分子生物学

合集下载

分子生物学 细胞生物学 蛋白生物学

分子生物学 细胞生物学 蛋白生物学

分子生物学、细胞生物学和蛋白生物学是生物学领域中极为重要的三大学科,它们相辅相成,共同构成了生命科学的重要组成部分。

本文将依次介绍这三个学科的基本概念和研究内容,旨在帮助读者更深入地了解这些学科的研究方向和发展趋势。

一、分子生物学1. 概念分子生物学是研究生物分子结构、功能及其相互作用的学科。

它主要研究生物分子的组成、性质、功能以及遗传信息的转移和表达等基本问题。

2. 研究内容分子生物学的研究内容包括DNA、RNA、蛋白质等生物分子的结构和功能、基因表达调控机制、遗传信息的传递和变异等。

在实际应用中,分子生物学还涉及到基因工程、DNA克隆、PCR技术等领域。

3. 发展趋势随着生物技术的不断发展和进步,分子生物学在新药研发、疾病诊断、农业生物技术等方面均有广泛的应用。

未来,分子生物学将继续在生物科学领域发挥重要作用,为人类健康和生存提供更多的帮助。

二、细胞生物学1. 概念细胞生物学是研究细胞结构、功能及其活动规律的学科。

它主要研究生物体内细胞的起源、结构、功能、代谢、增殖和分化等基本问题。

2. 研究内容细胞生物学的研究内容涉及细胞的形态学、生物化学、分子生物学等多个方面,主要包括细胞器的结构和功能、细胞信号传导、细胞增殖和凋亡等。

细胞生物学也与组织学、生理学等学科有着密切的关联。

3. 发展趋势细胞生物学在生物医学、生物工程、再生医学等领域有着广泛的应用,特别是在细胞治疗、干细胞技术、肿瘤治疗等方面具有重要意义。

未来,细胞生物学将继续深入研究细胞活动的机理及应用,为生物医学领域的发展做出更多贡献。

三、蛋白生物学1. 概念蛋白生物学是研究蛋白质结构、功能及其在生命活动中作用的学科。

它主要研究蛋白质的合成、折叠、修饰以及与其他生物分子的相互作用等基本问题。

2. 研究内容蛋白生物学的研究内容包括蛋白质的结构与功能关系、蛋白质质量控制、蛋白质在细胞内外的运输和定位等。

蛋白生物学还涉及蛋白质工程、蛋白质药物研发等应用领域。

分子生物学名词解释

分子生物学名词解释

分子生物学:从广义来讲,分子生物学是从分子水平阐明生命现象和生物学规律的一门新兴的边缘学科。

它主要对蛋白质及核酸等生物大分子结构和功能以及遗传信息的传递过程进行研究。

DNA重组技术:DNA重组技术(又称基因工程)是将DNA片段或基因在体外经人工剪接后,按照人们的设计与克隆用载体定向连接起来,转入特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

信号转导:是指外部信号通过细胞膜上的受体蛋白传到细胞内部,并激发诸如离子通透性、细胞形状或其它细胞功能方面的应答过程。

转录因子:是指一群能与基因5′端上游特定序列专一结合,从而保证目的基因以特定强度在特定时间和空间表达的蛋白质分子。

功能基因组:又称后基因组,是在基因组计划的基础上建立起来的,它主要研究基因及其所编码蛋白质的结构和功能,指导人们充分准确地利用这些基因的产物。

结构分子生物学:就是研究生物大分子特定空间结构及结构的运动变化与其生物学功能关系的科学。

生物信息学:是生物科学和信息科学重大交叉的前沿学科,它依靠计算机对所获得数据进行快速高效计算、统计分类以及生物大分子结构功能的预测。

染色体:是指存在于细胞核中的棒状可染色结构,由染色质构成。

染色质是由DNA、RNA和蛋白质形成的复合体。

染色体是一种动态结构,在细胞周期的不同阶段明显不同。

C-值(C-value):一种生物单位体基因组DNA的总量。

C-值矛盾(C-value paradox):基因组大小与机体的遗传复杂性缺乏相关性。

核心DNA(core DNA):结合在核心颗粒而不被降解的DNA。

连接DNA(linker DNA):重复单位中除核心DNA以外的其它DNA。

DNA多态性:指DNA序列中发生变异而导致的个体间核苷酸序列的差异,主要包括单核苷酸多态性和串联重复序列多态性两类。

DNA的一级结构:是指4种核苷酸的排列顺序,表示了该DNA分子的化学组成。

又由于4种核苷酸的差异仅仅是碱基的不同,因此又是指碱基的排列顺序。

什么是分子生物学

什么是分子生物学

什么是分子生物学分子生物学是一门崭新的科学,由于它是20世纪发展起来的新兴学科,它在未来也将产生重大的影响。

下面将介绍分子生物学的几个基本概念并阐述它的重要性:一、什么是分子生物学?分子生物学是一门研究分子水平生命现象和自然关系的新科学。

它使用分子生物学手段,利用化学、物理和生物技术,探讨以分子和最小细胞为基础的生物学过程。

分子生物学以DNA、RNA、蛋白质和其他分子结构为框架,结合生物信息学,解析各种生物过程及其分子机制。

二、分子生物学的方法分子生物学有许多研究方法和工具,主要包括基因测序、分子标记、克隆技术、蛋白质分析、遗传学和定量PCR的技术。

(1)基因测序:基因测序是分子生物学研究最常用的技术,它是一种可以分析DNA片段顺序和检测DNA表达状态的技术。

(2)分子标记:分子标记是将一种活性体与另一种它可能与之具有共同性质的生物活性体混合,以产生一种可检测的化学反应的技术。

(3)克隆技术:克隆技术是指利用可重组DNA技术在一个宿主上复制目标DNA片段、克隆它们作为载体的技术。

(4)蛋白质分析:蛋白质分析是指利用紫外分光光度计、流式细胞仪等分析仪器,研究蛋白质结构、凝胶电泳分析、质谱分析以及免疫学方法等技术来检测蛋白质结构和性质的方法。

(5)遗传学:遗传学是指研究基因在细胞中的表达、基因间相互作用及其在不同生物间的进化变异,以及它们在适应性演化中的作用的学科。

(6)定量PCR:定量PCR是指使用定量PCR技术研究DNA序列,利用荧光基因特异性引物和特异序列来检测、建库和定量分析DNA。

三、分子生物学的重要性(1)分子生物学能够探究生命的奥秘;(2)通过分子生物学,我们可以更好地了解遗传基因是如何影响人类生理和心理行为;(3)分子生物学可以帮助我们更好地理解疾病的发展机制,进行疾病的预防和治疗;(4)分子生物学也是真核细胞和原核细胞的比较研究的基础,从而有助于我们更好地利用微生物培养;(5)分子生物学还可以帮助我们更好地利用基因工程技术实现转基因动物生物学研究和创新生物材料研究。

