高一上期末考试数学试题(含答案)
河南省郑州中学2024届高一上数学期末复习检测试题含解析

19.已知函数
f
x
a 3x 1 3x 1
(1)当 a 1时,解方程 lg f 2x lg f x 1 lg16 ;
(1)用“五点法”做出函数 f x 在 x 0, 2 上的简图;
(2)若方程
f
x
a在
x
2 3
,
5 6
上有两个实根,求
a
的取值范围.
参考答案
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D
【解题分析】利用分段函数在 R 上单调递减的特征直接列出不等式组求解即得.
A.
1 3
,1
B.
,
1 3
1,
C.
1 3
,
1 3
D.
,
1 3
1 3
,
7.下面四个不等式中不正确的为
A. sin 1 1 15 15
B. 20.9 0.92
C.
ln
1 2
log3
1 2
D. 20.3 0.30.2
8.函数 f (x) 2 tan( x 3) 的最小正周期为 2
【解题分析】设函数 y x2 4x 3 ,求出 x [0, 4]时 y 的取值范围,再根据 a [2, 2]讨论 a 的取值范围,判断 f x
是否能取得最大值 3 ,从而求出对应的概率值
【题目详解】在区间 2, 2 上任取一个数 a ,基本事件空间对应区间的长度是 4 , 由 y x2 4x 3 x 22 1, x [0,4] ,得 y [1,3] ,
浙江省嘉兴市2023-2024学年高一上学期1月期末检测数学试题(含答案)

嘉兴市2023~2024学年第一学期期末检测高一数学试题卷(答案在最后)(2024.1)本试题卷共6页,满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}24,3A x x B x x =≤<=≥,则A B = ()A.[)2,4 B.[)3,4 C.[)2,+∞ D.[)3,+∞【答案】B 【解析】【分析】由交集的定义求解即可.【详解】因为集合{}{}24,3A x x B x x =≤<=≥,所以A B ⋂{}34x x =≤<.故选:B .2.已知()3sin π5α+=,则sin α=()A.45 B.35 C.45-D.35-【答案】D 【解析】【分析】应用诱导公式()sin πsin αα+=-,求解即可.【详解】由诱导公式()sin πsin αα+=-,且()3sin π5α+=,可得3sin 5α-=,即3sin 5α=-.故选:D.3.已知函数()()31,111,12x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()3f =()A.14B.12C.2D.4【答案】B 【解析】【分析】利用函数()f x 的解析式可求得()3f 的值.【详解】因为()()31,111,12x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()()()113113212442f f f -====.故选:B.4.已知(),,0,a b m ∈+∞,则“a b >”是“b m ba m a+>+”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用作差法,得出b m ba m a+>+的等价条件()0()m a b a a m ->+,再分析充分性和必要性,即可得出结论.【详解】由于()()b m b m a b a m a a a m +--=++,则b m ba m a+>+成立,等价于()0()m a b a a m ->+成立,充分性:若a b >,且(),,0,a b m ∞∈+,则0,0a m a b +>->,则()0()m a b a a m ->+,所以b m ba m a+>+成立,满足充分性;必要性:若b m ba m a+>+,则()0()m a b a a m ->+成立,其中(),,0,a b m ∞∈+,且0a m +>,则可得0a b ->成立,即a b >成立,满足必要性;故选:C.5.已知,αβ都是锐角,()2510cos ,sin 510αβα+==,则cos β=()A.10B.10 C.2D.10【答案】B 【解析】【分析】根据()βαβα=+-,结合同角三角关系以及两角和差公式运算求解.【详解】因为,αβ都是锐角,则()0,παβ+∈,则()sin ,cos 510αβα+==,所以()()()cos cos cos cos sin sin βαβααβααβα⎡⎤=+-=+++⎣⎦51051010=⨯+⨯=.故选:B.6.设函数()323f x x x =-,则下列函数是奇函数的是()A.()12f x ++B.()12f x -+C.()12f x --D.()12f x +-【答案】A 【解析】【分析】化简各选项中函数的解析式,利用函数奇偶性的定义判断可得出合适的选项.【详解】因为()323f x x x =-,对于A 选项,()()()32322312131233136323f x x x x x x x x x x ++=+-++=+++---+=-,令()313f x x x =-,该函数的定义域为R ,()()()()331133f x x x x x f x -=---=-+=-,则()12f x ++为奇函数,A 满足要求;对于B 选项,()()()323221213123313632f x x x x x x x x -+=---+=-+--+-+32692x x x =-+-,令()322692f x x x x =-+-,该函数的定义域为R ,则()2020f =-≠,所以,函数()12f x -+不是奇函数,B 不满足条件;对于C 选项,()()()323221213123313632f x x x x x x x x --=----=-+--+--32696x x x =-+-,令()323696f x x x x =-+-,该函数的定义域为R ,则()3060f =-≠,所以,函数()12f x --不是奇函数,C 不满足条件;对于D 选项,()()()323223121312331363234f x x x x x x x x x x +-=+-+-=+++----=--,令()3434f x x x =--,该函数的定义域为R ,则()4040f =-≠,所以,函数()12f x +-不是奇函数,D 不满足要求.故选:A.7.已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的部分图象如图所示,ABC 是等腰直角三角形,,A B 为图象与x 轴的交点,C 为图象上的最高点,且3OB OA =,则()A.()262f =B.()()190f f +=C.()f x 在()3,5上单调递减 D.函数()f x 的图象关于点5,02⎛⎫-⎪⎝⎭中心对称【答案】D 【解析】【分析】根据C 为图象上的最高点,且点C 的纵坐标为1,ABC 为等腰直角三角形可以求出2AB =,进而求出周期,即求出ω,将点C 代入即可求出ϕ,从而确定函数()f x 解析式,再逐项判断.【详解】由ABC 为等腰直角三角形,C 为图象上的最高点,且点C 的纵坐标为1,所以2AB =.则函数()f x 的周期为4,由2π4ω=,0ω>,可得π2=ω,又3OB OA =,所以13,0,,022A B ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则1,12C ⎛⎫ ⎪⎝⎭,将点C 代入()πsin 2f x x ϕ⎛⎫=+ ⎪⎝⎭,得π1sin 4ϕ⎛⎫=+ ⎪⎝⎭,则ππ2π42k ϕ+=+,k ∈Z .而0πϕ<<,则π4ϕ=,所以()ππsin 24f x x ⎛⎫=+⎪⎝⎭,则()2ππ6s n i 624f ⎛⎫⨯+=-⎪⎝=⎭,A 错误;()()419sin s ππππ3π3πsin sin 92424i 4n f f ⎛⎫⎛⎫++⨯++= ⎪ ⎪⎝⎭=⎝+=⎭,B 错误;若()3,5x ∈,则ππ7π11π,2444x ⎛⎫+∈ ⎪⎝⎭,显然函数不是单调的,C 错误;()5π5πsin sin π02224f ⎛⎫⎛⎫⎛⎫-=⨯-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以函数()f x 的图象关于点5,02⎛⎫- ⎪⎝⎭中心对称,D 正确.故选:D.8.已知函数()e xf x x =+,()lng x x x =+,若()()12f x g x t ==,则2122x x t ++-的最大值为()A.94B.2C.2e 12- D.23e 1e -【答案】A 【解析】【分析】由已知可得出()()ln g x f x =,分析函数()f x 的单调性,可得出12ln x x =,即可得出221222x x t t t ++-=+-,结合二次函数的基本性质可求得2122x x t ++-的最大值.【详解】因为函数e x y =、y x =均为R 上的增函数,所以,函数()e xf x x =+为R 上的增函数,()()ln ln e ln ln x g x x x x f x =+=+=,因为()()()122ln f x g x f x t ===,其中t ∈R ,所以,12ln x x =,故222212221992ln 22244x x t x x t t t t ⎛⎫++-=++-=+-=--+≤ ⎪⎝⎭,当且仅当12t =时等号成立,故2122x x t ++-的最大值为94.故选:A.【点睛】关键点点睛:解决本题的关键在于利用指对同构思想结合函数单调性得出12ln x x =,将所求代数式转化为以t 为自变量的函数,将问题转化为函数的最值来处理.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知幂函数()f x x α=的图象经过点()4,2,则()A.12α=B.()f x 的图象经过点()1,1C.()f x 在[)0,∞+上单调递增 D.不等式()f x x ≥的解集为{}1xx ≤∣【答案】ABC 【解析】【分析】根据题意,代入法确定函数解析式,从而依次判断选项即可.【详解】由幂函数()f x x α=的图象经过点()4,2,则24α=,得12α=,所以幂函数()12f x x ==,所以A 正确;又()11f ==,即()f x 的图象经过点()1,1,B 正确;且()f x 在[)0,∞+上单调递增,C 正确;不等式()f x x ≥x ≥,解得01x ≤≤,D 错误.故选:ABC.10.已知0a >,0b >,且1a b +=,则()A.18ab ≥B.221a b +>C.11022a b ⎛⎫⎛⎫--≤ ⎪⎪⎝⎭⎝⎭D.11lnln 1a b+>【答案】CD 【解析】【分析】利用特殊值法可判断A 选项;利用二次函数的基本性质可判断B 选项;利用不等式的基本性质可判断C 选项;利用基本不等式结合对数函数的单调性可判断D 选项.【详解】对于A 选项,取18a =,78b =,则71648ab =<,A 错;对于B 选项,因为0a >,0b >,且1a b +=,则10b a =->,可得01a <<,所以,111222a -<-<,则211024a ⎛⎫≤-< ⎪⎝⎭,因为()22222211112212,1222a b a a a a a ⎛⎫⎡⎫+=+-=-+=-+∈ ⎪⎪⎢⎝⎭⎣⎭,B 错;对于C 选项,21111111102222222a b a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--=---=--=--≤ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当且仅当12a =时,等号成立,C 对;对于D 选项,因为21024a b ab +⎛⎫<≤= ⎪⎝⎭,当且仅当1a b a b =⎧⎨+=⎩时,即当12a b ==时,等号成立,所以,()1111lnln ln ln ln ln 414ab a b ab +==-≥-=>,D 对.故选:CD.11.已知函数()()22*sin cos kkk f x x x k =+∈N ,值域为kA ,则()A.21,12A ⎡⎤=⎢⎥⎣⎦ B.()*,k k f x ∀∈N 的最大值为1C.*1,k k k A A +∀∈⊆N D.*k ∃∈N ,使得函数()k f x 的最小值为13【答案】AB 【解析】【分析】对于A ,利用换元法与二次函数的单调性即可判断;对于B ,利用指数函数的单调性即可判断;对于C ,利用幂函数的单调性即可判断;对于D ,结合ABC 选项的结论,求得3A ,从而得以判断.【详解】对于A ,因为22sin cos 1x x +=,故()2222sin cos 1cos cos kk k k x x x x+=-+今2cos x t =,则22sin cos (1),[0,1]k k k k x x t t t +=-+∈,当2k =时,222211(1)221222t t t t t ⎛⎫-+=-+=-+ ⎪⎝⎭,因为[0,1]t ∈,211222y t ⎛⎫=-+ ⎪⎝⎭在10,2⎡⎫⎪⎢⎣⎭上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,所以21,12A ⎡⎤=⎢⎥⎣⎦,故A 正确;对于B ,因为[0,1]t ∈,011t ≤-≤,则(1)(1)k t t -≤-且k t t ≤,故(1)11k k t t t t -+≤-+=,当且仅当0=t 或1t =时,(1)1k k t t -+=,所以()k f x 最大值为1,故B 正确;对于C ;因为[0,1]t ∈,011t ≤-≤,则11(1)(1),k k k k t t t t ++-≤-≤,即11(1)(1)k k k k t t t t ++-+≤-+,所以()()1min min k k f x f x +≤,由选项B 又知()1k f x +与()k f x 的最大值都为1,所以1k k A A +⊆,故C 错误;对于D ,当3k =时,233211(1)331324t t t t t ⎛⎫-+=-+=-+ ⎪⎝⎭,因为[0,1]t ∈,211324y t ⎛⎫=-+ ⎪⎝⎭,在10,2⎡⎫⎪⎢⎣⎭上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,所以31,14A ⎡⎤∈⎢⎥⎣⎦,又()()1min min k k f x f x +≤,所以当3k >时,()min 14k f x ≤,又21,12A ⎡⎤∈⎢⎥⎣⎦,易知{}11A =,故不可能存在*N k ∈使()k f x 最小值为13,故D 错误.故选:AB.【点睛】关键点点睛:本题解决的关键在于利用换元法将函数转化为二次函数,从而得解.12.设定义在R 上的函数()f x 满足()()()20,1f x f x f x ++=+为奇函数,当[]1,2x ∈时,()2=⋅+x f x a b ,若()01f =-,则()A.()10f =B.12a b +=-C.()21log 242f =- D.()2f x +为偶函数【答案】ABD【解析】【分析】由题意可得()()110f x f x ++-+=可判断A ;由()01f =-可得()21f =,列方程组,解出,a b 可判断B ;由函数的周期性、对称性和对数函数的运算性质可判断C ;由()()()()2,2f x f x f x f x +=--=-得()()22f x f x +=-可判断D .【详解】选项A :因为()1f x +为奇函数,所以()()110f x f x ++-+=,即()f x 关于()1,0对称,又()f x 是定义在R 上的函数,则()10f =,故A 正确;选项B :由()01f =-可得()21f =,则有120124121a b a a b a b b ⎧+==⎧⎪⇒⇒+=-⎨⎨+=⎩⎪=-⎩,故B 正确;选项C :因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即()f x 的周期为4;因为224log 2450log 2441<<⇒<-<,即230log 12<<,所以()223log 24log 2f f ⎛⎫= ⎪⎝⎭;因为()f x 关于()1,0对称,所以()()=2f x f x --,则2223381log 2log log 2233f f f⎛⎫⎛⎫⎛⎫=--=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;选项D :由()()()()2,2f x f x f x f x +=--=-得()()22f x f x +=-,即()2f x +为偶函数,故D 正确.故选:ABD.【点睛】方法点睛:抽象函数的奇偶性、对称性、周期性常有以下结论(1)()()()f x a f b x f x +=-⇒关于2a bx +=轴对称,(2)()()()2f x a f b x c f x ++-=⇒关于,2a b c +⎛⎫⎪⎝⎭中心对称,(3)()()()f x a f x b f x +=+⇒的一个周期为T a b =-,(4)()()()f x a f x b f x +=-+⇒的一个周期为2T a b =-.可以类比三角函数的性质记忆以上结论.三、填空题:本大题共4小题,每小题5分,共20分.13.一个扇形的弧长和面积都是2π3,则这个扇形的半径为________.【答案】2【解析】【分析】由扇形的面积公式求解即可.【详解】设扇形的弧长为l ,半径为r ,所以2π3l =,112π2π2233S rl r ===,解得:2r =.故答案为:2.14.函数()12xf x ⎛⎫= ⎪⎝⎭的单调递增区间是________.【答案】(],0-∞【解析】【分析】根据指数函数的单调性即可得解.【详解】()1,01222,0xxx x f x x ⎧⎛⎫>⎪⎛⎫⎪==⎨⎝⎭⎪⎝⎭⎪≤⎩,所以函数()12xf x ⎛⎫= ⎪⎝⎭的单调递增区间是(],0-∞.故答案为:(],0-∞.15.海洋潮汐是在太阳和月球的引力作用下,形成的具有周期性海面上升和下降的现象.在通常情况下,船在涨潮时驶进航道,停靠码头;在落潮时离开港口,返回海洋.已知某港口某天的水深()H t (单位:m )与时间t (单位:h )之间满足关系式:()()3sin 50H t t ωω=+>,且当地潮汐变化的周期为12.4h T =.现有一艘货船的吃水深度(船底与水面的距离)为5m ,安全条例规定至少要有1.5m 的安全间隙(船底与洋底的距离).若该船计划在当天下午到达港口,并在港口停靠一段时间后于当天离开,则它最多可停留________h .【答案】6215【解析】【分析】根据函数周期性可得5π31ω=,令() 6.5H t >,结合正弦函数性质分析求解即可.【详解】由题意可得:2π5π12.431ω==,则()5π3sin 531H t t =+,令()5π3sin 5 6.531H t t =+>,则5π1sin 312t >,可得π5π5π2π2π,6316k t k k +<<+∈Z ,解得62316231,53056k t k k +<<+∈Z ,设该船到达港口时刻为1t ,离开港口时刻为2t ,可知121224t t <<<,则0k =,即1262316231,,53056t t ⎛⎫∈++⎪⎝⎭,所以最多可停留时长为62316231625653015⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭小时.故答案为:6215.16.若函数()212(0)11f x x x a a a x ⎛⎫=---> ⎪+-⎝⎭有两个零点,则实数a 的取值范围是________.【答案】102a +<<【解析】【分析】令1t x =-,则()2111g t t a a t ⎛⎫=---⎪+⎝⎭只有一个零点,即2211a t a t =-++,据此即可求解.【详解】函数的定义域为R ,令1t x =-,则()2111g t t a a t ⎛⎫=---⎪+⎝⎭只有一个零点,且该零点为正数,()22011ag t t a t =⇔=-++,根据函数()()210h t tt =≥和()()22101ah t a t t =-+≥+的图象及凹凸性可知,只需满足()()1200h h <即可,即:221515011022a a a a a -+<-++⇒--<⇒<<,又因为0a >,所以实数a 的取值范围是102a <<.故答案为:0a <<.【点睛】关键点点睛:本题令1t x =-,则()2111g t t a a t ⎛⎫=---⎪+⎝⎭只有一个零点,即2211a t a t =-++的分析.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知集合{}{}2230,2A x x x B x x =--≥=≤.(1)求集合A ;(2)求()R A B ð.【答案】(1){}13A x x x =≤-≥或(2)(){23}A B xx ⋃=-≤<R ∣ð【解析】【分析】(1)先求解2230x x -->,从而可得1x ≤-或3x ≥,从而可求解.(2)分别求出{}13A x x =-<<R ð,{}22B x x =-≤≤,再利用集合的并集运算从而可求解.【小问1详解】由题意得2230x x -->,解得3x ≥或1x ≤-,所以{1A xx =≤-∣或3}x ≥.【小问2详解】由(1)可得{}13A x x =-<<R ð,{}22B x x =-≤≤,所以(){23}A B xx ⋃=-≤<R ∣ð.18.如图,以Ox 为始边作角α与()0πββα<<<,它们的终边与单位圆O 分别交于P 、Q 两点,且OP OQ ⊥,已知点P 的坐标为43,55⎛⎫- ⎪⎝⎭.(1)求sin sin αβ-的值;(2)求tan2β的值.【答案】(1)15-(2)247-【解析】【分析】(1)由三角函数的定义可得出α的正弦值和余弦值,分析可得π2βα=-,利用诱导公式可求得sin β的值,由此可得出sin sin αβ-的值;(2)利用诱导公式求出cos β的值,可求得tan β的值,再利用二倍角的正切公式可求得tan 2β的值.【小问1详解】解:由三角函数的定义可得4cos 5α=-,3sin 5α=,将因为0πβα<<<,且角α、β的终边与单位圆O 分别交于P 、Q 两点,且OP OQ ⊥,结合图形可知,π2βα=-,故π4sin sin cos 25βαα⎛⎫=-=-= ⎪⎝⎭.故341sin sin 555αβ-=-=-.【小问2详解】解:由(1)可知4sin 5β=,且π3cos cos sin 25βαα⎛⎫=-== ⎪⎝⎭,故sin 454tan cos 533βββ==⨯=,根据二倍角公式得22422tan 243tan21tan 7413βββ⨯===--⎛⎫- ⎪⎝⎭.19.已知函数()()()22log 1log 1f x x x =+--.(1)求函数()f x 的定义域,并根据定义证明函数()f x 是增函数;(2)若对任意10,2x ⎡⎤∈⎢⎥⎣⎦,关于x 的不等式()211221x xx f t f ⎛⎫--⋅< ⎪+⎝⎭恒成立,求实数t 的取值范围.【答案】(1)定义域为()1,1-,证明见解析(2)(【解析】【分析】(1)由对数的真数大于零,可得出关于x 的不等式组,即可解得函数()f x 的定义域,然后利用函数单调性的定义可证得结论成立;(2)分析可知,210121xx -≤<+,由()211221x xx f t f ⎛⎫--⋅< ⎪+⎝⎭可得出1121211221xx x xt t ⎧-<-⋅<⎪⎨--⋅<⎪+⎩,结合参变量分离法可得出()222221x x x t <<+,利用指数函数的单调性可求得实数t 的取值范围.【小问1详解】解:对于函数()()()22log 1log 1f x x x =+--,则1010x x +>⎧⎨->⎩,可得11x -<<,所以,函数()f x 的定义域为()1,1-,证明单调性:设1211x x -<<<,则有()()()()()()1221212222log 1log 1log 1log 1f x f x x x x x -=+---+--⎡⎤⎣⎦,()()()()1221211log 11x x x x +-=-+,由于1211x x -<<<,所以120x x -<,()()12110x x +->,()()12110x x -+>,并且()()()()()()121211222121111111x x x x x x x x x x x x +---+=-+--+--()1220x x =-<,则()()()()12121111x x x x +-<-+,于是()()()()1212110111x x x x +-<<-+,所以()()()()1221211log 011x x x x +-<-+,即:()()12f x f x <,所以函数()f x 在定义域()1,1-上单调递增.【小问2详解】解:当10,2x ⎡⎤∈⎢⎥⎣⎦时,2120112121x x x -≤=-<++,所以不等式()211221xxx f t f ⎛⎫--⋅< ⎪+⎝⎭恒成立等价于1121211221x x x xt t ⎧-<-⋅<⎪⎨--⋅<⎪+⎩对任意的10,2x ⎡⎤∈⎢⎥⎣⎦恒成立,等价于()222221x x x t <<+在10,2x ⎡⎤∈⎢⎥⎣⎦恒成立.由10,2x ⎡⎤∈⎢⎥⎣⎦可得12x ≤≤222x≤≤,())222112x x≤+≤=+,则()221221x x≤≤+,于是实数t 的取值范围是(.20.噪声污染问题越来越受到人们的重视.我们常用声压与声压级来度量声音的强弱,其中声压p (单位:Pa )是指声波通过介质传播时,由振动带来的压强变化;而声压级p L (单位:dB )是一个相对的物理量,并定义020lgp p L p =⨯,其中常数0p 为听觉下限阈值,且50210Pa p -=⨯.(1)已知某人正常说话时声压p 的范围是0.002Pa 0.02Pa ~,求声压级p L 的取值范围;(2)当几个声源同时存在并叠加时,所产生的总声压p 为各声源声压()1,2,3,,i p i n = 的平方和的算术平方根,即p =现有10辆声压级均为80dB 的卡车同时同地启动并原地急速,试问这10辆车产生的噪声声压级p L 是多少?【答案】(1)[]40,60dB P L ∈(2)()90dB p L =【解析】【分析】(1)因为P L 是关于p 的增函数结合声压p 的范围是0.002Pa 0.02Pa ~,即可得出答案;(2)由题意可得出08020lg i p p =⨯求出i p ,代入可求出总声压p ,再代入020lg p pL p =⨯,求解即可.【小问1详解】当30.002210Pa p -==⨯时,3521020lg 40dB 210P L --⨯=⨯=⨯;当20.02210Pa p -==⨯时,2521020lg 60dB 210P L --⨯=⨯=⨯;因为P L 是关于p 的增函数,所以正常说话时声压级[]40,60dB P L ∈.【小问2详解】由题意得:()4008020lg 10Pa ii p p p p =⨯⇒=⨯(其中1,2,3,,10i = )总声压:()4010Pa p ==⨯(40001020lg 20lg 20490(dB)P p L p p ⨯=⨯=⨯=⨯+=故这10辆车产生的噪声声压级()90dB p L =.21.设函数()22cos 2sin cos 1(04)f x x x x ωωωω=--<<,若将函数()f x 的图象向右平移12π个单位长度后得到曲线C ,则曲线C 关于y 轴对称.(1)求ω的值;(2)若直线y m =与曲线()y f x =在区间[]0,π上从左往右仅相交于,,A B C 三点,且2AB BC =,求实数m 的值.【答案】(1)32ω=(2)2【解析】【分析】(1)方法一:利用三角恒等变换化简可得()π24f x x ω⎛⎫=+ ⎪⎝⎭,根据图象变换结合对称性分析求解;方法二:利用三角恒等变换化简可得()π24f x x ω⎛⎫=+ ⎪⎝⎭,由题意可知函数()f x 关于直线π12x =-对称,根据对称性分析求解;(2)方法一:根据题意结合图象可知:1π01,012m x <<<<且312π3x x T -==,进而结合对称性分析求解;方法二:根据题意结合图象可知:1π01,012m x <<<<且312π3x x T -==,1πππ3,442t x ⎛⎫=+∈ ⎪⎝⎭,可得4π2π3t t ⎛⎫++= ⎪⎝⎭,进而可得结果.【小问1详解】方法一:因为()()22cos 12sin cos f x x x xωωω=--cos2sin2x x ωω=-π24x ω⎛⎫=+⎪⎝⎭,由题意可知:曲线C 为函数πππ212124y f x x ω⎡⎤⎛⎫⎛⎫=-=-+ ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦因为曲线C 关于y 轴对称,则ππ2π,124k k ω⎛⎫-+=∈ ⎪⎝⎭Z ,解得36,2k k ω=-∈Z ,又因为04ω<<,所以30,2k ω==;方法二:因为()()22cos 12sin cos f x x x xωωω=--cos2sin2x x ωω=-π24x ω⎛⎫=+⎪⎝⎭,由题意可知:函数()f x 关于直线π12x =-对称,则ππ2π,124k k ω⎛⎫-+=∈ ⎪⎝⎭Z ,解得36,2k k ω=-∈Z ,又因为04ω<<,所以30,2k ω==.【小问2详解】方法一:由(1)可知:()π34f x x ⎛⎫=+ ⎪⎝⎭,根据函数()f x 在[]0,π上的图象,如图所示:设()()()112233,,,,,A x y B x y C x y 可知:1π01,012m x <<<<且312π3x x T -==,由2AB BC =,得2124π39x x T -==①,又因为,A B 两点关于直线π4x =对称,则12π2x x +=②由①②可得121π3617π36x x ⎧=⎪⎪⎨⎪=⎪⎩,于是()1ππ33642m f x ⎛⎫==⨯+=⎪⎝⎭;方法二:由(1)可知:()π34f x x ⎛⎫=+ ⎪⎝⎭,设()()()112233,,,,,A x y B x y C x y ,根据函数()f x 在[]0,π上的图象,如图所示:由题意可知:1π0,012m x ><<,且312π3x x T -==,又因为2AB BC =,得2124π39x x T -==,则214π9x x =+,而()()12f x f x =12ππ3344x x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,可得111π4πππ4πcos 3cos 3cos 349443x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,令1πππ3,442t x ⎛⎫=+∈ ⎪⎝⎭,则4πcos cos 3t t ⎛⎫=+ ⎪⎝⎭,可得4π2π3t t ⎛⎫++= ⎪⎝⎭,即π3t =,故()()112342m f x x t ==+==.22.已知函数()2π4cos2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.【答案】(1)[]5,1-(2)12,2a =【解析】【分析】(1)根据2(2)4y x =--和πcos2y x =的单调性可得()f x 在[]0,2上单调递减,进而可求解;(2)构造()()4F x f x a =-+,根据()()4F x F x -=,可得()F x 关于直线2x =对称,进而可得13224x x x +==,即可代入化简得()()131278f x f x x --的表达式,即可结合二倍角公式以及二次函数的性质求解.【小问1详解】若()2π1,(2)cos42a f x x x =-=-+-,因为函数2(2)4y x =--和πcos 2y x =均在[]0,2上单调递减,所以函数()f x 在[]0,2上单调递减,故()()min max ()25,()01f x f f x f ==-==,所以函数()f x 在[]0,2上的值域为[]5,1-.【小问2详解】()2π4(2)cos 12f x a x a x ⎛⎫=-⇔-=+ ⎪⎝⎭,显然:当2x ≠时,2π(2)0,0cos122x x ->≤+≤,由于方程()4f x a =-有三个不等实根123,,x x x ,所以必有0a >,令()()4F x f x a =-+,则()2π4cos42F x x x a x a =---+,显然有()20F =,由()()()22ππ4(4)44cos 4444cos 22F x x x a x a x x a x a -=------+=-+--,得到()()4F x F x -=,所以函数()F x 关于直线2x =对称,由()()()1230F x F x F x ===,可得:13224x x x +==,于是()()231111π44cos2f x f x x x a x =-=--,()21111248cosπf x x x a x =--,()()221311111111π27848cosπ74cos 82f x f x x x x a x x x a x ⎛⎫--=------ ⎪⎝⎭()22111ππ32122cos 17cos 22x a x x ⎛⎫=--+--- ⎪⎝⎭①,由()10F x =可得:()211π2cos12x a x ⎛⎫-=+ ⎪⎝⎭②,将②代入①式可得:()()2131111πππ2783cos 1122cos 17cos 222f x f x x a x a x ⎛⎫⎛⎫--=-++--- ⎪ ⎪⎝⎭⎝⎭211ππ2cos 4cos 21222a x x ⎛⎫=-+-+ ⎪⎝⎭21π2cos 112122a x ⎛⎫=--+≤ ⎪⎝⎭,当且仅当1πcos12x =,即()14x k k =∈N 时等号成立,由于()4f x a =-恰有三个不等实根,22x =且123x x x <<,所以10x =,此时34x =,由()211π2cos 12x a x ⎛⎫-=+ ⎪⎝⎭可得()4co 0s 1a =+,故2a =.【点睛】方法点睛:处理多变量函数最值问题的方法有:(1)消元法:把多变量问题转化单变量问题,消元时可以用等量消元,也可以用不等量消元.(2)基本不等式:即给出的条件是和为定值或积为定值等,此时可以利用基本不等式来处理,用这个方法时要关注代数式和积关系的转化.(3)线性规划:如果题设给出的是二元一次不等式组,而目标函数也是二次一次的,那么我们可以用线性规划来处理.。
北京市通州区2023-2024学年高一上学期期末质量检测试题 数学含解析

