,三维曲面mesh(x,y,z,c)与surf(x,y,z,c)。
一般情况下,x,y,z是维数相同的矩阵。
X,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。
6,图像处理1)imread和imwrite函数这两个函数分别用于将图象文件读入matlab工作空间,以及将图象数据和色图数据一起写入一定格式的图象文件。
2)image和imagesc函数这两个函数用于图象显示。
为了保证图象的显示效果,一般还应使用colormap函数设置图象色图。
自动实验一——典型环节的MATLAB仿真 报告

班级 姓名 学号XXXXXX 电子与信息工程学院实验报告册课程名称:自动控制原理 实验地点: 实验时间同组实验人: 实验题目: 典型环节的MATLAB 仿真一、实验目的:1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理及SIMULINK 图形:1.比例环节的传递函数为 221211()2100,200Z R G s R K R K Z R =-=-=-==其对应的模拟电路及SIMULINK 图形如图1-3所示。
2.惯性环节的传递函数为2211211212()100,200,110.21R Z R G s R K R K C uf Z R C s =-=-=-===++其对应的模拟电路及SIMULINK 图形如图1-4所示。
3.积分环节(I)的传递函数为uf C K R s s C R Z Z s G 1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK 图形如图1-5所示。
图1-5 积分环节的模拟电路及及SIMULINK 图形 图1-4 惯性环节的模拟电路及SIMULINK 图形4.微分环节(D)的传递函数为uf C K R s s C R Z Z s G 10,100)(111112==-=-=-= uf C C 01.012=<<其对应的模拟电路及SIMULINK 图形如图1-6所示。
5.比例+微分环节(PD )的传递函数为)11.0()1()(111212+-=+-=-=s s C R R R Z Z s G uf C C uf C K R R 01.010,10012121=<<=== 其对应的模拟电路及SIMULINK 图形如图1-7所示。
6.比例+积分环节(PI )的传递函数为)11(1)(11212s R s C R Z Z s G +-=+-=-= uf C K R R 10,100121===其对应的模拟电路及SIMULINK 图形如图1-8所示。
Matlab simulink 上机实验报告 简单版

201006113 11002 Matlab上机实验报告
◆实验一: Smulink动态仿真集成环境
➢ 1.目的要求
➢熟悉simulink环境, 掌握simulink的仿真方法。
➢ 2.掌握要点
➢熟悉simulink环境, 掌握simulink的仿真方法。
➢ 3.实验内容
➢熟悉simulink环境;
➢熟悉基本的模块库以及功能模块
➢搭建简单的电路进行仿真;
➢对分析参数对结果的影响;
1.建立如图所示的仿真系统.
完成过程:
********* ***** 结果如下:
◆ 2.建立如图所示的仿真系统.
◆将红色区域部分创建并封装装成子系统
完成过程:
没有设置子系统时:
没有设置子系统时的结果如下:
以下开始设置子系统并封装: 修改变量后:
最终如下图所示:
开始封装设置过程: 设置子系统各个参数
设置完成后如下图所示:
双击设置好的封装并分别输入与变量对应的参数如下:
运行结果如下:。
MATLABSimulink与控制系统仿真实验报告

MATLABSimulink与控制系统仿真实验报告MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink仿真的基本知识;2、熟练应用MATLAB软件建立控制系统模型。
二、实验设备电脑一台;MATLAB仿真软件一个三、实验内容1、熟悉MATLAB/Smulink仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为G(s)10。
用Simulink建立该s23s控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为Y(s)G(s)s50。
用Simulink建其中G(s)2X(s)1G(s)2s3s立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为20,而且前向通道有一个[-,]的限幅环节,图中用N 表G(s)s12s20s示,反馈通道的增益为,系统为负反馈,阶跃输入经倍的增益作用到系统。
用Simulink建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
1题1、利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
分别从信号源库、输出方式库、数学运算库、连续系统库中,用鼠标把阶跃信号发生器、示波器、传递函数和相加器4个标准功能模块选中,并将其拖至模型窗口。
MATLAB实验报告3-控制系统仿真

MATLAB 实验报告3 控制系统仿真1、一个传递函数模型: )6()13()5(6)(22++++=s s s s s G 将该传递函数模型输入到MATLAB 工作空间。
