医学分子生物学(中南)全套PPT课件
《医学分子生物学》PPT课件
Molecular Basis of Diseases Formation
基因结构与表达异常与疾病
• 人类疾病如白血病、恶性肿瘤、糖尿病、 神经退行性疾病、心脑血管、高血压等 的发生和发展都涉及到有关蛋白质及其 复合物的结构、功能和相互作用异常。
• 人体内蛋白质分子结构和功能的异常 是疾病的发生和发展的主要原因 。
b. 错义突变 (missense mutation) c. 无义突变 (nonsense mutation) d. 终止密码子突变或延长突变
e. 起始密码子突变(initiation codon mutation) f. 非编码序列点突变 (point mutation in noncoding sequence)
•亮氨酸的密码子UUA,中间的U变为A这样 一个碱基变化就会成为(终止密码子)UAA。
• 当DNA分子中一个终止密码发生突变,成 为编码氨基酸的密码子时,多肽链的合成 将继续进行下去,肽链延长直到遇到下一 个终止密码子时方停止,因而形成了延长 的异常肽链,这种突变称为终止密码突变 (termination codon mutation)或延长突 变(elongtion mutation)。
3. 插入(insertion)
基因突变的类型
4. 倒位是一段核苷酸序列方向倒转:基因 内部的DNA序列重组,使一段DNA序 列的方向倒转。
5. 配子突变与体细胞突变 6. 动态突变指串联重复拷贝数随世代的传
递而改变(dynamic mutation)
(二) 不同的基因突变引起不同的遗传效应
(1)碱基置换突变 (substitution mutation) a. 同义突变 (consense mutation)
医学分子生物学全套课件
未来医学领域的发展趋 势和挑战
06
基因诊断和基因治疗技术进展
基因诊断方法原理及应用
基因诊断方法原理
通过检测特定基因序列或表达水平的变化,判断个体是否携带某种遗传病基因或存在基因突变,为疾 病的预防、诊断和治疗提供依据。
应用领域
广泛应用于遗传性疾病、肿瘤、感染性疾病等的诊断和治疗,如囊性纤维化、乳腺癌、艾滋病等。
等。
药物研发
通过分子生物学技术研究药物 与靶标的作用机制,为药物设 计和优化提供理论支持。
个性化医疗
基于患者的基因组信息,制定 个性化的治疗方案,提高治疗 效果和减少副作用。
生物治疗
利用基因工程、细胞工程等技 术手段开发新的生物治疗方法 ,如基因疗法、细胞疗法等。
02
基因与基因组结构功能
基因概念与分类
重组技术原理及应用
重组技术原理
利用DNA链的断裂和重连特性,在 体外将不同来源的DNA片段连接成 新的DNA分子。
基因克隆
将目的基因插入载体DNA,构建重 组DNA分子,导入受体细胞进行扩 增和表达。
基因敲除
利用重组技术将特定基因从基因组中 删除或失活,研究基因功能或制备基 因敲除动物模型。
基因治疗
帕金森病基因治疗
利用病毒载体将多巴胺合成酶基因导入患者大脑中,提高多巴胺水平,改善帕金森病症状,临床试验已进入后期 阶段。
未来发展趋势预测
精准医疗
随着基因组学、蛋白质组学等技 术的发展,基因诊断和基因治疗
将更加精准、个性化。
多学科交叉融合
医学分子生物学将与生物信息学、 合成生物学等多学科交叉融合,推 动基因诊断和基因治疗技术的创新 发展。
遗传病治疗
利用基因克隆、基因敲除等技术研究 遗传病的发病机制,为遗传病的治疗 提供新思路和方法。
医学分子生物学_PPT课件
分子生物学技术:
由生物化学、生物物理学、细胞生物学、 遗传学、应用微生物学及免疫学等各专业技术 的渗透、综合而成,并在此基础上发明和创造 了一系列新的技术。 例如:DNA及RNA的印迹转移、核酸分子杂 交、基因克隆、基因体外扩增、DNA 测序等, 形成了独特的重组DNA技术及其相关技术。