分子生物学

分子生物学

一、名词解释1.分子生物学:广义即在分子水平上研究生命现象;狭义即在核酸与蛋白质水平上研究基因的复制,基因的表达,基因表达的调控以及基因的突变与交换的分子机制。

2.拟等位基因:紧密连锁,控制同一性状的非等位基因定义为拟等位基因。

3.DNA:作为主要的遗传物质,从结构上讲,它是两条多聚脱氧核苷酸链以极性相反,反向平行的方式,由氢键连接而成的双螺旋结构。

4.变性:两条核苷酸链逐渐彼此分离,形成无规则的,线团,这一过程称为变性。

5.复性:已发生变性的DNA 溶液在逐渐降温的条件下,,两条核苷酸链的配对碱基间又重新形成氢键,恢复到天然DNA的双螺旋结构,这一过程称为复性。

6.碱基的增色效应:随温度升高单链状态的DNA分子不断增加而表现出A260值递增的效应被定义为碱基的增色效应或DNA的减色效应。

7.变性温度或Tm值:通过对不同DNA分子变性S曲线的分析,将增色效应达到最大值一半的温度定义为该DNA分子的变性温度或Tm 值8.间隔基因:真核生物的结构基因是由若干外显子和内含子序列,相间隔排列组成的间隔基因。

9.外显子:指DNA上与成熟mRNA对应的核苷酸区,段,或结构基因在DNA中的氨基酸编码区,或间隔基因中的非间隔区。

10.内含子是指结构基因中可转录但在mRNA成熟之前,又被剪切的核苷酸区段,即DNA与成熟mRNA中的非对应区,或结构基因在DNA中的氨基酸非编码区,或间隔基因中的间隔区。

11.R环:当一条RNA分子与其DNA分子中的一条互补链配对,同时将另一条DNA链排除而形成的环状结构被称为R环。

12.极性突变:在一个操纵子中,与操纵子基因毗连的结构基因发生终止突变后,它除了影响该基因本身产物的翻译外,还影响其后结构基因多肽的翻译,并且具有极性梯度的特征。

13.DNA复制:是亲代双链DNA分子在DNA聚合酶等相关酶的作用下,分别以每条单链DNA分子为模板,聚合与模板链碱基可以互补配对的游离的三磷酸脱氧核糖核酸dNTP,合成出两条与亲代DNA分子完全相同的子代双链DNA分子的过程。

分子生物学名词解释

分子生物学名词解释

分子生物学名词解释分子生物学考试重点一、名词解释1、分子生物学(molecular biology):分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。

2、C值(C value):一种生物单倍体基因组DNA的总量。

在真核生物中,C值一般是随生物进化而增加的,高等生物的C值一般大于低等生物。

3、DNA多态性(DNA polymorphism):DNA多态性是指DNA序列中发生变异而导致的个体间核苷酸序列的差异。

4、端粒(telomere):端粒是真核生物线性基因组DNA末端的一种特殊结构,它是一段DNA序列和蛋白质形成的复合体。

5、半保留复制(semi-conservative replication):DNA 在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。

这样形成的两个DNA分子与原来DNA 分子的碱基顺序完全一样。

一次,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA 的半保留复制。

6、复制子(replicon):复制子是指生物体的复制单位。

一个复制子只含一个复制起点。

7、半不连续复制(semi-discontinuous replication):DNA 复制过程中,一条链的合成是连续的,另一条链的合成是中断的、不连续的,因此称为半不连续复制。

8、前导链(leading strand):与复制叉移动的方向一致,通过连续的5W聚合合成的新的DNA链。

9、后随链(lagging strand):与复制叉移动的方向相反,通过不连续的5\T聚合合成的新的DNA链。

10、AP位点(AP site):所有细胞中都带有不同类型、能识别受损核酸位点的糖昔水解酶,它能特异性切除受损核昔酸上N-B糖昔键,在DNA链上形成去嘌吟或去嘧啶位点,统称为AP位点。

11、cDNA(complementary DNA):在体外以mRNA 为模板,利用反转录酶和DNA聚合酶合成的一段双链DNA。

完整版)分子生物学总结完整版

完整版)分子生物学总结完整版

完整版)分子生物学总结完整版分子生物学是研究生命体系中分子结构和功能的学科。

它包括结构分子生物学、基因表达的调节与控制、DNA重组技术及其应用、结构基因组学、功能基因组学、生物信息学和系统生物学等方面。

在DNA和染色体方面,我们可以了解到DNA的变性和复性过程,其中Tm是指DNA双链结构被解开成单链分子时的温度。

热变性的DNA经缓慢冷却后即可复性,称为退火。

此外,假基因是指基因组中存在的一段与正常基因非常相似但不能表达的DNA序列,以Ψ来表示。

C值矛盾或C值悖论是指C值的大小与生物的复杂度和进化的地位并不一致。

转座是可移动因子介导的遗传物质的重排现象,而转座子则是染色体、质粒或噬菌体上可以转移位置的遗传成分。

DNA的二级结构特点包括由两条相互平行的脱氧核苷酸长链盘绕而成,碱基排列在外侧,两条链间存在碱基互补,通过氢键连系,且A=T、G≡C(碱基互补原则)。

真核生物基因组结构包括编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列,具有庞大的结构和含有大量重复序列。