num=6*[1,5];den=conv(conv([1,3,1],[1,3,1]),[1,6]);tf(num,den)2、 若反馈系统为更复杂的结构如图所示。
其中2450351024247)(234231+++++++=s s s s s s s s G ,s s s G 510)(2+=,101.01)(+=s s H 则闭环系统的传递函数可以由下面的MATLAB 命令得出:>> G1=tf([1,7,24,24],[1,10,35,50,24]);G2=tf([10,5],[1,0]);H=tf([1],[0.01,1]);G_a=feedback(G1*G2,H)得到结果:Transfer function:0.1 s^5 + 10.75 s^4 + 77.75 s^3 + 278.6 s^2 + 361.2 s + 120 -------------------------------------------------------------------- 0.01 s^6 + 1.1 s^5 + 20.35 s^4 + 110.5 s^3 + 325.2 s^2 + 384 s + 1203、设传递函数为:61166352)(2323++++++=s s s s s s s G 试求该传递函数的部分分式展开num=[2,5,3,6];den=[1,6,11,6];[r,p,k]=residue(num,den)图 复杂反馈系统4、给定单位负反馈系统的开环传递函数为:)7()1(10)(++=s s s s G 试画出伯德图。
利用以下MATLAB 程序,可以直接在屏幕上绘出伯德图如图20。
>> num=10*[1,1];den=[1,7,0];bode(num,den)5、已知三阶系统开环传递函数为:)232(27)(23+++=s s s s G画出系统的奈氏图,求出相应的幅值裕量和相位裕量,并求出闭环单位阶跃响应曲线。
基于MATLAB控制系统仿真实验报告

中南大学计算机控制系统仿真实验报告信息科学与工程学院自动化0903班实验一 MATLAB 语言编程一、 实验目的1、熟悉Matlab 语言及其环境,掌握编程方法。
2、要求认真听取实验指导老师讲解与演示。
二、具体实验内容、步骤、要求1、运行交互式学习软件,学习MATLAB 语言;2、在MATLAB 的命令窗口下键入如下命令:INTRO (注意:intro 为一个用MATLAB 语言编写的幻灯片程序,主要演示常用的MATLAB 语句运行结果。
)然后,根据现实出来的幻灯片右面按钮进行操作,可按START ——NEXT ——NEXT 按钮一步步运行,观察。
3、自编程序并完成上机编辑,调试,运行,存盘: (1)用MATLAB 命令完成矩阵的各种运算,例如:⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫=44434241343332312423222114131211A求出下列运算结果,并上机验证。
解:实验程序如下:function chengxu1A=[11 12 13 14;21 22 23 24;31 32 33 34;41 42 43 44]; a1=A(:,1) a2=A(2,:)a3=A(1:2,2:3) a4=A(2:3,2:3) a5=A(:,1:2) a6=A(2:3) a7=A(:) a8=A(:,:) a9=ones(2,2) a10=eye(2)实验结果如下:(1) A(:,1)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡41312111 (2) A(2,:)= []24232221(3) A(1:2,2:3)= ⎥⎦⎤⎢⎣⎡23221312 (4) A(2:3,2:3)= ⎥⎦⎤⎢⎣⎡33322322 (5) A(:,1:2)= ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4241323122211211(6) A(2:3)= []3121 (7) A(:)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎫44342414433323134232221241312111 (8) A(:,:)=⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫44434241343332312423222114131211(9) ones(2,2)=⎥⎦⎤⎢⎣⎡1111 (10) eye(2)=⎥⎦⎤⎢⎣⎡1001 (2)、绘制数学函数的图形,例如:y(t)=1-2e-tsin(t) (0<=t<=8) 理解数组运算与矩阵运算功能。
控制系统仿真实验报告书

一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。
二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。
首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。
2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。
3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。
4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。