2. 前体mRNA分子的拼接,去除内含子序列,连接成 成熟mRNA; 3. 发现单基因遗传病的基因结构的变异; 4. 从cDNA序列推导出蛋白质的一级结构; 5. 根据DNA序列合成基因,并与载体连接,使之在细 菌中表达,合成活性蛋白质,开创了基因工程。
2016/9/3
37
6. 基因的人工合成
1978年体外首次成功地人工合成第一个完
☻基因工程和蛋白质工程
外源DNA与载体在体外进行连接,或在基因水
平上进行有目的的定向诱变。
生物技术进入了分子水平,基因(或DNA)也 进入了社会生产和人们生活的方方面面。
2016/9/3 16
按照自己的意愿和社会需求改造基因,制备
各种具有生物活性的大分子。
DNA、RNA 和蛋白质成为人类治病、防病的一
的遗传密码,证明DNA分子中的遗传信息是以三联密
码的形式贮存。 遗传密码在生物界具有通用性。
2016/9/3
29
2016/9/3
30
2016/9/3
31
4. 中心法则的建立
1958 年, Crick 提出了分子生物学的中 心法则(central dogma)。 中心法则是分子遗传学基本理论体系。
整基因。 直接证实了Mendel G在1865年发现的遗传 因子(基因)的化学本质,就是 DNA分子。 DNA分子是多种多样生命现象的物质基础。
分子生物学(共19张PPT)
04
蛋白质的结构与功能
蛋白质的分子组成与结构
氨基酸通过肽键连 接形成多肽链,即 蛋白质的一级结构 。
多条多肽链组合在 一起,形成蛋白质 的三级结构。
蛋白质的基本组成 单位是氨基酸,共 有20种常见氨基酸 。
多肽链经过盘绕、 折叠形成二级结构 ,主要形式包括α螺旋和β-折叠等。
在特定条件下,蛋 白质可形成四级结 构,由多个亚基组 成。
发展历程
从20世纪50年代DNA双螺旋结构 的发现开始,分子生物学经历了 飞速的发展,成为现代生命科学 中最为活跃和前沿的领域之一。
分子生物学的研究对象与任务
研究对象
主要包括DNA、RNA、蛋白质Байду номын сангаас生 物大分子,以及它们之间的相互作用 和调控机制。
研究任务
揭示生物大分子的结构、功能及其相 互作用机制;阐明基因表达调控的分 子机制;探索生物大分子在生命过程 中的作用和意义。
转录因子
01
真核生物中存在大量转录因子,它们与DNA特定序列结合,激
活或抑制基因转录。
表观遗传学调控
02
通过DNA甲基化、组蛋白修饰等方式,改变染色质结构,影响
基因表达。
microRNA调控
03
microRNA是一类小分子RNA,通过与mRNA结合,抑制其翻
译或促进其降解,从而调节基因表达。
基因表达调控的分子机制
发育生物学研究生物体的发育过程,而分子 生物学则揭示了发育过程中基因表达和调控 的分子机制。
02
DNA的结构与功能
DNA的分子组成与结构
DNA的基本组成单位
脱氧核糖核苷酸,由磷酸、脱氧核糖 和碱基组成。
DNA的碱基
DNA的双螺旋结构
医学分子生物学PPT课件
1、孕育阶段(1869-1952)
※ DNA是遗传物质
• 1869 年 , 德 国 , Miescher, 发 现 核 素 (chromatin) • 1928年,英国,Griffith, 发现转化现象 • 1944年,美国, Avery ,肺炎双球菌 (离体实验 ) • 1952 年, Hershey&Chase, 噬菌体 T2 的感染实验
基因导入,标志人类基因治疗的开始。 • 1990年,美国启动人类基因组计划 中国:人、鸡、水稻、表皮葡萄球菌、 痢疾杆菌、赖氏钩端螺旋体 • 2000年,后基因组计划(蛋白质组计划)
三、医学分子生物学研究领域
1、人体发育调控和功能调控
¶发育、分化与衰老 ¶细胞增殖 ¶神经内分泌和免疫调控
2、基因与疾病
3、发展阶段(1973-)
※ DNA重组及其它
• 1972 年美国斯坦福大学的 Berg P 等用限
制 性 内 切 酶 EcoRⅠ 在 体 外 切 割 猴 病 毒
SV40 和λ噬菌体 DNA ,再用 T4DNA 连接酶 把两种不同来源的DNA片段连接成一个片 段,完成了世界上第一个DNA体外重组。