通州区2023—2024学年第一学期高一年级期末质量检测数学试卷(答案在最后)2024年1月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,{}21A x x =-<≤,则U A =ð()A.{}1x x ≤ B.{}1x x ≥C.{2x x ≤-或}1x > D.{2x x <-或}1x ≥2.下列函数中,在区间(0,)+∞上为增函数的是()A.y =B.2(1)y x =- C.2xy -= D.()ln f x x=-3.若,,a b c ∈R 且a b >,则()A.22ac bc> B.1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C.33a b > D.||||a b >4.下列函数中,其定义域和值域分别与函数()ln e xf x =的定义域和值域相同的是()A.y x= B.ln e xy = C.y = D.y=5.已知0.32=a ,0.3log 2b =,0.30.5c =,则()A.c a b>> B.c b a>> C.a b c >> D.a c b>>6.已知函数2()log 23f x x x =+-,在下列区间中,包含()f x 零点的区间是()A.(1,0)- B.(0,1)C.(1,2)D.(2,3)7.若函数()cos(2)f x x ϕ=+是奇函数,则ϕ可取一个值为()A.π- B.2π-C.4π D.2π8.设x ∈R ,则“cos 0x =”是“sin 1x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件9.国家标准对数视力表是由我国第一个眼科光学研究室的创办者缪天荣发明设计的,如图是5米测距下的标准对数视力表的一部分.图中左边一列数据为标准对数记录法记录的近似值L :4.0,4.1,4.2…对应右边一列数据为小数记录法记录的近似值V :0.1,0.12,0.15….已知标准对数记录法的数据L 和小数记录法的数据V 满足lg L K V =+(K 为常数).某同学测得视力的小数记录法数据为0.6,则其标准对数记录法的数据约为(参考数据:lg 20.30≈,lg 30.48≈)()标准对数视力表A.4.8B.4.9C.5.0D.5.110.设函数()2x f x =,2()g x x =,()log (1)a m x x a =>,()(0)n x kx k =>,则下列结论正确的是()A.函数()f x 和()g x 的图象有且只有两个公共点B.0x ∃∈R ,当0x x >时,使得()()f x g x <恒成立C.0(0,)x ∃∈+∞,使得()()00f x m x <成立D.当1ak ≤时,方程()()m x n x =有解第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数()ln(2)f x x =-的定义域是__________.12.计算:124(lg 2lg5)-+=__________.13.函数()2()1ln f x x x =-的零点个数为__________.14.在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点ππcos 2,sin 266P t t ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当0=t 时,则tan α=__________;当t 由0变化到π6时,线段OP 扫过的面积是__________.15.设函数(),22,2x a x f x a x ≥=-<⎪⎩(0a >且1a ≠).给出下列四个结论:①当2a =时,方程()f x a =有唯一解;②当(0,1)a ∈时,方程()f x a =有三个解;③对任意实数a (0a >且1a ≠),()f x 的值域为[0,)+∞;④存在实数a ,使得()f x 在区间()0,∞+上单调递增;其中所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的顶点与原点重合,始边与x 轴的非负半轴重合,终边分别与单位圆交于点14,5P y ⎛⎫⎪⎝⎭,2,5M y ⎛⎫- ⎪ ⎪⎝⎭.(1)求sin α,sin β的值;(2)求cos POM ∠的值.17.某同学用“五点法”画函数()sin()f x A x ωϕ=+(0A >,0ω>,||2ϕπ<)在某一个周期内的图象时,列表并填入部分数据,如下表:x ωϕ+0π2π3π22πxπ35π64π3sin()A x ωϕ+022-0(1)求函数()y f x =的解析式;(2)将函数()y f x =图象上所有点向右平行移动π3个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递增区间.18.若函数()2cos (sin cos )1(04)f x x x x ωωωω=+-<<.从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在.(1)求()f x 的解析式与最小正周期;(2)求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最值.条件①:π8f ⎛⎫=⎪⎝⎭条件②:R x ∀∈,()8πf x f ⎛⎫≤⎪⎝⎭恒成立;条件③:函数()f x 的图象关于点π,08⎛⎫-⎪⎝⎭对称.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.19.函数()e e 4x x f x m -=+-,m ∈R .(1)若()f x 为偶函数,求m 的值及函数()f x 的最小值;(2)当[1,1]x ∈-时,函数()f x 的图象恒在x 轴上方,求实数m 的取值范围.20.某城市2024年1月1日的空气质量指数(简称AQI )与时间x (单位:小时)的关系()y f x =满足如图连续曲线,并测得当天AQI 的取大值为106.当[0,12]x ∈时,曲线是二次函数图象的一部分;当(12,24]x ∈时,曲线是函数log (10)103a y x =--+图象的一部分.根据规定,空气质量指数AQI 的值大于或等于101时,空气就属于污染状态.(1)求函数()y f x =的解析式;(2)该城市2024年1月1日这一天哪个时间段的空气属于污染状态?并说明理由.21.已知有m 个连续正整数元素的有限集合{}1,2,3,,1,m S m m =- (N m +∈,2m ≥),记有序数对()12,,,m A a a a = ,若对任意i ,{}()1,2,,j m i j ∈≠ ,i a ,j m a S ∈且i j a a ≠,A 同时满足下列条件,则称A 为m 元完备数对.条件①:12231m m a a a a a a --≤-≤≤- ;条件②:122312m m a a a a a a m --+-++-=+ .(1)试判断是否存在3元完备数对和4元完备数对,并说明理由;(2)试证明不存在8元完备数对.通州区2023—2024学年第一学期高一年级期末质量检测数学试卷2024年1月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,{}21A x x =-<≤,则U A =ð()A.{}1x x ≤B.{}1x x ≥C.{2x x ≤-或}1x > D.{2x x <-或}1x ≥【答案】C 【解析】【分析】根据补集的定义即可求解.【详解】因为全集U =R ,{}21A x x =-<≤,所以{}U |21A x x x =≤->或ð.故选:C2.下列函数中,在区间(0,)+∞上为增函数的是()A.y =B.2(1)y x =- C.2xy -= D.()ln f x x=-【答案】A 【解析】【分析】根据初等基本函数的单调性,判断各个选项中函数的单调性,从而得出结论.【详解】对于A :因为函数y =(1,)-+∞上是增函数,所以满足条件,故A 正确;对于B :因为函数2(1)y x =-在(0,1)上是减函数,所以不满足条件,故B 错误;对于C :因为函数2xy -=在R 上为减函数,所以不满足条件,故C 错误;对于D :因为函数()ln f x x =-在(0,)+∞上为减函数,所以不满足条件,故D 错误.3.若,,a b c ∈R 且a b >,则()A.22ac bc >B.1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C.33a b > D.||||a b >【答案】C 【解析】【分析】依据不等式的性质及函数的单调性对选项逐一判断即可.【详解】因为,,a b c ∈R 且a b >,对于A 选项:当0c =时不成立;对于B 选项:1()2xy =单调递减,所以不成立;对于C 选项:3y x =在(,)-∞+∞单调递增,成立;对于D 选项:举反例1,2a b =-=-,不成立.故选:C .4.下列函数中,其定义域和值域分别与函数()ln e xf x =的定义域和值域相同的是()A.y x =B.ln e xy = C.y = D.y=【答案】D 【解析】【分析】利用幂函数、指数函数、对数函数的定义域、值域一一判定选项即可.【详解】易知()ln exf x x ==,且0x >,ln e 0x >,故其定义域与值域均为()0,∞+.显然A 选项定义域与值域均为R ,故A 错误;因为ln e x y x ==,且e 0x >恒成立,即其定义域与值域均为R ,故B 错误;0y x ==≥,即其定义域为R ,值域为[)0,∞+,故C 错误;0y=>,且0x >,故其定义域与值域均为()0,∞+,即D 正确.故选:D5.已知0.32=a ,0.3log 2b =,0.30.5c =,则()A.c a b>> B.c b a>> C.a b c>> D.a c b>>【分析】先判断出a b c 、、的范围,再比较大小即可.【详解】因为0.30221a =>=,所以1a >;0.30.3log 2log 10b =<=,0b <;0.3000.50.51c <=<=,01c <<;所以a c b >>.故选:D6.已知函数2()log 23f x x x =+-,在下列区间中,包含()f x 零点的区间是()A.(1,0)- B.(0,1)C.(1,2)D.(2,3)【答案】C 【解析】【分析】利用零点存在定理可判断零点所在的区间.【详解】因为2log y x =在()0,∞+上单调递增,23y x =-在R 上单调递增,所以2()log 23f x x x =+-在()0,∞+上单调递增,因为()110f =-<,()22log 222320f =+⨯-=>,故函数()f x 零点的区间是(1,2).故选:C7.若函数()cos(2)f x x ϕ=+是奇函数,则ϕ可取一个值为()A.π-B.2π-C.4π D.2π【答案】B 【解析】【分析】根据诱导公式及正弦函数的性质求出ϕ的取值,从而解得.【详解】解:根据诱导公式及正弦函数的性质可知()π212k ϕ=-⋅,Z k ∈,令0k =,可得ϕ的一个值为π2-.故选:B8.设x ∈R ,则“cos 0x =”是“sin 1x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【分析】分别解出cos 0x =、sin 1x =,结合充分、必要条件的定义即可求解.【详解】由cos 0x =,得ππ,Z 2x k k =+∈,由sin 1x =,得π2π,Z 2x k k =+∈,又ππ2π,Z π,Z 22x x k k x x k k ⎧⎫⎧⎫=+∈⊆=+∈⎨⎬⎨⎬⎩⎭⎩⎭,所以“cos 0x =”是“sin 1x =”的必要不充分条件.故选:B.9.国家标准对数视力表是由我国第一个眼科光学研究室的创办者缪天荣发明设计的,如图是5米测距下的标准对数视力表的一部分.图中左边一列数据为标准对数记录法记录的近似值L :4.0,4.1,4.2…对应右边一列数据为小数记录法记录的近似值V :0.1,0.12,0.15….已知标准对数记录法的数据L 和小数记录法的数据V 满足lg L K V =+(K 为常数).某同学测得视力的小数记录法数据为0.6,则其标准对数记录法的数据约为(参考数据:lg 20.30≈,lg 30.48≈)()标准对数视力表A.4.8B.4.9C.5.0D.5.1【答案】A 【解析】【分析】利用公式结合对数运算法则计算函数关系式即可.【详解】由题意可知4.0lg 0.14lg 0.15K K =+⇒=-=,所以5lg L V =+,故()5lg 0.65lg3lg55lg31lg 2 4.78 4.8+=+-=+--≈≈,故A 正确.故选:A10.设函数()2x f x =,2()g x x =,()log (1)a m x x a =>,()(0)n x kx k =>,则下列结论正确的是()A.函数()f x 和()g x 的图象有且只有两个公共点B.0x ∃∈R ,当0x x >时,使得()()f x g x <恒成立C.0(0,)x ∃∈+∞,使得()()00f x m x <成立D.当1ak ≤时,方程()()m x n x =有解【答案】D 【解析】【分析】作出函数()f x 和()g x 的图象,结合函数图象即可判断A B ;根据指数函数和对数函数的图象即可判断C ;根据当1k a =时,函数()log (1)a m x x a =>和1()n x kx x a==的图象都过过点(),1a ,即可判断D.【详解】对于A ,如图所示,作出函数()f x 和()g x 的图象,由图可知,函数()f x 和()g x 的图象有三个公共点,故A 错误;对于B ,由A 选项可知,当>4x 时,()()f x g x >,所以不存在0x ∈R ,当0x x >时,使得()()f x g x <恒成立,故B 错误;对于C ,如图,作出函数()2x f x =,()log (1)a m x x a =>的图象,由图可知,函数()2x f x =的图象在y x =的图象的上方,函数()log (1)a m x x a =>的图象在y x =的图象的下方,所以()0,x ∞∀∈+,()()f x m x >,所以不存在0(0,)x ∈+∞,使得()()00f x m x <成立,故C 错误;对于D ,因为1,0a k >>,1ak ≤,当1k a=时,函数()log (1)a m x x a =>的图象过点(),1a ,函数1()n x kx x a==的图象过点(),1a ,即直线与函数图象有交点,当1k a<时,直线斜率更小,直线与函数图象有交点,所以当1ak ≤时,方程()()m x n x =有解,故D 正确.故选:D .【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数()ln(2)f x x =-的定义域是__________.【答案】(,2)-∞【解析】【分析】利用对数的限制条件可得答案.【详解】由题意得,20x ->得2x <,所以定义域是(,2)-∞.故答案为:(,2)-∞12.计算:124(lg 2lg5)-+=__________.【答案】1【解析】【分析】利用分数指数幂运算和对数运算性质求解即可【详解】124(lg2lg5)2lg10211-+=-=-=.故答案为:113.函数()2()1ln f x x x =-的零点个数为__________.【答案】1【解析】【分析】令()0f x =,直接求解,结合函数定义域,即可得出函数零点,确定结果.【详解】()2()1ln f x x x =-的定义域为()0,∞+,令()2()1ln 0f x x x =-=,则210x -=或ln 0x =,解得1x =或=1x -(舍).故答案为:114.在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点ππcos 2,sin 266P t t ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当0=t 时,则tan α=__________;当t 由0变化到π6时,线段OP 扫过的面积是__________.【答案】①.3-②.π6【解析】【分析】当0=t 时,求出点P 对应的1P 坐标,即可求得tan α的值,当π6t =时,求出点P 对应的2P 坐标,即可确定扇形12O P P 的圆心角,从而可以求得线段OP 扫过的面积.【详解】当0=t 时,ππ3cos cos 662⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,ππ1sin sin 662⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,此时点P位于点11,22P ⎛⎫- ⎪⎪⎝⎭,所以132tan 332α-==-,此时,1π6xOP ∠=-,当π6t =时,πππcos 2cos 6662⎛⎫⎛⎫⨯-== ⎪ ⎪⎝⎭⎝⎭,πππ1sin 2sin 6662⎛⎫⎛⎫⨯-== ⎪ ⎪⎝⎭⎝⎭,此时点P位于点21,22P ⎛⎫⎪ ⎪⎝⎭,此时,2π6xOP ∠=,所以12πππ663POP ⎛⎫∠=--= ⎪⎝⎭,且1OP =,所以 12ππ133PP =⨯=,所以当t 由0变化到π6时,线段OP 扫过的面积就是扇形12O P P 的面积,即121ππ1236OP P S =⨯⨯=扇形,故答案为:33-,π6.15.设函数(),22,2x a x f x a x ≥=-<⎪⎩(0a >且1a ≠).给出下列四个结论:①当2a =时,方程()f x a =有唯一解;②当(0,1)a ∈时,方程()f x a =有三个解;③对任意实数a (0a >且1a ≠),()f x 的值域为[0,)+∞;④存在实数a ,使得()f x 在区间()0,∞+上单调递增;其中所有正确结论的序号是__________.【答案】①②【解析】【分析】直接解方程可判定①,分类讨论解方程可判定②,利用幂函数与指数函数的单调性可判定③,利用分段函数的性质可判定④.【详解】当2a =时,()2,222,2x x f x x ≥=-<⎪⎩,则方程()2f x =,若2,222x x ≥∴=⇒=,若2,222242xxx x <∴=-⇒=⇒=,与前提矛盾,舍去,所以当2a =时,方程()f x a =有唯一解2x =,故①正确;当(0,1)a ∈时,若2,2x a a x ≥∴=⇒=,若2,2xx a a <∴=-,易知2x y a =-在(),2∞-上单调递减,则当log 2a x ≤时,20x y a =-≥,且2x y a =-在(),2∞-上单调递减,当log 22a x <<时,20x y a =-<,则2(2)2x f x a a =-<-,此时()()()222222102a aaa a a a a --=+-=-+<⇒<-,作出函数()f x 与y a =的草图如下,可知当(0,1)a ∈时,方程()f x a =有三个解,故②正确;因为0a >且1a ≠,可知0y a =+>恒成立,若()0,1a ∈,由上可知2x y a =-在(),2∞-上单调递减,且()log 2log 20a a x =<时,20x y a =-=,此时20xy a =-≥;若1a >,易知2x y a =-在(),2∞-上单调递增,即222x y a a =-<-,(i 1a ≥>时,20x y a =-<,则20xa ->,(ii )当a >()log 2log 22a a x =<时,20xy a =-=,此时20x y a =-≥;1a ≥>时,()f x 取不到最小值0,故③错误;由上可知()0,1a ∈和)∞+时,()f x 在(),log 2a ∞-上单调递减,1a ≥>时,()f x 在(),2∞-上单调递减,故④错误.故答案为:①②【点睛】难点点睛:难点在第二个结论和第三个结论,需要利用指数函数的单调性与零点分类讨论参数的范围,讨论容易遗漏.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的顶点与原点重合,始边与x 轴的非负半轴重合,终边分别与单位圆交于点14,5P y ⎛⎫⎪⎝⎭,2,5M y ⎛⎫- ⎪ ⎪⎝⎭.(1)求sin α,sin β的值;(2)求cos POM ∠的值.【答案】(1)3sin 5α=,5sin 5β=.(2)5-【解析】【分析】(1)利用三角函数的定义计算即可;(2)利用余弦的差角公式计算即可.【小问1详解】根据题意可知:1sin 0y α=>,4cos 5α=,则3sin 5α==,同理2sin 0y β=>,cos 5β=-,则sin 5β==;【小问2详解】易知POM βα∠=-,所以()cos cos cos cos sin sin POM βαβαβα∠=-=+4355555=-⨯+⨯=-.17.某同学用“五点法”画函数()sin()f x A x ωϕ=+(0A >,0ω>,||2ϕπ<)在某一个周期内的图象时,列表并填入部分数据,如下表:x ωϕ+0π2π3π22πxπ35π64π3sin()A x ωϕ+022-0(1)求函数()y f x =的解析式;(2)将函数()y f x =图象上所有点向右平行移动π3个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递增区间.【答案】(1)π()2sin 6f x x ⎛⎫=+⎪⎝⎭(2)π2π2π,2π33k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈.【解析】【分析】(1)由五点法,可求周期,从而求出ω,代点求出ϕ,从而求出()y f x =的解析式.(2)根据函数()sin()f x A x ωϕ=+的图象变换规律,正弦函数的单调性,即可得出.【小问1详解】由表格知,2A =且4πππ233T =-=,即2πT =,故2π1T ω==,由ππ32+=ωϕ,则ππ32ϕ+=,故π6ϕ=,则π()2sin 6f x x ⎛⎫=+ ⎪⎝⎭.【小问2详解】由题意知ππ()2sin 36⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭g x f x x ,由πππ2π2π262k x k -+≤-≤+,Z k ∈,所以π2π2π2π33k x k -+≤≤+,Z k ∈,即函数()y g x =的单调增区间为π2π2π,2π33k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈.18.若函数()2cos (sin cos )1(04)f x x x x ωωωω=+-<<.从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在.(1)求()f x 的解析式与最小正周期;(2)求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最值.条件①:π8f ⎛⎫= ⎪⎝⎭条件②:R x ∀∈,()8πf x f ⎛⎫≤⎪⎝⎭恒成立;条件③:函数()f x 的图象关于点π,08⎛⎫-⎪⎝⎭对称.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】(1)π()24f x x ⎛⎫=+ ⎪⎝⎭,πT =(2;最小值1-【解析】【分析】(1)利用三角恒等变换公式化简()f x ,若选条件①可推得函数()f x 不存在,选择条件②③,可求得函数的解析式,进而得到最小正周期;(2)由π0,2x ⎡⎤∈⎢⎥⎣⎦可得ππ5π2,444x ⎡⎤+∈-⎢⎥⎣⎦,借助正弦函数性质可求出最值.【小问1详解】因为2()2sin cos 2cos 1f x x x x ωωω=+-,04ω<<,所以π()sin 2cos 224f x x x x ωωω⎛⎫=+=+ ⎪⎝⎭,若选条件①:因为π()24f x x ω⎛⎫=+ ⎪⎝⎭,最小值为.所以π8f ⎛⎫= ⎪⎝⎭()f x 存在.若选条件②:因为x ∀∈R ,()8πf x f ⎛⎫≤ ⎪⎝⎭.故()f x 在π8x =处取最大值,即πππ2π442k ω+=+,k ∈Z ,所以18k ω=+,因为04ω<<,故1ω=,所以π()24f x x ⎛⎫=+ ⎪⎝⎭,最小正周期为:πT =.若选条件③:因为函数()f x 的图象关于点π,08⎛⎫-⎪⎝⎭对称.ππ044ω⎛⎫-+= ⎪⎝⎭,所以πππ44k ω-+=,k ∈Z ,即14k ω=-,k ∈Z ,因为04ω<<,故1ω=.所以π()24f x x ⎛⎫=+ ⎪⎝⎭,最小正周期为:πT =.【小问2详解】因为π0,2x ⎡⎤∈⎢⎥⎣⎦,则ππ5π2,444x ⎡⎤+∈-⎢⎥⎣⎦,故当ππ242x +=,即π8x =时,()f x ;故当π5π244x +=,即π2x =时,()f x 取最小值1-.19.函数()e e 4x x f x m -=+-,m ∈R .(1)若()f x 为偶函数,求m 的值及函数()f x 的最小值;(2)当[1,1]x ∈-时,函数()f x 的图象恒在x 轴上方,求实数m 的取值范围.【答案】(1)1m =,2-(2)(4,)m ∈+∞【解析】【分析】(1)利用偶函数定义,带入函数()e e 4x x f x m -=+-计算m ,利用换元法e 0x u =>,结合基本不等式进行最小值的求解即可.(2)由于函数()f x 图像恒在x 轴上方,所以函数()0f x >,进行参数分离,得到24e e ,[1,1]x x m x >-∈-恒成立,结合换元法进行讨论即可.【小问1详解】因为函数()e e 4x x f x m -=+-为偶函数.所以()()f x f x -=恒成立,即e e 4e e 4x x x x m m --+-=+-恒成立.即()(1)ee 0xx m ---=恒成立,解得1m =,所以1()e e 4e 4exxx x f x -=+-=+-,令e 0x u =>,1442y u u =+-≥-=-,当且仅当1u =,即0x =时,等号成立.所以函数()f x 的最小值为2-.【小问2详解】当[1,1]x ∈-时,函数()f x 的图象恒在x 轴上方,故当[1,1]x ∈-时()e e 40x x f x m -=+->恒成立.即24e e ,[1,1]x x m x >-∈-恒成立.令2()4e e x x h x =-,令e x t =,1,e e t ⎡⎤∈⎢⎥⎣⎦.因为24y t t =-,对称轴为2t =,故当2t =即ln 2x =时,()h x 取最大值4,故(4,)m ∈+∞.20.某城市2024年1月1日的空气质量指数(简称AQI )与时间x (单位:小时)的关系()y f x =满足如图连续曲线,并测得当天AQI 的取大值为106.当[0,12]x ∈时,曲线是二次函数图象的一部分;当(12,24]x ∈时,曲线是函数log (10)103a y x =--+图象的一部分.根据规定,空气质量指数AQI 的值大于或等于101时,空气就属于污染状态.(1)求函数()y f x =的解析式;(2)该城市2024年1月1日这一天哪个时间段的空气属于污染状态?并说明理由.【答案】20.()()[]()(]2210106,0,12log 10103,12,24x x f x x x ⎧--+∈⎪=⎨--+∈⎪⎩ 21.这一天在1014x -≤≤这个时间段的空气,空气属于污染状态,理由见解析.【解析】【分析】(1)根据图象结合二次函数运算求解;(2)由(1)可得()f x 的解析式,分类讨论解不等式()101f x ≥即可得结果.【小问1详解】当[0,12]x ∈时,由图像可得:二次函数开口向下,顶点坐标为(10,106),且过()8,102,()12,102,可设2()(10)106f x b x =-+,0b <,代入点(8,102)可得2(810)106102b -+=,解得1b =-,故当[0,12]x ∈时,2()(10)106f x x =--+;点(12,102)代入log (10)103a y x =--+,解得2a =,故当(12,24]x ∈时,2()log (10)103f x x =--+;()()[]()(]2210106,0,12log 10103,12,24x x f x x x ⎧--+∈⎪=⎨--+∈⎪⎩ .【小问2详解】当[0,12]x ∈时,令2()(10)106101f x x =--+≥,解得1012x ≤≤,当(12,24]x ∈时,令2()log (10)103101f x x =--+≥,解得1214x <≤,所以1014x -≤≤,综上所述:这一天在1014x ≤≤这个时间段的空气,空气属于污染状态.21.已知有m 个连续正整数元素的有限集合{}1,2,3,,1,m S m m =- (N m +∈,2m ≥),记有序数对()12,,,m A a a a = ,若对任意i ,{}()1,2,,j m i j ∈≠ ,i a ,j m a S ∈且i j a a ≠,A 同时满足下列条件,则称A 为m 元完备数对.条件①:12231m m a a a a a a --≤-≤≤- ;条件②:122312m m a a a a a a m --+-++-=+ .(1)试判断是否存在3元完备数对和4元完备数对,并说明理由;(2)试证明不存在8元完备数对.【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)利用m 元完备数对的定义推理判断即得.(2)令1(1,2,,7)k k k b a a k +=-= ,根据m 元完备数对的定义确定k b 的所有可能情况,再导出矛盾即可.【小问1详解】当3m =时,由12(1,2)+-≤=i i a a i ,得12235-+-<a a a a ,不符合题意,所以不存在3元完备数对;当4m =时,当13a =,22a =,34a =,41a =时,满足122331a a a a a a -≤-≤-且1223346-+-+-=a a a a a a ,符合题意,所以(3,2,4,1)A =为4元完备数对.【小问2详解】假设存在8元完备数对,当8m =时,令1(1,2,,7)k k k b a a k +=-= ,则1211b b b ≤≤≤≤ ,且12710b b b +++= ,则k b 有以下三种可能:①()()1,1,2,,64,7k k b k ⎧=⎪=⎨=⎪⎩ ;②()()()1,1,2,,52,63,7k k b k k ⎧=⎪==⎨⎪=⎩;③()()1,1,2,,42,5,6,7k k b k ⎧=⎪=⎨=⎪⎩当()()1,1,2,,64,7k k b k ⎧=⎪=⎨=⎪⎩ 时,于是126b b b === ,即1223671a a a a a a -=-==-= ,由112|(1,2,,7)|||k k k k a a a a k +++--== ,得112k k k k a a a a +++-=-或121k k k k a a a a +++--=,而,{1,2,3,4,5,6,7,8},,i j i j i j a a ∈≠≠,则有112k k k k a a a a +++-=-,因此1a ,2a ,…,7a ,8a 分别为1,2,…,7,8或2,3,…,8,1或7,6,…,1,8或8,7,…,2,1,由74b =得874a a =+或874a a =-,与已知矛盾,则当()()1,1,2,,64,7k k b k ⎧=⎪=⎨=⎪⎩ 时,不存在8元完备数对;当()()()1,1,2,,52,63,7k k b k k ⎧=⎪==⎨⎪=⎩或()()1,1,2,,42,5,6,7k k b k ⎧=⎪=⎨=⎪⎩ 时,同理不存在8元完备数对,所以不存在8元完备数对.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.。
2024北京丰台区高一(上)期末数学试题及答案

2024北京丰台高一(上)期末数 学2024.01考生须知:1.答题前,考生务必先将答题卡上的学校、班级、姓名、教育ID 号用黑色字迹签字笔填写清楚,并认真核对条形码上的教育ID 号、姓名。
在答题卡的“条形码粘贴区”贴好条形码。
2.本次练习所有答题均在答题卡上完成,选择题必须使用2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项。
非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚。
3.请严格按照答题卡上题号在相应答题区内作答,超出答题区域书写的答案无效。
在练习卷、草稿纸上答题无效。
4.本练习卷满分共150分,作答时长120分钟。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合{}21A x x =−<<,{}12B x x =−≤<,则AB =( ) A.{}22x x −<< B.{}11x x −≤< C.{}11x x −≤≤ D.{}12x x −≤< 2.下列函数在区间()0,+∞上单调递减的是( )A.ln y x =B.cos y x =C.e x y =D.y x =−3.若0a b >>,c d >,则下列结论一定成立的是( )A.0a b −<B.a c b c +>+C.ac bc >D.ac bd > 4.已知tan 24πα⎛⎫−= ⎪⎝⎭,则tan α=( ) A.3−B.1−C.13D.15.13lg 2lg58−+−+=( ) A.12π− B.2π− C.4π− D.32π− 6.函数()sin cos 2f x x x π⎛⎫=− ⎪⎝⎭,则( )A.()f x 是最小正周期为2π的奇函数B.()f x 是最小正周期为2π的偶函数C.()f x 是最小正周期为π的奇函数D.()f x 是最小正周期为π的偶函数7.函数()2x f x x =+,()2log g x x x =+,()h x x =+的零点分别为a ,b ,c ,则a ,b ,c 的大小顺序为( )A.a b c >>B.b a c >>C.b c a >>D.c a b >>8.若α,β都是第一象限角,则“sin sin αβ>”是“tan tan αβ>”成立的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”学习是日积月累的过程,每天进步一点点,前进不止一小点.若甲、乙两同学当下的知识储备量均为a ,甲同学每天的“进步”率和乙同学每天的“退步”率均为2%.n 天后,甲同学的知识储备量为()12%na +,乙同学的知识储备量为()12%n a −,则甲、乙的知识储备量之比为2时需要经过的天数约为( )(参考数据:lg20.3010≈,lg102 2.0086≈,lg98 1.9912≈) A.15 B.18 C.30 D.3510.记()R A 为非空集合A 中的元素个数,定义()()()()()()()(),*,R A R B R A R B A B R B R A R A R B −≥⎧⎪=⎨−<⎪⎩ .若{}1,2A =,()(){}2250B x x ax x ax =+++=,且*1A B =,设实数a 的所有可能取值组成的集合是S ,则()R S 等于( )A.1B.2C.3D.4 第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。
浙江省杭高三校2023-2024学年高一上学期期末数学试题含答案

杭高2023学年第一学期期末考试高一数学参考答案(答案在最后)命题:1.本试卷分试题卷和答题卡两部分.本卷满分150分,考试时间120分钟.2.答题前务必将自己的学校、班级、姓名用黑色字迹的签字笔或钢笔填写在答题卡规定的地方.3.答题时,请按照答题卡上“注意事项”的要求,在答题卡相应的位置上规范答题,在本试题卷上答题一律无效.4.考试结束后,只需上交答题卡.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α终边上一点()43P ,-,则sin α=()A.3 B.45-C.35D.34-【答案】C 【解析】【分析】根据三角函数的定义可求sin α的值.【详解】因为()43P ,-,故5OP =,故3sin 5α=,故选:C.2.已知2log 0.5a =,0.52b =,sin 2c =,则,,a b c 的大小关系为()A.a b c <<B.b<c<aC.c<a<bD.a c b<<【答案】D 【解析】【分析】分别利用函数2log y x =、2x y =和sin y x =的单调性,对“2log 0.5a =,0.52b =,sin 2c =”三个因式进行估值即可.【详解】因为函数2log y x =是增函数,且0.51<,则22log 0.5log 10a =<=,因为函数2x y =是增函数,且0.50>,则0.50221b =>=,因为正弦函数sin y x =在区间π3π[,22上是减函数,且π2π2<<,所以π0sin πsin 2sin 12c =<=<<,所以a c b <<,故选:D.3.函数2lg 43()()f x x x =+-的单调递减区间是()A.3,2⎛⎤-∞ ⎥⎝⎦B.3,2⎡⎫+∞⎪⎢⎣⎭C.31,2⎛⎤- ⎥⎝⎦D.3,42⎡⎫⎪⎢⎣⎭【答案】D 【解析】【分析】计算出函数定义域后结合复合函数的单调性计算即可得.【详解】由()()243lg f x x x =+-可得,2430x x+->,解得()1,4x ∈-,故()f x 的定义域为()1,4-,由ln y x =为增函数,令243t x x =+-,对称轴为32x =,故其单调递减区间为3,42⎡⎫⎪⎢⎣⎭,所以()()243lg f x x x =+-的单调递减区间为3,42⎡⎫⎪⎢⎣⎭.故选:D.4.“01a <<且01b <<”是“log 0a b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两者之间的推出关系可得条件关系.【详解】若01a <<且01b <<,则log log 10a a b >=,故log 0a b >成立,故“01a <<且01b <<”是“log 0a b >”的充分条件.若log 0a b >,则log log 1a a b >,故11a b >⎧⎨>⎩或0101a b <<⎧⎨<<⎩,故“01a <<且01b <<”不是“log 0a b >”的必要条件,故“01a <<且01b <<”是“log 0a b >”的充分不必要条件.故选:A.5.设函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩.若4()95f f ⎡⎤=⎢⎥⎣⎦,则a 等于()A.12B.2C.13D.3【答案】B 【解析】【分析】按照从内到外的原则,先计算4()5f 的值,再代入4()95f f ⎡⎤=⎢⎥⎣⎦,即可求出a 的值.【详解】由于函数()f x 51,11,1x x x a x -<⎧=⎨+≥⎩,且415<,则44(51355f =⨯-=,且31>,所以34()(3)195f f f a ⎡⎤==+=⎢⎥⎣⎦,即38a =,得2a =.故选:B.6.已知函数()24f x x ax =-+在()1,2上有且只有一个零点,则实数a 的取值范围是()A.[)8,10 B.()8,10 C.[)4,5 D.()4,5【答案】D 【解析】【分析】根据题意将零点问题转化为函数图象公共点问题进而求解答案即可.【详解】因为函数()24f x x ax =-+在()1,2上有且只有一个零点,所以24x ax +=,即4x a x+=在()1,2上有且只有一个实根,所以4y x x=+与y a =的函数图象在()1,2x ∈时有一个公共点,由于4y x x =+在()1,2单调递减,所以442121a +<<+,即45a <<.故选:D7.已知()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω在2π0,3⎛⎫⎪⎝⎭上单调递增,则ω的取值范围是()A.(]0,4 B.10,4⎛⎤ ⎝⎦C.10,4⎛⎫ ⎪⎝⎭D.(]0,1【答案】B 【解析】【分析】先求出π3x ω+取值范围,再由()f x 在2π0,3⎛⎫⎪⎝⎭上单调递增得2πππ332ω+≤,最后结合题意求出ω的取值范围即可.【详解】因为2π0,3x ⎛⎫∈ ⎪⎝⎭,0ω>,所以ππ2ππ,3333x ω⎛⎫+∈+ ⎪⎝⎭,要使得()f x 在2π0,3⎛⎫ ⎪⎝⎭上单调递增,则2πππ332ω+≤,解得14ω≤,又由题意可知0ω>,所以104ω<≤,故选:B8.中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状.不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知4AB CD ==,4BC =,8AD =,则该玉佩的面积为()A.16π3- B.32π3-C.16π3D.32π3【答案】B【解析】【分析】取AD 的中点为M ,连接BM 、CM ,延长AB ,CD 交于点O ,利用平面几何知识得到扇形的圆心角,进而利用扇形面积公式和三角形的面积公式计算求得该玉佩的面积.【详解】如图,取AD 的中点为M ,连接BM ,CM ,延长AB ,CD 交于点O ,由题意,△AOB 为等腰三角形,又∵AB CD =,∴AD //BC ,又∵M 为AD 的中点,8,4AD BC ==,∴AM 与BC 平行且相等,∴四边形ABCM 为平行四边形,∴4MC AB ==,同理4CM AB ==,∴△ABM ,△CDM 都是等边三角形,∴△BOC 是等边三角形,∴该玉佩的面积138844234S π=⨯⨯⨯-⨯⨯=32π3-.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()f x 的图象是连续不断的,且有如下对应值表:x1234567()f x 4-2-1421-3-在下列区间中,函数()f x 必有零点的区间为()A.(1,2)B.(2,3)C.(5,6)D.(5,7)【答案】BCD 【解析】【分析】根据零点存在定理可判断零点所在区间.【详解】由所给的函数值表知,()()()()()()()()120,230,560,570,f f f f f f f f ><<<由零点存在定理可知:()f x 在区间()()()2,3,5,6,5,7内各至少有一个零点,故选:BCD.10.设函数()πsin 2,6f x x x ⎛⎫=+= ⎪⎝⎭R ,若ππ,22α⎛⎫∈- ⎪⎝⎭,函数()f x α+是偶函数,则α的值可以是()A.π6-B.π3-C.π6D.π3【答案】BC 【解析】【分析】由题意可得()πsin 226f x x αα⎛⎫+=++⎪⎝⎭,结合偶函数的性质与ππ,22α⎛⎫∈- ⎪⎝⎭计算即可得.【详解】()πsin 226f x x αα⎛⎫+=++ ⎪⎝⎭,又其为偶函数,则图像关于y 轴对称,则ππ2π,62k k α+=+∈Z ,得ππ,62k k α=+∈Z ,又ππ,22α⎛⎫∈- ⎪⎝⎭,则π6α=或π3α=-.故选:BC.11.已知函数())ln1f x x x =++.则下列说法正确的是()A.()1lg3lg 23f f ⎛⎫+= ⎪⎝⎭B.函数()f x 的图象关于点()0,1对称C.对定义域内的任意两个不相等的实数12,x x ,()()12120f x f x x x -<-恒成立.D.若实数,a b 满足()()2f a f b +>,则0a b +>【答案】ABD 【解析】【分析】选项A 、B ,先利用函数解析式得出结论:()()2f x f x -+=,由于1lglg33=-,只需验证()()lg3lg32f f +-=是否成立即可;选项B ,需验证点()(,)x f x 和点()(,)x f x --关于点()0,1对称即可;选项C ,利用复合函数单调性的“同增异减”的原则判断即可;选项D ,将不等式()()2f a f b +>转化为()()()2f a f b f b >-=-的形式,借助函数()f x 单调性判断即可.【详解】对于A 、B 选项,对任意的x ∈R ,0x x x >+≥,所以函数())ln1f x x x =++的定义域为R ,又因为()())()1])1f x f x x x x x -+=+-++++22ln(1)22x x =+-+=,由于()()()1lg3lg lg3lg323f f f f ⎛⎫+=+-= ⎪⎝⎭,故A 正确;由于函数()f x 满足()()2f x f x -+=,所以任意点()(,)x f x 和点()(,)x f x --关于点()0,1对称,故函数()f x 的图象关于点()0,1对称,故B 正确;对于C 选项,对于函数())ln h x x =+0x x x >+≥,得该函数的定义域为R ,()()))()22lnlnln 10h x h x x x x x -+=-+=+-=,即()()h x h x -=-,所以函数()h x 为奇函数,当0x ≥时,内层函数u x =为增函数,外层函数ln y u =为增函数,所以函数()h x 在[)0,∞+上为增函数,故函数()h x 在(],0-∞上也为增函数,因为函数()h x 在R 上连续,故函数()h x 在R 上为增函数,又因为函数1y x =+在R 上为增函数,故函数()f x 在R 上为增函数,故C 不正确;对于D 选项,由()()2f x f x -+=,得2()()f x f x -=-,因为实数a ,b 满足()()2f a f b +>,所以()()()2f a f b f b >-=-,同时函数()f x 在R 上为增函数,可得a b >-,即0a b +>,故D 正确.故选:ABD.12.函数()lg f x x =,有0a b <<且()()22a b f a f b f +⎛⎫==⎪⎝⎭,则下列选项成立的是()A.1ab =B.14a <C.3<<4b D.517328a b +<<【答案】ACD 【解析】【分析】利用对数性质判断选项A ;再利用零点存在定理判断得3<<4b ,从而判断选项B 、C 、D.【详解】因为()lg ,f x x =有0a b <<且()()2,2a b f a f b f +⎛⎫== ⎪⎝⎭所以lg lg =a b ,即lg lg a b -=,得lg lg 0a b +=所以1ab =,且()()0,1,1,.a b ∞∈∈+所以A 正确22112lg 2lg lg 24b b b b b +++==(因为12b b+>),故22142,b b b=++即4324210,b b b -++=()()321310b b b b ----=,令()3231,g b b b b =---当13b <<时,()3222313310g b b b b b b b =---<---<当4b >时,()32222314311(1)10g b b b b b b b b b b b =--->---=--=-->,而()()30,40,g g 故()0g b =在()3,4之间必有解,所以存在b ,使得3 4.b <<所以C 正确111,43a b ⎛⎫=∈ ⎪⎝⎭,所以B 不正确11517,2238a b b b +⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭,所以D 正确故选:ACD【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.第Ⅱ卷三、填空题:本题共4小题,每小题5分,20分.13.计算:23(log 9)(log 4)⋅=____________.【答案】4【解析】【分析】根据题意,由换底公式代入计算,即可得到结果.【详解】()()23log 9log 4=lg 9lg 2×lg 4lg 32lg 3lg 2=×2lg 2lg 3=4.故答案为:414.写出一个同时满足以下三个条件①定义域不是R ,值域是R ;②奇函数;③周期函数的函数解析式___________.【答案】()()πtan ,πZ 2f x x x k k =≠+∈(答案不唯一).【解析】【分析】联想正切函数可得结果.【详解】满足题意的函数为()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).故答案为:()tan f x x =,(Z)2x k k ππ≠+∈(答案不唯一).15.已知()f x 为定义在R 上的奇函数,且又是最小正周期为T 的周期函数,则πsin 32T f ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦的值为____________.【答案】2【解析】【分析】根据函数的周期和奇偶性得到02T f ⎛⎫=⎪⎝⎭,进而得到ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.【详解】因为()f x 的最小正周期为T ,故222T T T f f T f ⎛⎫⎛⎫⎛⎫=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又()f x 为奇函数,故22T T f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,故22T T f f ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭,即202T f ⎛⎫= ⎪⎝⎭,解得02T f ⎛⎫= ⎪⎝⎭,故ππsin sin 3232T f ⎡⎤⎛⎫+== ⎪⎢⎥⎝⎭⎣⎦.故答案为:3216.对于任意实数,a b ,定义{},min ,,a a ba b b a b ≤⎧=⎨>⎩.设函数()3f x x =-+,()2log g x x =,则函数{}()min (),()h x f x g x =的最大值是_______.【答案】1【解析】【分析】画出()f x 和()g x 的图象,得到()h x 的图象,根据图象得到最大值.【详解】在同一坐标系中,作出函数()(),f x g x 的图象,依题意,()h x 的图象为如图所示的实线部分,令23log 2x x x -+=⇒=,则点()2,1A 为图象的最高点,因此()h x 的最大值为1,故答案为:1四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知cos sin 3cos sin θθθθ-=-+.(1)求tan θ的值;(2)求222sin 113cos +-θθ的值.【答案】(1)2-(2)132【解析】【分析】(1)根据题意整理可得sin 2cos θθ=-,进而可得结果;(2)根据齐次式问题分析求解,注意“1”的转化.【小问1详解】因为cos sin 3cos sin θθθθ-=-+,整理得sin 2cos θθ=-,所以sin tan 2cos θθθ==-;【小问2详解】因为tan 2θ=-,所以2222222222222sin 12sin sin cos 3sin cos 13cos sin cos 3cos sin 2cos θθθθθθθθθθθθ++++==-+--()()22223tan 1tan 321213222θθ⨯-+==--+=-.18.已知集合{}1217A xx =≤-≤∣,函数()f x =的定义域为集合B .(1)求A B ⋂;(2)若{}M xx m =≤∣,求R M B ⋃=时m 的取值范围.【答案】(1){34}A B xx ⋂=<≤∣(2)[)3,+∞【解析】【分析】(1)解一次与二次不等式,结合具体函数定义域的求法化简集合,A B ,再利用交集的运算即可得解;(2)利用集合的并集结果即可得解.【小问1详解】集合{}{}121714A xx x x =≤-≤=≤≤∣∣,由2230x x -->,得1x <-或3x >,则集合{1B xx =<-∣或3}x >,所以{34}A B xx ⋂=<≤∣.【小问2详解】因为R M B ⋃=,{}M xx m =≤∣,则3m ≥,故m 的取值范围是[)3,+∞.19.已知()sin()f x x π=-223,(1)求()f x 的最小正周期和对称轴方程;(2)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)最小正周期为π;对称轴方程为5,122k x k Z ππ=+∈;(2)()max 1f x =,()min 2f x =-;【解析】【分析】(1)由正弦函数的性质计算可得;(2)由x 的取值范围,求出23x π-的取值范围,再由正弦函数的性质计算可得;【详解】解:(1)因为()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以最小正周期22T ππ==,令2,32x k k Z πππ-=+∈,解得5,122k x k Z ππ=+∈,故函数的对称轴为5,122k x k Z ππ=+∈(2)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当236x ππ-=,即4x π=时函数取得最大值()max 14f x f π⎛⎫== ⎪⎝⎭,当232x ππ-=-,即12x π=-时函数取得最小值()min 212f x f π⎛⎫=-=- ⎪⎝⎭20.已知函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯.(1)求()f x 的解析式;(2)求方程()8f x =-的解集.【答案】(1)()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩(2){}2,1,1,2--【解析】【分析】(1)根据偶函数的性质直接求解即可;(2)根据题意先求0x ≥时符合题意的解,再结合偶函数对称性求出方程解集即可.【小问1详解】因为函数()f x 为定义在R 上的偶函数,当0x ≥时,()1432xx f x +=-⨯,所以任取0x <,则0x ->,此时()()1432xx f x f x --+=-=-⨯,所以()11432,0432,0x x xx x f x x +--+⎧-⨯≥=⎨-⨯<⎩【小问2详解】当0x ≥时,令()14328xx f x +=-⨯=-,即()226280xx -⨯+=,令2x t =,则2680t t -+=,解得2t =或4t =,当22x t ==时,1x =,当24x t ==时,2x =,根据偶函数对称性可知,当0x <时,符合题意的解为=1x -,2x =-,综上,原方程的解集为{}2,1,1,2--21.已知函数()222cos 1f x x x =+-.(1)求()f x 的单调递增区间;(2)若π102313f α⎛⎫-=⎪⎝⎭,π,π2α⎛⎫∈ ⎪⎝⎭,求πsin 4α⎛⎫+ ⎪⎝⎭的值.【答案】(1)πππ,π,Z36k k k ⎡⎤-++∈⎢⎥⎣⎦(2)26【解析】【分析】(1)由降幂公式和辅助角公式化简函数解析式,整体代入法求单调递增区间;(2)由π102313f α⎛⎫-= ⎪⎝⎭,代入函数解析式解出cos α和sin α,由两角和的正弦公式求解πsin 4α⎛⎫+ ⎪⎝⎭的值.【小问1详解】()222cos 12cos 2f x x x x x =+-=+1π2sin 2cos 22sin 2226x x x ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,令Z 262πππ2π22π,k x k k -+≤+≤+∈,解得2ππ2π22πZ ,33k x k k -+≤≤+∈,即ππππ,Z 36k x k k -+≤≤+∈,所以()f x 的单调递增区间为πππ,π,Z 36k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】由π102313f α⎛⎫-=⎪⎝⎭得5sin 213πα⎛⎫-= ⎪⎝⎭,所以5cos 13α=-,又因为π,π2α⎛⎫∈⎪⎝⎭,所以12sin 13α==,所以πππsin sin cos cos sin 44426ααα⎛⎫+=+= ⎪⎝⎭.22.已知函数()22log f x x =-,()()21,11,1x x g x f x x ⎧-≤⎪=⎨->⎪⎩.(1)求()g x 的最大值;(2)若对任意[]14,16x ∈,2R x ∈,不等式()()()12212kf x f xg x ⋅>恒成立,求实数k 的取值范围.【答案】(1)1(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】(1)根据分段函数性质讨论函数单调性与最值,结合指数函数和对数函数相关知识求解最值即可;(2)根据题意转化为对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,代入函数表达式进行化简,令21log ,24m x m =≤≤,将不等式化为()()2211k m m --->,结合二次函数相关知识分类讨论即可.【小问1详解】当1x ≤时,()21xg x =-,此时022x <≤,1211x -<-≤,则()0211xg x ≤=-≤;当1x >时,()()211log g x f x x =-=-单调递减,此时()()11g x g <=,综上所述,当1x =时,取得()g x 的最大值1;【小问2详解】因为对任意[]14,16x ∈,2R x ∈,不等式()()()21122kf x f xg x ⋅>恒成立,且()21g x ≤,所以对任意[]14,16x ∈,()()21121kf x f x ⋅>恒成立,由题意得,()()()()()()22112121212122log 22log 22log 1log kkf x f x x x k x x ⋅=--=---,令21log ,24m x m =≤≤,则不等式可化为()()2211k m m --->,即()2223230m k m k +--+>对任意[]2,4m ∈恒成立,令()()[]222323,2,4h m m k m k m =+--+∈,则函数图象开口向上,对称轴()233222k km --=-=⨯,当322k -≤,即1k ≥-时,()()()min 2843230h m h k k ==+--+>,解得12k >,符合题意;当3242k -<<时,即51k -<<-时,()2min 323022k k k h m h --+-⎛⎫==> ⎪⎝⎭,即2230k k -+<,不等式无解,该情况舍去;当342k-≥时,即5k ≤-时,()()()min 43283236110h m h k k k ==+--+=+>,解得116k >-,不符合题意,该情况舍去.综上所述,实数k 的取值范围为1,2∞⎛⎫+⎪⎝⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d=∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.。
安徽省A10联盟2023-2024学年高一上学期期末检测数学试卷含答案