Histon(组蛋白)具有极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5等特点。

核小体由组蛋白和200bp DNA组成。

转座机制是一种基因组重排的方式。

在转座时,插入的转座子会位于两个重复的靶序列之间,而受体分子中的靶序列会被复制。

根据复制方式的不同,转座可以分为复制型和非复制型转座。

DNA生物合成时,采用半保留复制的方式。

这种方式下,母链DNA会解开为两股单链,各自作为模板合成与之互补的子链。

其中一股单链从亲代完整地接受过来,而另一股则是全新合成的。

这样,两个子细胞的DNA都与亲代DNA的碱基序列一致。

复制子是生物体内能够独立进行复制的单位。

在DNA复制中,有前导链和滞后链两种链。

前导链是以3'→5'方向为标准的模板链,而滞后链则是以5'→3'方向为标准的模板链。

分子生物学完整版

分子生物学完整版
分散在基因组中,许多中度重复序列与单拷贝序列和低度重复序列相间排列。
非编码的中度重复序列,在进化中起着重要的作用。
SINE--Alu家族
人类基因组中存在最广泛的中度重复序列,平均长度约300bp,拷贝数30~50万,均匀地散布在整个基因组中。
低度重复序列(2-10次)每一种在基因组中的重复次数为2~10,多为编码蛋白质的基因
存在复杂的RNA加工反应,包括切割,顺式-,反式-剪接,RNA的编辑和降解。
某些重复序列的核苷酸顺序不完全相同
单拷贝序列(single copy sequence)
在基因组中只存在一个拷贝,复性最慢。
编码真核生物绝大部分蛋白,表达具有时空特异性。
基因家族(gene family):一组功能类似、结构具有同源性的基因。
细胞器基因组
1950s,为了解释某些表型特殊的遗传方式,提出了extra-chromosomal genes。1960s早期(1962年〕,Ris and Plant通过电镜首次证明叶绿体中含有DNA,用DNA酶处理,超薄切片的2.5~3.0m的纤丝消失,进一步在电镜下观察到环状DNA分子。几乎所有的真核生物有线粒体基因组;所有的光合真核生物含有叶绿体基因组;一般来讲,细胞器基因组DNA呈环状,也有线状(一些真核微生物酵母等的线粒体基因组都呈线状;有的环状和线状并存,叶绿体中还有小环DNA分子存在.
分子生物学
The Coming of Wisdom With Time
Though leaves are many, the root is one
Through all the lying days of my youth
I swayed my leaves and flowers in the sun;

分子生物学

分子生物学

分子生物学分子生物学(Molecular Biology)是生物学的一个分支学科,主要研究生物体内分子的结构、功能、相互作用和调控机制。

分子生物学的发展推动了对于基因和蛋白质的研究,为我们对生物体内的生命活动以及人类疾病的认识提供了重要的基础。

分子生物学的研究主要是从分子层面探究生物体的组成和功能。

在分子生物学的视角下,生物体被看作是由各种复杂的分子组成的。

这些分子包括核酸(DNA和RNA)、蛋白质、细胞膜和其他生物分子。

通过研究这些分子的结构和功能,我们可以深入了解生物体内的一系列生物过程,如DNA复制、基因表达、蛋白质合成等。

在分子生物学的研究中,DNA是一个重要的研究对象。

DNA是三个硝基酸组成的核酸分子,它携带着生物体的遗传信息。

在细胞分裂过程中,DNA会通过复制过程产生两个完全相同的分子。

这种DNA的复制是生物体生长和繁殖的基础。

通过研究DNA的结构和复制机制,分子生物学家可以理解细胞遗传信息的传递和维持。

分子生物学的另一个重要研究对象是蛋白质。

蛋白质是生物体最重要的功能分子之一,它在细胞的结构、功能和代谢过程中起到了关键作用。

分子生物学研究了蛋白质的合成和调控机制,以及蛋白质在细胞内的运输、定位和降解过程。

通过研究蛋白质的结构和功能,分子生物学家可以揭示蛋白质如何参与细胞和组织的功能调节,进而理解生物体的正常生理活动和疾病的发生机制。

除了DNA和蛋白质,分子生物学还研究其他类型的分子。

例如,分子生物学研究了细胞膜的组成和运输机制,了解了细胞如何通过细胞膜与外界进行交流和物质交换。

此外,分子生物学还研究了一些小分子信号物质,如激素和信号分子,它们在细胞间的通讯和调节中扮演重要角色。

分子生物学的技术和方法也得到了快速发展。

例如,PCR(聚合酶链反应)技术可以快速复制DNA,并且已经成为了基因工程和基因诊断的关键技术。

基因测序技术则使得我们能够快速高效地获取DNA的序列信息,进一步推动了基因组学和遗传学的发展。

什么是分子生物学

什么是分子生物学

什么是分子生物学
分子生物学的发展举足轻重,它为生命科学的发展提供了重要而有力的支持。

本文旨在全面系统地介绍分子生物学的相关知识,帮助读者更加深入地了解该领域的研究现状,并更好地应对社会的发展挑战。

1. 什么是分子生物学?
分子生物学是基于分子机理的一门研究生命科学的研究领域。

它针对生物分子的结构和功能进行深入的研究,并开展着关于生命体系的基本性理论研究,从而推动了现代生物学研究与新技术的广泛发展。

2. 分子生物学的研究对象
分子生物学重点研究的方向主要有生物分子,比如:DNA、RNA、蛋白质、各类酶等,还有一些生物信号分子,可以帮助我们更清楚地了解有关生物的调控机制。

3. 分子生物学的研究方法
分子生物学的研究技术包括:实验室基本手段、测序技术、分子结构定位技术、细胞和分子影像技术、计算生物学等,这种独特的技术使分子生物学成为生物学研究中重要的基础研究领域。

4. 分子生物学的研究优势
分子生物学由于研究内容与视野狭窄,研究领域较为集中,可以更加深入地把握各种生物分子的功能、结构、变化过程,从而更加有效地应用于实际的科研工作中。