•1970年,Smith ,限制性核酸内切酶
•1972年,Mertz-Davis,连接酶
Rosalind Franklin
1953, JamesWatson and Frances Crick 1962,Nobel Prize
•1970 年,美国约翰· 霍布金斯大学的
h. smith 于偶然中发现,流感嗜血杆 菌 (haemophilus influenzae)能迅 速降解外源的噬菌体 dna ,其细胞提 取液可降解 e.coli dna ,但不能降 解自身 dna ,从而找到 hindⅱ 限制 性内切酶。
完整版《分子生物学》 ppt课件
底物
模板 Ⅰ、Ⅱ、Ⅲ
识别 起始 延伸 终止
启动子(-10区、-35区) 转录单位相关概念 CAP位点 识别过程
不依赖ρ因子的终止子: 内在终止子(intrinsic terminator ) 依赖ρ因子的终止子( ρ-dependent terminator )有发夹结构,但GC含量少, 无U串
核mRNA内含子的剪接 Ⅰ内含子的剪接 Ⅱ类内含子的剪接 反式剪接
核mRNA的 拼接体的拼接
类型ⅰ 自我拼接
类型ⅱ自我 拼接
剪接、3’末端CCA结构、碱基修饰 内含子切除(核酸酶的作用,不是
转酯反应) 连接外显子
蛋 白 参与蛋白质生物合成的物质 质 的 蛋白质生物合成过程 生 物 蛋白质合成的干扰与抑制 合 成 蛋白质的降解
一般模式 复制型转座模式 非复制型转座模式 保守型转座模式 TnA转座模式
通过反义RNA的翻译水平控制 甲基化作用控制转座酶合成及
其与DNA的结合
转座引起插入突变 造成插入位点靶DNA的少量碱基
对重复 插入位点出现新基因 引起染色体畸变 转座引起的生物进化 切除效应 外显子改组
动子:(上游控制元件),-165~ -40,影响转录的频率。
♠ -25bp:TATA盒(Hogness box),识别起 始位点
♠ -75bp:CAAT盒(CAATCT) ,决定启动子
♠ -110bp:GC盒的(G转G录GC频G率G),R调N控A起始聚和合酶I的启动子
转录频率
RNA聚合酶Ⅱ的启动子
分子生物学 Molecular Biology
总结复习 Review and Summarize
2020/12/22
1
绪论
引言 分子生物学简史 分子生物学的研究内容 分子生物学进展 分子生物学展望
医学分子生物学课件
医学分子生物学课件xx年xx月xx日•分子生物学基础知识•医学分子生物学的核心概念•医学分子生物学的基本技术•医学分子生物学在医学中的应用目•医学分子生物学面临的挑战与未来发展录01分子生物学基础知识分子生物学是一门以分子为研究对象的科学,主要从分子水平上研究生物大分子的结构和功能,以揭示生命现象的本质和规律。
分子生物学定义分子生物学研究范围广泛,涉及生物大分子的结构、化学本质、功能、基因表达调控等方面。
它是一门高度综合性的学科,需要结合化学、物理学、数学等多学科的知识和方法进行研究。
分子生物学特点分子生物学的定义与特点疾病发生机制的研究分子生物学研究疾病的发病机制,探索疾病的发生、发展过程中的分子机制,为疾病的预防、诊断和治疗提供理论依据。
分子生物学在医学领域的重要性药物研发与治疗分子生物学对药物的作用机制、药物的设计、合成及筛选等方面提供了重要的理论和技术支持,为新药研发提供了更多的可能性。
医学遗传学基础分子生物学技术可以对人类基因组进行测序、定位和克隆,对遗传性疾病的发病机制、传递规律和诊断治疗提供重要帮助。
发展历程自20世纪50年代DNA双螺旋结构被发现以来,分子生物学经历了飞速发展,不断有新的技术和理论被发现和应用。
未来趋势未来,分子生物学将继续深入研究分子结构和功能的关系,探索基因表达和调控的机制,发展新的诊断和治疗技术,为医学和生物科学领域带来更多的突破和创新。
分子生物学的发展历程与未来趋势02医学分子生物学的核心概念基因是具有遗传效应的DNA片段,是决定生物性状的基本单位。