2023—2024学年第一学期高一年级期末检测数学试题卷(答案在最后)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题无效.第Ⅰ卷(选择题共60分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡上)1.已知集合{2,1,0,1,2}M =--,{(1)(3)0}N xx x =+->∣,则M N ⋂=()A.{2,1,0,1}-- B.{2}- C.{2,1}-- D.{0,1,2}【答案】B 【解析】【分析】解一元二次不等式,求出集合N ,然后进行交集的运算即可.【详解】由{(1)(3)0}N xx x =+->∣解得:{3N x x =>∣或1}x <-,因为{2,1,0,1,2}M =--,所以M N ⋂={2}-.故选:B 2.“π2π,6k k α=+∈Z ”是“1sin 2α=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要条件结合任意角的正弦函数分析判断.【详解】若π2π,6k k α=+∈Z ,则ππ1sin sin 2πsin ,662k k α⎛⎫=+==∈ ⎪⎝⎭Z 成立;若1sin 2α=,则π2π,6k k α=+∈Z 或5π2π,6k k α=+∈Z ,故π2π,6k k α=+∈Z 不一定成立;综上所述:“π2π,6k k α=+∈Z ”是“1sin 2α=”的充分不必要条件.故选:A.3.计算55log 42log 10-=()A.2B.1- C.2- D.5-【答案】C 【解析】【分析】利用对数的运算公式可得答案.【详解】555552log 42log 10log 4log 1100l 5og 2-===--.故选:C.4.已知正数x ,y 满足811x y+=,则2x y +的最小值是()A.6B.16C.20D.18【答案】D 【解析】【分析】将所求的式子乘以“1”,然后利用基本不等式求解即可.【详解】因为正数x ,y 满足811x y+=,则()811622101018y x x y x y x y x y ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当16y xx y=,即12,3x y ==时等号成立.故选:D5.计算sin 50cos10sin 40sin10︒︒︒︒+=()A. B.32C.12-D.12【答案】B 【解析】【分析】由两角和的正弦公式求解即可.【详解】因为sin 50cos10sin 40sin10︒︒︒︒+=sin 50cos10cos50sin10︒︒︒︒+()sin 5010=sin 602︒︒︒=+=.故选:B6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线3y x =-上,则πtan 24θ⎛⎫+= ⎪⎝⎭()A.17-B.17C.7D.7-【答案】C 【解析】【分析】先求解tan θ的值,结合倍角公式和和角公式可得答案.【详解】由题意tan 3θ=-,所以22tan 63tan 21tan 194θθθ-===--,所以πtan 21tan 2741tan 2θθθ+⎛⎫+== ⎪-⎝⎭.故选:C.7.将函数π()cos 23f x x ⎛⎫=+⎪⎝⎭向右平移2π3个单位,再将所得的函数图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A.()cos g x x =-B.()cos g x x=C.π()cos 3g x x ⎛⎫=- ⎪⎝⎭D.()πcos 43g x x ⎛⎫=-⎪⎝⎭【答案】A 【解析】【分析】利用三角函数图象变化规律,即可判断选项.【详解】将函数π()cos 23f x x ⎛⎫=+⎪⎝⎭向右平移2π3个单位,得到()2ππcos 2cos 2πcos 233y x x x ⎡⎤⎛⎫=-+=-=- ⎪⎢⎝⎭⎣⎦,再将所得的函数图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()cos y g x x ==-的图象.故选:A.8.设函数()f x 的定义域为R ,(1)f x +为奇函数,(2)f x +为偶函数,当[0,1]x ∈时,2(2)f x x bx c =++.若(3)(2)6f f -=,则752f ⎛⎫= ⎪⎝⎭()A.94B.32C.74-D.52-【答案】D 【解析】【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()2286f x x x =-+,进而利用周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()02f f c =-=,由②得:()()312f f b c ==++,因为(3)(2)6f f -=,所以26b c c +++=,即24b c +=,令0x =,由①得:()()()111020f f f b c =-⇒=⇒++=,解得:8,6b c =-=,所以()2286f x x x =-+.又因为()()()()()221111f x f x f x f x f x ⎡⎤⎡⎤+=-+=--+=--+=-⎣⎦⎣⎦,即()()2f x f x +=-,则()()()42f x f x f x +=-+=,所以函数()f x 是以4为周期的函数,所以75331114911222222f f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==+=--+=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭115246242f ⎛⎫=⨯-+= ⎪⎝⎭.75522f ⎛⎫=- ⎪⎝⎭.故选:D【点睛】结论点睛:复合函数的奇偶性:(1)()f x a +是偶函数,则()()f x a f x a -+=+;(2)()f x a +是奇函数,则()()f x a f x a -+=-+.二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.请把正确答案涂在答题卡上)9.已知a ,b 为实数,且a b <,则下列不等式恒成立的是()A.sin sin a b <B.1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C.33a b <D.()()22ln 1ln 1a b +<+【答案】BC 【解析】【分析】利用函数单调性和反例可得答案.【详解】对于A ,π2π23<,而π2πsin sin 23>,故A 不正确;对于B ,因为12xy ⎛⎫= ⎪⎝⎭为减函数,a b <,所以1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故B 正确;对于C ,因为3y x =为增函数,a b <,所以33a b <,故C 正确;对于D ,21-<,而()()ln 41ln 11+>+,故D 不正确.故选:BC.10.高斯是世界著名的数学家,近代数学奠基者之一,享有“数学王子”的美称.函数[]()f x x =称为“高斯函数”,它的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=,[3]3=.下列结论正确的是()A.对12,x x ∀∈R ,若12x x <,则()()12f x f x ≤B.函数()f x 是R 上的奇的数C.对任意实数m ,(2)2()f m f m =D.对任意实数m ,1()(2)2f m f m f m ⎛⎫++= ⎪⎝⎭【答案】AD 【解析】【分析】利用函数定义及单调性的定义判断A ;通过举例来判断BC ;设m n r =+,其中n 为m 的整数部分,r 为m 的小数部分,01r ≤<,分102r ≤<,112r ≤<讨论计算来判断D .【详解】对于A :对12,x x ∀∈R ,若12x x <,则[][]12x x ≤,即()()12f x f x ≤,故A 正确;对于B :例如()[]1.5 1.51f ==,()[]1.5 1.52f -=-=-,即()()1.5 1.5f f -≠-,故函数()[]f x x =不是奇函数,故B 错误;对于C :取12m =,()[]121112f f ⎛⎫⨯=== ⎪⎝⎭,1122022f⎛⎫⎡⎤== ⎪⎢⎥⎝⎭⎣⎦,不满足(2)2()f m f m =,故C 错误;对于D :设m n r =+,其中n 为m 的整数部分,,n m n ≤∈Z ,r 为m 的小数部分,01r ≤<,则[][]1122m m n r n r ⎡⎤⎡⎤++=++++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222m n r =+,若102r ≤<,可得[]122m m n ⎡⎤++=⎢⎥⎣⎦,[]22m n =,若112r ≤<,可得[]1212m m n ⎡⎤++=+⎢⎥⎣⎦,[]221m n =+,所以对任意实数m ,1()(2)2f m f m f m ⎛⎫++= ⎪⎝⎭,故D 正确;故选:AD.11.已知0a >,0b >,且4a b +=,则下列不等式恒成立的是()A.4ab ≤B.228a b +≥ C.228a b +≥ D.22log log 2a b +≥【答案】ABC 【解析】【分析】根据基本不等式及其变形式,结合指数运算判断ABC ,举反例根据对数函数的单调性判断D.【详解】对于A :因为4=+≥a b 4ab ≤,当且仅当2a b ==时取等号,A 正确;对于B :因为222222228a b a b ++≥=⋅=⋅=,当且仅当2a b ==时取等号,故B 正确;对于C :因为()2222162a b a b ab ab +=+-=-,4ab ≤,所以221621688a b ab +=-≥-=,当且仅当2a b ==时取等号,故C 正确;对于D :当10,30a b =>=>时,满足4a b +=,但是222222log log log 1log 3log 3log 42a b +=+=<=,故D 错误;故选:ABC.12.已知函数()cos(2)(0π)f x x ϕϕ=+<<的图象关于直线7π12=-x 对称,则()A.(0)2f =B.函数()y f x =的图象关于点2π,03⎛⎫⎪⎝⎭对称C.函数()f x 在区间19π,π24⎛⎫⎪⎝⎭上单调递增 D.函数()f x 在区间5,126ππ⎡⎤⎢⎥⎣⎦上的值域为1,2⎡-⎢⎣⎦【答案】ABD 【解析】【分析】先根据对称轴求出函数解析式,结合选项逐个验证即可.【详解】因为()f x 的图象关于直线7π12=-x 对称,所以7ππ6k ϕ-=,即7ππ6k ϕ=+,Z k ∈;因为0πϕ<<,所以π6ϕ=,即()cos(2π6=+f x x .π(0)cos 62f ==,故A 正确;2π3π(cos 032f ==,所以函数()y f x =的图象关于点2π,03⎛⎫ ⎪⎝⎭对称,故B 正确;令π26t x =+,由19π,π24x ⎛⎫∈ ⎪⎝⎭可得21π13π,126t ⎛⎫∈ ⎪⎝⎭,因为21π13π2π126<<,所以函数()f x 在区间19π,π24⎛⎫⎪⎝⎭上不是单调函数,故C 不正确;令π26t x =+,由5,126x ππ⎡⎤∈⎢⎥⎣⎦可得11,36t ππ⎡⎤∈⎢⎣⎦,所以cos 1,2t ⎡∈-⎢⎣⎦,所以()1,2f x ⎡∈-⎢⎣⎦,故D 正确.故选:ABD.第Ⅱ卷(非选择题共90分)三、填空题:本大题共4小题,每小题5分.把答案填在答题卡的相应位置.13.命题“()2R,ln 10x x ∀∈+>”的否定是_________.【答案】()2R,ln 10x x ∃∈+≤【解析】【分析】利用全称命题的否定方法可得答案.【详解】因为“()2R,ln 10x x ∀∈+>”的否定是“()2R,ln 10x x ∃∈+≤”故答案为:()2R,ln 10x x ∃∈+≤.14.已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()4x f x =,则52f ⎛⎫-= ⎪⎝⎭_________.【答案】2-【解析】【分析】先利用周期和奇偶性,把所求转化为已知区间内,代入可得答案.【详解】因为()f x 是周期为2的奇函数,所以511222f f f ⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为当01x <<时,()4x f x =,所以1()22f =,所以522f ⎛⎫-=- ⎪⎝⎭.故答案为:2-15.已知偶函数()f x 在[0,)+∞单调递减,(2)0f -=,若()2log 0f m >,则实数m 的取值范围是______.【答案】1,44⎛⎫ ⎪⎝⎭【解析】【分析】根据函数单调性和奇偶性得到22log 2m -<<,利用对数函数单调性求解即可.【详解】因为偶函数()f x 在[0,)+∞单调递减,(2)0f -=,所以()f x 在(),0∞-上单调递增,()20f =,所以()2log 0f m >等价于()()2log2f m f >,所以2log 2m <,所以22log 2m -<<,解得144m <<.所以实数m 的取值范围是1,44⎛⎫⎪⎝⎭.故答案为:1,44⎛⎫⎪⎝⎭.16.已知函数π()2sin 23f x x ⎛⎫=+⎪⎝⎭,区间[,]a b (,a b ∈R 且a b <)满足:()y f x =在区间[,]a b 上至少含有20个零点,在所有满足此条件的区间[,]a b 中,b a -的最小值为_________.【答案】55π6##55π6【解析】【分析】通过整体代换求解函数的零点通式,求出相邻零点之间的距离,即可求出满足零点个数的最小区间长度.【详解】令π()2sin 203f x x ⎛⎫=+= ⎪⎝⎭,解得πx k =或ππ6x k =+,k ∈Z ,即()y f x =的相邻两零点间隔为π6或5π6,故若()y f x =在[],a b 上至少含有20个零点,则b a ﹣的最小值为π5π55π109666⨯+⨯=.故答案为:55π6四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知函数2()(2)2f x x k x k =++++,设集合{}122xA x=<<∣,集合{()0}B x f x =<∣.(1)若B =∅,求实数k 的取值范围;(2)若“x A ∈”是“x B ∈”的充分条件,求实数k 的取值范围.【答案】17.[]2,2-18.5,2⎛⎤-∞- ⎥⎝⎦【解析】【分析】(1)根据题意可得()()2220f x x k x k =++++≥恒成立,即0∆≤求解;(2)化简()0,1A =,由题意A B ⊆得()()0010f f ⎧≤⎪⎨≤⎪⎩求得答案.【小问1详解】由B =∅,即()()2220f x x k x k =++++≥恒成立,()()22420k k ∴∆=+-+≤,解得22k -≤≤.所以实数k 的取值范围为[]22-,.【小问2详解】由{}()1220,1xA x =<<=,x A ∈是xB ∈的充分条件,所以A B ⊆,得()()0010f f ⎧≤⎪⎨≤⎪⎩,即20250k k +≤⎧⎨+≤⎩,解得52k ≤-.所以实数k 的取值范围为5,2∞⎛⎤-- ⎥⎝⎦.18.已知函数π()2sin 6g x x ω⎛⎫=-⎪⎝⎭周期为π,其中0ω>.(1)求函数()g x 的单调递增区间;(2)请运用“五点法”,通过列表、描点、连线,在所给的直角坐标系中画出函数()g x 在[0,]π上的简图.【答案】(1)πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦(2)答案见解析【解析】【分析】(1)先利用周期求出函数解析式,再利用单调性可得答案;(2)利用五点法画图可得答案.【小问1详解】由题意可得2ω=,所以π()2sin 26g x x ⎛⎫=- ⎪⎝⎭;令πππ2π22π262k x k -≤-≤+,Z k ∈,解得ππππ63k x k -≤≤+,故函数()g x 的单调递增区间为πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦.【小问2详解】π26x -π6-π2π3π211π6x 0π12π37π125π6π()g x 1-022-1-描点,连线,其简图如下19.已知函数2()141x a f x =-+是奇函数.(1)求实数a 的值并判断函数单调性(无需证明);(2)若不等式()()412250x x f f t ++-⋅+<在R 上恒成立,求实数t 的取值范围.【答案】(1)1a =,减函数(2)5t >-【解析】【分析】(1)先根据奇偶性求出a ,再根据复合函数单调性可判定单调性;(2)利用奇偶性和单调性进行转化,再结合换元法可求答案.【小问1详解】因为2()141x a f x =-+是奇函数,所以(0)0f =,解得1a =;当1a =时,214()14141xx x f x -=-=++,定义域为R ,又1441()41)4(1x x x x f x x f ---+-==-+=-符合题意.所以1a =,因为41x y =+为增函数,所以()f x 为减函数.【小问2详解】()()412250x x f f t ++-⋅+<等价于()()41225x x f f t +<--⋅+,即()()41225x x f f t +<-+⋅-;因为()f x 为减函数,所以41225x x t +>-+⋅-,即4226x x t ⋅+->-;令20x m =>,则上式化为226m m t ⋅+->-,即()215m t -+>-;所以5t >-.20.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产1台,需另投入成本()C x (万元),当年产量不足70台时,21()602C x x x =+(万元);当年产量不小于70台时,8100()1212180C x x x=+-(万元),若每台设备售价为120万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?【答案】20.2160500,070281001680,70x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-++≥ ⎪⎪⎝⎭⎩21.90台时利润最大.【解析】【分析】(1)分070x <<、70x ≥两种情况分别求出函数关系式即可;(2)利用二次函数及基本不等式计算可得.【小问1详解】由题可知当070x <<时,2211120605006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭,当70x ≥时,8100810012012121805001680y x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,所以2160500,070281001680,70x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-++≥ ⎪⎪⎝⎭⎩;【小问2详解】当070x <<时,()22116050060130022y x x x =-+-=--+,则60x =时,y 有最大值1300(万元);当70x ≥时,81001680y x x ⎛⎫=-+ ⎪⎝⎭,当0x >时,8100180x x +≥=,当且仅当8100x x =,即90x =时取等号,所以8100168016801801500y x x ⎛⎫=-+≤-= ⎪⎝⎭,所以当90x =时,y 有最大值1500(万元);综上,年产量为90台时,该厂在这一商品的生产中所获利润最大.21.已知函数2())2cos 1(0,0π)2x f x x ωϕωϕωϕ+⎛⎫=+-+><< ⎪⎝⎭为奇函数,且()f x 图象的相邻两对称轴间的距离为π2.(1)求()()sin cos h x f x x x =+-的最小值.(2)将函数()f x 的图象向右平移π6个单位长度,再把横坐标缩小为原来的12倍(纵坐标不变),得到函数()y g x =的图象,记方程2()3g x =在4π0,3x ⎡⎤∈⎢⎥⎣⎦上的根从小到依次为1231,,,,,n n x x x x x - 试确定n 的值,并求1231222n n x x x x x -+++++ 的值.【答案】21.2-22.85π12【解析】【分析】(1)利用降幂公式和辅助角公式化简()f x ,再根据周期及奇偶数性求出()f x 的解析式,再令sin cos t x x =-,利用二次函数性质求解最小值即可;(2)根据三角函数图像变换求得()g x ,利用换元法,结合三角函数图象与性质求得n 以及1231222n n x x x x x -+++++ 的值.【小问1详解】()()22cos 12x f x x ωϕωϕ+⎛⎫=+-+ ⎪⎝⎭()()πcos 2sin 6x x x ωϕωϕωϕ⎛⎫=+-+=+- ⎪⎝⎭.因为函数()f x 图象的相邻两对称轴间的距离为π2,所以πT =,可得2ω=,又由函数()f x 为奇函数,所以ππ,6k k ϕ-=∈Z ,因为0πϕ<<,所以π6ϕ=,所以函数()2sin2f x x =.所以()()sin cos 2sin 2sin cos h x f x x x x x x =+-=+-,令πsin cos 4t x x x ⎛⎫⎡=-=-∈ ⎪⎣⎝⎭,则22sin 24sin cos 22x x x t ==-,故原函数最小值为222,y t t t ⎡=-++∈⎣的最小值,其对称轴为14t =,在14t ⎡⎤∈⎢⎣⎦单调递增,在14t ⎡∈⎢⎣单调递减,且(222222-⨯+>--,所以t =222y t t =-++有最小值2-,所以()()sin cos h x f x x x =+-的最小值为2-.【小问2详解】将函数()f x 的图象向右平移π6个单位长度,得到ππ2sin 22sin 263y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再把横坐标缩小为原来的12(纵坐标不变),得到()π2sin 43g x x ⎛⎫=-⎪⎝⎭,令()π22sin 433g x x ⎛⎫=-= ⎪⎝⎭,则π1sin 433x ⎛⎫-= ⎪⎝⎭,因为4π0,3x ⎡⎤∈⎢⎥⎣⎦,所以ππ4,5π33x ⎡⎤-∈-⎢⎥⎣⎦,令3π4t x =-,则π,5π3t ⎡⎤∈-⎢⎥⎣⎦,函数sin y t =在π,5π3t ⎡⎤∈-⎢⎥⎣⎦上的图象如下图所示,由图可知,sin y t =与13y =共有6个交点,所以方程2()3g x =在4π0,3x ⎡⎤∈⎢⎥⎣⎦上共有6个根,即6n =,因为()()()123456162345222222t t t t t t t t t t t t +++++=+++++5π3π7π2222225π222=⨯+⨯⨯+⨯⨯=,所以1234562222x x x x x x +++++()1234561π222210412t t t t t t =++++++⨯85π12=.22.对于函数()()f x x D ∈,D 为函数定义域,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≤成立,我们称函数()f x 为“T 同比不增函数”.(1)若函数()sin f x kx x =+是“π2同比不增函数”,求k 的取值范围;(2)是否存在正常数T ,使得函数()11f x x x x =---++为“T 同比不增函数”,若存在,求T 的取值范围;若不存在,请说明理由.【答案】(1)22,π∞⎛-- ⎝⎦(2)存在,且4T ≥【解析】【分析】(1)由()()f x T f x +≤恒成立,分离常数k ,结合三角函数的最值来求得k 的取值范围.(2)结合()f x 的图象以及图象变换的知识求得T 的取值范围.【小问1详解】因为函数()sin f x kx x =+是“π2同比不增函数”,则()π2f x f x ⎛⎫+≤ ⎪⎝⎭恒成立,所以ππsin sin 22k x x kx x ⎛⎫⎛⎫+++≤+ ⎪ ⎪⎝⎭⎝⎭恒成立,所以ππsin cos 24k x x x ⎛⎫≤-=- ⎪⎝⎭,即πsin π4k x ⎛⎫≤- ⎪⎝⎭,由于πsin 14x ⎛⎫-≥- ⎪⎝⎭,所以πk ≤-.所以k的取值范围是,π∞⎛-- ⎝⎦.【小问2详解】存在,理由如下:2,1()11,112,1x x f x x x x x x x x --≤-⎧⎪=---++=-<<⎨⎪-+≥⎩,画出()f x的图象如下图所示,()f x T +的图象是由()f x 的图象向左平移T 个单位所得,由图可知,当4T ≥时,对任意的x D ∈,都有()()f x T f x +≤成立,所以存在正常数T ,使得函数()11f x x x x =---++为“T 同比不增函数”,且4T ≥.【点睛】关键点点睛:本题考查新定义的理解和应用,解题的关键在于利用题中的定义,将问题转化为恒成立问题,本题第(2)问利用数形结合思想求解比较直观简单.。
2023-2024学年山东省东营市高一上册期末数学试题(含解析)