5. 分子生物学的应用
分子生物学为各类疾病的治疗、疫苗的开发和药物研发方面提供了强有力的支持。

它能够揭示病原体的分子机制,并根据改变这种机制而设计出新药物;它还为科学家研究一些病毒性疾病的分子机制提供基础,进而开发出抗病毒疫苗。

此外,分子生物学为植物育种和动物育种研究提供了新的信息来源,可以帮助提高农作物的产量和品质。

分子生物学基础

分子生物学基础

分子生物学基础分子生物学是研究生物分子结构、功能和相互作用的学科,是现代生物学的重要组成部分。

通过对生物分子的研究,可以深入了解细胞的机制、生命的起源和演化,以及疾病的发生和治疗等方面。

本文将介绍分子生物学的基本概念、研究方法和应用领域等。

一、基本概念1. 生物分子:生物体内存在着许多不同种类的分子,如蛋白质、核酸、碳水化合物和脂质等。

这些分子构成了细胞的基本单位,参与了各种生物过程。

2. DNA:脱氧核糖核酸(DNA)是生物体中重要的遗传物质,携带了生物个体遗传信息的蓝图。

DNA由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳞嘌呤)组成,以双螺旋结构存在。

3. RNA:核糖核酸(RNA)是DNA的姐妹分子,具有多种功能。

其中信使RNA(mRNA)通过转录过程将DNA编码的信息转化为蛋白质合成的模板。

4. 蛋白质:蛋白质是生物体内最重要的功能性分子。

它们由氨基酸组成,通过肽键连接成链状结构。

蛋白质不仅构成了细胞的结构,还具有调节代谢、传递信号和催化反应等生物功能。

二、研究方法1. 分子克隆:分子克隆是指将DNA或RNA片段插入载体(如质粒)中,通过细菌或其他生物体来复制这些分子片段。

这一技术可以用于生物工程、基因治疗等领域。

2. PCR:聚合酶链反应(PCR)是一种体外扩增DNA片段的方法。

它利用特定引物和DNA聚合酶,通过一系列温度循环反复合成DNA的同源链,扩增目标序列。

3. 凝胶电泳:凝胶电泳是一种常用的分离生物分子的方法。

通过在凝胶中施加电场,根据分子的大小和电荷来分离DNA、RNA和蛋白质等。

4. 聚合酶链式反应(PCR):PCR是一种常用的体外扩增DNA片段的方法。

通过引物的特异性与DNA片段的互补性,聚合酶可以复制和扩增模板DNA。

三、应用领域1. 基因工程:分子生物学的发展为基因工程提供了基础。

通过基因重组、转基因等技术,可以克隆和改造DNA,生产重组蛋白质、植物转基因等。

2. 遗传疾病诊断:分子生物学的方法在遗传疾病的诊断中起着关键作用。

分子生物学

分子生物学

第十节分子生物学(Molecular Biology)一、学科性质及研究范围分子生物学是一门从分子水平研究生命现象的科学。

是一门由生物化学、遗传学和微生物等学科融汇发展而派生出来的边缘学科,它试图运用物理学和化学的理论和方法来阐明生命活动的规律,以达到为人类服务的目的。

分子生物学中的所谓分子,一般系针对生物大分子而言,主要为核酸和蛋白质。

糖蛋白和糖脂也是大分子物质,它们在细胞的构造和信息传递中的作用,正在受到越来越大的重视,对它们的研究也应该看成为分子生物学的重要内容之一。

生物化学和分子生物学关系密切。

但两者的侧重点有所不同,前者着重于研究生物分子,尤其是小分子,如氨基酸、葡萄糖、脂肪等的转变和新陈代谢过程,而后者着重于生物大分子的结构和功能。

还有一个重要的研究领域就是分子间信息的传递和调控。

分子生物学不仅必须逐一研究生物大分子的各别结构,还应该从更高层次来研究其组织和相互作用。

各别结构的研究是十分必要的,如核酸的碱基顺序和蛋白质的氨基酸顺序测定等,这些知识是本学科的基础,也是今后长期的研究任务。

细胞乃由无数结构各异的生物分子精巧建造而成,这个高度复杂的结构体系,即所谓超分子结构体系,绝不是它的组成成分的简单加和。

当分子与分子以某种方式结合时,就会表现出原有分子所不曾有的崭新性质和功能。

水和二氧化碳经过光合作用转变成糖,而糖的性质和水及二氧化碳根本不同。

同样,核酸由四种核苷酸,蛋白质由20种氨基酸构成。

核苷酸和氨基酸都是小分子,并不表现出任何生命物质的特征,但是一旦许许多多核苷酸或氨基酸连接成为核酸或蛋白质时,其性质就出现了从无生命物质向生命物质的飞跃。

就一个细胞来说,细胞核中的DNA 与组蛋白共同构成染色质,染色质又和为数众多的功能复杂的非组蛋白相互作用;在胞质内存在着三大类RNA间的互相作用以及RNA和蛋白质问的相互作用;生物膜系统将细胞空间分隔成各种功能区域,它们由类脂质(包括糖脂)和蛋白质(包括糖蛋白)共同组成一种嵌镶流动的膜结构,这里涉及到类脂质和蛋白质以及多糖链间的组织和相互作用。

分子生物学(共19张PPT)

分子生物学(共19张PPT)

04
蛋白质的结构与功能
蛋白质的分子组成与结构
氨基酸通过肽键连 接形成多肽链,即 蛋白质的一级结构 。
多条多肽链组合在 一起,形成蛋白质 的三级结构。
蛋白质的基本组成 单位是氨基酸,共 有20种常见氨基酸 。
多肽链经过盘绕、 折叠形成二级结构 ,主要形式包括α螺旋和β-折叠等。
在特定条件下,蛋 白质可形成四级结 构,由多个亚基组 成。
发展历程
从20世纪50年代DNA双螺旋结构 的发现开始,分子生物学经历了 飞速的发展,成为现代生命科学 中最为活跃和前沿的领域之一。
分子生物学的研究对象与任务
研究对象
主要包括DNA、RNA、蛋白质Байду номын сангаас生 物大分子,以及它们之间的相互作用 和调控机制。
研究任务
揭示生物大分子的结构、功能及其相 互作用机制;阐明基因表达调控的分 子机制;探索生物大分子在生命过程 中的作用和意义。
转录因子
01
真核生物中存在大量转录因子,它们与DNA特定序列结合,激
活或抑制基因转录。
表观遗传学调控
02
通过DNA甲基化、组蛋白修饰等方式,改变染色质结构,影响
基因表达。
microRNA调控
03
microRNA是一类小分子RNA,通过与mRNA结合,抑制其翻
译或促进其降解,从而调节基因表达。
基因表达调控的分子机制
发育生物学研究生物体的发育过程,而分子 生物学则揭示了发育过程中基因表达和调控 的分子机制。
02
DNA的结构与功能
DNA的分子组成与结构
DNA的基本组成单位
脱氧核糖核苷酸,由磷酸、脱氧核糖 和碱基组成。
DNA的碱基
DNA的双螺旋结构

分子生物学ppt课件

分子生物学ppt课件

基因组大小(Mb)
0.58 1.83 4.20 4.60 13.50 12.50 466 165 97 2700 3000
基因数
470 1743 4100 4288 6034 4929 30000 13601 18424 30000 25000
染色体数*
无 无 无 无 16 16 21 4 6 20 23
包括:
结构基因组学
功能基因组学
三个亚领域.
比较基因组学
28
29
一、病毒基因组 二、原核生物基因组 三、真核生物基因组
30
一、病毒基因组
基因组(genome) 1个配(精子或卵子),1个单倍 体细胞或1个病毒所包含的全套遗传物质的总和。病毒核酸 或为DNA或为RNA,可以统称为病毒染色体。
完整的病毒颗粒具有蛋白质外壳,以保护病毒核酸不 受核酸酶的破坏,并能识别和侵袭特定的宿主。
分子生物学
Molecular Biology
1
What is Molecular Biology?
分子生物学是从分子水平研究生命现象、生命规律和生命本质 的学科。
核心内容是从分子水平研究基因和基因的活动,这些活动主要 通过核酸和蛋白质的活动来实现。
医学分子生物学主要研究人体生物大分子和大分子体系的结构、 功能、相互作用及其与疾病发生、发展的关系。
16
三、基因的结构特点和分类
基因的结构
结构基因:编码区序列(coding region sequence )
在细胞内表达为蛋白质或功能RNA的DNA序列
转录调控序列:非编码序列(non-coding sequence)
基因表达需要的调控区(regulatory region)序列, 包括启动子(promoter)、增强子(enhancer)等。