基因定义指一个细胞或者生物体所携带的全部基因的总和。
基因组定义由大约20000到25000个基因组成,是人体细胞核和细胞质内DNA的总和。
人类基因组基因与基因组转录与翻译转录定义01是指以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。
翻译定义02是指以mRNA为模板,合成具有一定氨基酸序列的蛋白质的过程。
《分子生物学全套》ppt课件
分子生物学是一门从子水平研究生 物大分子的结构和功能的科学,主要 关注DNA、RNA和蛋白质等生物大 分子的复制、转录、翻译和调控等过 程。
分子生物学特点
以分子为研究对象,阐明生命现象的 本质;与多学科交叉融合,推动生命 科学的发展;实验技术手段不断更新 ,提高研究效率和准确性。
分子生物学发展历程
分子生物学研究内容及方法
研究内容
包括基因和基因组的结构与功能、DNA损伤与修复、基因表达的调控、蛋白质 组学的研究以及疾病产生的分子基础等。
研究方法
包括基因克隆与表达、蛋白质分离与纯化、PCR技术、基因敲除与敲入、高通 量测序技术、生物信息学分析等。这些方法的应用使得分子生物学研究更加深 入和广泛。
阔前景。
下一代测序技术在分子生物学中应用
下一代测序技术原理
基于大规模并行测序的原理,一次可对数百万至数十亿个DNA分 子进行测序。
测序数据分析
包括序列比对、变异检测、基因表达量分析等,以揭示基因组的结 构和功能。
下一代测序技术的应用
在疾病诊断、个性化医疗、物种鉴定和进化生物学等领域发挥重要 作用。
非编码RNA与疾病关系
非编码RNA异常表达与多种疾病相关,如肿瘤、心血管疾 病等,可作为疾病诊断和治疗的新靶点。
非编码RNA研究前景
随着高通量测序技术和生物信息学发展,非编码RNA研究 将更加深入,为疾病防治提供新思路和新方法。
合成生物学在分子生物学中应用前景
合成生物学概念及研究范畴
合成生物学是一门新兴交叉学科,旨在通过设计和构造新的生物部件、系统和机器来理解 和操控自然生物系统。
RNA产物。
影响因素
包括DNA模板的序列和 结构、RNA聚合酶的活 性和选择性、转录因子
医学分子生物学中南大学课件
医学分子生物学的应用和发展趋势
• 请输入您的内容
02
基因组与基因组学
基因组的组成和结构
• 请输入您的内容
基因表达的调控机制
• 请输入您的内容
基因组学的研究方法和应用
• 请输入您的内容
03
基因克隆与基因转移技术
基因克隆的基本原理和方法
• 请输入您的内容
基因转移技术的分类和应用
• 请输入您的内容
医学分子生物学中南大学课 件
2023-11-06
目录
• 分子生物学概述 • 基因组与基因组学 • 基因克隆与基因转移技术 • 蛋白质组学与生物信息学 • 分子生物学与医学研究 • 病例分析报告
01
分子生物学概述
分子生物学的定义和研究内容
• 请输入您的内容
分子生物学的发展历程和重要性
• 请输入您的内容
基因治疗的与生物信息学
蛋白质组的组成和结构
• 请输入您的内容
蛋白质组学的研究方法和应用
• 请输入您的内容
生物信息学在分子生物学中的应用
• 请输入您的内容
05
分子生物学与医学研究
分子生物学在医学研究中的应用
• 请输入您的内容
医学研究中常用的分子生物学技术
• 请输入您的内容
分子诊断和分子治疗的现状和前景
• 请输入您的内容
06
病例分析报告
病例一:基因突变导致的遗传性疾病
• 请输入您的内容
病例二:肿瘤的分子生物学机制
• 请输入您的内容
病例三:病毒感染的分子机制与防治
• 请输入您的内容
感谢您的观看
THANKS
医学分子生物学中南大学课件
THANKS
谢谢您的观看
基因敲除技术
总结词
基因敲除技术是一种利用同源重组原理,定点删除目标基因的技术。
详细描述
基因敲除技术的基本原理是利用同源重组原理,通过构建含目标基因片段的同源重组载体,将其导入受体细胞 ,使载体上的目标基因片段与受体细胞的同源基因发生同源重组,从而定点删除目标基因。基因敲除技术可用 于研究基因功能、疾病治疗等。