调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。
五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。
实验报告5Simulink仿真[推荐五篇]
![实验报告5Simulink仿真[推荐五篇]](https://img.taocdn.com/s3/m/938234db5ff7ba0d4a7302768e9951e79b896917.png)
实验报告5Simulink仿真[推荐五篇]第一篇:实验报告 5 Simulink仿真实验五 Simulink仿真(一)一、实验目的1、熟悉Simulink仿真环境2、了解Simulink基本操作3、了解Simulink系统建模基本方法3、熟悉Simulink仿真系统参数设置和子系统封装的基本方法二、实验内容1、在matlab命令窗口中输入simulink,观察其模块库的构成;2、了解模块库中常用模块的使用方法;3、已知单位负反馈系统的开环传递函数为G=100s+2s(s+1)(s+20)建立系统的模型,输入信号为单位阶跃信号,用示波器观察输出。
4、建立一个包含Gain、Transfer Fcn、Sum、Step、Sine Wave、Zero-Pole、Integrator、Derivative等模块构成的自定义模块库Library1;5、建立如图7-12所示的双闭环调速系统的Simulink的动态结构图,再把电流负反馈内环封装为子系统,建立动态结构图。
三、实验结果及分析:图5-1图5-2图5-3图5-4双闭环调速系统的Simulink的动态结构图图5-5把电流负反馈内环封装为子系统的动态结构图双击Subsystem模块,编辑反馈电流环Subsystem子系统,如图5-6所示:图5-6分析:Simulink是Mathworks开发的MATLAB中的工具之一,主要功能是实现动态系统建模、仿真与分析。
可以在实际系统制作出来之前,预先对系统进行仿真与分析,并可对系统做适当的适时修正或按照仿真的最佳效果来调试及整定控制系统的参数,达到提高系统性能。
减少涉及系统过程中的反复修改的时间、实现高效率地开发系统的目标。
Simulink提供了建模、分析和仿真各种动态系统的交互环境,包括连续系统、离散系统和混杂系统,还提供了采用鼠标拖放的方法建立系统框图模型的图形交互界面。
第二篇:仿真实验报告仿真软件实验实验名称:基于电渗流的微通道门进样的数值模拟实验日期:2013.9.4一、实验目的1、对建模及仿真技术初步了解2、学习并掌握Comsol Multiphysics的使用方法3、了解电渗进样原理并进行数值模拟4、运用Comsol Multiphysics建立多场耦合模型,加深对多耦合场的认识二、实验设备实验室计算机,Comsol Multiphysics 3.5a软件。
自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》实验报告班级:学号:姓名:时间:2013 年 6 月目录实验一 MATLAB环境的熟悉与基本运算(一)实验二 MATLAB环境的熟悉与基本运算(二)实验三 MATLAB语言的程序设计实验四 MATLAB的图形绘制实验五基于SIMULINK的系统仿真实验六控制系统的频域与时域分析实验七控制系统PID校正器设计法实验八线性方程组求解及函数求极值实验一 MATLAB环境的熟悉与基本运算(一)一、实验目的1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本原理1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。
2.掌握MATLAB常用命令表1 MATLAB常用命令3.MATLAB变量与运算符3.1变量命名规则3.2 MATLAB的各种常用运算符表3 MATLAB关系运算符表4 MATLAB逻辑运算符| Or 逻辑或~ Not 逻辑非Xor逻辑异或符号功能说明示例符号功能说明示例:1:1:4;1:2:11 .;分隔行..,分隔列…()% 注释[] 构成向量、矩阵!调用操作系统命令{} 构成单元数组= 用于赋值4.MATLAB的一维、二维数组的寻访表6 子数组访问与赋值常用的相关指令格式三、主要仪器设备及耗材计算机四.实验程序及结果1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符)2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。
3、学习使用help命令。
4、窗口命令closeclose allclchold onhold off5、工作空间管理命令whowhosclear6、随机生成一个2×6的矩阵,观察command window、command history和workspace等窗口的变化结果,实现矩阵左旋90°或右旋90°的功能。
MATLAB实验报告(word文档良心出品)

《MATLAB/Simulink与控制系统仿真》实验报告专业:班级:学号:姓名:指导教师:实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个 三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
图 1系统结构图图 2示波器输出结果图3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MA TLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