分子生物学课件(共51张PPT)

分子生物学课件(共51张PPT)
二级结构
蛋白质局部主链的空间结构, 包括α-螺旋、β-折叠等。
三级结构
整条肽链中全部氨基酸残基的 相对空间位置Байду номын сангаас即整条肽链每 一原子的相对空间位置。
四级结构
由两条或两条以上的多肽链组 成的一类结构,每一条多肽链
都有完整的三级结构。
蛋白质的功能与分类
结构蛋白:作为细胞的结构,如膜蛋白,染色体蛋白等 。 酶:催化生物体内的化学反应。
分子生物学是生物学的重要分支
01
分子生物学以生物大分子为研究对象,揭示生命现象的分子基
础,是生物学的重要分支之一。
分子生物学推动生物学的发展
02
分子生物学的发展推动了生物学的研究从细胞水平向分子水平
深入,为生物学的发展提供了新的理论和技术支持。
分子生物学与其他学科的交叉融合
03
分子生物学与遗传学、生物化学、微生物学、免疫学等学科存

表观遗传学调控
通过改变染色质结构和DNA 甲基化等方式来调控基因表达

05
蛋白质的结构与功能
蛋白质的分子组成
氨基酸
蛋白质的基本组成单元,共有20 种标准氨基酸。
肽键
连接氨基酸之间的主要化学键。
辅基与辅酶
某些蛋白质还包含辅基或辅酶, 以辅助其功能的发挥。
蛋白质的结构层次
一级结构
指蛋白质中氨基酸的排列顺序 。
重组DNA分子的构建和 筛选
PCR技术及其应用
01
02
PCR技术的基本原理和步骤
引物的设计和选择
03
04
PCR反应体系和条件优化
PCR技术在DNA扩增、突变 分析、基因分型等领域的应用
基因克隆与基因工程

分子生物学名词解释

分子生物学名词解释

一、名词解释1、分子生物学(狭义):研究核酸和蛋白质等大分子的形态、结构特征及其重要性、规律性和相互关系的科学,主要研究基因的结构和功能及基因的活动。

2、分子生物学(广义):在分子的水平上研究生命现象的科学,涵盖了分子遗传学和生物化学等学科的研究内容。

3、基因:是具有特定功能、能独立发生突变和交换的、“三位一体”的、最小的遗传单位。

4、顺反子:基因的同义词,是一个具有特定功能的、完整的、不可分割的最小遗传单位。

5、增色效应:当进行DNA热变性研究时,温度升高单链状态的DNA分子不断增加而表现出A260值递增的效应。

6、变性温度:DNA双链在一定的温度下变成单链,将开始变性的温度至完全变性的温度的平均值称为DNA的变性温度。

7、DNA的复性:DNA在适当的条件下,两条互补链全部或部分恢复到天然双螺旋结构的现象。

8、C值:一种生物中其单倍体基因组的DNA总量。

9、C值悖论:C值和生物结构或组成的复杂性不一致的现象。

10、重叠基因:共有同一段DNA序列的两个或多个基因。

11、重复基因:基因组中拷贝数不止一份的基因。

12、间隔基因(断裂基因):就是基因的编码序列在DNA分子上是不连续的,为不编码的序列所隔开。

13、转座子:在基因组中可以移动的一段DNA序列。

14、转座:一个转座子从基因组的一个位置转移到另一个位置的过程。

15、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。

16:、DNA 复制:亲代双链的DNA分子在DNA聚合酶等相关酶的作用下,别以每条单链DNA为模板,聚合与模板链碱基对可以互补的游离的dNTP,合成两条与亲代DNA分子完全相同的子代双链DNA分子的过程。

17、复制子:从复制起点到复制终点的DNA区段称为一个复制子。

18、复制体:在复制叉处装备并执行复制功能的多酶复合体。

19、复制原点(复制起点):DNA分子中能独立进行复制的最小功能单位。

20、端粒:染色体末端具有的一种特殊结构,对维持染色体的稳定起着十分重要的作用。

分子生物学名词解释

分子生物学名词解释

分子生物学名词解释1、广义的分子生物学:是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平阐述蛋白质与核酸、蛋白质与蛋白质之间相互作用的关系及基因表达调控机理的学科,是人类从分子水平上真正揭开生物世界的奥秘,即从分子水平阐明生命现象和生物学规律的学科。

2、狭义的分子生物学:人们常采用狭义的概念,将分子生物学的范畴偏重于核酸的分子生物学(核酸的结构、DNA的复制、基因的转录、表达和调控),当然也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。

3、蛋白质组:指的是一个基因组所表达的全部蛋白质。

蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。

4、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和传输。

5、蛋白质(protein)是由许多氨基酸(amino acids)通过肽键(peptide bond)相连形成的高分子含氮化合物。

蛋白质的化学组成:1、主要元素:C、H、O、N和S,有些蛋白质还含有少量磷和金属元素。

2、特点:各种蛋白质的含氮量很接近,平均含氮量为16%。

3、凯氏定氮法测定蛋白质含量:蛋白质含量=6.25×样品含氮量6、等电点:在某一pH的溶液中,氨基酸上的-NH2和-COOH解离成度完全相等,即氨基酸所带净电荷为零,呈电中性,此时溶液的pH值称为该氨基酸的等电点。

7、结构域( Domain):球状蛋白质的折叠单位。

相邻的超二级结构紧密联系,形成二个或多个空间上明显突出的局部区域。

它与分子整体以共价键相连,不易分离,具有不同的生物学功能。

8、电泳:带电粒子在电场中向着与其本身所带电荷相反的电极移动的过程称为电泳。

9、DNA的呼吸作用:正常情况下,DNA双螺旋结构中的氢键处于不断的断裂和重新形成的平衡状态(特别是稳定性较低的富含A-T的区段,氢键的断裂和再生更加明显),这种现象称为DNA的呼吸作用。

10、DNA的变性:DNA双链间的氢键断裂,空间结构破坏,形成单链无规线团状态的过程叫做DNA的变性,或解链。

什么是分子生物学?

什么是分子生物学?