干细胞与再生医学的研究与应用
干细胞概述
干细胞应用领域Leabharlann 介绍干细胞的定义、分类及来源。
阐述干细胞在组织工程、器官移植、神经再 生等领域的应用及研究进展。
再生医学技术
前景展望
介绍细胞因子、生长因子等在促进组织再生 中的应用,以及3D打印技术在器官再生中 的最新进展。
分析干细胞与再生医学在未来医疗领域的应 用前景及挑战。
医学分子生物学在神经退行性疾病诊断与治疗中的应用
总结词
早期诊断、病理机制、药物治疗
详细描述
医学分子生物学技术在神经退行性疾病如阿尔茨海默病、帕金森病的诊断中 具有重要作用,可实现疾病的早期诊断和病理机制研究,为药物治疗和新药 研发提供线索。
05
医学分子生物学前景展望
基因治疗与基因药物的开发与应用
生物信息学概述
介绍生物信息学的定义、研究内容 及在医学领域的应用范围。
精准医学与生物信息学
阐述精准医学的概念、技术及生物 信息学在其中的作用,如基因组学 、蛋白质组学、代谢组学等。
生物信息学前沿技术
介绍大数据分析、人工智能、云计 算等前沿技术在生物信息学中的应 用及发展趋势。
前景展望
分析生物信息学在医学研究、临床 诊断、药物研发等领域的前景及挑 战。
医学分子生物学(课件)
染色质的基本功能包括遗传信息的存储、复制和转录,以及细胞周期中染色体的动态变化。
染色质在人类基因组计划、基因组编辑及表观遗传学等研究领域具有重要意义。
RNA和蛋白质合成
04
转录
RNA是在细胞核中以DNA的一条链为模板,通过转录过程合成的。转录是指以DNA的一条链为模板,以核糖核苷酸为原料,合成RNA的过程。
课程总结和展望
06
本课程的总结
分子生物学是研究生物体系分子成分和分子行为的科学,是生命科学领域的重要分支。
本课程介绍了分子生物学的基础理论和基本技能,包括DNA、RNA、蛋白质的合成、基因表达调控以及分子生物学技术在医学中的应用等内容。
通过学习,学生可以了解分子生物学的基本概念和原理,掌握分子生物学实验的基本技能,认识分子生物学在医学领域的重要作用和应用价值。
2023
医学分子生物学(课件)
目录
contents
课程简介分子生物学基础知识基因和染色质结构RNA和蛋白质合成分子生物学与医学的关系课程总结和展望
课程简介
01
理解医学分子生物学的核心概念和原理
掌握分子生物学技术在医学领域的应用方法
培养独立研究和解决问题的能力
课程目标
分子生物学基础
基因、染色体、DNA、RNA、蛋白质等基本概念和结构
分子生物学的起源
DNA双螺旋结构的发现
分子生物学的发展
分子生物学的历史和发展
ቤተ መጻሕፍቲ ባይዱ
基因
基因是生物遗传信息的最基本单元,它编码着生命的蓝图,通过遗传和表观遗传机制控制着生物的各种性状。
中心法则
中心法则是指DNA通过RNA转录并翻译成蛋白质的过程。这是分子生物学的基本原理之一,也是遗传信息传递的关键步骤。
医学分子生物学中南大学课件0
为这是加快癌症研究进程的一条有效途径。
主要的目标是绘制遗传连锁图、物理图、转录图,并完 成人类基因组全部核苷酸序列测定。测出人体细胞中 24 条染色体上全部 30 亿对核苷酸的序列,把所有人类基因 都明确定位在染色体上,破译人类的全部遗传信息。
HGP是人类自然科学史上与曼哈顿原子弹计划和阿波罗
登月计划相媲美的伟大科学工程。
重组DNA (recombinant DNA)技术是近 代分子生物学技术的核心。 基因操作 (gene manipulation) 分子克隆 (molecular cloning) 基因克隆 (gene cloning) 基因工程 (gene engineering)
2019/3/4 13
分子医学(molecular medicine):
1975 with Howard Temin and Renato Dulbecco for discovering reverse transcriptase.