2023-2024学年山东省东营市高一上册期末数学试题一、单选题1.已知集合{}2560,{10}A x x x B x x =-+≥=-<,则A B = ()A .(,1)-∞B .(2,1)--C .(3,1)--D .(3,)+∞【正确答案】A【分析】解不等式求得集合,A B ,由此求得A B ⋂.【详解】()()256230x x x x -+=--≥,解得2x ≤或3x ≥,所以(][),23,A =-∞⋃+∞,而(),1B =-∞,所以A B = (,1)-∞.故选:A2.十名工人某天生产同一零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12,设其中位数为a ,众数为b ,第一四分位数为c ,则a ,b ,c 大小关系为()A .a b c <<B .<<c a bC .c b a <<D .a c b<<【正确答案】B【分析】根据中位数、众数、分位数的定义求解.【详解】对生产件数由小到大排序可得:10,12,14,14,15,15,16,17,17,17,所以中位数151515,2a +==众数为b =17,100.25 2.5⨯=,所以第一四分位数为第三个数,即c =14,所以<<c a b ,故选:B.3.已知函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【分析】通过反例和奇函数的性质可直接得到结论.【详解】若()2f x x =,则()00f =,此时()f x 为偶函数,充分性不成立;若()f x 为奇函数,且其定义域为R ,则()00f =恒成立,必要性成立;∴函数()f x 的定义域为R ,则“()00f =”是“()f x 是奇函数”的必要不充分条件.故选:B.4.如图是函数()f x 的图象,则下列说法不正确的是()A .()02f =-B .()f x 的定义域为[]3,2-C .()f x 的值域为[]22-,D .若()0f x =,则12x =或2【正确答案】C【分析】结合函数的图象和定义域,值域等性质进行判断即可.【详解】解:由图象知(0)2f =-正确,函数的定义域为[3-,2]正确,函数的最小值为3-,即函数的值域为[3-,2],故C 错误,若()0f x =,则12x =或2,故D 正确故选:C .5.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法运算,数学家拉普拉斯称赞“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知lg20.3010,lg30.4771≈≈,设71249N =⨯,则N 所在的区间为()A .()131410,10B .()141510,10C .()151610,10D .()161710,10【正确答案】C【分析】根据对数的运算性质,结合题中所给的数据进行判断即可.【详解】因为712712142449,lg lg4lg9lg2lg314lg224lg3 4.21411.450415N N =⨯=+=+=+≈+≈.6644,所以()15.664415161010,10N =∈.故选:C6.方程24x x +=的根所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【正确答案】B构造函数()24xf x x =+-,利用零点存在定理可得出结论.【详解】构造函数()24xf x x =+-,则函数()f x 为R 上的增函数,()110f =-< ,()220f =>,则()()120f f ⋅<,因此,方程24x x +=24x x +=的根所在的区间为()1,2.故选:B.7.已知偶函数()f x 在[0,)+∞上单调递减,且2是它的一个零点,则不等式(1)0f x ->的解集为()A .(1,3)-B .(,3)(1,)-∞-+∞C .(3,1)-D .(,1)(3,)-∞-⋃+∞【正确答案】A【分析】根据函数的单调性和奇偶性解不等式.【详解】因为偶函数()f x 在[0,)+∞上单调递减,所以()f x 在(],0-∞上单调递增,又因为2是它的一个零点,所以(2)0f =,所以(2)(2)0f f -==,所以当22x -<<时()0f x >,所以由(1)0f x ->可得212x -<-<解得13x -<<,故选:A.8.设()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,对任意的12,(0,)x x ∈+∞满足()()2112120x f x x f x x x->- 且(1)2f =,则不等式()2f x x >的解集为()A .(1,0)(1,)-⋃+∞B .(1,0)(0,1)-C .,1(),)1(-∞-⋃+∞D .(,2)(2,)-∞-+∞ 【正确答案】A 【分析】设()()f x F x x=,判断出()F x 的奇偶性、单调性,由此求得不等式()2f x x >的解集.【详解】设()()f x F x x =,由于()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,所以()()()()f x f x F x F x x x--===-,所以()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数.任取120x x <<,120x x -<,则:()()()()()()1221121212120f x f x x f x x f x F x F x x x x x --=-=<,()()12F x F x <,所以()F x 在()0,∞+上递增,则()F x 在(),0∞-上递减.()(1)21f f ==-,()()()11211f F F ===-,对于不等式()2f x x >,当0x >时,有()2f x x >,即()()11F x F x >⇒>;当0x <时,由()2f x x<,即()()110F x F x <-⇒-<<,综上所述,不等式()2f x x >的解集为(1,0)(1,)-⋃+∞.故选:A二、多选题9.有一组样本数据123,,,,n x x x x ,由这组数据得到新样本数据1232,2,2,,2n x x x x ++++ ,则下列结论正确的是()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同【正确答案】CD【分析】根据一组数据的平均数、中位数、标准差和极差的定义求解.【详解】数据123,,,,n x x x x 的平均数为123nx x x x x n++++=,新数据1232,2,2,,2n x x x x ++++ 的平均数为123123222222n n x x x x x x x x nx n n++++++++++++==++ ,故A 错误;若数据123,,,,n x x x x 的中位数为i x ,则新数据1232,2,2,,2n x x x x ++++ 的中位数为2i x +,故B 错误;数据123,,,,n x x x x 的标准差为s =,新数据1232,2,2,,2n x x x x ++++ 的标准差为1s s ==,故C 正确;若数据123,,,,n x x x x 中的最大数为,m x 最小数为n x ,则极差为m n x x -,则数据1232,2,2,,2n x x x x ++++ 的极差为22m n m n x x x x +--=-,故D 正确,故选:CD.10.若a b >,则下列不等式一定成立的是()A .22lg lg a b >B .22a b--<C .11a b<D .33a b >【正确答案】BD【分析】应用特殊值23a b =>=-,判断A 、C ,根据2x y =,3y x =的单调性判断B 、D.【详解】当23a b =>=-时,则()22239<-=,而lg 4lg9<,又1123>-,∴A ,C 不正确;∵2x y =,3y x =都是R 上单调递增函数,∴B ,D 是正确的.故选:BD.11.关于x 的方程221x k xx x x-=--的解集中只含有一个元素,则k 的值可能是()A .0B .1-C .1D .3【正确答案】ABD【分析】由方程有意义可得0x ≠且1x ≠,并将方程化为220x x k +-=;根据方程解集中仅含有一个元素可分成三种情况:方程220x x k +-=有且仅有一个不为0和1的解、方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1、方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由此可解得k 所有可能的值.【详解】由已知方程得:210x x x -≠-≠⎧⎨⎩,解得:0x ≠且1x ≠;由221x k x x x x-=--得:220x x k +-=;若221x k x x x x-=--的解集中只有一个元素,则有以下三种情况:①方程220x x k +-=有且仅有一个不为0和1的解,440k ∴∆=+=,解得:1k =-,此时220x x k +-=的解为1x =-,满足题意;②方程220x x k +-=有两个不等实根,其中一个根为0,另一根不为1;由0200k +⨯-=得:=0k ,220x x ∴+=,此时方程另一根为2x =-,满足题意;③方程220x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由1210k +⨯-=得:=3k ,2230x x ∴+-=,此时方程另一根为3x =-,满足题意;综上所述:1k =-或0或3.故选:ABD.12.已知函数2()21xx f x =+,下列说法正确的是()A .若2()1f a >,则0a >B .()f x 在R 上单调递增C .当120x x +>时,()()121f x f x +>D .函数()y f x =的图像关于点1,02⎛⎫⎪⎝⎭成中心对称【正确答案】ABC【分析】根据指数不等式、函数单调性、对称性等知识对选项进行分析,从而确定正确答案.【详解】A 选项,()21f a >,即221,2221,21,021aa a a aa ⨯>⨯>+>>+,A 选项正确.B 选项,1221()12111212x x x x xf x ==+=-+++-,由于121x y =+在R 上递减,所以()f x 在R 上递增,B 选项正确.C 选项,当120x x +>时,12x x >-,所以()()12f x f x >-,即12122221212112x x x x x -->=+++,所以()()1221222122221212121211x x x x x x x f x f x +=>++=++++,C 选项正确.D 选项,()()112212122x x xf x f x ---==≠-++,D 选项错误.故选:ABC三、填空题13.已知幂函数()f x x α=的图像经过点(8,2),则1()f x -=_________.【正确答案】3x 【分析】根据幂函数的的知识求得α,然后根据反函数的知识求得正确答案.【详解】依题意,幂函数()f x x α=的图像经过点(8,2),所以182,3αα==,所以()13f x x =,令13y x =,解得3x y =,交换,x y 得3y x =,所以13()f x x -=故3x 14.设两个相互独立事件A 与B ,若事件A 发生的概率为p ,B 发生的概率为1p -,则A 与B 同时发生的概率的最大值为______.【正确答案】14##0.25【分析】求出相互独立事件同时发生的概率,利用二次函数求最值.【详解】因为事件A 与B 同时发生的概率为()[]()221110,124p p p p p p ⎛⎫-=-=--+∈ ⎪⎝⎭,所以当12p =时,最大值为14.故1415.已知函数(),y f x x =∈R ,且(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,写出函数()y f x =的一个解析式:________.【正确答案】()32xf x =⨯【分析】利用累乘的方法可求解函数解析式.【详解】因为(1)(2)()(0)3,2,2,,2,N (0)(1)(1)f f f n f n f f f n *===∈- ,所以(1)(2)()(0)32(0)(1)(1)n f f f n f f f f n ⨯⨯⨯=⨯- ,即()32n f n =⨯,所以函数()y f x =的一个解析式为()32x f x =⨯,故答案为:()32x f x =⨯.16.已知函数2()|2|4f x x x a a a =-+-,若函数()f x 有三个不同的零点123,,x x x ,且123x x x <<,则123111x x x ++的取值范围是_________.【正确答案】1,2⎛⎫+∞ ⎪ ⎪⎝⎭【分析】将()f x 表示为分段函数的形式,对a 进行分类讨论,求得12123,,x x x x x +,由此求得123111x x x ++的取值范围.【详解】()222224,224,2x ax a a x af x x ax a a x a ⎧-+-≥=⎨-++-<⎩,当0a >时,方程有3个不相等的实数根,()f x 在()2,a +∞上递增,所以2x a ≥时,22240x ax a a -+-=有1个根,且2x a <时,22240x ax a a -++-=有2个根,所以()222444040a a a a a ⎧+->⎪⎨-<⎪⎩,解得24a <<.由于123x x x <<,则2121232,4,2x x a x x a a x a +==-+=+,所以122123123111124x x a x x x x x x a a +++=+=+-+()24a a a =+-()()244a a a a a a -=-==--()()221111=----,)2111,311<<-<<,)22110-<-<,()2111<-()212214211+-<=-.当a<0时,当2x a >时,方程22240x ax a a -+-=的判别式()22444160a a a a ∆=--=<,所以此时不符合题意.当0a =时,()22,0,0x x f x x x ⎧≥=⎨-<⎩,不符合题意.综上所述,a 的取值范围是1,2⎛⎫++∞ ⎪ ⎪⎝⎭.故12⎛⎫+∞ ⎪ ⎪⎝⎭研究含有绝对值的函数的零点,关键点在于去绝对值,将所研究的函数表示为分段函数的形式,由此再对参数进行分类讨论,结合零点个数来求得参数的取值范围.在分类讨论时,要注意做到不重不漏.四、解答题17.求解下列问题:(1)2433641)27--⎛⎫-++ ⎪⎝⎭;(2)2log 3491lg2log 27log 8100-+-⋅.【正确答案】(1)2916(2)74-【分析】(1)根据根式、指数运算求得正确答案.(2)根据对数运算求得正确答案.【详解】(1)2433641)27--⎛⎫++ ⎪⎝⎭24333324123--⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦224123--⎛⎫=++ ⎪⎝⎭9129116416=++=.(2)2log 3491lg2log 27log 8100--⋅221233223lg10ln e 3log 3log 2-=-+-⋅2313323log 3log 2222=--+-⋅192324=--+-74=-.18.甲、乙两人想参加某项竞赛,根据以往20次的测试,将样本数据分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,并整理得到如下频率分布直方图:已知甲测试成绩的中位数为75.(1)求x ,y 的值,并分别求出甲、乙两人测试成绩的平均数(假设同一组中的每个数据可用该组区间中点值代替);(2)从甲、乙两人测试成绩不足60分的试卷中随机抽取3份,求恰有2份来自乙的概率.【正确答案】(1)0.025x =;0.02y =;甲的平均分为74.5,乙的平均分为73.5;(2)35.(1)根据甲测试成绩的中位数为75,由0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,求得y ,再利用各矩形的面积的和为1,求得x ,然后利用平均数公式求解.(2)易得甲测试成绩不足60分的试卷数2,乙测试成绩不足60分的试卷数3,先得到从中抽3份的基本事件数,再找出恰有2份来自乙的基本事件数,代入古典概型公式求解.【详解】(1)∵甲测试成绩的中位数为75,∴0.0110100.04(7570)0.5y ⨯+⨯+⨯-=,解得0.02y =.∴0.0110100.0410100.005101y x ⨯+⨯+⨯+⨯+⨯=,解得0.025x =.同学甲的平均分为550.0110650.0210750.0410850.02510950.0051074.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.同学乙的平均分为550.01510650.02510750.0310850.0210950.011073.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.(2)甲测试成绩不足60分的试卷数为200.01102⨯⨯=,设为A ,B .乙测试成绩不足60分的试卷数为200.015103⨯⨯=,设为a ,b ,c .从中抽3份的情况有(),,A B a ,(),,A B b ,(),,A B c ,(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,(),,a b c ,共10种情况.满足条件的有(),,A a b ,(),,A a c ,(),,A b c ,(),,B a b ,(),,B a c ,(),,B b c ,共6种情况,故恰有2份来自乙的概率为63105=.19.已知关于x 的不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >).(1)求a ,b 的值;(2)当0x >,0y >,且满足1a b x y+=时,有226x y k k +>--恒成立,求k 的取值范围.【正确答案】(1)41a b =⎧⎨=⎩(2)(3,5)-【分析】(1)根据一元二次不等式的解法可得1和a 是方程2540bx x -+=的两个实数根且0b >,从而利用韦达定理建立方程组即可求解;(2)由均值不等式中“1”的灵活运用可得min ()9x y +=,从而解一元二次不等式22150k k --<即可得答案.【详解】(1)解:因为不等式2540bx x -+>的解集为{|1x x <或}x a >(1a >),所以1和a 是方程2540bx x -+=的两个实数根且0b >,所以5141a b a b ⎧+=⎪⎪⎨⎪⋅=⎪⎩,解得41a b =⎧⎨=⎩;(2)解:由(1)知411x y+=,且0x >,0y >,所以414()559y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当4y x x y =,即63x y =⎧⎨=⎩时等号成立,依题意有2min ()26x y k k +>--,即2926k k >--,所以22150k k --<,解得35k -<<,所以k 的取值范围为(3,5)-.20.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.【正确答案】(1)1327;(2)427.【分析】(1)根据规则乙先投进,分情况讨论,求各个情况下概率和即可;(2)根据规则第四次乙先进球或第五次甲先进球,符合题意,求概率和即可.【详解】(1)记“乙获胜”为事件C ,记甲第i 次投篮投进为事件i A ,乙第i 次投篮投进为事件iB 由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()()111122112233P C P A B P A B A B P A B A B A B =+⋅⋅+⋅⋅⋅⋅()()()()()()()()()()()()111122112233P A P B P A P B P A P B P A P B P A P B P A P B =++⋅22332121211332323227⎛⎫⎛⎫⎛⎫⎛⎫=⨯++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知()()()112211223P D P A B A B P A B A B A =⋅⋅+⋅⋅⋅()()()()()()()()()112211223P A P B P A P B P A P B P A P B P A =+⋅22222121143232327⎛⎫⎛⎫⎛⎫⎛⎫=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.一般情况下,隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)满足关系式:50,020,60,20120.140x v k x x <≤⎧⎪=⎨-<≤⎪-⎩研究表明,当隧道内的车流密度达到120辆/千米时会造成堵塞,此时车流速度为0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅.求隧道内车流量的最大值(精确到1辆/小时)及隧道内车流量达到最大时的车流密度(精确到1辆/千米).2.646=)【正确答案】(1)(1)车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)(2)隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.【分析】(1)由120x =(辆/千米)时,0v =(千米/小时)求得k ,可得v 关于x 的关系式,再由40v 求解x 的范围得结论;(2)结合(1)写出隧道内的车流量y 关于x 的函数,再由函数的单调性及基本不等式求出分段函数的最值,则答案可求.【详解】(1)解:由题意,当120x =(辆/千米)时,0v =(千米/小时),代入60140k v x=--,得060140120k =--,解得1200k =.∴50,020120060,20120140x v x x <⎧⎪=⎨-<⎪-⎩,当020x <时,5040v =,符合题意;当20120x <时,令12006040140x--,解得80x ,2080x ∴<.综上,080x <.故车流速度v 不小于40千米/小时,车流密度x 的取值范围为(0,80];(2)由题意得,50,020120060,20120140x x y x x x x <⎧⎪=⎨-<⎪-⎩,当020x <时,50y x =为增函数,20501000y ∴⨯=,等号当且仅当20x =时成立;当20120x <时,12002020(140)28006060()60[140140140x x x y x x x x x x--=-=-=+---2800280060(2060[160(140)140140x x x x=+-=-----60(16060(1603250-=-≈.当且仅当2800140140x x-=-,即14087(20x =-≈∈,120]时成立,综上,y 的最大值约为3250,此时x 约为87.故隧道内车流量的最大值为3250辆/小时,车流量最大时的车流密度87辆/千米.22.函数()()lg 93x x f x a =+-.(1)若()f x 的定义域为R ,求实数a 的取值范围;(2)当0a ≤时,若()f x 的值域为R ,求实数a 的值;(3)在(2)条件下,()g x 为定义域为R 的奇函数,且0x >时,()()109f x x g x =-,对任意的R t ∈,解关于x 的不等式()32()2|()|g x g x tx t g x +-≥.【正确答案】(1)0a ≤;(2)0a =;(3)答案详见解析.【分析】(1)由930x x a +->恒成立分离常数a ,结合指数函数、二次函数的性质求得正确答案;(2)令()93x x h x a =+-,结合()h x 的值域包含()0,∞+列不等式,由此求得正确答案;(3)先求得()g x 的解析式,由此化简不等式()32()2|()|g x g x tx t g x +-≥.对t 进行分类讨论,由此求得正确答案.【详解】(1)由题930x x a +->恒成立,则93x x a <+恒成立,由于1130,322x x >+>,所以211933024x x x ⎛⎫+=+-> ⎪⎝⎭,所以0a ≤;(2)令()93x x h x a =+-,则()h x 的值域包含()0,∞+,因为21193324x x x a a a ⎛⎫+-=+-->- ⎪⎝⎭,所以0a -≤,即0a ≥,又因为0a ≤,所以0a =;(3)当0x >时,()()1093f x x x g x =-=;若0x <,0x ->,()3x g x --=,又因为()g x 为定义域为R 的奇函数,所以当0x <时,()3xg x -=-,所以()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩,()()3g x g x =()()20g x x ≠,不等式()()()322g x g x tx t g x +-≥等价于()()()2220g x tx t g x x +-≥≠,由于()3,00,03,0x x x g x x x -⎧>⎪==⎨⎪-<⎩在()(),00,∞-+∞U 上是单调递增函数,所以原不等式等价于()2220x tx t x x +-≥≠,即:()()()200x x t x -+≥≠,当2t <-时,解集为{|2x x ≤且0x ≠或}x t ≥-;当2t =-时,解集为{}0x x ≠;当20t -<≤时,解集为{|x x t ≤-且0x ≠或}2x ≥;当0t >时,解集为{|x x t ≤-或}2x ≥.根据函数的奇偶性求函数的解析式要注意的地方有:1.如果函数的定义域为R ,则对于奇函数来说,必有()00f =,偶函数则不一定;2.当0x >时,0x -<(或当0x <时,0x ->),需要代入对应范围的解析式,结合()()=f x f x -或()()f x f x =--来求得函数的解析式.。
2023-2024学年广东省深圳市龙华区高一上学期期末质量检测数学试题(含解析)

2023-2024学年广东省深圳市龙华区高一上册期末数学试题一、单选题1.已知全集{0,1,2,3,4}U =,集合{0,1,2}A =,{2,3,4}B =,则()()U U A B ⋃痧=()A .{2}B .{0,2,3}C .{1,3,4}D .{0,1,3,4}【正确答案】D【分析】根据补集和并集的定义运算即得.【详解】 全集{}0,1,2,3,4U =,集合{0,1,2}A =,{}2,3,4B =,所以{}3,4U A =ð,{}0,1U B =ð因此,{}0,1,3()(,4)U U A B = 痧.故选:D.2.在半径为2的圆中,弧长为π的弧所对的圆心角为()A .60︒B .90︒C .120︒D .180︒【正确答案】B【分析】根据弧长公式,结合弧度制与角度制互化公式进行求解即可.【详解】弧长为π的弧所对的圆心角为πrad 902︒=,故选:B3.下列条件中,使a b >成立的充要条件是()A .a b >B .22a b >C .22a b>D >【正确答案】C【分析】根据不等式的关系,结合充分条件和必要条件的定义及指数函数的性质逐项分析即得.【详解】对A ,取11a b =>=-,则a b =,错误;对B ,取11a b =>=-,则22a b =,错误;对C ,22a b a b >⇔>,正确;对D ,取11a b =>=-无意义,错误.故选:C .4.下列是奇函数,且在区间(0,)+∞上单调递增的是()A .1y x -=B .y =C .e xy =D .3y x =【正确答案】D【分析】根据函数的单调性和奇偶性对各个选项逐一分析即可.【详解】对A ,函数1y x -=是奇函数,在(0,)+∞上单调递减,故错误;对B ,函数y =对C ,函数e x y =是非奇非偶函数,故错误;对D ,函数3y x =是奇函数,在(0,)+∞上单调递增,故正确.故选:D5.神舟十五号载人飞船于2022年11月30日到达中国空间站,并成功对接,完成了中国空间站的最后一块拼图.已知中国空间站离地球表面的高度约为390千米,每90分钟绕地球一圈.若将其运行轨道近似地看成圆形,运行轨道所在平面与地球的截面也近似地看成直径约为12420千米的圆形,则中国空间站在轨道中运行的速度约为(π 3.14≈)()A .7.68千米/秒B .7.82千米/秒C .7.88千米/秒D .7.96千米/秒【正确答案】A【分析】求出半径,再根据圆的周长公式求出运行的长度,除以时间即可得到速度.【详解】根据直径为12420千米,则半径为6210千米,则运行速度()()2π62103902 3.1462103907.6890609060v +⨯+=≈≈⨯⨯千米/秒.故选:A.6.已知ππ2α<<)A .sin cos αα-B .sin cos αα+C .sin αD .cos α-【正确答案】A【分析】利用诱导公式及平方关系化简即可.【详解】因为ππ2α<<,所以sin 0α>,cos 0α<,则sin cos 0αα->,sin cos sin cos αααα=-=-.故选:A7.已知()lg f x x =,若12a f ⎛⎫= ⎪⎝⎭,13b f ⎛⎫= ⎪⎝⎭,(4)c f =,则()A .a b c >>B .b c a >>C .c b a>>D .c a b>>【正确答案】C【分析】根据对数的运算和对数函数的单调性进行判断即可.【详解】11lg lg 2lg 222a f ⎛⎫===-= ⎪⎝⎭,11lg lg3lg333b f ⎛⎫===-= ⎪⎝⎭,(4)lg 4lg 4c f ===,因为函数lg y x =是正实数集上的增函数,所以有c b a >>故选:C8.已知函数()lg 3f x x x =+-,则()f x 的零点所在的区间为()A .(1,1.5)B .(1.5,2)C .(2,2.5)D .(2.5,3)【正确答案】D【分析】根据零点存在定理,只需判断两个端点的函数值,即两个端点函数值异号即可.【详解】由已知得(1)20f =-<,33(1.5)lg 022f =-<,(2)lg 210f =-<,511(2.5)lg 0222f =-<=,(3)lg30f =>,所以(2.5)(3)0f f ⋅<,由零点的存在定理得,()f x 的零点所在的区间为(2.5,3),故选:D .二、多选题9.下列是函数图象的是()A .B .C .D .【正确答案】ABD【分析】根据函数的定义,进行分析判断即可得解..【详解】根据函数的定义可知,定义域内的每一个x 只有一个y 和它对应,因此不能出现一对多的情况,所以C 不是函数图象,ABD 是函数图象.故选:ABD.10.下列函数中,最小正周期是π,且在区间π,π2⎛⎫⎪⎝⎭上单调递增的是()A .tan y x =B .cos 2y x =C .sin 2y x =D .sin y x=【正确答案】AB【分析】根据已知条件结合选项逐项验证,可得答案.【详解】A ,tan y x =,最小正周期为π,在区间π,π2⎛⎫⎪⎝⎭上单调递增,故A 正确;B ,cos 2y x =,最小正周期为π,且在π,π2⎛⎫⎪⎝⎭上单调递增,故B 正确;C ,sin 2y x =,最小正周期为π,且在π,π2⎛⎫⎪⎝⎭上不具有单调性,故C 错误;D ,sin y x =,最小正周期为π,且在π,π2⎛⎫⎪⎝⎭上单调递减,故D 错误.故选:AB.11.已知函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的定义域是RB .()f x 的图象关于原点对称C .π562f ⎛⎫-=-⎪⎝⎭D .当0x >时,()f x 的最小值为2【正确答案】BC【分析】由函数解析式,根据奇偶性的定义,可得A 、B 的正误;根据函数解析式可得函数值可得C 的正误;根据余弦函数的性质,可得D 的正误.【详解】对A ,由函数1()sin sin f x x x=+,其定义域为{}()πZ x x k k ≠∈,故A 错误;对B ,()()()()11sin sin sin sin f x x x f x x x-=-+=--=--,故函数()f x 为奇函数,故B 正确;对C ,因为ππ15sin π662sin 6f ⎛⎫⎛⎫-=-+=-⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,故C 正确;对D ,当()π,2πx ∈时,sin 0x <,则()0f x <,故D 错误.故选:BC.12.已知函数()f x 的定义域为D ,若对x D ∀∈,均有1()f f x x ⎛⎫=- ⎪⎝⎭,则称函数()f x 具有“倒负”变换性质.下列具有“倒负”变换性质的函数是()A .1()f x x x=+B .1()ln ln f x x x=+C .(),011,1x x f x x x <<⎧⎪=⎨->⎪⎩D .()221,01,1x f x x x x ⎧<<⎪=⎨⎪->⎩【正确答案】BCD【分析】根据题中定义,结合分类讨论思想逐一判断即可.【详解】A :()()11f x f x f x x x⎛⎫=+=≠- ⎪⎝⎭,因此本函数不具有“倒负”变换性质;B :()1111()ln ln 1ln ln f x f x x x xx =+=--=-,因此本函数具有“倒负”变换性质;C :当01x <<时,()111f x f x x x⎛⎫=-=-=- ⎪⎝⎭,当1x >时,()11f f x x x⎛⎫==- ⎪⎝⎭,因此本函数具有“倒负”变换性质;D :当01x <<时,()211f f x x x ⎛⎫=-=- ⎪⎝⎭,当1x >时,()22111f x f x x x ⎛⎫===- ⎪⎝⎭,因此本函数具有“倒负”变换性质,故选:BCD关键点睛:利用代入法,结合分段函数的解析式进行分类讨论是解题的关键.三、填空题13.函数1()ln(1)2f x x x =-+-的定义域是___________.【正确答案】{1x x >且2}x ≠根据真数大于0,分母不为0,即可求得答案.【详解】由题意得1020x x ->⎧⎨-≠⎩,解得1x >且2x ≠,所以定义域为:{1x x >且2}x ≠故{1x x >且2}x ≠14.化简2的值为___________.【正确答案】2【分析】根据指数幂的运算律运算即得.【详解】((22222222===,故答案为.215.已知S 市某所新建高中2022年的绿化面积为2 m a ,若该校绿化面积的年平均增长率为50%,则到_______年(用整数年份表示),该校的绿化面积约是25 m a .(参考数据:lg 20.301≈,lg 30.477≈)【正确答案】2026【分析】设经过n 年后,该校的绿化面积约是25 m a ,由已知可得n 的关系式,再通过两边取对数,利用对数运算求解即可.【详解】设经过n 年后,该校的绿化面积约是25 m a ,则由已知得* (150%)5,N n a a n +≈∈,即*3()5,N 2n n ≈∈,两边取对数得32lg 51lg 210.301699lg 543lg 3lg 20.4770.301176lg 2n --≈==≈=≈--,202242026+=,故2026.16.已知π2sin 63α⎛⎫+= ⎪⎝⎭,π02α<<,则2πcos 3α⎛⎫+= ⎪⎝⎭____________.【正确答案】23-【分析】根据诱导公式结合条件即得.【详解】因为π2sin 63α⎛⎫+= ⎪⎝⎭,所以2ππππ2cos cos sin 32663ααα⎛⎫⎛⎫⎛⎫+=++=-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为.23-四、解答题17.已知函数2()1x f x x +=-.(1)当2x =时,求()f x 的值;(2)若()2f a a =,求实数a 的值.【正确答案】(1)4;(2)12a =-或2a =.【分析】(1)将2x =代入2()1x f x x +=-求解;(2)根据2()21a f a a a +==-,求解即得.【详解】(1)∵函数2()1x f x x +=-,∴当2x =时,22(2)421f +==-;(2)函数2()1x f x x +=-的定义域为{|1}x x ≠,因为()2f a a =,所以2()21a f a a a +==-,即22(1)a a a +=-,解得12a =-或2a =;所以12a =-或2a =.18.如图所示,在直角坐标系内,锐角α的终边与单位圆交于点P ,将角α的终边按逆时针方向旋转π2后得到角β的终边,并与单位圆交于点Q .(1)用含α的式子表示点Q 的坐标;(2)若7sin cos 5ββ-=,求tan α的值.【正确答案】(1)()sin ,cos Q αα-(2)34或43【分析】(1)由三角函数定义,根据题中条件,即可用含α的式子表示点Q 的坐标;(2)法一:根据题中条件,由同角三角函数的平方关系和商数关系,联立方程组求解即可;法二:根据题中条件,由同角三角函数基本关系可得,7sin cos 5αα+=①,1sin cos 5αα-=±②,联立方程组求解即可.【详解】(1)依题意得:π2βα=+,由三角函数定义知,πcos cos sin 2βαα⎛⎫=+=- ⎪⎝⎭,πsin sin cos 2βαα⎛⎫=+= ⎪⎝⎭,所以点Q 的坐标为()sin ,cos .Q αα-(2)法一:因为7sin cos 5ββ-=,所以7sin cos 5αα+=①又因为22sin cos 1αα+=②,联立①②解得34sin 55αα==或43sin ,cos 55αα==,所以sin 3tan cos 4ααα==或43.法二:因为7sin cos 5ββ-=,所以7sin cos 5αα+=①两边平方得4912sin cos 25αα+=,所以242sin cos 25αα=,又因为()21sin cos 12sin cos 25αααα-=-=,所以1sin cos 5αα-=±②当1sin cos 5αα-=时,解得43sin ,cos 55αα==,此时sin 3tan .cos 4ααα==当1sin cos 5αα-=-时,解得34sin ,cos 55αα==,此时sin 3tan cos 4ααα==或43.19.已知函数1π()4cos 26f x x ⎛⎫=+ ⎪⎝⎭,x ∈R .(1)求()f x 的单调递增区间;(2)求()f x 在区间4ππ,3⎡⎤-⎢⎥⎣⎦上的最小值.【正确答案】(1)7ππ4π,4π33k k ⎡⎤-+-+⎢⎥⎣⎦(k ∈Z )(2)-【分析】(1)利用整体代入法与余弦函数的性质求解即可;(2)利用余弦函数的性质,结合整体法求解即可.【详解】(1)设1π26z x =+,∵cos y z =,z ∈R 的单调递增区间是[]π2π,2πk k -+,k ∈Z ,∴由1ππ2π2π26k x k -+≤+≤,k ∈Z ,解得7ππ4π4π33k x k -+≤≤-+,k ∈Z ,∴函数()f x 的单调递增区间为7ππ4π,4π33k k ⎡⎤-+-+⎢⎥⎣⎦(k ∈Z ).(2)∵4ππ,3x ⎡⎤∈-⎢⎥⎣⎦,∴1ππ5π,2636z x ⎡⎤=+∈-⎢⎣⎦,∴由余弦函数cos y z =的性质,当1π5π266x +=,即4π3x =时,1πcos 26x ⎛⎫+ ⎪⎝⎭的最小值为5πcos 6=4π3f ⎛⎫=- ⎪⎝⎭∴当4π3x =时,()f x 在区间4ππ,3⎡⎤-⎢⎥⎣⎦上的最小值为-.20.已知函数()33x x f x -=-,x ∈R .(1)证明()f x 是增函数;(2)若不等式23()()0x f x m f x +⋅≥对于[1,2]x ∀∈恒成立,求实数m 的取值范围.【正确答案】(1)证明见解析(2)[8,)-+∞【分析】(1)根据函数的单调性定义证明即可;(2)法一:利用函数的单调性,把问题转化为23()13x x m f x ≥-=-在[1,2]上恒成立,再求2()13x g x =-在[1,2]上的最大值即可;法二:原不等式可转化为423(2)310x x m m +--+≥,再通过换元23x t =转化为二次不等式在给定区间的恒成立问题,利用二次函数性质求解即可.【详解】(1)证明:12,R x x ∀∈,且12x x <,1112121()()(33)(13x x x x f x f x +=+--,因为12x x <,函数3x y =在R 上单调递增,所以12330x x -<,又121103x x ++>,故12())0(f x f x -<,即12()()f x f x <.因此,1()33xxf x =-是增函数.(2)法一:由(1)知()y f x =在[1,2]上单调递增,所以()(1)0f x f ≥>,所以不等式23()()0x f x m f x +⋅≥可变为3()0x f x m +≥,即23()13x x m f x ≥-=-,令2()13x g x =-,则()g x 在[1,2]上单调递减,当1x =时,()g x 取得最大值,所以()(1)8g x g ≥=-,综上所求得m 的取值范围是[8,)-+∞.法二:由不等式23()()0xf x m f x +⋅≥得21133(3)033x x x x x m ⎛⎫-+-≥ ⎪⎝⎭,整理得423(2)310x x m m +--+≥,令23x t =,即2(2)10t m t m +--+≥,即(1)(1)0t t m -+-≥,因为[1,2]x ∈,所以[9,81]t ∈,8180t ≤-≤,所以要使原不等式恒成立,则有1t m -≥-,即8m ≥-,8m ≥-,故m 的取值范围是[8,)-+∞21.已知函数2()log f x x =.(1)若0a b >>,证明:()()22f a f b a b f ++⎛⎫< ⎪⎝⎭;(2)若()g x 是定义在R 上的奇函数,且当0x >时,()(2)1g x f x =+-.(ⅰ)求()g x 的解析式;(ⅱ)求方程2()0g x x -=的所有根.【正确答案】(1)证明见解析(2)(ⅰ)()()()221log 2,0log 21,0x x g x x x ⎧--<⎪=⎨+-≥⎪⎩;(ⅱ)2-,0,2【分析】(1)根据对数函数的性质,基本不等式结合条件即得;(2)根据奇函数的性质可得函数的解析式,方程2()0g x x -=转化成曲线()y g x =与直线12y x =的交点情况,结合函数的图象和性质即得.【详解】(1)证明:因为0a b >>,所以222()()log log log f a f b a b ab +=+=,2(log 22a b a b f ++=,由基本不等式,当a b ¹2a b +<,即2222log log log log 22a b a b ++=<,即()()22f a f b a b f ++⎛⎫< ⎪⎝⎭;(2)(ⅰ)依题意得,当0x >时,2()log (2)1g x x =+-,因为()g x 是定义在R 上的奇函数,所以(0)0g =,代入上式成立,即当0x ≥时,2()log (2)1g x x =+-,设0x <,则0x ->,所以2()()1log (2)g x g x x =--=--,所以()()()221log 2,0log 21,0x x g x x x ⎧--<⎪=⎨+-≥⎪⎩;(ⅱ)方程2()0g x x -=转化成曲线()y g x =与直线12y x =的交点情况,当0x ≥时,()y g x =与12y x =交于点(0,0)和点(2,1),由(1)知()y g x =的图象总是向上凸的,所以除(2,1)外不会有其它交点,同理,当0x <时,根据对称性,两个图象还有一个交点(2,1)--,所以方程2()0g x x -=有三个根2-,0,2.22.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB与MN 平行,OO '为铅垂线(O '在AB 上).经测算,若以MN 为x 轴,OO '为y 轴建立平面直角坐标系,则左侧曲线AO 上的任一点在抛物线2140y x =上,而右侧曲线OB 上的任一点在以B 为顶点的抛物线21810y x x =-+上.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).若桥墩CD 每米的造价为m (万元),桥墩EF 每米的造价为32m (万元),则当O E '为多少米时,两个桥墩的总造价S 最低?【正确答案】(1)120米;(2)32.【分析】(1)根据A,B 高度一致结合条件即得结果;(2)根据题意列总造价的函数关系式,利用二次函数的性质即得.【详解】(1)由22118(40)1601010y x x x =-+=--+得(40,160)B ,所以40O B '=,160OO '=,解2116040x =得80x =±,即80O A '=,所以桥AB 的长度为120O A O B ''+=(米);(2)设O E x '=,则040x <<,80O C x '=-,依题意得21,810F x x x ⎛⎫-+ ⎪⎝⎭,由(1)得()214010EF x =-,()2180,8040D x x ⎛⎫-- ⎪⎝⎭,所以()22111608044040CD x x x =--=-,所以两个桥墩的总造价()2233140422040S m EF m CD x x x m ⎡⎤=⨯+⨯=-+-⨯⎢⎥⎣⎦,化简得2211(8240)[(32)112]88S x x m x m =-+⨯=-+⨯,所以当32O E '=米时,两个桥墩的总造价S 最低.。
2023-2024学年河南省开封市通许县高一上册期末数学试题(含解析)