图 3系统结构图 图 4 示波器输出结果图图 5 工作空间中仿真结果图形化输出4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++g ,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
图 6 系统结构图图 7 示波器输出结果实验2 MATLAB/Simulink 在控制系统建模中的应用一、实验目的1、掌握MATLAB/Simulink 在控制系统建模中的应用; 二、实验设备电脑一台;MA TLAB 仿真软件一个 三、实验内容1、给定RLC 网络如图所示。
matlab实验报告和 Simulink方法及仿真实验 山东建筑大学

matlab实验报告和Simulink方法及仿真实验山东建筑大学姓名:XX学号201009班级: 095班山东建筑大学机电工程学院2013.07.01~2013.07.07第二部分Simulink方法及仿真实验一、开环系统1、如图所示,当输入信号分别是方波信号和正弦信号时,分析输出信号的波形。
积分环节的特点是输出量为输入量对时间的累积,输出幅值呈线性增长。
(a)输入信号是方波信号输入信号波形图输出信号波形图分析:当输入信号时方波信号时,输出信号等于对方波信号时间的累积。
当方波信号在高电位时,输出为线性增长;当方波信号在零电位时,输出信号不增加,并且是保持不变的,因此是一条直线,在时间的积累下,输出信号就是如图所示的波形。
2、如图所示,开环系统是一阶惯性环节的开环系统。
当输入信号分别是方波信号和正弦信号时,分析输出信号的波形。
一阶惯性环节逇输出需要延迟一段时间才能够接近所要求的输出量,但是它也是从输入开始的时候就有了输出。
(a)输入信号是方波信号输入信号波形图输出信号波形图分析:当输入信号是方波信号时,输出量一开始就有了,且从0开始逐渐增大,当达到1/2周期时,输出量达到了最大值;当方波信号为零电位时,输出量有不断减小,在一个周期时变为0,如此周期变化下去,因此可以得到输出信号的波形图如图所示。
3如图所示,开环系统是微分环节的开环系统。
当输入信号分别是方波信号和正弦信号时,分析输出信号的波形。
微分环节的输出为输入的倒数,反映了输入的变化趋势,因此,可以对输入的变化趋势经行预测。
微分环节可以对系统提前施加校正作用,以提高系统的灵敏度。
(a)输入信号是方波信号输入信号波形图输出信号波形图分析:当输入信号是方波信号时,在0~T/2和T/2~T内,方波信号处于高电位和点电位不发生变化,因此输出信号应该为0,在T/2时刻,输入信号从高电位变为地点为,变化率趋紧负无穷大,因此输出信号应该是接近负无穷大;同理,在T时刻,输出信号应该是接近正无穷大,但是由于系统的原因,都不会无穷大,而是以比较大的值,并且会有一定的时间延迟。
MATLAB控制系统仿真实验报告

清华大学自动化工程学院实验报告课程:控制系统仿真专业自动化班级 122姓名学号指导教师:时间: 2015 年 10 月 19 日— 10 月 28 日目录实验一 MATLAB环境的熟悉与基本运算 (1)实验二 MATLAB语言的程序设计 (6)实验三 MATLAB的图形绘制 (9)实验四采用SIMULINK的系统仿真 (14)实验五控制系统的频域与时域分析 (17)实验六控制系统PID校正器设计法 (23)实验一 MATLAB环境的熟悉与基本运算一、实验时间及地点:实验时间:2015.10.19上午8:30—9:30实验地点:计算中心二、实验目的:1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算三、实验内容:1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符)2、启动MATLAB6.5,将该文件夹添加到MATLAB路径管理器中。
3、保存,关闭对话框4、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)5、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。
6、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。
注意:每一次M-file的修改后,都要存盘。
练习A:(1)help rand,然后随机生成一个2×6的数组,观察command window、command history和workspace等窗口的变化结果(2)学习使用clc、clear,了解其功能和作用(3)输入一个2维数值数组,体会标点符号的作用(空格和逗号的作用)。
(4)一维数组的创建和寻访,创建一个一维数组(1×8)X,查询X数组的第2个元素,查询X数组的第3个元素到第6个元素,查询X数组的第5个元素到最后一个元素,查询X数组的第3、2、1个元素,查询X数组中≤5元素,将X数组的第2个元素重新赋值为111,实例expm1。
控制仿真实验报告

实验名称:基于MATLAB/Simulink的PID控制器参数优化仿真实验日期:2023年11月10日实验人员:[姓名]实验指导教师:[指导教师姓名]一、实验目的1. 理解PID控制器的原理及其在控制系统中的应用。
2. 学习如何使用MATLAB/Simulink进行控制系统仿真。
3. 掌握PID控制器参数优化方法,提高控制系统的性能。
4. 分析不同参数设置对系统性能的影响。