2019/3/4
35
5.DNA序列分析技术:
双脱氧末端终 止法:1977年, 剑桥大学 Sanger F等发 明。 化学裂解法:
美国Maxam I和 Gilbert W发明。
Friedeich Miescher
2019/3/4
20
自核酸被发现以来的相当长时期内,
对它的生物学功能几乎毫无所知。 1928
年(Frederick Griffith)以后,核酸功能
研究取得了重大进展。
2019/3/4
21
In 1928, an experiment of Frederick Griffith using pneumonia bacteria and mice
分子生物学ppt课件完整版
rRNA
核糖体RNA,是核糖体的组 成部分,参与蛋白质的合成。
13
其他RNA
如miRNA、snRNA、 snoRNA等,在基因表达调控 、RNA加工等方面发挥作用
。
RNA的功能与调控
遗传信息传递
RNA作为遗传信息的传递者,将DNA上的遗传信息转录 到mRNA上,再通过翻译合成蛋白质。
基因表达调控
RNA在基因表达调控中发挥着重要作用,如miRNA可以 通过与mRNA结合抑制其翻译,从而影响基因表达。
分子生物学是生物学的重要分支
分子生物学从分子水平上揭示生命现象的本质,为生物学的发展提供了重要的理论基础和 技术手段。
分子生物学推动生物学的发展
随着分子生物学理论和技术的不断发展,生物学的研究领域不断拓宽,研究深度不断提高 。例如,基因编辑技术的出现为遗传病的治疗和农作物遗传改良提供了新的手段。
生物学为分子生物学提供研究对象和背景知识
当DNA受到损伤时,细胞会启动修复机制对损伤进行修复。常见的修
复方式包括直接修复、切除修复和重组修复等。这些修复机制能够确保
遗传信息的稳定性和准确性。
10
03
RNA的结构与功能
2024/1/25
11
RNA的分子组成
核糖核苷酸
RNA的基本组成单位是核 糖核苷酸,由磷酸、核糖 和碱基组成。
2024/1/25
分子生物学的定义
在分子水平上研究生物大分子的 结构和功能,以揭示生命现象本 质的科学。
分子生物学的发展
经历了从DNA双螺旋结构的发现 到基因组学、蛋白质组学等高通 量技术的发展过程。
4
分子生物学的研究内容
基因与基因组的研究
DNA复制、转录与翻译的研究
医学分子生物学PPT课件
基因组特点
基因组具有高度的复杂性 和多样性,同时不同生物 之间的基因组存在显著的 差异。
基因表达调控机制
基因表达概念
基因表达是指基因转录成mRNA并翻 译成蛋白质的过程。
表观遗传学调控
表观遗传学调控是指通过DNA甲基化、 组蛋白修饰等方式对基因表达进行调 控,但不改变DNA序列本身。
基因表达调控
生物体通过多种机制对基因表达进行 精确调控,包括转录水平调控、转录 后水平调控和翻译水平调控等。
05
蛋白质组学研究方法及应 用
蛋白质组学概念及研究内容
蛋白质组学定义
研究生物体或特定细胞类型中所有蛋 白质的科学,包括蛋白质表达、结构、 功能和相互作用等方面。
蛋白质组学研究内容
包括蛋白质表达谱、蛋白质翻译后修饰、 蛋白质相互作用网络等。
蛋白质分离纯化技术
双向凝胶电泳
利用蛋白质的等电点和分子量差 异进行分离,具有高分辨率和高
数据库资源搜索策略
数据库类型
包括核酸序列数据库、蛋白质序列 数据库、结构数据库、基因组数据 库等。