2023-2024学年河南省开封市通许县高一上册期末数学试题一、单选题1.若{}0,1,2A =,{}3,4B =,{},,M x x ab a A b B ==∈∈,则M 中元素的个数为()A .3B .4C .5D .6【正确答案】C【分析】根据集合M 的定义,结合已知集合,A B ,即可求得结果.【详解】根据题意,{}0,3,4,6,8M =,故M 中元素的个数为5.故选:C.2.已知集合{14},{03}A x x B x x =-<<=<≤∣∣,则A B = ()A .{14}xx -<<∣B .{03}xx <≤∣C .{13}xx -<≤∣D .{04}xx <<∣【正确答案】B【分析】利用交集的定义即可求解.【详解】因为集合{14},{03}A xx B x x =-<<=<≤∣∣,所以{03}A B x x =<≤ ∣.故选:B .3.下列四个选项中,能推出11a b <的是()A .0b a >>B .0a b>>C .0b a >>D .0b a>>【正确答案】A【分析】利用不等式的性质即可求解.【详解】解:对A :因为0b a >>,所以110a b<<;对B :因为0a b >>,所以110b a<<;对C :因为0b a >>,所以11a b >;对D :因为0b a >>,所以11a b>.故选:A.4.若命题“0x ∃∈R ,200220x mx m +++<”为假命题,则m 的取值范围是()A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或m>2【正确答案】A【分析】先转化为命题的否定,再由一元二次不等式的性质求解即可.【详解】命题“0x ∃∈R ,200220x mx m +++<”的否定为“x ∀∈R ,2220x mx m +++≥”,该命题为真命题,即()24420m m ∆=-+≤,解得[]1,2m ∈-.故选:A5.若函数()()2212f x ax a x =+-+在区间(),4∞-上为减函数,则a 的取值范围是()A .10,5⎛⎤ ⎥⎝⎦B .10,5⎡⎤⎢⎥⎣⎦C .10,5⎡⎫⎪⎢⎣⎭D .1,5⎛⎫+∞ ⎪⎝⎭【正确答案】B【分析】分()f x 为一次函数和二次函数讨论,当0a ≠时,()f x 为二次函数,要满足在(),4∞-上为减函数,须使其开口向上,且对称轴再区间(),4∞-右侧,据此求解a 的取值范围即可.【详解】当0a =时,()22f x x =-+,满足在(),4∞-上为减函数;当0a ≠时,()f x 为二次函数,要满足在区间(),4∞-上为减函数,则02(1)42a a a >⎧⎪-⎨-≥⎪⎩,解得105a <≤.综上,a 的取值范围是1[0,]5.故选:B.6.定义在()0,∞+的函数()y f x =满足:对1x ∀,()20,x ∈+∞,且12x x ≠,()()2112120x f x x f x x x ->-成立,且()39f =,则不等式()3f x x >的解集为()A .()9,+∞B .()0,9C .()0,3D .()3,+∞【正确答案】D【分析】构造函数()()f x g x x=,讨论单调性,利用单调性解不等式.【详解】由()()2112120x f x x f x x x ->-且1x ∀,()20,x ∈+∞,则两边同时除以12x x 可得()()121212f x f x x x x x ->-,令()()f x g x x =,则()()f x g x x=在()0,∞+单调递增,由()3f x x >得()3f x x>且(3)(3)33f g ==,即()(3)g x g >解得3x >,故选:D.7.若幂函数()y f x =的图像经过点(,则函数()()23f x f x ⎡⎤-+⎣⎦的最小值为()A .114B .3C .134D .72【正确答案】B【分析】根据题意求出幂函数的解析式得到()12f x x ==()()23[]f x f x x -+=,换元法即可求出函数的最值.【详解】设函数()f x x α=,由题意可知:12α==,故12α=,于是()()()1223[]f x x f x f x x ==-+=,t =,则:23x t =+,且0t ≥,故()()()223[]30f x f x x t t t -+==++≥易知函数23y t t =++在[)0,∞+上单调递增,因此当0=t 即3x =时,函数取得最小值3,故选:B.8.设函数()2,0,1,0,x x f x x ⎧≥=⎨<⎩则满足()()2f a f a <的实数a 的取值范围是()A .(),0-∞B .()0,+∞C .()0,1D .()1,+∞【正确答案】B【分析】分类讨论:①当a<0时和②当0a ≥时,由单调性解不等式即可.【详解】①当a<0时,20a <,此时()()21f a f a ==,不合题意;②当0a ≥时,20a ≥,()()2f a f a <可化为222a a <,所以2a a <,解得0a >.综上,实数a 的取值范围是()0,+∞.故选:B .9.若235log 5,log 7,log 11a b c ===,则下列式子成立的是()A .a b c >>B .c b a >>C .a c b >>D .b c a>>【正确答案】A【分析】利用对数的性质判断各式的大小关系.【详解】由323log log log log 2log 52c b a =<==<=<<=,即a b c >>.故选:A10.已知1tan 2θ=,则332sin sin cos sin cos θθθθθ++=()A .12B .2C .16D .6【正确答案】A【分析】巧用1将所求化为齐次式,然后根据基本关系将弦化切,再代入计算可得.【详解】因为1tan 2θ=所以332sin sin cos sin cos θθθθθ++()32232sin sin sin cos cos sin cos θθθθθθθ++=+32322sin sin cos cos sin cos θθθθθθ+=+32tan tan 1tan θθθ+=+311321224132122⎛⎫⨯+⎪⎝⎭===+故选:A11.函数sin 2sin y x x =+,[]0,2x π∈的图像与直线y k =有且仅有两个不同的交点,则k 的取值范围为()A .[]0,3k ∈B .[]1,3k ∈C .()1,3k ∈D .()0,3k ∈【正确答案】C【分析】根据函数的解析式去绝对值,然后利用正弦函数的图象和性质即可求解.【详解】因为函数3sin ,[0,π]sin 2sin sin ,(π,2π]x x y x x x x ∈⎧=+=⎨-∈⎩,当[0,π]x ∈时,函数3sin [0,3]y x =∈,当(π,2π]x ∈时,函数sin [0,1]y x =-∈,作出函数的草图如下:由图可知:要使函数sin 2sin y x x =+,[]0,2x π∈的图像与直线y k =有且仅有两个不同的交点,则有13k <<,故选.C12.将函数π()2cos 16f x x ⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12倍(纵坐标不变),得到函数()g x 的图象,则下列结论中正确的是()A .函数()g x 的图象关于点π(,1)12-对称B .函数()g x 的最小正周期是4πC .函数()g x 在5(0,)12π单调递减D .函数()g x 在5(0,)12π的最小值是-3【正确答案】C【分析】利用函数cos()y A x ωϕ=+的图象变换规律,得到()g x 的解析式,再利用余弦函数的对称性可判断A;利用周期公式,判断B;根据余弦函数的单调性,判断C,D.【详解】由已知可得π()2cos 216g x x ⎛⎫=+- ⎪⎝⎭,对于A,由于当π12x =-时,()1g x =为函数最大值,故函数()g x 的图象不关于点π(12-,1)对称,故A 错误;对于B,函数()g x 的最小正周期是2π=π2,故B 错误;对于C,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,ππ2,π66x ⎛⎫+∈ ⎪⎝⎭,此时g (x )单调递减.故C 正确;对于D,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,ππ2,π66x ⎛⎫+∈ ⎪⎝⎭,此时g (x )单调递减.5π()()312g x g >=-,故D 错误,故选:C .二、填空题13.已知集合{}2|(1)320A x a x x =-+-=有且仅有两个子集,则实数=a __________.【正确答案】1或18-【分析】结合已知条件,求出2(1)320a x x -+-=的解的个数,然后对参数分类讨论,并结合一元二次方程的根的个数与判别式之间的关系求解即可.【详解】若A 恰有两个子集,所以关于x 的方程恰有一个实数解,①当1a =时,23x =,满足题意;②当0a ≠时,810a ∆=+=,所以18a =-,综上所述,1a =或18a =-.故1或18-.14.已知集合{}5237A x x =-<-+<,(){}223120B x x a x a a =--+-<,若B A ⊆,则实数a的取值范围为______.【正确答案】15[,]22-【分析】分类讨论解不等式,再利用集合的包含关系列式求解作答.【详解】依题意,()(){}210B x x a x a =--+<,当21a a <-,即1a >时,(,21)B a a =-,当21a a =-,即1a =时,B =∅,当21a a >-,即1a <时,(21,)B a a =-,又(2,4)A =-,B A ⊆,于是得1214a a >⎧⎨-≤⎩,解得512a <≤,或1212a a <⎧⎨-≥-⎩,解得112a -≤<,而A ∅⊆,则1a =,综上得:1522a -≤≤,所以实数a 的取值范围为15[,]22-.故15[,]22-15.设函数()()212log ,0log ,0x x f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,则实数a 的取值范围是________.【正确答案】()()1,01,-⋃+∞【分析】根据分段函数的解析分0a >和a<0两种情况讨论,再结合对数函数的性质计算可得.【详解】解:由题意可得220log log a a a >⎧⎨>-⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<.∴a 的取值范围是()()1,01,-⋃+∞.故()()1,01,-⋃+∞16.已知1sin 34πα⎛⎫+= ⎪⎝⎭,则cos 6πα⎛⎫-= ⎪⎝⎭______.【正确答案】14【分析】由诱导公式计算.【详解】因为1sin()34πα+=,则1cos()sin(())sin()62634ππππααα-=--=+=.故14.三、解答题17.已知p :实数x 满足集合{}11A x a x a =-≤≤+,q :实数x 满足集合B ={x |x ≤﹣2或x ≥3}.(1)若a =﹣1,求A ∪B ;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.【正确答案】(1){0A B x x ⋃=≤或}3x ≥(2)3a ≤-或4a ≥【分析】(1)利用并集概念及运算即可得到结果;(2)因为p 是q 的充分不必要条件,所以A 是B 的真子集,结合数轴得到结果.【详解】(1)因为a =-1,所以{}20A x x =-≤≤,又B ={x |x ≤﹣2或x ≥3}.所以{0A B x x ⋃=≤或}3x ≥(2)因为p 是q 的充分不必要条件,所以A 是B 的真子集,所以12a +≤-或13a -≥,所以3a ≤-或4a ≥.18.已知不等式()21460a x x +--<的解集是{}13x x -<<.(1)求常数a 的值;(2)若关于x 的不等式240ax mx ++≥的解集为R ,求m 的取值范围.【正确答案】(1)1a =(2)[]4,4-【分析】(1)由题意可得-1和3是方程()21460a x x +--=的解,将=1x -代入方程中可求出a 的值;(2)由240x mx ++≥的解集为R ,可得0∆≤,从而可求出m 的取值范围【详解】(1)因为不等式()21460a x x +--<的解集是{}13x x -<<.所以-1和3是方程()21460a x x +--=的解,把=1x -代入方程解得1a =.经验证满足题意(2)若关于x 的不等式240ax mx ++≥的解集为R ,即240x mx ++≥的解集为R ,所以2160m ∆=-≤,解得44m -≤≤,所以m 的取值范围是[]4,4-.19.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=﹣x 2+2x .(1)求函数f (x )在R 上的解析式;(2)解关于x 的不等式f (x )<3.【正确答案】(1)()222,00,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩(2)()3,-+∞【分析】(1)根据函数奇偶性的性质进行转化求解即可.(2)利用分段函数的表达式分别进行求解即可.【详解】(1)当0x <时,0x ->,则()()()2222f x x x x x -=--+-=--,由()f x 是定义在R 上的奇函数,得()()22f x f x x x =--=+,且()00f =,故()22200020x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,,,.(2)当0x >时,223x x -+<恒成立;当0x =时,03<显然成立;当0x <时,223x x +<解得31x -<<,即30x -<<.综上所述:不等式的解集为()3,-+∞.20.已知函数()13x f x a +=-(0a >且1a ≠),若函数()y f x =的图象过点(2,24).(1)求a 的值及函数()y f x =的零点;(2)求()6f x ≥的解集.【正确答案】(1)3,零点是0(2)[1,+∞)【分析】(1)代值求出函数的表达式,再根据零点的定义求解即可;(2)解不等式即可求出解集.【详解】(1)因为函数f (x )=ax +1﹣3(a >0且a ≠1),图象过点(2,24),所以24=a 2+1﹣3,a 3=27,a =3.函数f (x )=3x +1﹣3=0,得x +1=1,x =0.所以函数的零点是0.(2)由f (x )≥6得3x +1﹣3≥6,即3x +1≥32,所以x ≥1.则f (x )≥6的解集为[1,+∞).21.设函数()22()x x f x a a R -=⋅-∈.(1)若函数()y f x =的图象关于原点对称,求函数3()()2g x f x =+的零点0x ;(2)若函数()()42x x h x f x -=++在[0x ∈,1]的最大值为2-,求实数a 的值.【正确答案】(1)1-(2)3-【分析】(1)通过()()0f x f x -+=,求出1a =.得到函数的解析式,解方程,求解函数的零点即可.(2)利用换元法令2x t =,()2h t t at =+,[]1,2t ∈,结合二次函数的性质求解函数的最值,推出结果即可.【详解】(1)解:()f x 的图象关于原点对称,()f x ∴为奇函数,()()0f x f x ∴-+=,22220x x x x a a --∴⋅-+⋅-=,即(1)(22)0x x a -∴-⋅+=,1a ∴=.所以()22x x f x -=-,所以3()222x xg x -=-+,令3()2202x xg x -=-+=,则22(2)3(2)20x x ⋅+⋅-=,(22)(221)0x x ∴+⋅⋅-=,又20x >,2210x ∴⋅-=,解得=1x -,即01x =-,所以函数()g x 的零点为1-.(2)解:因为()2242x x x x h x a --=⋅-++,[]0,1x ∈,令2x t =,则[]1,2t ∈,()2h t t at =+,[]1,2t ∈,对称轴2a t =-,当322a -,即3a -时,()()2422max h t h a ==+=-,3a ∴=-;②当322a ->,即3a <-时,()()112max h t h a ==+=-,3a ∴=-(舍);综上:实数a 的值为3-.22.已知函数()2sin cos cos ,f x x x x x R=⋅+∈(1)求3f π⎛⎫ ⎪⎝⎭的值(2)求函数()f x 最小正周期;(3)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域.【正确答案】(1(2)最小正周期为π;(3)10,2⎡⎤+⎢⎥⎢⎥⎣⎦.【分析】(1)将自变量直接代入函数式,求值.(2)应用二倍角正余弦公式、辅助角公式有()12242f x x π⎛⎫=++ ⎪⎝⎭,即可求最小正周期.(3)由给定自变量区间求24x π+的区间,根据正弦函数的性质求()f x 的值域即可.【详解】(1)211sin cos cos 3333444f ππππ⎛⎫=++= ⎪⎝⎭.(2)()11cos 21sin 2sin 222242x f x x x π+⎛⎫=+=++ ⎪⎝⎭∴函数()f x 的最小正周期为π.(3)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,sin 2,142x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,()1120,2422f x x π⎡⎤⎛⎫∴=++∈⎢⎥ ⎪⎝⎭⎣⎦∴函数()f x 的值域为12⎡⎤+⎢⎥⎢⎥⎣⎦。
2023-2024学年吉林省吉林省高一上册期末数学质量检测试题(含解析)

2023-2024学年吉林省吉林省高一上册期末数学质量检测试题一、单选题1.已知集合{0,1,2},{}A B x A ==∈,则B =()A .{0}B .{0,2}C .10,,22⎧⎫⎨⎬⎩⎭D .{0,1,4}【正确答案】D【分析】根据元素与集合关系,建立方程,可得答案.A 0=时,0x =1=时,1x =2=时,4x =,即{}0,1,4B =.故选:D.2.命题“对任意一个实数x ,都有240x +≥”的否定是()A .对任意一个实数x ,都有240x +≤B .存在一个实数x ,使得240x +<C .存在实数x ,使得240x +≤D .对任意实数x ,使得240x +<【正确答案】B【分析】利用全称量词命题的否定可得出结论.【详解】由全称量词命题的否定可知,原命题的否定为“存在一个实数x ,使得240x +<”.故选:B.3.已知函数()21f x x kx =+-在区间[]1,2上是单调函数,则实数k 的取值范围是()A .(][),21,-∞--+∞B .[]4,2--C .(][),42,-∞--+∞D .[]2,1--【正确答案】C【分析】根据二次函数的性质可得22k -≥或12k-≤,解出即可得出实数k 的取值范围.【详解】函数()21f x x kx =+-的对称轴为2k x =-.若函数()21f x x kx =+-在区间[]1,2上单调递减,则应有22k-≥,所以4k ≤-;若函数()21f x x kx =+-在区间[]1,2上单调递增,则应有12k-≤,所以2k ≥-.综上所述,实数k 的取值范围是4k ≤-或2k ≥-.故选:C.4.设12log 3a =,12e b =,lg 2c =,则()A .a b c <<B .b<c<aC .c a b <<D .a c b<<【正确答案】D【分析】根据()12log f x x =,()e xg x =,()lg h x x =的单调性,分别判断,,a b c 的大概范围,即可得出大小.【详解】解:由题知12log 3a =,12e b =,lg 2c =,因为()12log f x x =在定义域内单调递减,所以()()31f f <,即1122log 3log 10a =<=,因为()e xg x =在定义域内单调递增,所以()102g g ⎛⎫> ⎪⎝⎭,即0121e e b >==,因为()lg h x x =在定义域内单调递增,所以()()()1210h h h <<,即0lg 21c <=<,综上:a c b <<.故选:D5.已知定义在R 上的函数()f x 满足()()f x f x -=-,()()4f x f x +=,当()0,2x ∈时,()33f x x x =-,则()2023f 等于()A .2B .1C .1-D .2-【正确答案】A【分析】根据已知可得4T =,进而可得()()20231f f =-.又()12f =-,根据奇函数性质即可得出答案.【详解】由已知可得,函数()f x 为R 上的奇函数,且()f x 周期4T =.则()()()()20235054331f f f f =⨯+==-,又()311312f =-⨯=-,所以()()112f f -=-=,所以()()202312f f =-=.故选:A.6.幂函数的图像过点12,2⎛⎫-- ⎪⎝⎭,则它在[]1,3上的最大值为()A .13B .-1C .1D .-3【正确答案】C【分析】设出幂函数的解析式()f x x α=,待定系数法求出()1f x x -=,结合函数的单调性,求出最大值.【详解】设幂函数()f x x α=,将12,2⎛⎫-- ⎪⎝⎭代入,得:()122α-=-,解得:1α=-,故()1f x x -=,它在[]1,3上单调递减,故当1x =时,取得最大值,()()max 11f x f ==.故选:C7)A .sin 5cos 5-B .cos5sin 5-C .sin 5cos 5+D .cos5sin 5--【正确答案】B【分析】利用诱导公式、商数关系和完全平方关系求解===sin 5cos5=-,因为3π5,2π2⎛⎫∈ ⎪⎝⎭,所以sin 50,cos5>0<,cos5sin 5=-,故选:B.8.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦【正确答案】B 由正弦函数的性质可得121(2(233k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可.【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(233k x k k Z ππππωω-≤≤+∈,()f x 单调递增,又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B关键点点睛:利用整体代入法得到121(2(233k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.二、多选题9.下列推理正确的是()A .若a b >,则22a b >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b>D .若a ,R b ∈,则2ab ba +≥【正确答案】BC【分析】A 选项,可举出反例;BC 选项,利用不等式的基本性质得证;D 选项,当0a =或0b =时,a b ba+无意义.【详解】A 选项,不妨设0,1a b ==-,满足a b >,但22a b <,A 错误;B 选项,因为0a b <<,所以不等式两边同时乘以a 得:2a ab >,不等式两边同时乘以b 得:2ab b >,从而22a ab b >>,B 正确;C 选项,因为0a b <<,所以0ab >,不等式两边同除以ab 得:11a b>,C 正确;D 选项,因为a ,R b ∈,故当0a =或0b =时,a b ba+无意义,D 错误.故选:BC10.若函数()2313x ax f x +-⎛⎫= ⎪⎝⎭的图像经过点()31,,则()A .2a =-B .()f x 在()1∞-,上单调递减C .()f x 的最大值为81D .()f x 的最小值为181【正确答案】AC【分析】利用函数经过点()31,,可求出a ,再应用函数性质每个选项分别判断即可.【详解】对于A :由题意得()361313a f +⎛⎫== ⎪⎝⎭,得2a =-,故A 正确;对于B :令函数223u x x =--,则该函数在(),1-∞上单调递减,在[)1,∞+上单调递增.因为13uy ⎛⎫= ⎪⎝⎭是减函数,所以()f x 在(),1-∞上单调递增,在[)1,∞+上单调递减,故B错误;对于C D :因为()f x 在(),1-∞上单调递增,在[)1,∞+上单调递减,所以()()max 181f x f ==,()f x 无最小值.故C 正确,D 错误;故选:AC .11.已知函数()tan 26πf x x ⎛⎫=- ⎪⎝⎭,则()A .23f π⎛⎫= ⎪⎝⎭B .()f x 的最小正周期为2πC .把()f x 向左平移6π可以得到函数()tan 2g x x =D .()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增【正确答案】ABD【分析】根据正切函数的函数值,周期,平移对应的解析式变化,和函数的单调性即可求解.【详解】()tan 26πf x x ⎛⎫=- ⎪⎝⎭,所以tan tan 266f ππππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,故选项A 正确;()f x 的最小正周期为2T ππω==,故选项B 正确;把()f x 向左平移6π可以得到函数tan 2tan(2)666y x x πππ⎡⎤⎛⎫=+-=+ ⎪⎢⎥⎝⎭⎣⎦,故选项C 错误;,06x π⎛⎫∈- ⎪⎝⎭,2,626x πππ⎛⎫-∈-- ⎪⎝⎭,tan 26x π⎛⎫- ⎪⎝⎭单调递增,所以()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增,故D 选项正确;故选:ABD.12.已知()|ln |f x x =,当b a <时,()()f a f b =,则()A .11a>B .1ab =C .e e 2ea b+>D .21514b a ⎛⎫-+≥ ⎪⎝⎭【正确答案】BCD【分析】根据()()f a f b =可得ln ln a b =-,再由b a <可判断AB ;利用基本不等式可判断C ;利用配方法可判断D.【详解】ln ,1()ln ln ,01x x f x x x x ≥⎧==⎨-<<⎩,因为()()f a f b =,所以|ln ||ln |a b =,可得ln ln a b =-,因为b a <,所以1a >,1ab =,故A 错误,B 正确;对于C ,因为2a b +>=,所以e e 2e +>a b ,故C 正确;对于D ,222155111442⎛⎫⎛⎫-+=-+=-+≥ ⎪ ⎪⎝⎭⎝⎭b b b b a ,故D 正确.故选:BCD.三、填空题13.已知,x y 为正实数,且满足412x y +=,则xy 的最大值为______.【正确答案】9【分析】用基本不等式求得最值,然后化简既可得最大值.【详解】因为,x y 为正实数,且满足412x y +=,所以124x y =+≥,即39xy ⇒≤,当且仅当46x y ==即3,62x y ==时取等号,所以xy 的最大值为9.故9.14.函数lg 23y x x =+-的零点()01,5x ∈,对区间()1,5利用两次“二分法”,可确定0x 所在的区间为______.【正确答案】()1,2【分析】利用“二分法”结合零点存在定理可得出0x 所在区间.【详解】设()lg 23f x x x =+-,因为函数lg y x =、23y x =-在区间()1,5上均为增函数,故函数()f x 在区间()1,5上为增函数,因为()110f =-<,()5lg 570f =+>,()3lg 330f =+>,故()01,3x ∈,又因为()2lg 210f =+>,由零点存在定理可得()01,2x ∈.故答案为.()1,215.函数()23sin 2cos 1f x x x =--的最大值为______.【正确答案】73【分析】由已知可得,()23cos 2cos 2f x x x =--+,令cos t x =,求2217322333y t t t ⎛⎫=--+=-++ ⎪⎝⎭在11t -≤≤时的最大值,即可得出结果.【详解】()23sin 2cos 1f x x x =--()231cos 2cos 1x x =---23cos 2cos 2x x =--+,令cos t x =,11t -≤≤,令2217322333y t t t ⎛⎫=--+=-++ ⎪⎝⎭,当13t =-时,有最大值为73.所以,函数()23sin 2cos 1f x x x =--的最大值为73.故答案为.7316.若函数()f x =1(Z)2ax a x +∈+在区间(2,)-+∞上单调递增,则a 的最小值为____________.【正确答案】1【分析】由12()2af x a x -=++以及复合函数的单调性可得120a -<,再根据Z a ∈可求出结果.【详解】因为1()2ax f x x +=+122a a x -=++在区间(2,)-+∞上单调递增,所以120a -<,即12a >,因为Z a ∈,所以a 的最小值为1.故答案为.1四、解答题17.已知全集[0,5],{|121}A B x m x m ==+≤≤-.(1)若2m =,求A B⋂(2)若“x A ∈”是“x B ∈”的必要非充分条件,求实数m 的取值范围.【正确答案】(1){3};(2)3m ≤.【分析】(1)当2m =时,得B ,由交集运算即可求解;(2)由题可知B 真包含于A ,分集合B =∅和B ≠∅两种情况分类讨论,即可求解m 的取值范围.【详解】(1)当2m =时,{}3B =,又[0,5]A =,所以A B ⋂={3};(2)因为“x A ∈”是“x B ∈”的必要非充分条件,于是得B 真包含于A ,①当B =∅时,211,2m m m -<+∴<;②当B ≠∅时,由B 真包含于A 得21121510m m m m -≥+⎧⎪-≤⎨⎪+≥⎩(等号不能同时成立),23m ∴≤≤,综上所述,3m ≤.18.已知αβ,为锐角,1tan 2α=,()cos αβ+=(1)求cos 2α的值;(2)求αβ-的值.【正确答案】(1)3cos 25α=;(2)4παβ-=-.【分析】(1)由于222222cos sin 1tan cos 2cos sin 1tan ααααααα--==++,所以代值求解即可;(2)由()cos 10αβ+=-求出()sin αβ+的值,从而可求出()tan αβ+的值,而()()()()tan 2tan tan tan 21tan 2tan ααβαβααβααβ-+-=-+=⎡⎤⎣⎦+⋅+,进而可求得结果【详解】(1)22222211cos sin 1tan 34cos 21cos sin 1tan 514ααααααα---====+++(2)因为αβ,为锐角,所以()0αβπ+∈,,22ππαβ⎛⎫-∈- ⎪⎝⎭,,又()cos 10αβ+=-,所以()sin 10αβ+===,()()()sin 10tan 7cos αβαβαβ++==-+,又22tan 4tan 21tan 3ααα==-,所以()()()()tan 2tan tan tan 21tan 2tan ααβαβααβααβ-+-=-+=⎡⎤⎣⎦+⋅+47314173+==--⨯因为22ππαβ⎛⎫-∈- ⎪⎝⎭,,所以4παβ-=-.19.设x ∈R ,函数()()cos 0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且42f π⎛⎫= ⎪⎝⎭.(1)求ω和ϕ的值;(2)列表,并在给定坐标系中作出函数()f x 在[]0,π上的图像;(3)若()f x >x 的取值范围.【正确答案】(1)2ω=,3πϕ=-(2)表格,图像见解析(3),124x k x k k ππππ⎧⎫+<<+∈⎨⎬⎩⎭Z【分析】(1)利用最小正周期和42f π⎛⎫= ⎪⎝⎭,结合给定范围与三角函数性质即可求解;(2)列表描点即可得出答案;(3)由余弦函数的图像与性质解不等式即可得出答案.【详解】(1) 函数()f x 的最小正周期为π,且0ω>,2T ππω∴==,2ω∴=,42f π⎛⎫= ⎪⎝⎭ ,cos si 422n f ϕϕ⎛⎫⎛⎫∴=ππ=-= ⎪ ⎪⎝⎭⎝⎭,02πϕ-<< ,3ϕπ∴=-;(2)跟据第一问知()cos 23f x x π⎛⎫=- ⎪⎝⎭,列表如下:x6π512π23π1112ππ23x π-3π-2ππ32π53π()f x 1211-012函数()f x 在[]0,π上的图像如下图:(3)()32f x > ,即os 2332c x π⎛⎫ ⎪⎭>-⎝,226623x k k πππππ-<∴+-<,k ∈Z ,则26222k x k ππππ<+<+,k ∈Z ,即124k x k ππππ+<<+,k ∈Z ,x ∴的取值范围为.,124x k x k k ππππ⎧⎫+<<+∈⎨⎬⎩⎭Z 20.设a ,b 为实数,已知定义在R 上的函数()21xb f x a =-+为奇函数,且其图象经过点11,3⎛⎫⎪⎝⎭.(1)求()f x 的解析式;(2)若对任意的x ∈R ,都有不等式()()220f x f m x +->恒成立,求实数m 的取值范围.【正确答案】(1)()2121x f x =-+(2)(),1-∞-【分析】(1)根据()00f =,()113f =列出方程组,求出1,2a b ==,检验后得到解析式;(2)先用定义法判断出函数()2121x f x =-+在R 上单调递增,结合()2121x f x =-+的奇偶性,解不等式,得到实数m 的取值范围.【详解】(1)()21x b f x a =-+为定义在R 上的奇函数,故()00021bf a =-=+,又1213b a -=+,解得:1,2a b ==,故()2121x f x =-+,经检验,()2121x f x =-+是奇函数,满足题意,故()2121x f x =-+;(2)任取12,R x x ∈,且12x x <,则()()()()()()12121212121111122222222211212121212121x x x x x x x x x x f x f x +++++----=--+==++++++,因为2x y =单调递增,所以1211220x x ++-<,又因为1211210,210x x +++>+>,故()()()()121211122202121x x x x f x f x ++--=<++,故()()12f x f x <,故()2121x f x =-+在R 上单调递增,又()2121xf x =-+是定义在R 上的奇函数,由()()220f x f m x +->得:()()()222f x m f x f x ->-=-,故22x m x ->-,所以()22211m x x x <+=+-,所以1m <-,实数m 的取值范围是(),1-∞-.21.中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同样强劲.今年,我国某一企业为了进一步增加市场竞争力,计划在2021年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100+1000,040()100007018450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部.手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2021年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2021年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)2021年产量为100(千部)时,企业所获利润最大,最大利润是8000万元.(1)由题意,按照040x <<、40x ≥分类,转化等量关系即可得解;(2)按照040x <<、40x ≥分类,结合二次函数的性质及基本不等式即可得解.【详解】(1)当040x <<时,()()22700101001000250106001250W x x x x x x =-++-=-+-;当40x ≥时,()100001000070070184502508200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭;()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)若040x <<,()()210307750W x x =--+,当30x =时,()max 7750W x =万元;若40x ≥,()10000820082008000W x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当10000x x=即100x =时,()max 8000W x =万元.答:2021年产量为100(千部)时,企业所获利润最大,最大利润是8000万元.22.已知函数()πcos 14f x x x ⎛⎫=+⋅- ⎪⎝⎭.(1)当ππ,44x ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域;(2)将函数()f x 的图像向右平移π4个单位长度后,再将得到的图像上所有点的纵坐标变为原来的2倍,横坐标不变,再将得到的图像向下平移m 个单位长度得到函数()g x 的图像.若函数()g x 在π3π,244⎡⎤-⎢⎥⎣⎦上的零点个数为2,求m 的取值范围.【正确答案】(1)⎡-⎣;(2)⎡-⎣.【分析】(1)利用三角函数两角和的正弦公式以及二倍角公式进行化简,结合三角函数的单调性进行求解即可.(2)根据三角函数的图像变换关系求出函数()g x 的表达式,结合三角函数的性质进行求解即可.【详解】(1)由题知,()πcos 14f x x x ⎛⎫=+⋅- ⎪⎝⎭=cos 1x x x ⎫⋅-⎪⎪⎭22sin cos 2cos 1x x x =+-,则()πsin2cos 224f x x x x ⎛⎫=+=+ ⎪⎝⎭,ππ,44x ⎡⎤∈-⎢⎥⎣⎦ ,则ππ3π2,444x ⎡⎤+∈-⎢⎥⎣⎦,∴当ππ244x +=-,即π4x =-时,()f x 有最小值,且()min 12f x ⎛=-=- ⎝⎭.当ππ242x +=,即π8x =时,()f x 有最大值,且()max 1f x =()f x \的值域为⎡-⎣.(2)由(1)知,()π24f x x ⎛⎫=+ ⎪⎝⎭图像向右平移π4个单位长度可得ππ244y x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,即π24y x ⎛⎫=- ⎪⎝⎭,纵坐标变为原来的2倍可得π24y x ⎛⎫=- ⎪⎝⎭,再向下平移m 个单位长度得()π24g x x m ⎛⎫=-- ⎪⎝⎭.令()0g x =,则有πsin 24x ⎛⎫-= ⎪⎝⎭π3π,244x ⎡⎤∈-⎢⎥⎣⎦,ππ5π2434x ⎡⎤∴-∈-⎢⎣⎦,设ππ5π2,434t x ⎡⎤=-∈-⎢⎥⎣⎦,则sin y t =,π5π,34t ⎡⎤∈-⎢⎥⎣⎦,如图所示,sin y t =与y =则sin y t ⎡⎫=∈⎪⎢⎪⎣⎭,即12-≤,所以m 的取值范围为⎡-⎣.。
高一第一学期数学期末试卷及答案5套

高一第一学期数学期末试卷及答案5套本试卷满分150分,考试时间120分钟。
请在答题卷上作答。
第I卷选择题(共60分)一、选择题(本大题共12题,每题5分,满分60分,每小题只有一个正确答案)1.若sinα=-,且α为第四象限角,则tanα的值为( )A. B.- C. D.-2.已知f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在区间 [-1,3]上的解集为()A. (1,3)B. (-1,1)C. (-1,0)∪(1,3)D. (-1,0)∪(0,1)3.若cos(2π-α)=,则sin等于( )A.- B.- C. D.±4.设集合A={x|1<x<4},B={x|-1≤x≤3},则A∩(∁R B)等于( )A.{x|1<x<4} B.{x|3<x<4} C.{x|1<x<3} D.{x|1<x<2}∪{x|3<x<4} 5.下列表示函数y=sin在区间上的简图正确的是( )6.已知函数f(x)=sin(ω>0)的最小正周期为π,则函数f(x)的图象的一条对称轴方程是( ) A.x= B.x= C.x= D.x=7.使不等式-2sin x≥0成立的x的取值集合是( )A.B.C.D.8.设函数f(x)=cos,则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在上单调递减9.已知函数y=3cos(2x+)的定义域为[a,b],值域为[-1,3],则b-a的值可能是( )A. B. C. D.π10.一观览车的主架示意图如图所示,其中O为轮轴的中心,距地面32 m(即OM长),巨轮的半径长为30 m,AM=BP=2 m,巨轮逆时针旋转且每12分钟转动一圈.若点M为吊舱P的初始位置,经过t分钟,该吊舱P距离地面的高度为h(t) m,则h(t)等于( )A.30sin+30 B.30sin+30C.30sin+32 D.30sin11.若函数y=f(x)是奇函数,且函数F(x)=af(x)+bx+2在(0,+∞,)上有最大值8,则函数y=F(-∞,,0)上有 ( )A.最小值-8 B.最大值-8 C.最小值-6 D.最小值-412.根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是( ) A.75,25 B.75,16 C.60,25 D.60,16第II卷非选择题(共90分)13.若函数f(x)=|x-2|(x-4)在区间(5a,4a+1)上单调递减,则实数a的取值范围是________.14.若不等式(m2-m)2x-()x<1对一切x∈(-∞,-1]恒成立,则实数m的取值范围是________.15.函数y=sin2x+2cos x在区间[-,a]上的值域为[-,2],则a的取值范围是________.16.函数y=sinωx(ω>0)的部分图象如图所示,点A,B是最高点,点C是最低点,若△ABC是直角三角形,则ω的值为________.三、解答题(共6小题,共70分)17.(12分)已知定义在区间上的函数y=f(x)的图象关于直线x=对称,当x≥时,f(x)=-sin x.(1)作出y=f(x)的图象;(2)求y=f(x)的解析式;(3)若关于x的方程f(x)=a有解,将方程中的a取一确定的值所得的所有解的和记为Ma,求Ma的所有可能的值及相应的a的取值范围.18. (10分)已知函数f(x)=cos(2x-),x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-,]上的最小值和最大值,并求出取得最值时x的值.19. (12分)已知函数g(x)=A cos(ωx+φ)+B的部分图象如图所示,将函数g(x)的图象保持纵坐标不变,横坐标向右平移个单位长度后得到函数f(x)的图象.求:(1)函数f(x)在上的值域;20. (12分)已知f(x)=x2+2x tanθ-1,x∈[-1,],其中θ∈(-,).(1)当θ=-时,求函数f(x)的最大值;(2)求θ的取值范围,使y=f(x)在区间[-1,]上是单调函数.21.(12分)已知函数f(x)=x2-(a+1)x+b.(1)若b=-1,函数y=f(x)在x∈[2,3]上有一个零点,求a的取值范围;(2)若a=b,且对于任意a∈[2,3]都有f(x)<0,求x的取值范围.22. (12分)已知抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点.(1)求m的取值范围;(2)若抛物线与x轴的两个交点为A,B,且点B的坐标为(3,0),求出点A的坐标,抛物线的对称轴和顶点坐标.答案1.D2. C3.A4. B5.A6.C7.C8.D9.B10.B11.D12.D13.[,]14.-2<m<315.[0,]16.17.(1)y=f(x)的图象如图所示.(2)任取x∈,则-x∈,因函数y=f(x)图象关于直线x=对称,则f(x)=f,又当x≥时,f(x)=-sin x,则f(x)=f=-sin=-cos x,即f(x)=(3)当a=-1时,f(x)=a的两根为0,,则Ma=;当a∈时,f(x)=a的四根满足x1<x2<<x3<x4,由对称性得x1+x2=0,x3+x4=π,则Ma=π;当a=-时,f(x)=a的三根满足x1<x2=<x3,由对称性得x3+x1=,则Ma=;当a∈时,f(x)=a两根为x1,x2,由对称性得Ma=. 综上,当a∈时,Ma=π;当a=-时,Ma=;当a∈∪{-1}时,Ma=.18.(1)f(x)的最小正周期T===π.当2kπ≤2x-≤2kπ+π,即kπ+≤x≤kπ+,k∈Z时,f(x)单调递减,∴f(x)的单调递减区间是[kπ+,kπ+],k∈Z.(2)∵x∈[-,],则2x-∈[-,],故cos(2x-)∈[-,1],∴f(x)max=,此时2x-=0,即x=;f(x)min=-1,此时2x-=-,即x=-.19.解(1)由图知B==1,A==2,T=2=π,所以ω=2,所以g(x)=2cos(2x+φ)+1.把代入,得2cos+1=-1,即+φ=π+2kπ(k∈Z),所以φ=2kπ+(k∈Z).因为|φ|<,所以φ=,所以g(x)=2cos+1,所以f(x)=2cos+1.因为x∈,所以2x-∈,所以f(x)∈[0,3],即函数f(x)在上的值域为[0,3].(2)因为f(x)=2cos+1,所以2cos+1≥2,所以cos≥,所以-+2kπ≤2x-≤+2kπ(k∈Z),所以kπ≤x≤kπ+(k∈Z),所以使f(x)≥2成立的x的取值范围是.20.解(1)当θ=-时,f(x)=x2-x-1=(x-)2-,x∈[-1,].∴当x=-1时,f(x)的最大值为.(2)函数f(x)=(x+tanθ)2-(1+tan2θ)图象的对称轴为x=-tanθ,∵y=f(x)在[-1,]上是单调函数,∴-tanθ≤-1或-tanθ≥,即tanθ≥1或tanθ≤-.因此,θ角的取值范围是(-,-]∪[,).22.(1)∵抛物线y=x2-2(m-1)x+(m2-7)与x轴有两个不同的交点,∴方程x2-2(m-1)x+(m2-7)=0有两个不相等的实数根,∴Δ=4(m-1)2-4(m2-7)=-8m+32>0,∴m<4.(2)∵抛物线y=x2-2(m-1)x+(m2-7)经过点B(3,0),∴9-6(m-1)+m2-7=0,m2-6m+8=0,解得m=2或m=4.由(1)知m<4,∴m=2.∴抛物线的解析式为y=x2-2x-3.令y=0,得x2-2x-3=0,解得x 1=-1,x 2=3, ∴点A 的坐标为(-1,0). 又y =x 2-2x -3=(x -1)2-4,∴顶点坐标为(1,-4),对称轴为直线x =1.高一第一学期数学期末试卷及答案一、选择题(本题共12小题,每小题5分,共60分)1. 2{4,21,}A a a =--,=B {5,1,9},a a --且{9}A B ⋂=,则a 的值是( ) A. 3a = B. 3a =- C. 3a =± D. 53a a ==±或 2. 函数()14log 12-=x y 的定义域为( )A.)21,0(B. )43(∞+, C .)21(∞+, D.⎝ ⎛⎭⎪⎫34,13. 若方程032=+-mx x 的两根满足一根大于1,一根小于1,则m 的取值范围是( ) A. )2(∞+,B. )20(, C .)4(∞+, D. )4,0(4.设2150.a =,218.0=b ,5.0log 2=c ,则( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<5. 为了得到函数)33sin(π-=x y 的图象,只需把函数x y 3sin =的图象( ) A .向右平移9π个单位长度 B .向左平移9π个单位长度 C .向右平移3π个单位长度 D .向左平移3π个单位长度6. 给出下列各函数值:① 100sin ;②)100cos( -;③)100tan(-;④sin 7π10cos πtan17π9.其中符号为负的是( )A .①B .② C.③ D .④7.设D 为ABC ∆所在平面内一点3BC CD =,则( ) A. AD =34AB +31AC B.1433AD AB AC =-C. AD = 31-AB +34AC D.4133AD AB AC =-8. 已知210cos 2sin ,=+∈αααR ,则=α2tan ( ) A. 53-43-或 B. 43- C. 43 D. 53-9. 设10<<a ,实数,x y 满足1||log 0ax y-=,则y 关于x 的函数的图像形状大致是( ) A B C D10.若函数)1,0( )2(log )(2≠>+=a a x x x f a 在区间)21,0(内恒有()0f x >,则()f x 的单调递增区间为( )A. )21,(--∞ B. ),41(+∞-C. (0,+∞)D. )41,(--∞ 11. 已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数)2(2)(x f b x g --= ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( )A .),87(+∞ B. )2,47( C.)1,87( D. )4,27(12. 设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) .A .3B .4C .5D .6二、填空题(本题共4小题,每小题5分,共20分)13. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②OM MP <<0; ③0<<MP OM ;④ 0OM MP <<,其中正确的是______________________。
2023-2024学年广东省深圳市高一上学期期末质量检测数学试题(含解析)