什么是分子生物学?分子生物学是一门研究生物系统中分子结构和功能的学科。

它主要关注于生命中的基本分子、如蛋白质、核酸、糖等,以及这些分子之间的相互作用和反应。

分子生物学已成为现代生物学的重要分支之一,不仅对于解释生命现象、揭示生命本质有着重要作用,还对于药物研发以及生物技术的应用具有重要意义。

以下是分子生物学相关的细节介绍:1.分子生物学的起源分子生物学主要起源于20世纪50年代,当时科学家们开始使用分离、分析并重组生物分子来探究生命现象。

这个时期,人类首次将DNA重组到另一个生物的细胞中。

之后,随着技术的进步和研究的深入,分子生物学迅速发展成为一个独立的学科门类。

2.分子生物学的重点研究内容分子生物学的研究方向涉及到上千种生物分子的组成、功能以及相互作用。

比如,DNA 序列、基因表达、蛋白质结构和功能、酶学、免疫学等。

这些研究方向对于我们理解生物机理以及开发新的医学和生物技术有着至关重要的作用。

3.分子生物学的主要技术随着科技的发展,研究人员不断开发各种高精度、高通量的技术手段来探究分子生物学中的诸多问题。

其中,PCR 技术、DNA 测序技术、原位杂交和蛋白质免疫共沉淀等技术成果对这个领域产生了重大的影响。

4.分子生物学的应用前景研究人员经过多年的努力,已经将分子生物学应用到众多生物领域中,比如医学、生物工程、生物化学等。

例如,利用基因编辑技术对遗传病进行治疗以及生物制药等。

这些都是分子生物学研究成果的重要体现。

总之,分子生物学是生命科学的重要组成部分,它为广泛的学科提供了有力的工具和理论支持,也为开发更好的药物和改变人类命运提供了重要的思路和方法。

分子生物学(完美版)

分子生物学(完美版)

分子生物学绪论一、学科定义分子生物学是在分子水平研究生物结构和功能,研究生命现象的物质基础和揭示生命过程的基本活动规律的学科。

主要是指遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。

二、研究对象、主要内容1. 对象:从广义的讲:蛋白质及核酸等所有生物大分子结构和功能的研究都属于分子生物学的范畴。

2. 主要内容我们学习的基础分子生物学主要包括以下内容:DNA 、染色体及基因组(分子生物学的物质基础)DNA 的复制与修复(遗传信息的世代传递,确保其精确的机制) 基因重组(生物变异与进化)RNA 的生物合成(遗传信息传递中的转录过程,转录后的加工) 蛋白质的生物合成(遗传信息传递中的翻译过程,遗传密码子)基因表达调控(基因的时序表达;3~4万个蛋白质编码基因是否意味着只有3万种蛋白质) DNA 操作技术(分子生物学发展的基础、工具)三、发展简史1.理论基础阶段分子生物学是一门深层的理论与实验科学,它必须在自然科学发展到一定的深度后才逐渐形成。

尤其得益于细胞学、遗传学和生物化学的发展。

2.形成发展阶段由于核酸化学的发展,1953年美国科学家Watson 和英国科学家Crick 在前人的基础上(Chargaff, Wilkins 及Franklin 等),提出了DNA 的双螺旋结构模型,为充分揭示遗传信息的传递规律铺平了道路(即本课程中第二章的基础)。

分子生物学的研究对生命科学的发展起着巨大的推动作用,受到国际科学界的高度重视,据统计从1910年到2001年,约50多人次科学家荣获诺贝尔化学奖及生理医学奖。

3.未来发展阶段就基因组研究来说,它遵循的基本思路是:基因组→转录组→蛋白质组。

四、分子生物学在生命科学中的位置1.分子生物学是从生物化学发展出来的一门科学。

2.分子生物学与微生物关系密切,曾认为分子生物学主要是E.coli 的分子生物学。

3.与遗传学的关系,均涉及到遗传信息的载体及传递过程,为相辅相成的学科。

分子生物学

分子生物学

分子生物学1 什么叫分子生物学?它包括哪些内容?分子生物学(molecular biology)有广义和狭义之分。

广义的分子生物学是指从分子水平研究生命现象、生命本质、生命活动及其规律的科学。

事实上它包括了生物学的诸多方面。

狭义的分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与核酸、蛋白质与蛋白质之间相互作用的关系及其基因表达调控机制的学科,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

分子生物学主要包含以下三部分研究内容:1.核酸分子生物学2.蛋白质分子生物学3.细胞信号转导分子生物学2 DNA的复性复性:在一定条件下,变性DNA 单链间碱基重新配对恢复双螺旋结构,伴有A260减小(减色效应),DNA的功能恢复。

3 半保留复制:DNA的复制是将两条亲本链分开,每一条作为合成新链的模板,按碱基配对的规则合成新链,子代DNA的双链中一条是原来的链,另一条是新合成的链,所以称之为半保留复制。

4 何谓DNA的半不连续复制?•顺着解链方向生成的子链,复制是连续进行的,这股链称为前导链。

•另一股链因为复制的方向与解链方向相反,不能顺着解链方向连续延长,这股不连续复制的链称为后随链。

复制中的不连续片段称为冈崎片段(okazaki fragment)。

•前导链连续复制而后随链不连续复制,就是复制的半不连续性。

5 何谓逆转录?常见的逆转录酶主要有哪些?逆转录:RNA指导下的DNA合成作用,以RNA为模板在逆转录酶催化下,由dNTP聚合成DNA的作用,新生DNA分子存有RNA基因组的信息。

逆转录酶:又称为反转录酶,为依赖RNA的DNA聚合酶。

逆转录酶是多功能酶,有三种酶活性:1. 逆转录活性:即以RNA为模板合成DNA2. RNase活性:水解RNA:DNA中的RNA3. DNA pol活性:以DNA为模板合成DNA6 遗传重组的类型:1.同源重组(homologous recombination);2.位点特异性重组(site-specific recombination);3.转座重组(transposition recombination);4.异常重组(illegitimate recombination)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章1.自然界分布最广、个体数量最多、与人类关系最为密切的有机体是()。