二、实验原理PID控制器是一种广泛应用于控制领域的线性控制器,它通过将比例(P)、积分(I)和微分(D)三种控制作用相结合,实现对系统输出的调节。
PID控制器参数优化是提高控制系统性能的关键。
三、实验内容1. 建立控制系统模型。
2. 设置PID控制器参数。
3. 进行仿真实验,分析系统性能。
4. 优化PID控制器参数,提高系统性能。
四、实验步骤1. 建立控制系统模型使用MATLAB/Simulink建立被控对象的传递函数模型,例如:```G(s) = 1 / (s^2 + 2s + 5)```2. 设置PID控制器参数在Simulink中添加PID控制器模块,并设置初始参数,例如:```Kp = 1Ki = 0Kd = 0```3. 进行仿真实验设置仿真时间、初始条件等参数,运行仿真实验,观察系统输出曲线。
4. 分析系统性能分析系统在给定参数下的响应性能,包括超调量、调节时间、稳态误差等指标。
5. 优化PID控制器参数根据分析结果,调整PID控制器参数,优化系统性能。
可以使用以下方法:- 试凑法:根据经验调整参数,观察系统性能变化。
- Ziegler-Nichols方法:根据系统阶跃响应,确定参数初始值。
- 遗传算法:使用遗传算法优化PID控制器参数。
6. 重复步骤3-5,直至系统性能满足要求五、实验结果与分析1. 初始参数设置初始参数设置如下:```Kp = 1Ki = 0Kd = 0```仿真结果如图1所示:从图1可以看出,系统存在较大的超调量和较长的调节时间,稳态误差较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
(3)按要求先将前向通道连好,然后把相加器(Sum)的另一个端口与传递函数和示波器的线段连好,形成闭环反馈。
(4)双击传递函数。
打开其“模块参数设置”对话框,并将其中的numerator设置为“[10]”,denominator设置为“[1 3 0]”,将相加器设置为“+-”。
(5)绘制成功后,如图1所示。
(6)对模型进行仿真,运行后双击示波器,得到系统的阶跃响应曲线如图2 所示。
图1图2题2:分别将Simulink Library Browser 中的以下模块依次拖到untitled窗口中,连接后便得到整个控制系统的模型,如图3所示。
图3对模型进行仿真,运行后双击示波器,得到系统的阶跃响应曲线如图4所示。
图4题3:(1)在MATLAB中的Simulink Library Browser 窗口下找到符合要求的模块,搭建模型,如图5所示。
图5(2)修改各模块参数,运行仿真,单击“start”,点击示波器,得到如下结果,图6图6实验2 MATLAB/Simulink 在控制系统建模中的应用一、实验目的1、掌握MATLAB/Simulink 在控制系统建模中的应用;二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、给定RLC 网络如图所示。
其中,为输入变量,为输出变量。
求解这个系统的传递函数模型,零极点增益模型以及状态空间模型(假设,,,)。
()i u t 0()u t 11R =Ω21R =Ω1C F =1L H =2、已知某双环调速的电流环系统的结构图如图所示。
试采用Simulink 动态结构图求其线性模型。
题1:步骤1从数学上求出系统传递函数。
根据电路基本定理,列出该电路的微分方程,如下:i u u dtdi L i R =++0311 同时还有 ⎪⎭⎫ ⎝⎛+==+=o o u dt di L dt d C i R i u i i i 3223321整理以上方程,并在零初始条件下,取拉普拉斯变换,可得:21211)1(1)()()(R R s R L Cs R s U s U s G i o +⎪⎪⎭⎫ ⎝⎛++== 代入具体数值可得221)(2++=s s s G 步骤2 使用MATLAB 程序代码如下。
clear all ;num=[0,1];den=[1 2 2];sys_tf=tf(num,den)[z,p,k]=tf2zp(num,den)sys_zpk=zpk(z,p,k)[A,B,C,D]=zp2ss(z,p,k);sys_ss=ss(A,B,C,D)step(sys_tf);[A,B,C,D]=linmod('Samples_4_12')[num,den]=ss2tf(A,B,C,D);printsys(num,den,'s');四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
实验3 MATLAB/Simulink在时域分析法中的应用一、实验目的1、掌握时域分析中MATLAB/Simulink函数的应用;2、掌握MATLAB/Simulink在稳定性分析中的应用。
二、实验设备电脑一台;MATLAB仿真软件一个三、实验内容1、某随动系统的结构如图所示。
利用MATLAB完成如下工作:(1)对给定的随动系统建立数学模型;(2)分析系统的稳定性,并且绘制阶跃响应曲线;(3)计算系统的稳态误差;(4)大致分析系统的总体性能,并给出理论上的解释。
2、已知某二阶系统的传递函数为222)(nn ns s s G ωζωω++=,(1)将自然频率固定为1=n ω,5,3,2,1,...,1.0,0=ζ,分析ζ变化时系统的单位阶跃响应;(2)将阻尼比ζ固定为55.0=ζ,分析自然频率n ω变化时系统的阶跃响应(n ω变化范围为0.1~1)。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1:步骤1 求取系统的传递函数。
首先需要对系统框图进行化简。