2023-2024学年广东省深圳市高一上册期末数学试题一、单选题1.已知集合{}24xA x =>,{}ln 1B x x =<,则集合A B = ()A .(,e)-∞B .(2,e)C .(,1)-∞D .(0,2)【正确答案】B【分析】解不等式求得集合A 、B ,由此求得A B ⋂.【详解】()224222,x x A >=⇒>⇒=+∞,()ln 1ln e 0e 0,e x x B <=⇒<<⇒=,所以()2,e A B ⋂=.故选:B2.记0cos(80)k -=,那么0tan100=A .kB .k-C D .【正确答案】B【详解】()cos 80k -= ,cos80k ∴= ,从而sin80==sin 80tan 80cos80∴==,那么tan100tan(18080)tan 80=-=-=故选B .3.使不等式101x<<成立的一个充分不必要条件是().A .102x <<B .1x >C .2x >D .0x <【正确答案】C解出不等式,进而可判断出其一个充分不必要条件.【详解】解:不等式101x<<,∴011x x>⎧⎪⎨<⎪⎩,解得1x >,故不等式的解集为:(1,)+∞,则其一个充分不必要条件可以是2x >,故选:C .本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,q 对的集合与p 对应集合互不包含.4.下列函数是偶函数且在区间(–),0∞上为减函数的是()A .2y x =B .1y x=C .y x =D .2y x =-【正确答案】C根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】2y x =不是偶函数;1y x=不是偶函数;y x =是偶函数,且函数在(),0∞-上是减函数,所以该项正确;2y x =-是二次函数,是偶函数,且在(–),0∞上是增函数,故选:C.5.将函数2cos 23y x π⎛⎫=- ⎪⎝⎭的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移3π个单位,所得函数图象的一条对称轴是()A .3x π=B .6x π=C .23x π=D .x π=【正确答案】D【分析】根据三角形函数图像变换和解析式的关系即可求出变换后函数解析式,从而根据余弦函数图像的性质可求其对称轴.【详解】将函数2cos 23y x π⎛⎫=- ⎪⎝⎭的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),则函数解析式变为2cos 3y x π⎛⎫=- ⎪⎝⎭;向左平移3π个单位得2cos 2cos 33y x x ππ⎛⎫=-+= ⎪⎝⎭,由余弦函数的性质可知,其对称轴一定经过图象的最高点或最低点,故对称轴为:x k π=,k ∈Z ,k =1时,x π=.故选:D.6.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“>”和“<”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若实数1331,3x y x y ⎛⎫+=>> ⎪⎝⎭,则3131x y x y +--的最小值为()A .6B .4C .3D .2【正确答案】A 【分析】将3131x y x y +--分离常数为112131x y ++--,由1331,3x y x y ⎛⎫+=>> ⎪⎝⎭,可得1311x y -+-=,且10x ->,310y ->,再结合基本不等式求解即可.【详解】由311311112131131131x y x y x y x y x y -+-++=+=++------,又1331,3x y x y ⎛⎫+=>> ⎪⎝⎭,所以1311x y -+-=,且10x ->,310y ->,所以()11111311311124131131311x y x y x y x y y x ⎛⎫--+=-+-+=+++≥+= ⎪------⎝⎭,当且仅当131311x y y x --=--,即32x =,12y =时,等号成立,故3131x y x y +--的最小值为6.故选:A.7.已知函数||()2x f x =,记131(())4a f =,37(log 2b f =,13(log 5)c f =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .c a b>>【正确答案】A首先判断函数()f x 的性质,再比较133317,log ,log 542⎛⎫ ⎪⎝⎭的大小关系,从而利用单调性比较a ,b ,c 的大小关系.【详解】()2xf x =是偶函数,并且当0x >时,2x y =是增函数,()133log 5log 5c f f ⎛⎫== ⎪⎝⎭,因为1310()14<<,3371log log 52<<,即1333170log log 542⎛⎫<<< ⎪⎝⎭又因为()y f x =在()0,∞+是增函数,所以a b c <<.故选:A.关键点点睛:本题考查利用函数的单调性和奇偶性比较函数值的大小,本题的关键是判断函数()2x f x =的性质,后面的问题迎刃而解.8.如图所示,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,点Р的坐标为()A .()2cos 2,1sin 2--B .()1sin 2,2cos 2--C .()1cos 2,2sin 2--D .()2sin 2,1cos 2--【正确答案】D【分析】如图,根据题意可得22BAP π∠=-,利用三角函数的定义和诱导公式求出cos 2sin 2DP DA =-=,,进而得出结果.【详解】如图,由题意知, 2BPOB ==,因为圆的半径1R =,所以22DAP π∠=-,所以sin(2)cos 2cos(2)sin 222DP AP DA AP ππ=-=-=-=,,所以2sin 21cos 2OC PC =-=-,,即点(2sin 2,1cos 2)P --.故选:D 二、多选题9.下列函数中,在(0,+∞)上的值域是(0,+∞)的是()A .12y x =B .y =x 2﹣2x +1C .3y x=D .3y x =【正确答案】ACD【分析】先判断函数的单调性,再求每个函数的值域得解.【详解】解:A.12y x =在(0,+∞)上是增函数,所以函数的值域为(0,+∞),所以该选项正确;B.y =x 2﹣2x +1在(0,+∞)上的值域是[0,)+∞,所以该选项错误;C.3y x=在(0,+∞)上是减函数,所以函数的值域为(0,+∞),所以该选项正确;D.3y x =在(0,+∞)上是增函数,所以函数的值域为(0,+∞),所以该选项正确.故选:ACD10.下列各式的值为1的是()A .tan20tan25tan20tan251+-B .13661log 27log 88-⎛⎫+- ⎪⎝⎭C .sin72cos18cos108sin18-D .22cos 2251⋅- 【正确答案】BC【分析】根据两角和的正切公式、诱导公式、两角和的正弦公式、二倍角的余弦公式,结合指数和对数的运算性质逐一判断即可.【详解】()tan20tan25tan20tan25tan 2025tan451,A tan20tan2511tan20tan25++=-=-+=-=---错误;()1366666661log 27log 83log 33log 223log 3log 223log 621,B8-⎛⎫+-=+-=+-=-= ⎪⎝⎭对;()sin72cos18cos108sin18sin72cos18cos72sin18sin 7218sin901,C -=+=+== 对;22cos 22.51cos452-==,D 错误.故选:BC.11.下列说法正确的是()A .()f x x =与()ln e xg x =为同一函数B .已知a ,b 为非零实数,且a b >,则2211ab a b>恒成立C .若等式的左、右两边都有意义,则442sin cos 2sin 1ααα-=-恒成立D .关于函数()2311x f x x =+-有两个零点,且其中一个零点在区间()1,2【正确答案】ABCD【分析】根据题意,分别利用函数的概念,不等式的性质,同角三角函数的基本关系和零点存在性定理逐项进行检验即可判断.【详解】对于A ,因为函数()f x x =与()ln e xg x x ==的定义域相同,对应法则相同,所以是同一个函数,故选项A 正确;对于B ,因为a ,b 为非零实数,且a b >,所以2222110a b ab a b a b --=>,故选项B 成立;对于C ,因为442222sin cos (sin cos )(sin cos )αααααα-=+-222sin cos 2sin 1ααα=-=-,故选项C 正确;对于D ,因为函数2()311x f x x =+-的零点个数等价于()3x g x =与2()11h x x =-图象交点的个数,作出图象易知,交点的个数为2,且(1)3(1)10g h =<=,(2)9(2)7g h =>=,所以函数2()311x f x x =+-有两个零点,且其中一个在(1,2)上,故选项D 正确,故选.ABCD12.已知函数2()1f x x mx =+-,则下列说法中正确的是()A .若12,x x 为方程()6f x =-的两实数根,且21123x x x x +=,则5m =±B .若方程()2f x =-的两实数根都在(0,2),则实数m 的取值范围是5(,2]2--C .若(0,)∀∈+∞x ,2()2f x x <,则实数m 的取值范围是(2,2)-D .若[],1x m m ∀∈+,()0f x <,则实数m的取值范围是(2-【正确答案】ABD【分析】对于A ,由已知结合方程的根与系数关系可求;对于B ,结合二次方程的实根分布可求;对于C ,由已知不等式分离参数可得1m x x<+,然后结合基本不等式可求;对于D ,由已知结合二次函数的性质可求.【详解】对于A ,因为12,x x 为方程()6f x =-的两实数根,即12,x x 是方程250x mx ++=的两实数根,所以满足12125x x mx x +=-⎧⎨⋅=⎩,因为222112121212()2()2535x x x x x x m x x x x +---⨯+===,则5m =±,此时2450m ∆=-⨯>,故A 正确;对于B ,因为方程()2f x =-的两实数根都在(0,2),即方程210x mx ++=的两实数根都在(0,2),所以需满足2220224000102210m m m m ⎧<-<⎪⎪⎪-⎨⎪+⋅+>⎪+⋅+>⎪⎩,可得522m -<-,故B 正确;对于C ,因为(0,)∀∈+∞x ,2()2f x x <,则210x mx -+>,即1m x x<+,因为12x x +,则2m <,故C 错误;对于D ,因为2()1f x x mx =+-图像开口向上,[x m ∀∈,1]m +,都有()0f x <,所以()0(1)0f m f m <⎧⎨+<⎩,即22210(1)(1)10m m m m ⎧-<⎨+-+-<⎩,解得02m -<<,故D 正确.故选:ABD.三、填空题13.已知函数()21f x x -=,则()2f -=__________.【正确答案】12-##0.5-【分析】令212x -=-求出x 的值,即为结果.【详解】令212x -=-,得12x =-,所以()122f -=-.故12-14.函数()lg sin y x =________.【正确答案】|22,3x k x k k Z πππ⎧⎫<≤+∈⎨⎬⎩⎭由题意得sin 01cos 02x x >⎧⎪⎨-≥⎪⎩,解得即可.【详解】由题意,要使函数有意义,则sin 01cos 02x x >⎧⎪⎨-≥⎪⎩,即sin 01cos 2x x >⎧⎪⎨≥⎪⎩,解得()()22,22,33k x k k Z k x k k Z πππππππ⎧<<+∈⎪⎨-+≤≤+∈⎪⎩,所以()223k x k k Z πππ<≤+∈所以函数的定义域为|22,3x k x k k Z πππ⎧⎫<≤+∈⎨⎬⎩⎭.故答案为.|22,3x k x k k Z πππ⎧⎫<≤+∈⎨⎬⎩⎭本题考查了三角函数的图象与性质,属于中档题.15.已知()1sin 22f x x =,关于该函数有下列四个说法:①()f x 的最小正周期为2π;②()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增;③当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的取值范围为44⎡-⎢⎥⎣⎦;④()f x 的图象可由()1sin 224g x x π⎛⎫=+ ⎪⎝⎭的图象向左平移8π个单位长度得到.以上四个说法中,正确的有为______.【正确答案】②【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假.【详解】解:因为1()sin 22f x x =,所以()f x 的最小正周期为2ππ2T ==,故①不正确;因为ππ,44x ⎡⎤∈-⎢⎥⎣⎦,令ππ2,22t x ⎡⎤=∈-⎢⎥⎣⎦,而1sin 2y t =在ππ,22⎡⎤-⎢⎣⎦上递增,所以()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增,故②正确;因为,63x ππ⎡⎤∈-⎢⎥⎣⎦,所以π2π2,33x ⎡⎤∈-⎢⎥⎣⎦,sin 2x ⎡⎤∈⎢⎥⎣⎦,所以()12f x ⎡⎤∈⎢⎥⎣⎦,故③不正确;由于1π1πg()sin(2sin 22428x x x ⎡⎤⎛⎫=+=+ ⎪⎢⎥⎝⎭⎣⎦,所以()f x 的图象可由1πg()sin(2)24x x =+的图象向右平移π8个单位长度得到,故④不正确.故②.16.函数()(||2)f x x x =-在[,]m n 上的最小值为1-,最大值是3,则n m -的最大值为__________.【正确答案】4【分析】将函数写成分段函数,画出函数图象,分别求出()3f x =和()1f x =-()0x <时自变量的值,结合图象得到n m -的最大值.【详解】解:函数()(2),0()2(2),0x x x f x x x x x x -≥⎧=-=⎨--<⎩的图象如下,当0x ≥时,令(2)3x x -=,得11(x =-舍),23x =,当0x <时,令(2)1x x --=-,得312x =--,412(x =-舍),结合图象可得max 23()3(12)4 2.n m x x -=-=--=故42四、解答题17.完成下列计算,保留应有过程.(1)2sin 4cos 34?sin 34--=;(2)已知1sin cos 8αα=,且ππ42α<<,则cos sin ?αα-=;【正确答案】(1)3-(2)32【分析】(1)利用两角和差余弦公式和辅助角公式可化简分子为334- ,由此可得结果;(2)根据cos sin αα<,结合同角三角函数平方关系可求得结果.【详解】(1)33sin 442sin 4cos342sin 4cos30cos 4sin 30sin 422sin 34sin 34sin 34+----+==-()34303343sin 34sin 34+==-=-(2)∵ππ42α<<,则cos sin αα<,即cos sin 0αα-<,∴()213cos sin cos sin 12sin cos 142αααααα-=--=--=--=-.18.设x ∈R ,函数()cos()0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且42f π⎛⎫= ⎪⎝⎭.(1)求ω和ϕ的值;(2)在给定坐标系中作出函数()f x 在[]0,π上的图像;(3)若()f x >x 的取值范围.【正确答案】(1)2ω=,3πϕ=-(2)作图见解析(3)7{|,Z}2424x k x k k ππππ+<<+∈【分析】(1)利用最小正周期和4f π⎛⎫ ⎪⎝⎭ωφ,即可;(2)利用列表,描点画出()f x 图像即可;(3)由余弦函数的图像和性质解不等式即可.【详解】(1)∵函数()f x 的最小正周期2T ππω==,∴2ω=.∵cos 2cos sin 442f πππϕϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且02πϕ-<<,∴3πϕ=-.(2)由(1)知()cos 23f x x π⎛⎫=- ⎪⎝⎭,列表如下:x 06π512π23π1112ππ23x π-3π-02ππ32π53π()f x 1210-1012()f x 在[]0,π上的图像如图所示:(3)∵()f x >cos 232x π⎛⎫-> ⎪⎝⎭,∴222()434k x k k πππππ-<-<+∈Z ,则7222()1212k x k k ππππ+<<+∈Z ,即7()2424k x k k ππππ+<<+∈Z .∴x 的取值范围是7{|,Z}2424x k x k k ππππ+<<+∈19.已知2(2)f x x bx c =++,不等式()12f x <-的解集是(2,3).(1)求()f x 的解析式;(2)不等式组()0()0f x f x k >⎧⎨+<⎩的正整数解仅有2个,求实数k 取值范围;(3)若对于任意[1x ∈-,1],不等式()2t f x ⋅恒成立,求t 的取值范围.【正确答案】(1)2()210f x x x=-(2)[3,2)--(3)11[,]46-【分析】(1)结合根与系数关系求得b ,c ;(2)根据不等式组()0()0f x f x k >⎧⎨+<⎩的正整数解仅有2个,可得到758k <-,即可求解;(3)对t 进行分类讨论,结合函数的单调性求得t 的取值范围.【详解】(1)因为2(2)f x x bx c =++,不等式()12f x <-的解集是(2,3),所以2,3是一元二次方程22120x bx c +++=的两个实数根,可得23212232b c ⎧+=-⎪⎪⎨+⎪⨯=⎪⎩,解得100b c =-⎧⎨=⎩,所以2()210f x x x =-;(2)不等式()0()0f x f x k >⎧⎨+<⎩,即2221002()10()0x x x k x k ⎧->⎨+-+<⎩,解得5,05x x k x k><⎧⎨-<<-⎩,因为正整数解仅有2个,可得该正整数解为6、7,可得到758k <-,解得32k -<-,则实数k 取值范围是[3-,2)-;(3)因为对于任意[1x ∈-,1],不等式()2t f x ⋅恒成立,所以2510tx tx --≤,当0=t 时,10-<恒成立;当0t >时,函数251y tx tx =--在[1x ∈-,1]上单调递减,所以只需满足()()()2115110f t t -=⋅--⋅--≤,解得106t <;当0t <时,函数251y tx tx =--在[1x ∈-,1]上单调递增,所以只需满足f (1)215110t t =⋅-⋅-≤,解得104t -<,综上,t 的取值范围是11[,]46-.20.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间.(1)根据如图所示的直角坐标系,将点P 到水面的距离h (单位:m ,在水面下,h 为负数)表示为时间t (单位:s )的函数,并求13t =时,点P 到水面的距离;(2)在点P 从0P 开始转动的一圈内,点P 到水面的距离不低于4m 的时间有多长?【正确答案】(1)()ππ4sin 266h t t ⎛⎫=-+ ⎪⎝⎭,2m (2)4s【分析】(1)根据题意先求出筒车转动的角速度,从而求出h 关于时间t 的函数,和13t =时的函数值;(2)先确定定义域[]0,12t ∈,再求解不等式,得到26t ≤≤,从而求出答案.【详解】(1)筒车按逆时针方向匀速转动.每分钟转动5圈,故筒车每秒转动的角速度为52ππ606⨯=()rad /s ,故()ππ4sin 266h t t ⎛⎫=-+ ⎪⎝⎭,当13t =时,()13ππ134sin 2266h ⎛⎫=-+= ⎪⎝⎭,故点P 到水面的距离为2m(2)点P 从0P 开始转动的一圈,所用时间012t =,令()ππ4sin 2466h t t ⎛⎫=-+≥ ⎪⎝⎭,其中[]0,12t ∈,解得:26t ≤≤,则624-=,故点P 到水面的距离不低于4m 的时间为4s.21.已知函数4()log (41)x f x kx =++与44()log (2)3x g x a a =⋅-,其中()f x 是偶函数.(Ⅰ)求实数k 的值;(Ⅱ)求函数()g x 的定义域;(Ⅲ)若函数()()()F x f x g x =-只有一个零点,求实数a 的取值范围.【正确答案】(Ⅰ)12k =-;(Ⅱ)分类讨论,答案见解析;(Ⅲ){}()31,-⋃+∞.(Ⅰ)由偶函数的性质,运算即可得解;(Ⅱ)转化条件为4203x a a ⋅->,按照0a >、a<0分类,即可得解;(Ⅲ)由对数的运算性质转化条件得方程()()22421223x x x a a +=-⋅有且只有一个实根,换元后,结合一元二次方程根的分布即可得解.【详解】(Ⅰ)∵()f x 是偶函数,∴()()f x f x =-,∴44log (41)log (41)x x kx kx -++=+-,∴441log 241x x kx -+=-+,∴44(41)log 241x x x x kx +==-+,即(21)0k x +=对一切x R ∈恒成立,∴12k =-;(Ⅱ)要使函数()g x 有意义,需4203x a a ⋅->,当0a >时,423x >,解得24log 3x >,当a<0时,423x <,解得24log 3x <,综上可知,当0a >时,()g x 的定义域为24log ,3⎛⎫+∞ ⎪⎝⎭;当a<0时,()g x 的定义域为24,log 3⎛⎫-∞ ⎪⎝⎭;(Ⅲ)∵()()()F x f x g x =-4414log (41)log 223x x x a a ⎛⎫=+--⋅- ⎪⎝⎭只有一个零点,∴方程4414log (41)log 223x x x a a ⎛⎫+=+⋅- ⎪⎝⎭有且只有一个实根,即方程2444444log (41)log 4log 2log 2233xx x x x a a a ⎡⎤⎛⎫⎛⎫+=+⋅-=⋅- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦有且只有一个实根,亦即方程()()22421223x x x a a +=-⋅有且只有一个实根,令2x t =(0t >),则方程24(1)103a a t t ---=有且只有一个正根,①当1a =时,34t =-,不合题意;②当1a ≠时,因为0不是方程的根,所以方程的两根异号或有两相等正根,由0∆=可得244(1)03a a ⎛⎫+-= ⎪⎝⎭,解得34a =或3-若34a =,则2t =-不合题意,舍去;若3a =-,则12t =满足条件;若方程有两根异号,则244(1)03101a a a ⎧⎛⎫∆=+->⎪ ⎪⎪⎝⎭⎨-⎪<⎪-⎩,∴1a >,综上所述,实数a 的取值范围是{}()31,-⋃+∞.方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.22.截至2022年12月12日,全国新型冠状病毒的感染人数突破人.疫情严峻,请同学们利用的数学模型解决生活中的实际问题.【主题一】【科学抗疫,新药研发】(1)我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c (t )(单位:mg/L )随着时间t (单位:h )的变化用指数模型()0ktc t c e -=描述,假定某药物的消除速率常数0.1k =(单位:1h -),刚注射这种新药后的初始血药含量02000mg /L c =,且这种新药在病人体内的血药含量不低于1000mg/L 时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln 20.693≈,ln 3 1.099≈)A .5.32h B .6.23h C .6.93h D .7.52h【主题二】【及时隔离,避免感染】(2)为了抗击新冠,李沧区需要建造隔离房间.如图,每个房间是长方体,且有一面靠墙,底面积为48a 平方米()0a >,侧面长为x 米,且x 不超过8,房高为4米.房屋正面造价400元/平方米,侧面造价150元/平方米.如果不计房屋背面、屋顶和地面费用,则侧面长为多少时,总价最低.【正确答案】(1)C(2)当01a <≤时,x =时总价最低;当1a >时,8x =时总价最低【分析】(1)利用已知条件0.10()e 2000e kt t c t c --==,求解指数不等式得答案.(2)根据题意表达出总造价()768001200,08a y x x x =+<≤,再根据基本不等式,结合对勾函数的性质分类讨论分析即可.【详解】(1)解:由题意得,0.10()e 2000e kt t c t c --==,设该药在病人体内的血药含量变为1000mg/L 时需要是时间为1t ,由10.11()2000e 1000t c t -=≥,得10.12e 1t -≥,故0.1ln 2t -≥-,ln 2 6.93h 0.1t ∴≤≈.∴该新药对病人有疗效的时长大约为6.93h .故选:C .(2)解:由题意,正面长为48a x 米,故总造价48400421504a y x x =⨯⨯+⨯⨯,即()768001200,08a y x x x=+<≤.由基本不等式有768001200a y x x =+≥,当且仅当768001200a x x =,即x =取等号.故当8≤,即1a ≤,x =当8>,即1a >时,由对勾函数的性质可得,8x =时总价最低;综上,当01a <≤时,x =时总价最低;当1a >时,8x =时总价最低.。
2024届山东省济宁市数学高一上期末检测试题含解析

2024届山东省济宁市数学高一上期末检测试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中BC =AB =2,则原平面图形的面积为()A.322B.32C.122D.622.函数cos y x =的定义域为[],a b ,值域为3[1,]2-,则b a -的取值范围是() A.5[,]6ππ B.55[,]63ππ C.[]6,ππD.11[,]6ππ 3.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为 ( ) A.(1,2) B.(2,1) C.(22,)D.(1,1)4.一个容量为1 000的样本分成若干组,已知某组的频率为0.4,则该组的频数是 A.400 B.40 C.4 D.6005.若将函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数的图象,则下列说法正确的是( )A.的最小正周期为B.在区间上单调递减C.图象的一条对称轴为直线D.图象的一个对称中心为6.若点()1,3A --、()2,B a 、()3,1C 在同一直线上,则=a () A.0 B.1 C.2D.1-7.已知集合{|43}M x x =-<<,{|5N x x =<-或3}x ≥,则M N ⋃=() A.{|5x x <-或}4x >- B.{|53}x x -<< C.{|54}x x -<<-D.{|5x x <-或3}x >8.命题“∀x >0,x 2-x ≤ 0 ”的否定是() A.∃x >0,x 2-x ≤ 0 B.∃x > 0,x 2-x >0 C.∀x > 0,x 2-x > 0 D.∀x ≤0,x 2-x > 09.已知0.23a =,13log 0.4b =,2log 0.2c =,则()A.a b c >>B.b c a >>C.c b a >>D.b a c >>10.已知,,R a b c ∈,且a b >,则下列不等式一定成立的是( ) A.22a b > B.11a b< C.||||a c b c >D.c a c b -<-二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在矩形ABCD 中,AB =2,AD =1.设123456t AB BC CD DA AC BD λλλλλλ=+++++ ①当1234561,1λλλλλλ===-===时,t =___________; ②若{}1,1,1,2,3,4,5,6i i λ∈-=,则t 的最大值是___________ 12.已知函数()2cos 3sin cos f x x x x =.(1)当函数()f x 取得最大值时,求自变量x 的集合;(2)完成下表,并在平面直角坐标系内作出函数()f x 在[]0,π的图象. x 0 πy13.若关于x 的不等式3231012xkx x x ->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________14.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________. 15.已知点(1,1),(1,5)A B -,若12AC AB =,则点C 的坐标为_________. 三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某行业计划从新的一年2020年开始,每年的产量比上一年减少的百分比为(01)<<x x ,设n 年后(2020年记为第1年)年产量为2019年的a 倍. (1)请用a ,n 表示x .(2)若10%x =,则至少要到哪一年才能使年产量不超过2019年的25%? 参考数据:lg 20.301≈,lg30.477≈. 17.已知向量()2,6a =-,10b =.(1)若a 与b 共线且方向相反,求向量b 的坐标. (2)若a b +与b 垂直,求向量a ,b 夹角θ的大小. 18.若函数f (x )满足f (log a x )=21a a -·(x -1x)(其中a >0且a ≠1). (1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围 19.已知函数()2=-a f x x x,且()922f =.(1)求实数a 的值;(2)判断函数()f x 在()1,+∞上的单调性,并证明.20.已知3sin()cos cos 22()3sin()cos(2)sin tan()2f ππθπθθθππθπθθπθ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=⎛⎫---+-- ⎪⎝⎭. (1)化简()fθ;(2)若()3f πθ-=-,求3sin 2cos 5cos 2sin θθθθ-+的值;(3)解关于θ的不等式:2f πθ⎛⎫≥⎪⎝⎭21.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x(单位:月)的关系有两个函数模型(01)xy ka k a =>>,与12(00)y px k p k =+>>,可供选择(1)试判断哪个函数模型更合适并说明理由,求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg30.4711≈≈)参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.) 1、C【解析】先求出直观图中,∠ADC =45°,AB =BC =2,AD =DC =4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【详解】直观图中,∠ADC =45°,AB =BC =2,DC ⊥BC,∴AD =DC =4,∴原来的平面图形上底长为2,下底为4,高为42的直角梯形, ∴该平面图形的面积为()124421222+⨯⨯=. 故选:C 2、B【解析】观察cos y x =在[]0,2π上的图象,从而得到b a -的取值范围. 【详解】解:观察cos y x =在[]0,2π上的图象,当32y =时,6x π=或116π,当1y =-时,x π=, ∴b a -的最小值为:566πππ-=,b a -的最大值为:111056663ππππ-==,∴b a -的取值范围是55[,]63ππ故选:B【点睛】本题考查余弦函数的定义域和值域,余弦函数的图象,考查数形结合思想,属基础题 3、D【解析】设出P 点坐标(x ,y ),利用正弦函数和余弦函数的定义结合4π的三角函数值求得x ,y 值得答案 【详解】设点P 的坐标为(x ,y),则由三角函数的定义得π42π42sin cos ⎧=⎪⎪⎨⎪=⎪⎩即π214π2 1.4x cos y sin ⎧==⎪⎪⎨⎪==⎪⎩,故点P 的坐标为(1,1).故选D【点睛】本题考查任意角的三角函数的定义,是基础的计算题 4、A【解析】频数为10000.4400⨯= 考点:频率频数的关系 5、D【解析】根据题意函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数,即可求出最小正周期,把看成是整体,分别求的单调递减区间、对称轴、对称中心,在分别验证选项即可得到答案. 【详解】由于函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),故函数的解析式为,再将所得图象向左平移个单位长度,.,故A 错误;的单调减区间为,故在区间内不单调递减;图象的对称轴为,不存在使得图象的一条对称轴为直线,故C错误;图象的对称中心的横坐标为,当时,图象的一个对称中心为,故D 正确.故选:D. 6、A【解析】利用AB AC k k =结合斜率公式可求得实数a 的值.【详解】因为()1,3A --、()2,B a 、()3,1C 在同一直线上,则AB AC k k =,即3132131a ++=++,解得0a =. 故选:A. 7、A【解析】应用集合的并运算求M N ⋃即可.【详解】由题设,M N ⋃={|43}x x -<<⋃{|5x x <-或3}{|5x x x ≥=<-或}4x >-. 故选:A 8、B【解析】根据含有一个量词命题否定的定义,即可得答案. 【详解】命题“∀x >0,x 2-x ≤ 0 ”的否定是:“∃x > 0,x 2-x >0 ”. 故选:B 9、A【解析】比较a 、b 、c 与中间值0和1的大小即可﹒【详解】0.20331a =>=,()1113331log 0.4log 1log 013b ⎛⎫∈ ⎪⎝⎭=,=,,22log 0.2log 10c =<=,∴a b c >>﹒ 故选:A ﹒ 10、D【解析】对A ,B ,C ,利用特殊值即可判断,对D ,利用不等式的性质即可判断. 【详解】解:对A ,令1a =,2b =-,此时满足a b >,但22a b <,故A 错; 对B ,令1a =,2b =-,此时满足a b >,但11a b>,故B 错; 对C ,若0c ,a b >,则||||a c b c =,故C 错;对D ,a b >a b ∴-<-,则c a c b -<-,故D 正确. 故选:D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上) 11、 ①.0 ②.【解析】利用坐标法可得t =.【详解】由题可建立平面直角坐标系,则()()()()0,0,2,0,2,1,0,1A B C D ,∴()()()()()()()123456135624562,00,12,00,12,12,12222,λλλλλλλλλλλλλλ++-+-++-=-+--++, ∴()()22135624564t λλλλλλλλ=-+-+-++∴当1234561,1λλλλλλ===-===时,()()221356245640t λλλλλλλλ=-+-+-++=,因为{}1,1,1,2,3,4,5,6i i λ∈-=,要使t 最大,可取1234561,1,1,1,1,1λλλλλλ===-=-==-,即135624564,2λλλλλλλλ-+-=-++=时, t 取得最大值是17故答案为:0;21712、(1),6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(2)答案见解析【解析】( 1 )由三角恒等变换求出解析式,再求得最大值时的x 的集合, ( 2)由五点法作图,列出表格,并画图即可. 【小问1详解】21131()cos 3cos cos 22sin(2),2262x x x x x x f x =+=+=++π 令2262x k πππ+=+,函数()f x 取得最大值,解得,6=+∈x k k Z ππ,所以此时x 的集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【小问2详解】 表格如下:x 06π 512π 23π 1112ππ26x π+6π 2π π32π 2π136πy1321212-121作图如下,13、[]0,1【解析】根据题意显然可知0k ≥,整理不等式得:102k x x <-,令()102f x x x=-,求出()f x 在()0,2x ∈的范围即可求出答案.【详解】由题意知:2302kx x x +->,即22>-k x x 对任意的()0,2x ∈恒成立,0k ∴≥当()0,2x ∈,3231012x kx x x->+-得:233210kx x x x <+--, 即200+21x kx <-对任意的()0,2x ∈恒成立,即210210=2x k x x x-<-对任意的()0,2x ∈恒成立,令()102f x x x=-,()f x 在()0,2x ∈上单减,所以()()21f x f >=,所以1k ≤ 01k ∴≤≤.故答案为:[]0,1 14、4360x y --=【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立280210x y x y ==+-⎧⎨-+⎩ ,解得32x y ⎧⎨⎩==∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2), ∵直线4x-3y-7=0的斜率为43, ∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=43(x-3) 即为4x-3y-6=0 故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题 15、(0,3)【解析】设点C 的坐标,利用12AC AB =,求解即可 【详解】解:点(1,1)A ,(1,5)B -,(2,4)AB =-, 设(,)C a b ,(1)1,AC a b =--,12AC AB =, (1a ∴-,11)(2,4)2b -=-,解得0a =,3b =点C 的坐标为(0,3), 故答案为:(0,3)【点睛】本题考查向量的坐标运算,向量相等的应用,属于基础题三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)*1)x n N =∈(2)2033【解析】(1)每年的产量比上一年减少的百分比为(01)<<x x ,那么n 年后的产量为2019年的(1)nx -,即得;(2)将 10%x =代入(1)中得到式子,解n ,n 取正整数。
四川省宜宾市2023-2024学年高一上学期期末数学试题含解析