2.细胞是()的基本单位,是()的基本单位,是()的基本单位,是()的基本单位。

3.植物细胞的()和()有类似溶酶体的功能。

4.与动物细胞相比,植物细胞所特有的结构是()、()和()。

5.目前发现最小、结构最简单的细胞是()。

6.原核细胞遗传信息量小,主要的遗传信息载体仅有一个()构成。

7.动物的各类分泌细胞大都具有一些共同特性,例如细胞内有大量()细胞器以及发达的()和()细胞器。

1. 下列哪些不是真核细胞和原核细胞共有的()A 一分为二的生殖方式B 具有细胞壁和细胞膜C 具有核糖体和DNAD 具有细胞骨架和内质网2. 以下对病毒特征的描述错误的是()A 没有细胞质膜B 不分裂,考宿主细胞复制C 没有核糖体蛋白合成体系D 有DNA和RNA两种核酸3. 真核细胞的染色质主要是由以下成分构成()A DNA、RNA和组蛋白B DNA、组蛋白和非组蛋白C DNA、RNA和非组蛋白D RNA、组蛋白和非组蛋白4. 原核细胞不具备下列哪种结构()A 核小体B 环状DNAC 叶绿素D 核外DNA5. 下列一种细胞最原始()A 病毒B 支原体C 古细菌D 真核细胞6. 以下哪一项不是原核生物的特征()A 有性繁殖B 光合作用C 固氮作用D 运动7. 哪些因素限制细胞的大小()A 表面积与体积比B 细胞核遗传信息量C 细胞物质的交流运输D 上述所有因素8. 下列对细胞特征描述错误的是()A 哺乳动物红细胞高度特化,细胞内无细胞核B 器官的大小与细胞数量和大小有关C 细胞质是细胞内除细胞核以外的原生质D 病毒是迄今发现的最小、最简单的有机体第三章1.光学显微镜的分辨率为(),电子显微镜的分辨率可达()。

2.观察细胞表面形貌特征的细胞生物学技术是()。

3.因为通体透明,生命周期短,繁殖迅速等原因,()已经成为发育生物学研究的重要模式生物。

4.在动物培养中,从机体直接取出培养的细胞被称为()。

5.负染色是用()来增强电子的散射能力,从而衬托出样品的精细结构。

1.动物细胞在体外培养的条件下生长情况是()A 能无限增值B 不能增值分裂而很快死亡C 经过有限次数分裂后最终都要死亡D 一般进行有限次数分裂后死亡,但少数情况下有些细胞发生了遗传突变,获得了无限增值的能力2.激光扫描共焦显微技术的特点是()A. 进行光切片B. 进行激光切割C. 检测自发荧光D. 产生微分干涉差3. 扫描电镜可以用于()A. 获得细胞不同切面的图像B. 观察活细胞C. 定量分析细胞中的化学成分D. 观察细胞表面的立体形貌4. 细胞融合是一个复杂的过程,在此过程中()A. PEG可以诱导融合B. 用活的仙台病毒可以促进融合C. 不会形成异核体D. 只有同类细胞才能融合5. 从电镜来看,下列各项中()是不正确的A. 电镜用的是电子束,而不是可见光B. 电镜样品要在真空中观察,而不是暴露在空气中C. 电镜和光镜的样品都需要彻底脱水并染色D. 电镜既可以看细胞内部结构,也可以看细胞表面结构6. 如果对重建生活细胞的有丝分裂过程中的三维形态感兴趣,你将选择哪种技术()A. 冰冻时刻断裂技术B. 激光共焦扫描术C. 微分干涉差技术D. 透射电镜技术判断:1.荧光显微技术中同一样品只能用一种荧光素标记。

2.相差显微镜可以对活细胞进行动态观察。

3.因为电子束的穿透力有限,电镜制样时要求样品很薄,一般为数十纳米。

4.PAS反应能特异显示DNA的分布。

5.对显微镜来说,最重要的性能参数是分辨率。

6.原位杂交技术只能在光学显微镜水平上应用。

7.相差、干涉差、倒置显微镜和激光共焦显微镜都可以用于观察活细胞。

8.电镜的实际分辨率受到生物制样技术的限制,实际分辨率通常低于0.2nm。

9.原位杂交技术可以将特异核酸序列和蛋白质在细胞内定位。

10.直接来自有机体组织的细胞培养称为原代培养。

11.差速离心能将细胞核单独分离出来。

第四章填空:1.膜脂主要的三种类型是()、()和()。

2.细胞膜蛋白的流动性可以通过()和()实验进行证实。

3.质膜的流动镶嵌模型强调了膜的()和()特性。

4.脂筏中富含()和()两种膜脂成分。

5.膜脂最基本的运动方式是()。

选择:1.影响细胞膜流动性的因素有()A. 温度B. pHC. 细胞膜蛋白质D. 细胞骨架E. 胆固醇含量2.下列哪个因素可以使细胞膜流动性增加()A.降低温度B. 增加不饱和脂肪酸的含量C. 增加鞘磷脂的含量D.增加脂肪酸链的长度3.有关膜蛋白的流动性下列哪项说法是错误的()A. 用药物抑制细胞能量的转换,膜蛋白的扩散速率下降B. 降低温度,膜蛋白的扩散速率显著下降C. 膜蛋白在脂双层二维溶液中的运动是自发地热运动D. 用阻断微丝形成的药物松弛素B处理细胞后,膜蛋白的流动性大大增加4.红细胞膜蛋白不包括()A. 血影蛋白B. 带3蛋白C. 血红蛋白D. 肌动蛋白判断:1.在生物膜的脂质双分子层中含不饱和脂肪酸越多,相变温度越低,流动性也越大。