不难看出,题中给出的系统包含两级反馈:外环是单位负反馈;内环则是二阶系统与微分环节构成的负反馈。
可以利用MATLAB 中的 feedback 函数计算出系统的传递函数,代码如下。
cic; clear aii;num1=[20];den1=[1 2 0];sys1=tf(num1,den1);num2=[0.1 0];den2=[0 1];sys2=tf(num1,den2);sys_inner=feedback(sys1,sys2);sys_outer=feedback(sys_inner,1)程序运行结果为:Transfer function:20--------------s^2 + 4 s + 20这样就得到了系统的总传递函数,即G(s)= 20S^2+4s+20步骤2 进行稳态分析。
根据求得的传递函数,对系统进行稳态性分析,代码如下:den=[1 4 20];roots(den)pzmap(sys_outer);grid on;程序运行结果如下:ans =-2.0000 + 4.0000i-2.0000 - 4.0000i系统的零极点分布图如图1所示图1系统的零极点分布图步骤3 求取阶跃响应计算系统的阶跃响应:可以采用MATLAB 编程实现,还可以利用simulink 对系统进行建模,直接观察响应曲线。
MATLAB 程序代码如下: num=[20];den=[1 4 20]; [y.t.x]=steo(num,den) plot(x,y); grid on;程序运行结果如图2所示Real AxisI m a g i n a r y A x i s图2系统阶跃响应曲线采用simulink对系统进行建模,如图3所示图3利用Simulink对系统建模可以从scope中得到系统的不同响应曲线,如下图4,这与编程的结果完全相同的。
图4系统阶跃响应曲线步骤4 分析系统的响应特性。
在上面的语句[y.t.x]=steo(num,den)执行之后,变量y中就存放了系统阶跃响应的具体数值。
从响应曲线中不难看出,系统的稳态值为1。
可以利用如下代码计算系统的超调量。
y_stable=1;max_response=max(y);sigma=(max_respomse-y_stable)/y_stable程序运行结果为sigma =0.2077同时可看出,系统的稳态误差为0。
示波器error的波形显示如图5所示,可见,当阶跃输入作用系统2s后,输出就基本为1了。
图5系统误差曲线还可以精确计算出系统的上升时间、峰值时间及调整时间。
如上所述,y中储存了系统阶跃响应的数据;同时,x中方存放了其中每个数据对应的时间,编写代码如下。
for i =1:length(y)If y(i)>y_stablebreak;endendtr=x(i)[max_response,index]=max(y);tp=x(index)for i =1:length(y)If max(y(i:length(y)))<=1.02*y_stableIf min(y(i;length(y)))>0.98*y_stablebreakendendendts=x(i)程序运次结果为tr =0.5298tp =0.7947ts =1.9074即上升时间为0.52s,峰值时间为0.77s,并且系统在经过1.88s后进入稳态。
题2利用MATLAB建立控制系统的数学模型,并且同时显示Wn=1,阻尼系数取不同值时系统的阶跃响应曲线,代码如下clc;clear;t=linspace(0,20,200)’;omega=1;omega2=omega^2;zuni=[0,0.1,0.2,0.5,1,2,3,5];num=omega2;for k=1:8den=[1 2 * zuni(k)*omega omega2];sys=tf(num,den);y(:,k)=step(sys,t);endfigure(1);plot(t,y (:,1:8)); grid;gtext(‘zuni=0’);gtext(‘zuni=0.1’);gtext(‘zuni=0.2’);gtext(‘zuni=0.5’); gtext(‘zuni=1’);gtext(‘zuni=2’);gtext(‘zuni=3’);gtext(‘zuni=5’); 运行程序,结果如图6所示图6固定自然频率,阻尼比变化时系统的阶跃响应曲线利用MATLAB 在一幅图像的上绘制阻尼系数=0.55,Wn 从0.1变化到1时系统的阶跃响应曲线,代码如下 clc; clear;t=linspace(0,20,200)’; zuni=0.55;246810121416182000.20.40.60.811.21.41.61.82omega=[0.1,0.2,0.4,0.7,1];omega2=omega^2;for k=1:5num=omega2(k);den=[1 2 * zuni*omega(k) omega2(k)];sys=tf(num,den);y(:,k)=step(sys,t);endfigure(2);plot(t,y(:,1:5));grid;gtext(‘omega=0.1’);gtext(‘omega=0.2’);gtext(‘omega=0.4’); gtext(‘omega=0.7’);gtext(‘omega=1.0’);运行代码,结果如图7所示图7固定阻尼系数,自然频率变化时系统的阶跃响应曲线实验4 MATLAB/Simulink 在根轨迹分析法中应用一、实验目的1、掌握MATLAB/Simulink 绘制根轨迹函数;2、掌握MATLAB/Simulink 绘制根轨迹的方法。