宜宾高2023级高一上期期末考试数学试题(答案在最后)本试卷共4页,22小题,满分150分.考试用时120分钟.第I 卷选择题(60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A∩B={3},∩A={9},则A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}【答案】D 【解析】【详解】因为A ,B 均为集合U={1,3,5,7,9}的子集,且A∩B={3},∩A={9},所以,3∈A ,9∈A ,若5∈A ,则5∉B ,从而5∈∁U B ,则(∁U B)∩A={5,9},与题中条件矛盾,故5∉A.同理可得:1∉A ,7∉A.故选D .2.已知点()43P ,-是角α终边上的一点,则()sin πα-=A.35B.35-C.45-D.45【答案】A 【解析】【分析】根据三角函数的定义求出sinα,然后再根据诱导公式求出()sin πα-即可.【详解】∵点()4,3P -是角α终边上的一点,∴3sinα5=,∴()3sin sinα5πα-==.故选A.【点睛】本题考查三角函数的定义和诱导公式的运用,解题的关键是根据定义求出正弦值,然后再用诱导公式求解,解题时要注意三角函数值的符号,属于基础题.3.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断.【详解】0b =时,()cos sin cos f x x b x x =+=,()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x-=-+-=-cos sin cos sin x b x x b x +=-,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.4.函数()ln 23f x x x =+-的零点所在的区间是()A.(0,1) B.(1,2)C.(2,3)D.(3,4)【答案】B 【解析】【分析】易知函数()ln 23f x x x =+-是()0,∞+上的增函数,(1)(2)0f f ⋅<,结合零点存在性定理可判断出函数零点所在区间.【详解】函数ln y x =是()0,∞+上的增函数,23y x =-是R 上的增函数,故函数()ln 23f x x x =+-是()0,∞+上的增函数.(1)ln12310f =+-=-<,(2)ln 2223ln 210f =+⨯-=+>,则()0,1x ∈时,()0f x <;()2,x ∈+∞时,()0f x >,因为(1)(2)0f f ⋅<,所以函数()ln 23f x x x =+-在区间()1,2上存在零点.故选:B.【点睛】本题考查了函数零点所在区间,利用函数的单调性与零点存在性定理是解决本题的关键,属于基础题.5.若集合2{|60}A x x x =+-<,2{|0}3x B x x +=≤-,则A B ⋂等于A.(3,3)- B.(2,2)- C.[2,2)- D.[2,3)-【答案】C【解析】【分析】解不等式,可得集合A 与集合B,根据交集运算即可得解.【详解】集合2{|60}A x x x =+-<,2{|0}3x B x x +=≤-解不等式,可得{|32}A x x =-<<,{|23}B x x =-≤<所以[){|32}{|23}2,2A B x x x x =-<<⋂-≤<=- 所以选C【点睛】本题考查了一元二次不等式、分式不等式解法,集合交集运算,注意分式不等式分母不为0的限制要求,属于基础题.6.若函数()32m f x x -=在()0,∞+上单调递减,则实数m 的取值范围为()A.2,3⎛⎫+∞⎪⎝⎭ B.3,2⎛⎫+∞⎪⎝⎭C.2,3⎛⎫-∞ ⎪⎝⎭D.3,2⎛⎫-∞ ⎪⎝⎭【答案】C 【解析】【分析】根据幂函数的单调性求解.【详解】因为函数()32m f x x -=在()0,∞+上单调递减,所以320m -<,解得23m <,故选:C.7.定义{}*1,,A B Z Z xy x A y B ==+∈∈,设集合{}0,1A =,集合{}1,2,3B =,则*A B 集合的子集的个数是()A.14B.15C.16D.17【答案】C 【解析】【分析】根据题中定义,运用列举法、集合子集个数公式进行求解即可.【详解】因为{}*1,2,3,4A B =,所以*A B 集合的子集的个数是4216=,故选:C8.函数()f x 的定义域为D ,若满足:(1)()f x 在D 内是单调函数;(2)存在,22m n D ⎡⎤⊆⎢⎥⎣⎦,使得()f x 在,22m n ⎡⎤⎢⎥⎣⎦上的值域为[],m n ,那么就称函数()f x 为“梦想函数”.若函数()()log xa f x a t =+()0,1a a >≠是“梦想函数”,则t 的取值范围是A.1,04⎛⎫-⎪⎝⎭B.1,04⎡⎤-⎢⎥⎣⎦C.1,02⎛⎫-⎪⎝⎭D.1,02⎡⎤-⎢⎥⎣⎦【答案】A 【解析】【分析】根据“梦想函数”定义将问题改写为22log log m a n a a t ma t n ⎧⎛⎫+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩,等价转化为20x x a a t --=有2个不等的正实数根,转化为二次方程,利用根的分布求解.【详解】因为函数()()()log 0,1xa f x a ta a =+>≠是“梦想函数”,所以()f x 在,22m n ⎡⎤⎢⎥⎣⎦上的值域为[],m n ,且函数是单调递增的.所以22log log m a na a t m a t n ⎧⎛⎫+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,即22m mnna t a a t a ⎧+=⎪⎨⎪+=⎩∴20xx a a t --=有2个不等的正实数根,令2xw a =即20w w t --=有两个不等正根,∴140t ∆=+>且两根之积等于0t ->,解得104t -<<.故选:A.【点睛】此题以函数新定义为背景,实际考查函数零点与方程的根的问题,通过等价转化将问题转化为二次方程根的分布问题,综合性比较强.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.方程2210x x -+=的解集中有两个元素B.0N ∉C.2∈{|x x 是质数}D.1Q 3∈【答案】CD 【解析】【分析】利用集合元素的性质、元素与集合的关系判断作答.【详解】对于A ,方程2210x x -+=有等根1,因此方程2210x x -+=的解集中只有1个元素,A 错误;对于B ,0是自然数,B 错误;对于C ,2是最小的质数,C 正确;对于D ,13是正分数,是有理数,D 正确.故选:CD 10.已知23x <<,23y <<,则()A.629x y <+<B.223x y <-< C.11x y -<-< D.49xy <<【答案】ACD 【解析】【分析】根据不等式的基本性质,逐个选项进行判断求解即可.【详解】由已知得,426x <<,23y ->->-,得到,对于A ,由426x <<和23y <<,得到629x y <+<,A 正确;对于B ,由426x <<和32y -<-<-,得到124x y <-<,与题意不符,故B 错误;对于C ,由23x <<,32y -<-<-,得到11x y -<-<,C 正确;对于D ,由23x <<,23y <<,得到49xy <<,D 正确;故选:ACD11.若函数()221f x x x=-,则()A.函数()f x 为偶函数B.函数()f x 在定义域上单调递增C.函数()f x 的值域为RD.()1f x f x ⎛⎫=- ⎪⎝⎭【答案】ACD【解析】【分析】由函数奇偶性的定义判断选项A ,分别判断(),0x ∈-∞与()0,x ∈+∞时,函数2y x =与21y x =的单调性,从而得函数()f x 的单调性,分析x →-∞与0x -→对应的()f x 取值范围,计算得1f x ⎛⎫⎪⎝⎭,并判断与()f x 的关系.【详解】因为函数()f x 定义域为()(),00,∞-+∞U ,()()()()222211f x x x f x xx -=--=-=-,所以函数()f x 为偶函数,A 正确;当(),0x ∈-∞时,2y x =单调递减,21y x =单调递增,所以函数()221f x x x =-单调递减,当()0,x ∈+∞时,2y x =单调递增,21y x=单调递减,所以函数()221f x x x =-单调递增,B错误;当x →-∞时,221,0→+∞→x x ,所以221⎛⎫-→+∞ ⎪⎝⎭x x ,当0x -→时,2210,→→+∞x x ,所以221⎛⎫-→-∞ ⎪⎝⎭x x ,所以函数()f x 的值域为R ,C 正确;()2222111⎛⎫-=-⎛⎫= ⎪⎝-=- ⎪⎝⎭⎭x x f x x f x x ,D 正确.故选:ACD12.已知x ,()0,y ∈+∞,设2M x y =+,N xy =,则以下四个命题中正确的是()A.若1N =,则MB.若6M N +=,则N 有最大值2C.若1M =,则108N <≤D.若231M N =+,则M 有最小值85【答案】BC 【解析】【分析】利用基本不等式及二次函数性质求各项对应代数式的最值,注意取值条件,即可判断各项正误.【详解】A :1N xy ==,由2M x y =+≥=,2x y ==B :26M N x y xy xy +=++=≥+,当且仅当1,2x y ==时等号成立,即60xy +-=+≤,可得002xy <≤⇒<≤,所以N 有最大值2,对;C :2112M x y y x =+=⇒=-,则221122(48N xy x x x ==-=--+,又x ,()0,y ∈+∞,则120x ->,可得102x <<,所以108N <≤,对;D :由题设223(2)31(2)18x y xy x y +=+≤⋅++,即28(2)255x y x y +≤⇒+≤,当且仅当,105x y ==时等号成立,所以05M <≤,错.故选:BC第II 卷非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知集合{}{}21,3,0,3,A B m =-=,若B A ⊆,则实数m 的值为__________.【答案】0【解析】【分析】解方程20m =即得解.【详解】解:因为B A ⊆,所以21m =-(舍去)或20m =,所以0m =.故答案为:014.化简()()sin 400sin 230cos850tan 50︒-︒︒-︒的结果为______.【答案】cos50︒【解析】【分析】先根据诱导公式化简,再利用同角三角函数的关系:切化弦得解.【详解】()()()()()()()()sin 36040sin 18050sin 400sin 230sin 40sin 50sin 50=cos50sin 50cos850tan 50cos 7209040tan 50sin 40tan 50cos50︒+︒-︒+︒⎡⎤︒-︒︒︒︒⎣⎦===︒︒︒-︒︒+︒+︒-︒-︒-︒︒故填cos50︒.【点睛】本题考查诱导公式和同角三角函数的关系,属于基础题.15.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae -bt (cm 3),经过8min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.【答案】16【解析】【分析】根据经过8min 后发现容器内还有一半的沙子,得到e -8b=12,然后又容器中的沙子只有开始时的八分之一时,即y =ae-bt=18a 联立求解.【详解】当t =8时,y =ae -8b=12a ,所以e-8b=12.容器中的沙子只有开始时的八分之一时,即y =ae -bt=18a ,所以e-bt=18=(e -8b )3=e -24b ,则t =24.所以再经过16min 容器中的沙子只有开始时的八分之一.故答案为:16【点睛】本题主要考查指数型函数的应用,属于基础题.16.设函数f (x )=ln(1+|x |)-211x+,则使得f (x )>f (2x -1)成立的x 的取值范围是________.【答案】1,13⎛⎫ ⎪⎝⎭【解析】【分析】判断()f x 的奇偶性和单调性,据此等价转化不等式,则问题得解.【详解】由f (x )=ln(1+|x |)-211x+()()()21ln 11x f x x =+--=-+-,且其定义域为R ,故f (x )为R 上的偶函数,于是f (x )>f (2x -1)即为f (|x |)>f (|2x -1|).当x ≥0时,f (x )=ln(1+x )-211x +,()21ln 1,1y x y x=+=-+在[)0,∞+均是单调增函数,所以f (x )为[0,+∞)上的增函数,则由f (|x |)>f (|2x -1|)得|x |>|2x -1|,两边平方得3x 2-4x +1<0,解得13<x <1.故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题考查函数奇偶性和单调性的判断,涉及利用函数性质解不等式,属综合基础题.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.计算下列各式的值(1)210232183(2(9.6)()()4272----+(2)7log 2327log lg 25lg 473+++.【答案】(1)12;(2)154.【解析】【分析】(1)利用指数的运算规则进行求解;(2)利用对数的运算规则进行求解.【详解】(1)原式1213222223292332211432233⨯-⨯⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭312=-12=;(2)原式()31424333log lg 2542log 3lg1023-=+⨯+=++1224=-++154=.18.已知集合{}45A x x =-<<,{}36B x x =-<<,{}|121,R C x m x m m =-≤≤+∈.(1)求A B ⋃,A B ⋂;(2)若()C A B ⊆⋂,求实数m 的取值范围.【答案】(1){}46A B x x ⋃=-<<,{}35A B x x ⋂=-<<(2)2m <-或22m -<<.【解析】【分析】(1)根据集合的交并运算求得A B ⋃,A B ⋂;(2)根据C 是否为空集进行分类讨论,由此求得m 的取值范围.【小问1详解】{}45A x x =-<<,{}36B x x =-<<,∴{}46A B x x ⋃=-<<,{}35A B x x ⋂=-<<.【小问2详解】{}35A B x x ⋂=-<<,当C =∅时,121m m ->+,∴2m <-.当C ≠∅时,213215m m m ≥-⎧⎪->-⎨⎪+<⎩,∴22m -<<.综上所述,2m <-或22m -<<.19.已知()f x 是定义在[1,1]-上的偶函数,且[1,0]x ∈-时,2()1xf x x =+.(1)求函数()f x 的表达式;(2)判断并证明函数在区间[0,1]上的单调性.【答案】(1)22,[0,1]1(),[1,0)1xx x f x x x x -⎧∈⎪⎪+=⎨⎪∈-⎪+⎩(2)单调减函数,证明见解析【解析】【分析】(1)设[0,1]x ∈,则[1,0]x -∈-,根据()f x 是偶函数,可知()()f x f x -=,然后分两段写出函数()f x 解析式即可;(2)利用函数单调性的定义,即可判断函数的单调性,并可证明结果.【小问1详解】解:设[0,1]x ∈,则[1,0]x -∈-,2()1xf x x --=+,因为函数()f x 为偶函数,所以()()f x f x -=,即2()1xf x x -=+,所以22,[0,1]1(),[1,0)1xx x f x x x x -⎧∈⎪⎪+=⎨⎪∈-⎪+⎩.【小问2详解】解:设1201x x <<<,()()()()()()211221212222212111111x x x x x x f x f x x x x x -----=-=++++,∵1201x x <<<,∴210x x ->,1210x x -<,∴()()21f x f x <,∴()f x 在[0,1]为单调减函数.20.已知函数()sin(),22f x x ππϕϕ⎛⎫⎛⎫=+∈- ⎪ ⎪⎝⎭⎝⎭,对任意x ∈R 都有()3f x f x π⎛⎫+=- ⎪⎝⎭.(1)求()f x 的解析式;(2)对于任意x ∈R ,不等式()1f x m -≤恒成立,求实数m 的取值范围.【答案】(1)()sin 3f x x π⎛⎫=+⎪⎝⎭(2)2m ≥【解析】【分析】(1)根据()3f x f x π⎛⎫+=- ⎪⎝⎭得到函数()f x 的对称轴,再利用对称轴列方程,求ϕ即可;(2)根据函数()f x 的解析式求出()1f x -的最大值即可得到m 的范围.【小问1详解】因为对任意x ∈R 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,所以6x π=是函数()f x 的一条对称轴,si 616n f ππϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭,解得()Z 3k k πϕπ=+∈,又,22ππϕ⎛⎫∈- ⎪⎝⎭,所以3πϕ=,()sin 3f x x π⎛⎫=+ ⎪⎝⎭.【小问2详解】因为对任意x ∈R ,不等式()1f x m -≤,所以()max 1m f x ≥-,因为()sin 3f x x π⎛⎫=+ ⎪⎝⎭,x ∈R ,所以()[]()[]sin 1,110,23f x x f x π⎛⎫=+∈-⇒-∈ ⎪⎝⎭,所以2m ≥.21.某厂家生产医用防护用品需投入年固定成本为150万元,每生产x 万件,需另投入成本为()C x 万元.当年产量不足60万件时,()213802C x x x =+万元;当年产量不小于60万件时,()810004102550C x x x =+-万元.通过市场分析,若每件售价为400元时,该厂年内生产的商品能全部售完.(利润=销售收入-总成本)(1)写出年利润L 万元关于年产量x 万件的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?并求出利润的最大值.【答案】21.()2120150,060,281000240010,60,x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩22.年产量为90万件时,该厂在这一商品的生产中所获利润最大,最大值为600万元【解析】【分析】(1)利用“利润=销售收入-总成本”求得L 关于x 的函数解析式.(2)根据二次函数的性质以及基本不等式求得正确答案.【小问1详解】当060x ≤<时,()22114003801502015022L x x x x x x =---=-+-,当60x ≥时,()81000810004004102550150240010L x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭.所以()2120150,060,281000240010,60,x x x L x x x x ⎧-+-≤<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩.【小问2详解】当060x ≤<时,()()221120*********L x x x x =-+-=--+,所以当20x =时,()L x 取得最大值()2050L =(万元);当60x ≥时,()81000240010240021090600L x x x ⎛⎫=-+≤-⨯⨯= ⎪⎝⎭,当且仅当8100010x x=,即90x =时等号成立.综上,当90x =时,()L x 取得最大值600万元.所以年产量为90万件时,该厂在这一商品的生产中所获利润最大,最大值为600万元.22.已知函数()1ln1kx f x x -=+为奇函数.(1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.【答案】(1)1;(2)增函数,证明见解析;(3)209m <<【解析】【分析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m 的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性.【详解】(1)因为函数()1ln 1kx f x x -=+为奇函数,所以()()0f x f x +-=,即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln1x f x x -=+的定义域关于原点对称.所以1k =为满足题意的值.(2)结论:()f x 在(),1∞-,()1,+∞上均为增函数.证明:由(1)知()1ln 1x f x x -=+,其定义域为()(),11,-∞-+∞U ,任取12,(1,)x x ∈+∞,不妨设12x x <,则()()()()()()11212222111111ln 111ln 1ln x x x x f x f x x x x x --+=+--=++--,因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->,所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-,即()()12f x f x <,所以()f x 在()1,+∞上为增函数.同理,()f x 在(),1∞-上为增函数.(3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x m mx x -=-+的两实根,问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =-则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩,即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<.【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。
2025届陕西省西安市高新第一中学数学高一上期末经典试题含解析

所以|2 a b | 2 的最大值,最小值分别是:16,0;
所以|2 a b | 的最大值,最小值分别是 4,0; 故选:D 【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性
B.
y
sin
2x
6
C. y cos2x
D.
y
cos
2x
6
9.已知函数
f
x
1
2
x
1,
x
0
,若存在不相等的实数
a,b,c,d
满足
f a
f b
f c
f d ,则
lg x, x 0
.a b c d 的取值范围为()
A 0,
C.
2,
61 10
B.
2,
81 10
D.
法错误的是( )
A.是奇函数且图象关于点
2
,
0
对称
B. 偶函数且图象关于点(π,0)对称
C.是奇函数且图象关于直线 x 对称
是2
D.是偶函数且图象关于直线 x 对称
8.将函数 y=sin(2x+ )的图象向右平移 个单位长度后,得到的图象对应的函数解析式为( )
6
6
A. y sin2x
x)
Asin(
x)
Acos x ,
g(
x)
A sin(
x)
Acos x ,
2
2
2
2
所以 g( x) g( x) ,因此函数 g(x) Asin x 关于直线 x 对称,因此选项 A 不正确,
高一数学上学期期末考试试卷含答案(共3套)

高一级第一学期期末考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列四组函数,表示同一函数的是()A. B.C. D.2. 平行于同一平面的两条直线的位置关系是()A. 平行B. 相交C. 异面D. 平行、相交或异面3. 已知集合,,则()A. B. C. D.4. 图中的直线的斜率分别是,则有()A. B. C. D.5. 设,,则()A. B. C. D.6. 方程在下面哪个区间内有实根()A. B. C. D.7. 一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 一圆锥的侧面展开图是一个半圆,则这个圆锥的母线与底面所成角是()A. B. C. D.9. 若函数的值域为,则实数的取值范围是()A. B. C. D.10. 如图,二面角的大小是,线段,,与所成的角为,则与平面所成的角的余弦值是()A. B. C. D.11. 正四面体中,是棱的中点,是点在底面内的射影,则异面直线与所成角的余弦值为()A. B. C. D.12. 已知函数在闭区间上的值域为,则满足题意的有序实数对在坐标平面内所对应点组成图形为()A. B.C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.14. 已知两条平行直线分别过点,,且的距离为5,则直线的斜率是__________.15. 已知函数,若函数有3个零点,则实数的取值范围是__________.16. 如图,将一边为1的正方体沿相邻三个面的对角线截出一个棱锥,则三棱锥的内切球半径是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 求值或化简:(1);(2).18. 如图,正三角形的边长为6,,,点分别在边上,且,,相交于.(1)求点的坐标;(2)判断和是否垂直,并证明.19. 已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并证明你的结论;(3)在函数图像上是否存在两个不同的点,使直线垂直轴,若存在,求出两点坐标;若不存在,说明理由.20. 如图,在四棱锥中,底面,,,,为棱的中点.(1)求证:;(2)试判断与平面是否平行?并说明理由.21. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金(扣除三险一金后)所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额个人所得税计算公式:应纳税额=工资-三险一金=起征点. 其中,三险一金标准是养老保险8%、医疗保险2%、失业保险1%、住房公积金8%,此项税款按下表分段累计计算:(1)某人月收入15000元(未扣三险一金),他应交个人所得税多少元?(2)某人一月份已交此项税款为1094元,那么他当月的工资(未扣三险一金)所得是多少元?22. 设,函数,其中.(1)求的最小值;(2)求使得等式成立的的取值范围.参考答案1【答案】D【解析】试题分析:A.,对应法则不同;B.,定义域不同;C.,定义域不同;故选D。
高一数学第一学期期末考试试卷(共5套,含参考答案)

高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。
自贡市中职校2023-2024学年度高一上末考试数学试卷 (含答案)

中职高一数学上期末试卷 第1页 共9页自贡市中等职业学校2023-2024学年高一年级上学期期末考试数 学本试题卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.2.第I 卷共1个大题,15个小题.每个小题4分,共60分.一、选择题(每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1. 设集合{}1,2,3A =,集合{}3,4,5B =,则AB =( )A. φB. {}3C. {}1,2D. {}1,2,3,4,5 2.函数()f x =)A. {}|2x R x ∈≠B. {}|<2x R x ∈C. {}|2x R x ∈≥D. {}|>2x R x ∈3. 已知函数()y f x =的对应关系如下表,函数()y g x =的图象是如图的曲线ABC ,其中(1, 3)(2, 1)(3, 2)A B C ,,,则()()2f g 的值为( )A. 3B. 2C. 1D. 0中职高一数学上期末试卷 第2页 共9页4. 若>a b ,下列说法正确的是( )A. 1>2a b +-B. >ac bcC. 22>ac bcD. 2>2b a 5. (1)(2)0x x -+≤的解集为( )A. {}|12x x -≤≤B. {}|21x x -≤≤C. {}|21x x x ≤-≥或D. {}|12x x x ≤-≥或 6. 函数1()f x x=的单调递减区间是( ) A . (, 0)(0, +)-∞∞和 B . (, 0)(0, +)-∞∞C . (, 0)-∞D . (0, +)∞7. 已知()y f x =是定义在R 上的奇函数,且(1)3f =,则(1)f -=( ) A. 1- B. 3- C. 3 D. 1 8. 下列所给图象是函数图象的个数为( )A. 1B. 2C. 3D. 4 9. “>0x ”是“>1x ”的( )A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件 10. 下列不等式中,解集为{}11x x -<<的是( )A. 210x -≤B. 10x -≤C.()()1011x x ≤+-D. 101x x -≤+中职高一数学上期末试卷 第3页 共9页11. 已知函数1()(>1)x f x a a -=,则该函数图象必经过定点( ) A. (0, 1) B. (0, 2) C. (1, 2) D. (1, 1)12. 若函数2()21f x x mx =+-在区间(3, )-+∞上是增函数,则实数m 的取值范围是( ) A. 3m ≥ B. 3m ≤ C. 3m ≥- D. 3m ≤-13. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则随机调查的100位学生阅读过《西游记》的学生人数为( )A. 50B. 60C. 70D. 8014. 已知函数()f x 是定义在()(),00,∞-+∞上的奇函数,且()10f -=,若对于任意两个实数x 1,()20,x ∈+∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则不等式()0xf x >的解集是( )A. ()(),10,1-∞-B. ()(),11,-∞-+∞C. ()()1,01,-+∞ D. ()()1,00,1-15. 计算0122222()x x N ++++∈,令0122222x S =++++Ⅰ,将Ⅰ两边同时乘以2:123122222x S +=+++Ⅰ,用Ⅰ−Ⅰ得到:2S S -=1231(2222)x ++++_012(2222)x ++++,得到121x S +=-;观察该式子的特点,每一项都是前一项的2倍(除第一项外);运算思路是将代数式每一项乘2后再与原式相减,数学上把这种运算的方法叫做“错位相减”,那么当 0121013333S =++++时候,则1S 的值为( )A. 1131- B. 1031- C. 11312- D. 10312-中职高一数学上期末试卷 第4页 共9页第Ⅱ卷(非选择题 共90分)注意事项:1. 非选择题必须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.答在试题卷上无效.2. 本部分共2个大题,12个小题.共90分.二、填空题(本大题共5小题,每小题4分,共20分) 16. 不等式2<1x -的解集为 .(注意:用区间表示)17. 分段函数()22, 11, 2<1x x f x xx x ⎧+≥⎪=⎨⎪+-≤⎩,则分段函数的定义域为________. 18. 若()12f x x =-,则(2)f -= .19. 2023年第31届世界大学生运动会(成都大运会)是中国大陆第三次举办世界大学生夏季运动会,也是中国西部第一次举办的世界性综合运动会,有关吉祥物“蓉宝”的纪念徽章、盲盒等商品成为抢手货,市场供不应求。
2023-2024学年四川省凉山州高一上册期末考试数学试题(含解析)

2023-2024学年四川省凉山州高一上册期末考试数学试题一、单选题(每题5分)1.下列函数中,在定义域内既是奇函数又是减函数的为()A.1y x=B.tan y x =C.3y x =- D.sin y x=【正确答案】C【分析】由定义判断各选项函数的奇偶性和单调性,即可得出结论.【详解】选项A :是奇函数,在定义域内不是减函数;选项B :是奇函数,在定义域内不是减函数;选项C :是奇函数也是减函数,正确;选项D :是奇函数,在定义域内不是减函数.故选:C.2.已知点P ⎝⎭是角α的终边与单位圆的交点,则cos α=()A. B.5C.45-D.35-【正确答案】B【分析】根据余弦函数的定义直接进行求解即可.【详解】因为点,55P ⎛⎫- ⎪ ⎪⎝⎭是角α的终边与单位圆的交点,所以cos α=5,故选:B3.已知()()2,>0=+1,0x x f x f x x ≤⎧⎪⎨⎪⎩,则()()22f f +-的值为()A.2B.4C.5D.6【正确答案】C【分析】利用函数()f x 的解析式,计算出()2f 、()2f -的值,即可得解.【详解】由题意可得()2224f ==,()()()()21011f f f f -=-===,因此,()()22415f f +-=+=.故选:C.4.函数()2tan 26f x x π⎛⎫=-+ ⎪⎝⎭的定义域是()A.6x x π⎧⎫≠⎨⎩⎭B.12x x π⎧⎫≠-⎨⎬⎩⎭C.,6x x k ππ⎧⎫≠+∈⎨⎬⎩⎭Z D.,26k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭Z 【正确答案】D【分析】由正切函数的定义域,令262x k πππ+≠+,k ∈Z ,解不等式,即可求出结果.【详解】由正切函数的定义域,令262x k πππ+≠+,k ∈Z ,即()26k x k ππ≠+∈Z ,所以函数()2tan 26f x x π⎛⎫=-+ ⎪⎝⎭的定义域为,26k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭Z .故选:D .5.根据表格中的数据,可以断定方程(2)0( 2.72)x e x e -+=≈的一个根所在的区间是()x -10123e x 0.371 2.727.4020.12x +212345A.(-1,0)B.(0,1)C.(1,2)D.(2,3)【正确答案】C【分析】设函数()(2)x f x e x =-+,将选项中区间端点的函数值代入,再利用零点存在性定理,即可得答案;【详解】设函数()(2)0x f x e x =-+=,(1)0.3710,(0)120,(1) 2.7230f f f -=-<=-<=-<,(2)7.4040f =->,∴(1)(2)0f f <,又 ()(2)x f x e x =-+在区间(1,2)连续,∴函数()f x 在区间(1,2)存在零点,∴方程根所在的区间为(1,2),故选:C.本题考查方程的根与函数零点的关系,考查对概念的理解,属于基础题.6.已知函数(2)f x -的定义域为(1,3)-,则函数()g x =的定义域为()A.(1,3) B.(1,3)- C.(1,)+∞ D.(3,7)【正确答案】A【分析】先求得()f x -的定义域,然后结合10x ->求得()g x 的定义域.【详解】函数(2)f x -的定义域为(1,3)-,即13x -<<,则321x -<-<,所以对于()f x -,有31x -<-<,解得13x -<<,即()f x -的定义域为()1,3-;由10x ->解得1x >,所以()g x =的定义域为()1,3.故选:A7.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()()12345f f f f f ++++=()A.50-B.0C.2D.50【正确答案】C【分析】利用奇函数的性质及()()11f x f x -=+,推出函数()f x 的周期为4,然后得出()()()()()12345f f f f f ++++得出结果.【详解】由函数()f x 是定义域为(),-∞+∞的奇函数,则()()f x f x -=-,()()11f x f x -=+ ,()()11f x f x ∴+=--,()()()42f x f x f x ∴+=-+=,所以函数()f x 是周期函数,且周期为4,()12f =,()()()()22422f f f f =-=-=-,则()20f =,()()()()334112f f f f =-=-=-=-,()()()44400f f f =-==,()()()54112f f f =+==()()()()()12345202022f f f f f ∴++++=+-++=故选:C8.“莱洛三角形”是机械学家莱洛研究发现的一种曲边三角形,转子发动机的设计就是利用了莱洛三角形,转子引擎只需转一周,各转子便有一次进气、压缩、点火与排气过程,相当于往复式引擎运转两周,因此具有小排气量就能成就高动力输出的优点.另外,由于转子引擎的轴向运动特性,它不需要精密的曲轴平衡就可以达到非常高的运转转速.“莱洛三角形”是分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形(如图所示).设“莱洛三角形”曲边上两点之间的最大距离为4,则该“莱洛三角形”的面积为()A.8π-B.8π-C.16π-D.16π-【正确答案】A【分析】先根据图形特征求得4AB BC AC ===,从而ABC S = ABC 的面积218463S ππ=⨯⨯=,最后根据“莱洛三角形”面积与扇形面积之间的关系求出其面积即可.【详解】解:由题意可知等边三角形的边长为4,即4AB BC AC ===,所以扇形ABC 的面积等于以A 为圆心,AB 为半径的圆的面积AB 的16,故扇形ABC 的面积218463S ππ=⨯⨯=,又134422ABC S =⨯⨯⨯= ,该“莱洛三角形”的面积为328ABC S S π-=- 故选:A.二、多选题(每题5分)9.函数()()2sin 2f x x ϕ=+()ϕ∈R 的一条对称轴方程为6x π=,则ϕ可能的取值为()A.3π-B.56π-C.23π D.6π【正确答案】BD【分析】由称轴方程为6x π=,可得2,62k k Z ππϕπ⨯+=+∈,从而可求出ϕ的值.【详解】解:因为函数()()2sin 2f x x ϕ=+()ϕ∈R 的一条对称轴方程为6x π=,所以2,62k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=+∈,所以当0k =时,6πϕ=,当1k =时,76πϕ=,当1k =-时,56πϕ=-,故选:BD此题考查正弦函数的图象与性质,属于基础题.10.下列命题错误的有()A.x ∀∈Rx= B.若0a b >>,0c <,则c c a b>C.不等式256x x +<的解集为()1,6- D.1x >是()()120x x -+>的充分不必要条件【正确答案】AC【分析】对于A ,由x =可判断;对于B ,根据不等式的性质可判断;对于C ,由一元二次不等式的解法可判断;对于D ,根据一元二次不等式的解法和充分必要条件的定义可判断.【详解】解:对于A ,x ∀∈R ()(),0,0x x x x x ⎧≥⎪==⎨-<⎪⎩,故A 错误;对于B ,若0a b >>,则11a b <,又0c <,所以c c a b>,故B 正确;对于C ,由256x x +<得256>0x x --,即()()6+1>0x x -,解得1x <-或>6x ,故C 错误;对于D ,当1x >时,()()120x x -+>;当()()120x x -+>时,1x >或<2x -,所以1x >是()()120x x -+>的充分不必要条件,故D 正确,故选:AC.11.已知函数21()21x x f x -=+,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(1,1)-C.函数()f x 的图象关于y 轴对称D.函数()f x 在R 上为增函数【正确答案】ABD【分析】根据指数函数的性质,结合偶函数定义、单调性的性质逐一判断即可.【详解】A :因为20x >,所以函数()f x 的定义域为R ,因此本选项结论正确;B :212()12121x x xf x -==-++,由12220211012011212121xxx x x>⇒+>⇒<<⇒-<-<⇒-<-<+++,所以函数()f x 的值域为(1,1)-,因此本选项结论正确;C :因为2112()()2112x xxxf x f x -----===-++,所以函数()f x 是奇函数,其图象关于原点对称,不关于y 轴对称,因此本选项说法不正确;D :因为函数21x y =+是增函数,因为211x y =+>,所以函数221x y =+是减函数,因此函数2()121xf x =-+是增函数,所以本选项结论正确,故选:ABD12.已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有()A.若()g x 有1个零点,则0a =B.()0f x >恒成立C.若()g x 有3个零点,则102a << D.若()g x 有4个零点,则112a ≤<【正确答案】AD【分析】作出()f x 的图象,将()g x 的零点个数转化为函数()y f x =与y a =的图象的交点的个数,结合图象逐一判断即可.【详解】解:()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,作出()f x 的图象,如图所示:因为()()g x f x a =-,所以()g x 的零点个数即为函数()y f x =与y a =的图象的交点的个数,对于A :若()g x 有1个零点,则函数()y f x =与y a =的图象仅有一个公共点,由图象得0a =,故A 正确;对于B :由图象得()0f x ≥恒成立,故B 错误;对于C :若()g x 有3个零点,则函数()y f x =与y a =的图象有三个公共点,由图象得1a =或者102a <<,故C 错误;对于D :若()g x 有4个零点,则函数()y f x =与y a =的图象有四个公共点,由图象得112a ≤<,故D 正确.故选:AD .三、填空题(每题5分)13.22cos 22.51︒-=__.【正确答案】22【分析】由已知结合二倍角公式及特殊角的三角函数值即可求解.【详解】222cos 22.51cos 452︒-=︒=.故答案为:22.14.已知正实数x ,y 满足1xy =,则4x y +的最小值是___________.【正确答案】4【分析】根据基本不等式直接可求得答案.【详解】正实数x ,y 满足1xy =,则44x y +≥=,当且仅当4x y =即12,2x y ==时,取得等号,故415.已知幂函数()21()55m f x m m x +=-+为奇函数,则m =___________.【正确答案】4【分析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为()21()55m f x m m x+=-+是幂函数,所以25511m m m -+=⇒=,或4m =,当1m =时,2()f x x =,因为2()()f x x f x -==,所以函数2()f x x =是偶函数,不符合题意;当4m =时,5()f x x =,因为5(())f x x f x -=--=,所以函数5()f x x =是奇函数,符合题意,故416.若函数()f x 满足()1f f x x ⎛⎫=-⎪⎝⎭,则称()f x 为满足“倒负”变换的函数,在下列函数中,所有满足“倒负”变换的函数序号是___________.①()11f x x =+;②()2f x x =;③()1f x x x =+;④()1f x x x=-.【正确答案】④【分析】求得1f x ⎛⎫⎪⎝⎭的解析式,再与()f x -的解析式进行比较即可得到满足“倒负”变换的函数【详解】①()1111111f f x x x x x x ⎛⎫==≠-=- ⎪++⎝⎭+,不符合要求;②()2211f x f x x x ⎛⎫⎛⎫==- ⎪ ⎪⎝≠-⎭⎝⎭,不符合要求;③()111f x x f x x x x ⎛⎫⎛⎫=+≠-+=-⎪ ⎪⎝⎭⎝⎭,不符合要求;④()111f x x f x x x x ⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭,符合要求故④四、解答题17.计算:(1()120112π-⎛⎫-- ⎪⎝⎭;(2)ln323lg5log 3log 4lg 2e -⋅++.【正确答案】(1)4;(2)2【分析】(1)利用根式和指数幂的运算求解.(2)利用对数的运算法则求解.【详解】(1()120112π-⎛⎫+--+⎪⎝⎭()()10212π=--+,4114=+--=.(2)ln323lg5log 3log 4lg 2e-⋅++,ln3lg 32lg 2lg 5lg 2lg lg 32e =-⋅++,1232=-+=.18.已知()()()3cos tan 3sin 223sin sin 2f παπαπααπαπα⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫-+ ⎪⎝⎭.(1)化简()f α;(2)若α是第四象限角,且1sin 4α=-,求()f α的值.【正确答案】(1)tan α;(2)1515-.【分析】(1)根据诱导公式进行求解即可;(2)根据同角三角函数关系式进行求解即可.【小问1详解】()()()()sin tan cos tan sin cos f ααααααα---==-;【小问2详解】因为α是第四象限角,且1sin 4α=-,15cos 4α∴==.因此,()sin tan cos 15f αααα===-.19.已知集合{}220A x x x =--<,{B x x m =≤或}2x m ≥+.(1)当1m =时,求A B ⋃,A B ⋂R ð;(2)若选,求实数m 的取值范围.从①A B B ⋃=;②A B A = ;③x A ∈是x B ∈的充分不必要条件,这三个条件中任选一个,补充在上面的问题横线处,并进行解答.【正确答案】(1){2A B x x ⋃=<或}3x ≥,{}12A B x x ⋂=<<R ð(2)条件选择见解析,(,3][2,)-∞-+∞U 【分析】(1)解一元二次不等式,可得集合A ,利用集合交并补集的概念求得A B ⋃,A B ⋂R ð;(2)三个条件中任选一个,可得A 是B 的真子集,从而列对应不等式求解即可.【小问1详解】{}()(){}220210A x x x x x x =--<=-+< {}12x x =-<<,当1m =时,{1B x =≤或}3x ≥.所以{2A B x x ⋃=<或}3x ≥.{}13B x x =<<R ð,所以{}12A B x x ⋂=<<R ð【小问2详解】因为{}12A x x =-<<,{B x x m =≤或}2x m ≥+.由①或②或③,所以A 是B 的真子集.所以21m +≤-或2m ≥解得2m ≥或3m ≤-即实数m 的取值范围为(,3][2,)-∞-+∞U 20.已知函数()1πsin 2,R 24f x x x ⎛⎫=+∈ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值和对应x 的取值;(3)求()f x 在ππ,22⎡⎤-⎢⎥⎣⎦的单调递增区间.【正确答案】(1)π;(2)当ππ,Z 8x k k =+∈时,函数()f x 有最大值12;(3)3ππ,88⎡⎤-⎢⎣⎦.【分析】(1)根据正弦型函数的周期公式即得;(2)根据正弦函数的图象和性质即得;(3)根据正弦函数的单调性结合条件即得.【小问1详解】因为函数()1πsin 2,R 24f x x x ⎛⎫=+∈ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==;【小问2详解】因为()1πsin 2,R 24f x x x ⎛⎫=+∈ ⎪⎝⎭,由ππ22π,Z 42x k k +=+∈,可得ππ,Z 8x k k =+∈,∴当ππ,Z 8x k k =+∈时,函数()f x 有最大值12;【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,可得3ππππ,Z 88k x k k -+≤≤+∈,又,22ππx ⎡⎤∈-⎢⎥⎣⎦,∴函数()f x 的单增区间为3,88ππ⎡⎤-⎢⎥⎣⎦.21.已知函数()()0,1x f x a b a a =+>≠的图象经过()0,2A 和()2,5B .(1)若log a x b <,求x 的取值范围;(2)若函数()()()()21,01log 1,03f x x g x f x x ⎧-≤⎪=⎨-+>⎪⎩,求()g x 的值域.【正确答案】(1)()0,2;(2)()0,∞+.【分析】(1)根据函数图象经过()0,2A 和()2,5B ,由0225a b a b ⎧+=⎨+=⎩求得a ,b ,然后利用对数函数的单调性求解.(2)由(1)得到()2,01,03x x g x x x ⎧≤⎪=⎨+>⎪⎩,然后分0x ≤和0x >求解.【详解】(1)因为函数()()0,1xf x a b a a =+>≠的图象经过()0,2A 和()2,5B ,所以0225a b a b ⎧+=⎨+=⎩,解得21a b =⎧⎨=⎩,22log 1log 2x <=,解得02x <<,所以x 的取值范围()0,2;(2)由(1)知:()21x f x =+,所以()2,01,03x x g x x x ⎧≤⎪=⎨+>⎪⎩,当0x ≤时,()2(0,1]xg x =∈,当0x >时,()11,33g x x ⎛⎫=+∈+∞ ⎪⎝⎭所以()g x 的值域为()1(0,1],0,3⎛⎫⋃+∞=+∞ ⎪⎝⎭.结论点睛:分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.22.已知函数()22f x x bx c =++,(,)b c R ∈的图象过点(1,0),且()1f x -为偶函数.(1)求函数()f x 的解析式;(2)若对任意的[]4,16x ∈,不等式()44log log f x m x ≤恒成立,求m 的取值范围.【正确答案】(1)()2246f x x x =+-;(2)[]5,+∞.【分析】(1)由偶函数的定义,可得()f x 的图象关于直线=1x -对称,由二次函数的对称轴方程和f (1)0=,解得b ,c ,可得()f x 的解析式;(2)令4log t x =,由对数函数的单调性可得t 的范围,再由参数分离和函数的单调性,结合不等式恒成立思想可得所求最小值.【详解】(1)因为2(2)f x x bx c =++为二次函数,且(1)f x -为偶函数,可得(1)(1)f x f x --=-,所以()f x 的图象的对称轴方程为=1x -,又()f x 的图象过点(1,0),故1420b bc ⎧-=-⎪⎨⎪++=⎩,解得46b c =⎧⎨=-⎩,所以2()246f x x x =+-;(2)令4log t x =,由[4x ∈,16],则[1t ∈,2],不等式44(log )log f x m x ,即24442(log )4log 6log x x m x +-,可得624m t t -+在[1,2]上恒成立,因为函数624y t t =-+在[1,2]上单调递增,易得当2t =时,5y =,即为最大值,故m 的取值范围是[5,)∞+.。
2023-2024学年山东省临沂高一上学期期末数学质量测试题(含答案)