2.原核生物和真核生物细胞质膜内都含有胆固醇。

3.膜的流动性不仅是膜的基本特征之一,同时也是细胞进行生命活动的必要条件。

4.生物膜是指围绕在细胞最外层,由脂质和蛋白质组成的膜。

5.为获得有生物活性的膜蛋白,常采用离子去垢剂。

第五章1. 主动运输根据能量来源可以分为()、()和()2. 协助扩散和主动运输的相同之处主要在于都需要(),主要区别在于()3. 离子通道可分为()、()、()三种不同形式4. 胞吞可分为两种类型:胞吞物质若为溶液,则称为(),若胞吞物为大的颗粒,形成的囊泡较大,则称为()5. 与载体蛋白相比离子通道具有三个显著特征,一是具有(),二是离子通道没有(),三是()6. Na+进出细胞有三种方式()、()、()7. ATP驱动泵可根据其结构和功能特性分为4类,其中()、()和()只转运离子,而()主要转运小分子8. 细胞内外离子的差别分布主要取决于:一套特殊的()的活性和质膜本身脂双层的()特性1. 葡萄糖由消化道进入小肠上皮是依赖()A. 同向转运B. 协助扩散C. 自由扩散D. 反向转运2. 钠钾泵的特征为()A.具有ATP酶活性B. 由大小两种亚基组成C. 钠离子的结合位点位于细胞膜外侧D. 乌本苷为其抑制剂E. 逆浓度梯度运输3. 肾小管上皮细胞吸收氨基酸时,通过()来逆浓度梯度运输的A. 与钠离子相伴的运输B.与钾离子相伴的运输C. 与钙离子相伴的运输D. 载体蛋白利用ATP能量的运输4. 下列分子中不能通过膜蛋白脂双层的是()A. 二氧化碳B. 乙醇C. 尿素D. 胆固醇5. 人工脂双层对不同分子的相对透性由大到小的排列是()A. H2O、葡萄糖、甘油、Na+B. H2O、Na+、葡萄糖、甘油C. H2O、尿素、葡萄糖、K +D. H2O、甘油、K + 、葡萄糖6. 胰岛素进出细胞的方式为()A. 被动扩散B.协助扩散C. 主动运输D. 胞吞-胞吐作用7. 下列对协助扩散描述不正确的是()A. 转运速率高于简单扩散B. 需要膜转运蛋白的“协助”C. 对物质的转运是非特异性的D. 物质顺浓度梯度或电化学梯度转运8. 维持细胞内低钠高钾的是()A. Na+ -K +泵B. Na+通道蛋白C. K +通道蛋白D. Na+ -K +通道蛋白9. 下列有关钙泵叙述错误的是()A. 一种跨膜蛋白,与Na+ -K +泵的α亚基有高度同源性B. 细胞内钙调蛋白与之结合调节钙泵的活性C. 钙泵每消耗1分子ATP,转运2个Ca 2+D. 钙泵仅存在于细胞膜上,转运钙的方向是将其泵出细胞外10. 有关协同运输,下列错误的是()A. 协同运输必须有载体蛋白参与B. 动物细胞只能以协同运输的方式转运葡萄糖C. 动物细胞常通过驱动的反向转运来调节细胞内的pHD. 同向转运的载体蛋白有两个结合位点必须同时与Na+和转运分子结合后才能进行同向转运11. 下列运输方式中不能用来运输K +的是()A. 自由扩散B. 离子通道C. Na+ -K +泵D.协同运输12. 胞饮小泡的形成过程中,特意捕获被转运分子的是()A. 网格蛋白B. 结合素蛋白C. dynaminD. clathrin13. 有关动植物细胞的主动运输,下列错误的是()A. 动物细胞质膜上有Na+ -K + ATPase,而植物没有B. 动物细胞通过对Na+和K +的运输建立细胞的电化学梯度C. 植物细胞质膜上有H+ ATPase,而动物细胞没有D. 动物细胞通过Na+ -K +泵维持渗透平衡E. 植物细胞通过H+泵维持细胞pH14. 下列运输方式中不需要消耗能量的是()A. 胞吞作用B. 胞吐作用C. 同向转运D.协助扩散15. 下列关于膜电位的描述中,错误的是()A. 静息电位主要由K +的外流形成B. 质膜对Na+的通透性大于K +的是产生静息电位的主要原因C. 静息状态时膜电位为负值D. 受Na+ -K +泵活动影响第六章1.原核细胞的呼吸酶定位在质膜上,而真核细胞则定位在()2.组成线粒体内膜和外膜脂和蛋白质比例不同,从而造成了内膜比外膜()低3.线粒体内膜上参与电子传递的四个复合物分别称为()4.线粒体由膜包围的腔有2个,分别是(),叶绿体膜包围的腔有3个,自外向里分别是()5.线粒体各部分结构中有各自特殊的标记酶,外膜是(),膜间隙是(),内膜是(),基质是苹果酸脱氢酶6.三羧酸循环和氧化磷酸化过程分别在线粒体()部位进行7.线粒体和叶绿体电子传递链中主要电子载体均为四类,为分别为()8.光合作用的电子传递过程是在两个光系统中进行的,其反应中心色素分别成为()它们位于叶绿体()结构上9.当植物缺乏()时,会发生循环光合磷酸化,将光系统I产生的电子经过铁氧还蛋白后,传递给()和(),从而流回光系统I10.植物细胞中具有特殊的质体细胞器,它可以被分为三类,包括()11.内共生假说认为线粒体和叶绿体的祖先为()12.光合作用的功能单位光和单位是由()和()组成13.ADP磷酸化有2种途径,分别是()和()14.高等植物碳同化有3条途径()1. 提供合成ATP能量的跨膜质子梯度发生在()A. 线粒体内膜B.线粒体外膜C.叶绿体内膜D.叶绿体外膜2. 光合磷酸化与氧化磷酸化作用机制的相似性表现在()A. 化学渗透假说B. ATP合酶的结构C. ATP的来源D. 自主性细胞器3. F0-F1 ATPase 是()催化ATP生成的复合物A. 线粒体内膜上B. 细菌胞质中C. 叶绿体内膜上D. 细胞膜内侧4. 下列那些组分与线粒体和叶绿体的半自主性相关()A. 环状DNAB.自身转录RNAC.翻译蛋白质体系D.全是5. 下列哪种反应发生在线粒体基质中()A. 糖酵解B. 三羧酸循环C. 景天酸代谢D. 光合磷酸化6. 碳同化中最重要、最基本的途径是()A. 卡尔文循环B. C4途径C. CAM途径D. C3途径7. 关于线粒体上ATPase 的作用的变构机制,说法错误的是()A.跨线粒体内膜的质子梯度驱动ATP合成B.质子梯度的作用在于促使ATP从酶分子上解脱C. ATPase上有3个构象相同的β亚基D. ATPase基部的质子流能引起合酶旋转和构象变化8. 光合磷酸化与氧化磷酸化中质子梯度的描述正确的是()A. mit基质中浓度低,膜间隙浓度高B. chl基质中浓度低,类囊体腔浓度高C. 通过Q循环,每传递1对电子转移4个H+D. mit和chl主要依靠质子泵建立质子梯度9. 与细菌质膜组成最相像的是()A. 线粒体外膜B. 线粒体内膜C. 叶绿体外膜D. 线粒体内膜10. 在线粒体电子传递链中,只有()不能转移质子A.复合物ⅠB.复合物ⅡC.复合物ⅢD.复合物Ⅳ11. 如果叶绿素反应中心吸收了700nm波长的光,那么光合作用单位的天线色素分子一定是吸收()A. <700nm波长的光B. >700nm波长的光C. =700nm波长的光D. 所有可见光12. 下列关于线粒体描述错误的是()A. 动物和植物细胞都具有大量的线粒体B. 心肌细胞中平均线粒体数量比肝细胞多C. 线粒体是动态的细胞器D. 自主性细胞器13. 呼吸链的组成顺序为()A. NADH脱氢酶、Cyt bc1复合物、Cyt氧化酶、CoQB. Cyt bc1复合物、NADH脱氢酶、Cyt氧化酶、CoQC. CoQ、NADH脱氢酶、Cyt bc1复合物、Cyt氧化酶D. NADH脱氢酶、CoQ、Cyt bc1复合物、Cyt氧化酶第七章1.植物细胞没有溶酶体结构,但有一些细胞器或结构中有溶酶体的酶类,能执行类似溶酶体的功能,它们是()、()、()。

相关文档
最新文档