2023-2024学年山东省临沂高一上册期末数学质量测试题一、单选题1.已知1sin3α=,,2παπ⎛⎫∈ ⎪⎝⎭,则tanα的值为()A.4BC.-D.【正确答案】A根据同角三角函数的基本关系求出cosα,tanα;【详解】解:因为1sin3α=,22sin cos1αα+=,所以cos3α=±,因为,2παπ⎛⎫∈ ⎪⎝⎭,所以cos3α=-,所以1sin3tancos43ααα==-故选:A2.已知命题:0p x∀>,2log2x x>,则命题p的否定为()A.0x∀>,2log2x x≤B.00x∃>,002log2x x≤C.00x∃>,002log2x x<D.00x∃≤,002log2x x≤【正确答案】B根据全称命题的否定是特称命题,可得选项.【详解】因为全称命题的否定是特称命题,所以命题:0p x∀>,2log2x x>,则命题p的否定为“00x∃>,002log2x x≤”,故选:B.3.已知函数()xf x a=(0a>且1a≠)在(0,2)内的值域是2(1,)a,则函数()y f x=的函数大致是()A .B.C .D .【正确答案】B【详解】试题分析:由题意可知21a>,所以1a>,所以()f x是指数型的增函数.故选B.指数函数的图象与性质.4.若正实数a ,b ,c 满足1b a c c c <<<,则a ,b 的大小关系为()A .01a b <<<B .01b a <<<C .1b a <<D .1a b<<【正确答案】A【分析】根据已知可得01c <<,根据指数函数的单调性,即可得出答案.【详解】因为c 是正实数,且1c <,所以01c <<,则函数x y c =单调递减.由1b a c c c <<<,可得10b a c c c c <<<,所以01a b <<<.故选:A.5.若0a >且1a ≠,函数()(),140.52,1x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩,满足对任意的实数12x x ≠都有11222112()()()()x f x x f x x f x x f x +>+成立,则实数a 的取值范围是()A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)【正确答案】D【分析】由已知可得函数()f x 在R 上单调递增,根据分段函数的单调性列出不等式组,即可求得实数a 的取值范围.【详解】解:11222112()()()()x f x x f x x f x x f x +>+ ,∴对任意的实数12x x ≠都有1212()[()()]0x x f x f x -->成立,可知函数()f x 在R 上单调递增,1140.50(40.5)12a a a a >⎧⎪∴->⎨⎪≥-⨯+⎩,解得[4,8)a ∈,故选:D.6.已知1:12p x ≥-,:2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为()A .(],4-∞B .[]1,4C .(]1,4D .()1,4【正确答案】C【分析】求出p 、q 中的不等式,根据p 是q 的充分不必要条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】解不等式112x ≥-,即131022x x x --=≤--,解得23x <≤,解不等式2x a -<,即22x a -<-<,解得22a x a -<<+,由于p 是q 的充分不必要条件,则(]2,3()2,2a a -+,所以2223a a -≤⎧⎨+>⎩,解得14a <≤.因此,实数a 的取值范围是(]1,4.故选:C.本题考查利用充分不必要条件求参数,同时也考查了分式不等式和绝对值不等式的求解,考查计算能力,属于中等题.7.已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,且当π3x =时,函数()f x 取最小值,若函数()f x 在[,0]a 上单调递减,则a 的最小值是()A .π6-B .5π6-C .2π3-D .π3-【正确答案】A【分析】根据最小正周期求出2ω=,根据当π3x =时,函数取最小值,求出π3ϕ=,从而π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,由[,0]x a ∈得到22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,由单调性列出不等式,求出06π,a ⎡⎫∈-⎪⎢⎣⎭,得到答案.【详解】因为0ω>,所以2π2π2πT ω===,故13πcos(2)ϕ⨯+=-,所以2ππ2π,Z 3k k ϕ+=+∈,解得:ππ,Z k k ϕ=+∈23,因为π||2ϕ<,所以只有当0k =时,π3ϕ=满足要求,故π()cos 23f x x ⎛⎫=+ ⎪⎝⎭,因为[,0]x a ∈,所以22,33πππ3x a ⎡⎤+∈+⎢⎥⎣⎦,故π2,33π0a ⎡⎫∈⎪⎢⎣⎭+,解得:06π,a ⎡⎫∈-⎪⎢⎣⎭,故a 的最小值为π6-.故选:A8.质数也叫素数,17世纪法国数学家马林·梅森曾对“21p -”(p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21p -”(p 是素数)形式的素数称为梅森素数.已知第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为()(参考数据:lg 20.3010≈)A .18010B .17710C .14110D .14610【正确答案】B【分析】根据题意,得到6076075901717212==2212N M -≈-,再结合对数的运算公式,即可求解.【详解】由第6个梅森素数为1721M =-,第14个梅森素数为60721N =-,,可得6076075901717212=212N M -≈-,令5902k =,两边同时取对数,则590lg 2lg k =,可得lg 590lg 2k =,又lg 20.3010≈,所以lg 5900.3010177.59k ≈⨯=,17710k ≈与NM最接近的数为17710.故选:B.二、多选题9.下列结论正确的是()A .若,a b 为正实数,a b ¹,则3223+a b a b b a +>B .若,,a b m 为正实数,a b <,则a m ab m b+<+C .若,a b R ∈,则“0a b >>”是“11a b <”的充分不必要条件D .当0,2x π⎛⎫∈ ⎪⎝⎭时,2sin sin x x +的最小值是【正确答案】AC利用作差法可考查选项A 是否正确;利用作差法结合不等式的性质可考查选项B 是否正确;利用不等式的性质可考查选项C 是否正确;利用均值不等式的结论可考查选项D 是否正确.【详解】对于A ,若a ,b 为正实数,a b ¹,()()()233220a b a b ab a b a b +-+=-+>,3322a b a b ab ∴+>+,故A 正确;对于B ,若a ,b ,m 为正实数,a b <,()()0m b a a m a b m b b b m -+-=>++,则a m ab m b+>+,故B 错误;对于C ,若11a b <,则110b aa b ab--=<,不能推出0a b >>,而当0a b >>时,有0>0b a ab -<,,所以0b aab -<成立,即11a b<,所以“0a b >>”是“11a b<”的充分不必要条件,故C 正确;对于D ,当0,2x π⎛⎫∈ ⎪⎝⎭时,0sin 1x <<,2sin sin x x +≥=,当且仅当()sin 0,1x =时取等号,故D 不正确.故选:AC.易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10.已知关于x 的方程23xm -=有两个不等实根,则实数m 的取值可能是()A .2B .3C .4D .5【正确答案】CD【分析】化简方程得23x m =±,利用指数函数的值域,列式求解得出答案.【详解】23xm -= ,23x m ∴-=±,23x m -= 有两个不等实根,即23x m =±有两个不等实根,则3030m m +>⎧⎨->⎩,解得3m >,显然选项A ,B 不满足,选项C ,D 满足.故选:CD.11.定义在R 上的函数()f x 满足()(2)f x f x =+,当[3,5]x ∈时,()2|4|f x x =--,则下列说法正确的是()A .ππsin cos 66f f⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭B .(sin1)(cos1)f f <C .2π2πcos sin 33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D .(cos 2)(sin 2)f f >【正确答案】BD【分析】根据函数的周期性可得()f x 在[]1,1-上的解析式以及函数在[0,1]上的单调性.比较自变量的大小,即可根据单调性判断A 、B 项;又易知()f x 在[1,1]-上为偶函数,则根据()()f x f x =,可将[1,0]-上的自变量转化为[0,1]上,进而根据单调性,即可判断C 、D 项.【详解】当[1,1]x ∈-时,则[45]3,x +∈,于是()(2)(4)2||f x f x f x x =+=+=-,当01x ≤≤时,()2f x x =-,所以函数()f x 在[0,1]上单调递减;当10x -≤<时,()2f x x =+,所以函数()f x 在[1,0]-上是增函数.()f x 的定义域[1,1]-关于原点对称,且此时()()22-=--=-=f x x x f x则()f x 在[1,1]-上为偶函数.对于A 项,因为ππ0sincos 166<<<,所以ππsin cos 66f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B 项,因为0cos1sin11<<<,所以(cos1)(sin1)f f >,故B 正确;对于C项,因为2π12π0cossin 1323<==<,所以2π2πcossin 33f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,所以2π2πcos sin 33f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 错误;因为ππ0|cos 2|cos sin |sin 2|144<<=<<,所以(|cos2|)(|sin 2|)f f >,所以(cos 2)(sin 2)f f >,故D 正确.故选:BD.12.已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<≤⎪=⎨>⎪-⎩,下列说法中错误的是()A .当121122x x -<<<时,恒有()()12f x f x >B .若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17,26⎡⎤⎢⎥⎣⎦C .存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D .若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,则34a =-【正确答案】ACD【分析】根据奇函数的定义确定()f x 在(1,0)-上单调性与性质,然后由函数值大小可判断A ,由函数解析式分段求函数值的范围后可判断B ,由直线y kx =与函数()f x 的图象交点个数判断C ,求出3()4f x =的根是17,26,然后确定a 值使()f x a =根的和为53-即可判断D .【详解】选项A ,()f x 是奇函数,10x -≤<时,22()()[()()1]1f x f x x x x x =--=----+=---213()24x =-+-,在1(,0)2-上递减,且()0f x <,()f x 是奇函数,则(0)0f =,01x <≤时,2213()1()24f x x x x =-+=-+,在1(0,)2上递减,但()0f x >,因此()f x 在11(,)22-上不是增函数,A 错;选项B ,当01x <≤时,2213()1()24f x x x x =-+=-+,13()24f =,因此12m ≥,当1m >时,1()21f x x =-是减函数,由13214x =-得76x =,因此76m ≤,综上有1726m ≤≤,B 正确;选项C ,易知0x =是()F x 的一个零点,由于(1)1f =,y kx =过点(1,1)时,1k =,此时由21y xy x x =⎧⎨=-+⎩得21x x x -+=,2(1)0x -=,121x x ==,即直线y x =与21y x x =-+在点(1,1)处相切,因此1k >时,直线y kx =与21(01)y x x x =-+<<的图象只有一交点,在01k <<时,直线y kx =与1(1)21y x x =>-只有一个交点,从而0k >时,直线y kx =与()F x 的图象有三个交点,而0x >时,()0f x >,因此0k ≤,直线y kx =与()F x 的图象无交点,所以直线y kx =与()F x 的图象不可能是5个交点,即函数()()F x f x kx =-不可能有5个不相等的零点,C 错;选项D ,由上讨论知3()4f x =的解为12x =和76x =,因此若关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和为0,由()f x 是奇函数知若34a =-,则()f x a =的解是12x =-和76x =-,符合题意,但513(537213f ==⨯-(由此讨论知3()7f x =只有一解),即53()37f -=-,即37a =-时,关于x 的方程3()[()]04f x f x a ⎡⎤--=⎢⎥⎣⎦所有实数根之和也为0,D 错.故选:ACD .方法点睛:解决分段函数的零点与交点问题,把零点问题转化为直线与函数图象交点问题进行处理,从而利用函数的性质确定出函数解析式,作出函数图象,观察出结论并找到解题思路.三、填空题13.已知弧长为πcm 3的弧所对圆周角为6π,则这条弧所在圆的半径为____________cm .【正确答案】1【分析】由弧度制公式lrα=求解即可得出答案.【详解】已知弧长为πcm 3的弧所对圆周角为6π,则所对的圆心角为π3,lrα=,313l r ππα∴===,故1.14.已知函数()()22,1log 1,1x ax f x x x ⎧+≤⎪=⎨->⎪⎩,若()02f f ⎡⎤=⎣⎦,则实数a 的值为_________.先求()03f =,再代入求()3f ,求实数a 的值.【详解】()00223f =+=,()()03log 22a f f f ⎡⎤===⎣⎦,即22a =,又0a >,且1a ≠,所以a =15.若函数()log a f x x =(0a >且1a ≠)在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为m,函数()(32g x m =+[0,)+∞上是增函数,则a m -的值是____________.【正确答案】3【分析】根据对数函数的单调性,分类讨论,再结合已知进行求解得出a 和m 的值,最后根据()g x 的单调性检验即可得到.【详解】当1a >时,函数()log a f x x =是正实数集上的增函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有(4)log 42a f ==,解得2a =,所以21log 12m ==-,此时()g x =[)0,∞+上是增函数,符合题意,因此()213a m -=--=;当01a <<时,函数()log a f x x =是正实数集上的减函数,而函数()log a f x x =在1,42⎡⎤⎢⎥⎣⎦上的最大值为2,因此有11log 222a f ⎛⎫== ⎪⎝⎭,a =44m ==-,此时()g x =-在[)0,∞+上是减函数,不符合题意.综上所述,2a =,1m =-,3a m -=.故3.16.若函数()()()sin cos 0f x x x ϕϕ<π=++<的最大值为2,则常数ϕ的值为_______.【正确答案】2π根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+,可得2=,即可解出.【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,因为0ϕπ<<,所以2ϕπ=.故答案为.2π四、解答题17.在①22{|1}1x A x x -=<+,②{||1|2}A x x =-<,③23{|log }1xA x y x -==+这三个条件中任选一个,补充在下面的横线上,并回答下列问题.设全集U =R ,______,22{|0}.B x x x a a =++-<(1)若2a =,求()()U UC A C B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.【正确答案】(1)1{}1|x x x ≤-≥或(2)(][),34,-∞-⋃+∞【分析】(1)根据除法不等式,绝对值不等式,对数函数的定义域即可分别求出三种情形下的集合A ;(2)对集合B 中不等式进行因式分解,再根据充分必要条件和集合包含关系即可求解.【详解】(1)若选①:222213{|1}{|0}{|0}{|13}1111x x x x A x x x x x x x x x --+-=<=-<=<=-<<++++,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选②:{|12}{|212}{|13}A x x x x x x =-<=-<-<=-<<()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.若选③:()(){}233{|log }031011x x A x y x x x x x x ⎧⎫--====-+=⎨⎬++⎩⎭{|13}x x -<<,()22{|0}{|()10}{|(2)(1)0}B x x x a a x x a x a x x x ⎡⎤=++-<=++-<=+-<⎣⎦,所以{|2<1}B x x =-<,{|13}U C A x x x =≤-≥或,{|21}U C B x x x =≤-≥或,故()()U U C A C B ⋃=1{}1|x x x ≤-≥或.(2)由(1)知{|13}A x x =-<<,()22{|0}{|()10}B x x x a a x x a x a ⎡⎤=++-<=++-<⎣⎦,因为“x A ∈”是“x B ∈”的充分不必要条件,(i )若(1)a a -<--,即12a >,此时{|(1)}B x a x a =-<<--,所以1,3(1)aa -≥-⎧⎨≤--⎩等号不同时取得,解得4a ≥.故4a ≥.(ii )若(1)a a -=--,则B =∅,不合题意舍去;(iii )若(1)a a ->--,即12a <,此时{|(1)}B x a x a =--<<-,1(1),3a a -≥--⎧⎨≤-⎩等号不同时取得,解得3a ≤-.综上所述,a 的取值范围是(][),34,-∞-⋃+∞.18.(1)已知sin 2cos 0αα-=,求22sin cos sin 3sin cos 2cos αααααα--的值;(2)已知4sin()5απ+=,且sin cos 0αα<,求()()()2sin 3tan 34cos παπααπ----的值.【正确答案】(1)12-;(2)73.【分析】(1)先求出tan 2α=,再进行弦化切代入即可求解;(2)先求出4sin 5α=-,3cos 5α=,得到4tan 3α=-,再进行诱导公式和弦化切变换,代入即可求解.【详解】(1)由sin 2cos 0αα-=知tan 2α=∴原式=2tan 21tan 3tan 24622ααα==-----(2) 4sin()5απ+=∴4sin 05α=-<又sin cos 0αα<∴cos 0α>∴3cos 5α==∴4tan 3α=-原式=()()2sin 3tan 4cos απαπα---=2sin 3tan 4cos ααα+-=44237533345⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭=-⨯19.已知函数()323log 1x f x x -=-.(1)求函数()f x 的解析式及定义域;(2)求函数()f x 在()(),00,2x ∈-∞⋃时的值域.【正确答案】(1)()()12031xf x x =-≠-,()f x 的定义域为()(),00,∞-+∞U (2)()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】(1)利用换元法求得函数的解析式,根据函数定义域的求法,求得函数的定义域.(2)结合3x 的取值范围来求得()f x 在()(),00,2x ∈-∞⋃时的值域.【详解】(1)对于3log x ,需0x >;对231x x --,需1x ≠;则()()3log ,00,x ∈-∞⋃+∞,令3log t x =,则0t ≠,3t x =,()()231123312313131tt t t t f t ⋅--⋅-===----,所以()()12031x f x x =-≠-,即()f x 的定义域为()(),00,∞-+∞U .(2)当0x <时,11031,1310,1,13131x xxx <<-<-<<-->--,12331x ->-.当02x <<时,1111139,0318,,318318x xx x <<<-<>-<---,1115223188x-<-=-.所以()f x 在()(),00,2x ∈-∞⋃时的值域为()15,3,8⎛⎫-∞⋃+∞ ⎪⎝⎭.20.已知函数()24f x x π⎛⎫=- ⎪⎝⎭,x R ∈.(1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在区间,82ππ⎡⎤-⎢⎣⎦上的最小值和最大值,并求出取得最值时x 的值.【正确答案】(1)最小正周期为π,单调减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2)max ()f x =,此时8x π=,min ()1f x =-,此时2x π=.【分析】(1)直接利用周期公式计算周期,再利用整体代入法求余弦型函数的单调减区间即可;(2)先求出24x π-的取值范围,再利用余弦函数的性质求最值及取最值的条件即可.【详解】解:(1)()f x 的最小正周期22||2T πππω===.令2224k x k ππππ≤-≤+,解得588k x k ππππ+≤≤+,Z k ∈,此时时,()f x 单调递减,()f x ∴的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;(2),82x ππ⎡⎤∈-⎢⎥⎣⎦,则32,424x πππ⎡⎤-∈-⎢⎥⎣⎦,故cos 2,142x π⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦,()24f x x π⎛⎫⎡=-∈- ⎪⎣⎝⎭,max ()f x ∴=cos 214x π⎛⎫-= ⎪⎝⎭,即204x π-=,即8x π=;min ()1f x =-,此时cos 242x π⎛⎫-=- ⎪⎝⎭,即3244x ππ-=,即2x π=.方法点睛:解决三角函数()cos y A x ωϕ=+的图象性质,通常利用余弦函数的图象性质,采用整体代入法进行求解,或者带入验证.21.2022年冬天新冠疫情卷土重来,我国大量城市和地区遭受了奥密克戎新冠病毒的袭击,为了控制疫情,某单位购入了一种新型的空气消毒剂用于环境消毒,已知在一定范围内,每喷洒1个单位的消毒剂,空气中释放的浓度(y 单位:毫克/立方米)随着时间(x 单位:小时)变化的关系如下:当04x 时,1618y x =--;当410x <时,15.2y x =-若多次喷洒,则某一时刻空气中的消毒剂浓度为每次投放的消毒剂在相应时刻所释放的浓度之和.由实验知,当空气中消毒剂的浓度不低于4(毫克/立方米)时,它才能起到杀灭空气中的病毒的作用.(1)若一次喷洒4个单位的消毒剂,则有效杀灭时间可达几小时?(2)若第一次喷洒2个单位的消毒剂,6小时后再喷洒(14)a a 个单位的消毒剂,要使接下来的4小时中能够持续有效消毒,试求a 的最小值.(精确到0.1取1.4)【正确答案】(1)8(2)1.6【分析】(1)根据喷洒4个单位的净化剂后浓度为()644,048202,410x f x x x x ⎧-≤≤⎪=-⎨⎪-<≤⎩,由()4f x ≥求解;(2)得到从第一次喷洒起,经()610x x ≤≤小时后,浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,化简利用基本不等式求解.【详解】(1)解:因为一次喷洒4个单位的净化剂,所以其浓度为()644,0448202,410x f x y x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,64448x-≥-,解得0x ≥,此时04x ≤≤,当410x <≤时,2024x -≥,解得8x ≤,此时48x <≤,综上08x ≤≤,所以若一次喷洒4个单位的消毒剂,则有效杀灭时间可达8小时;(2)设从第一次喷洒起,经()610x x ≤≤小时后,其浓度为()()116251286g x x a x ⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪--⎝⎭⎝⎭,1616101441414a ax a x a x x=-+-=-+----,因为[][]144,8,1,4x a -∈∈,所以161444414a x a a a x -+--≥--=---,当且仅当161414ax x-=-,即14x =-时,等号成立;所以其最小值为4a --,由44a -≥,解得244a -≤,所以a 的最小值为24 1.6-≈.22.我们知道,指数函数()xf x a =(0a >,且1a ≠)与对数函数()log a g x x =(0a >,且1a ≠)互为反函数.已知函数()2xf x =,其反函数为()g x .(1)求函数()()()223F x g x tg x =-+⎡⎤⎣⎦,[]2,8x ∈的最小值;(2)对于函数()x ϕ,若定义域内存在实数0x ,满足()()00x x ϕϕ-=-,则称()x ϕ为“L 函数”.已知函数()()()223,1,3,1f x mf x x h x x ⎧⎡⎤--≥-⎪⎣⎦=⎨-<-⎪⎩为其定义域上的“L 函数”,求实数m 的取值范围.【正确答案】(1)答案见解析(2)[)1,∞-+【分析】(1)利用换元法令2log ,[1,3]p x p =∈,可得所求为关于p 的二次函数,根据二次函数的性质,分析讨论,即可得答案.(2)根据题意,分别讨论在[1,1]-、(,1)-∞-和(1,)+∞上存在实数0x ,满足题意,根据所给方程,代入计算,结合函数单调性,分析即可得答案.【详解】(1)由题意得2()log g x x=所以()()()()222223log 2log 3F x g x tg x xt x =-+=-+⎡⎤⎣⎦,[]2,8x ∈,令2log ,[1,3]p x p =∈,设2()23,[1,3]M p p tp p =-+∈则()M p 为开口向上,对称轴为p t =的抛物线,当1t ≤时,()M p 在[1,3]上为单调递增函数,所以()M p 的最小值为(1)42M t =-;当13t <<时,()M p 在(1,)t 上单调递减,在(,3)t 上单调递增,所以()M p 的最小值为2()3M t t =-;当3t ≥时,()M p 在[1,3]上为单调递减函数,所以()M p 的最小值为(3)126M t =-;综上,当1t ≤时,()F x 的最小值为42t -,当13t <<时,()F x 的最小值为23t -,当3t ≥时,()F x 的最小值为126t-(2)①设在[1,1]-上存在0x ,满足()()00x x ϕϕ-=-,则0000114234230x x x x m m +--+-⋅-+-⋅-=,令0022x x t -=+,则2t ≥=,当且仅当00x =时取等号,又0[1,1]x ∈-,所以115222t -≤+=,即52,2t ⎡⎤∈⎢⎥⎣⎦,所以00001124234232260x x x x m m t mt +--+-⋅-+-⋅-=---=,所以28471,2220t t m t t -⎡⎤==---⎢⎥⎣⎦所以71,20m ⎡⎤∈--⎢⎥⎣⎦②设在(,1)-∞-存在0x ,满足()()00x x ϕϕ-=-,则00134230x x m --+-+-⋅-=,即001232x x m --=-⋅有解,因为1232x x y --=-⋅在(,1)-∞-上单调递减,所以12m >-,同理当在(1,)+∞存在0x ,满足()()00x x ϕϕ-=-时,解得12m >-,所以实数m 的取值范围[)1,∞-+解题的关键是理解新定义,并根据所给定义,代入计算,结合函数单调性及函数存在性思想,进行求解,属难题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上期末考试数学试题(含答案)高 一 数 学注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效.3. 填空题和解答题答在答题卡上每题对应的答题区域内,答在试题卷上无效.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的顶点为坐标原点,始边为x 轴正半轴,终边经过点(4,3)-,则cos α=A .45- B .35-C .35 D .452.下列函数是偶函数的是A .sin y x =B .sin y x x =C .21x y = D .xxy 212-= 3.设集合{1},{2,}x M x x N y y x M =<==∈,则集合()RM N 等于A .]21,(-∞B . )1,21( C .1(,][1,)2-∞+∞D .),1[+∞ 4.已知O 、A 、M 、B 为平面上四点,且(1) , (1,2)OM OB OA λλλ=+-∈,则 A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O 、A 、M 、B 四点共线 5. 已知01a <<,函数xa y =与log ()a y x =-的图象可能是25, (1a ==a ∥b ,则 A .(2,4) B .(2,4)-- C .(2,4)或(2,4)-- D .(2,4)-或(2,4)- 7.设c b a ,,依次是方程1sin 1,sin 2,sin 22x x x x x x +=+=+=的根,并且π02x <<,则c b a ,,的大小关系是A .c b a <<B .b c a <<C .a b c <<D .a c b << 8.若平面向量,,a b c 两两所成的角相等,且1,1,3a b c ===,则a b c ++等于 A. 2 B. 5 C. 2或5 D.y x B O y9.4log ,3.0log ,3.0,43.0443.0====d c b a 则A .a b d c >>>B . a b c d >>>C . a b d c <<<D . c b d a <<< 10.设函数π()3sinxf x m,若存在实数0x ,使函数()f x 的图像关于直线0x x =对称且 22200[()]x f x m +<成立,则m 的取值范围是A .(1,1)-B .(,1)(1,)-∞-+∞C .(2,2)-D .(,2)(2,)-∞-+∞二、填空题(本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分)11. 211log 0322161(32)()2log 98---⋅的值为 ▲ .12.工艺扇面是中国书画一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为120,外圆半径为50cm ,内圆半径为20cm . 则制作这样一面扇面需要的布料为 ▲ 2cm (用数字作答,π取3.14).13. 函数1ππ()sin()[π,]232f x x =+-在上的单调递增区间为 ▲ .14. 如图,AB 是圆C 的弦,已知2AB =, 则AB AC ⋅= ▲ .15. 已知函数[] 0,()(1) 0x x x f x f x x -⎧=⎨+<⎩≥,其中[]x 表示不超过x [π]3=,…).则函数()y f x =与函数3log y x =的图象交点个数是 ▲ .三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知全集,{1,3,5,7},{28}U R A B x x ===≤≤,{121}C x a x a =-+≤≤. (1)求 ,UA B B ;(2)若 ()UB C φ≠,求a 的取值范围.17.(本小题满分12分)C B A(1)已知π02α-<<,4sin 5α=-,求πtan sin()2αα+-的值;(2)已知tan(π)3θ+=,求θθθ2cos cos sin 21+的值.18.(本小题满分12分)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(/)P mg L 与时间(t 小时)间的关系为0kt P P e -=.如果在前5个小时消除了10%的污染物,试求: (1)10个小时后还剩百分之几的污染物?(2)污染物减少50%所需要的时间.(参考数据:ln 20.7,ln3 1.1,ln5 1.6===)19.(本小题满分12分)已知(2,0),(0,2),(cos ,sin )(0π)A B C ααα<<.(1)若7OA OC +=(O 为坐标原点),求OB 与OC 的夹角; (2)若AC BC ⊥,求αtan 的值.20.(本小题满分13分)如图,某大风车的半径为2米,每12秒沿逆时针方向匀速旋转一周,它的最低点O 离地面1米.风车圆周上一点A 从最低点O 开始,运动t 秒后与地面距离为h 米. (1)直接写出函数()h f t =的关系式,并在给出的坐标系中用五点作图法.....作出()h f t =在[0,12)上的图象(要列表,描点);(2)A 从最低点O 开始,沿逆时针方向旋转第一周内,有多长时间离地面的高度超过4米?21.(本小题满分14分)已知0a >且1a ≠,函数xx f a-=12log )(. (1)求()f x 的定义域D 及其零点;(2)讨论并证明函数()f x 在定义域D 上的单调性;(3)设32)(2+-=mx mx x g ,当1>a 时,若对任意]1,(1--∞∈x ,存在]4,3[2∈x ,使得12()()f x g x ≤,求实数m 的取值范围.上学期期末质量检测高一数学参考答案及评分说明一、选择题:ABCBD CACBD 10.由0πππ,2x k k Z m =+∈得0,2mx mk k Z =+∈,由2223)21(m k m <++得Z k mk k ∈-<-+,34322,23()4k k k Z +-∈的最小值为3(01)4k -=-或,所以2343m-<-即24m >. 二、填空题:11.54 12. 2198 13. π[π,]3- 14. 2 15. 4 三、解答题:16.(1){3,5,7}AB = ………………………3分{28}UB x x x =<>或 ………………………6分(2)由题得12218a a -<+>或 得732a a <>或 ……………………10分 又C φ≠则121a a -+≤即2a -≥ 故a 的范围是23a -<≤或72a >…………12分 17.(1)由题意得34cos ,tan 53αα==- ………………………3分 原式=43113515-+=- ……………………6分 (2)由题意得tan 3θ= ……………………………7分∴22221sin cos 2sin cos cos 2sin cos cos θθθθθθθθ+=++ ……………………………………………9分 2tan 1102tan 17θθ+==+ ………………………………………12分 18. (1)由0ktP P e -=可知,当0t =时,0P P =; ………………………………………2分当5t =时,0(110%)P P =-.于是有500(110%)kP P e--=,解得1ln 0.95k =-,那么1(ln 0.9)50t P P e= …………4分所以,当10t =时,1(ln 0.9)10ln 0.81500081%P P eP e P ⨯===∴10个小时后还剩81%的污染物 …………6分(2)当050%P P =时,有1(ln 0.9)50050%t P P e= ………………8分解得15lnln 0.5ln 2ln 22553519ln 9ln10ln 2ln 52ln 3ln 0.9ln 510t -===⋅=⋅=-+- ……11分 ∴污染物减少50%所需要的时间为35个小时. …………12分注:可用整体代换来解:50.9ke-=,则105255(),()t kk ktk eeee----==19.(1)由(2cos ,sin )OA OC αα+=+得7sin cos cos 4422=+++ααα ………2分即1cos 2α=,又0πα<<解得π3α=. ……………………………3分∴1(0,2),(,22OB OC ==,设θ的夹角为与OC OB则23cos =θ,∴6πθ=,即π6OB OC 与的夹角为 …………6分(2)(cos 2,sin ),(cos ,sin 2)AC BC αααα=-=-,由AC BC ⊥得0sin 2sin cos 2cos 22=-+-αααα ……………7分1cos sin 2αα+=∴32sin cos 4αα=- (8)分 ∴sin cos αα-=(0π)α<< ………10分∴1sin 4α=,1cos 4α=.∴tan α== ………12分注:若有两种结果,扣2分.20.(1)π()32cos 6h f t t ==- ……………………………… 4分列表2分,描点连线2分 …………………………8分 (Ⅱ)由π32cos 46t ->得π1cos 62t <- ………………10分2ππ4π,[0,12]363t t <<∈由得48t << ………………………………12分 所以有4秒钟的时间离地面的高度超过4米. ………………………………13分 注:用几何图形求解亦可. 21. (1)由题意知,20,101x x>->-,解得1<x , 所以函数)(x f 的定义域D 为)1,(-∞. ………………………………1分 令0)(=x f ,得111=-x,解得1-=x , 故函数)(x f 的零点为1-; ………………………………3分 (2)设21,x x 是)1,(-∞内的任意两个不相等的实数,且21x x <,则012>-=∆x x x ,12121()()log 1ax y f x f x x -∆=-=- ……………………………4分 11212211,111x x x x x x -<<∴->->->-,即……………………………6分 所以当10<<a 时,0<∆y ,故)(x f 在D 上单调递减,当1>a 时,0>∆y ,故)(x f 在D 上单调递增 ……………………………8分 (III )若对于任意]1,(1--∞∈x ,存在]4,3[2∈x ,使得12()()f x g x ≤成立, 只需max max ()()f x g x ≤ ……………………………9分 由(Ⅱ)知当1>a 时, )(x f 在]1,(--∞上单调递增,则0)1()(max =-=f x f …10分 当0=m 时,3)(=x g ,12()()f x g x ≤成立 …………………………11分 当0>m 时,)(x g 在]4,3[上单调递增,38)4()(max +==m g x g由830m +≥,解得38m -≥,0>∴m …………………………12分 当0<m 时,)(x g 在]4,3[上单调递减,33)3()(max +==m g x g由330m +≥,解得1m -≥,10m ∴-<≤ …………………………13分 综上,满足条件的m 的范围是1m -≥. …………………………14分。