搜索策略
根据研究目的和数据类型,选择合 适的数据库和搜索工具,制定有效 的搜索策略,以获取准确、全面的 数据资源。
序列比对和注释方法
序列比对
通过比较两个或多个生物分子序列的相似性和差异性,来推断它们的结构、功 能和进化关系。常用的序列比对方法包括全局比对和局部比对。
程。
microRNA
通过与mRNA结合,抑 制翻译过程或促进 mRNA降解。
表观遗传调控
通过DNA甲基化、组蛋 白修饰等方式,调控基
因表达。
异常情况对生理功能影响
1 2
转录和翻译异常 导致蛋白质合成异常,影响细胞功能和代谢。
医学分子生物学ppt完整版
通过蛋白质组学技术可以筛选疾病相关的生物标志物,为疾病的早期诊
断和治疗提供新的思路和方法。
06
基因诊断与治疗
基因诊断的原理与方法
原理
基因诊断是基于DNA或RNA水平上的检测,通过检测特定基因序列的存在、缺失或变异,来判 断个体是否携带某种疾病相关的基因。
方法
包括聚合酶链式反应(PCR)、基因测序、基因芯片技术等。这些方法可以检测基因突变、基 因多态性、基因表达水平等,为疾病的早期诊断和预后评估提供依据。
基因编辑技术的发展与挑战
发展
基因编辑技术是一种能够在DNA水平上对基因进行精确编辑的技术,包括CRISPRCas9系统、TALENs和ZFNs等。这些技术的发展为基因治疗提供了新的手段和思路。
挑战
基因编辑技术虽然具有巨大的潜力,但也面临着许多挑战,如安全性问题、伦理问 题等。此外,基因编辑技术的效率和准确性也需要进一步提高和完善。
基因表达的调控
研究基因表达在时间和空间上的调控机制, 包括转录因子、表观遗传学修饰等。
分子生物学与医学的关系
疾病发生的分子基础
分子生物学可以揭示疾病发生的分子 机制,为疾病的预防、诊断和治疗提
供理论依据。
药物设计与研发
分子生物学的发展促进了药物设计与 研发领域的进步,使得药物更加具有
针对性和有效性。
基因治疗的策略与应用
策略
基因治疗是通过向患者体内导入正常的基因或修复患者体内有缺陷的基因,以 达到治疗疾病的目的。根据导入基因的方式不同,基因治疗可分为体外基因治 疗和体内基因治疗。
应用
目前基因治疗已经在多种疾病中进行了尝试,如遗传性疾病、感染性疾病、恶 性肿瘤等。虽然取得了一些成果,但仍存在许多挑战和问题需要解决。
分子生物学(全套课件396P)pptx
DNA修复机制包括直接修复、 切除修复、重组修复和SOS修 复等,用于维护DNA分子的完 整性和稳定性。
PART 03
RNA结构与功能
REPORTING
RNA种类及特点
mRNA(信使RNA)
携带遗传信息,指导蛋白质合成。
rRNA(核糖体RNA)
与蛋白质结合形成核糖体,是蛋白质合成的 场所。
tRNA(转运RNA)
分子生物学(全套课件 396P)pptx
REPORTING
• 分子生物学绪论 • DNA结构与功能 • RNA结构与功能 • 蛋白质合成与功能 • 基因表达调控机制 • DNA损伤修复与重组技术
目录
PART 01
分子生物学绪论
REPORTING
分子生物学定义与发展
分子生物学的定义
在分子水平上研究生物大分子的结 构和功能,究生物大分子的结构和功能方面有很多交 叉,但分子生物学更侧重于在分子水平上揭示生命现象的本质。
与细胞生物学的关系
分子生物学与细胞生物学在研究细胞的结构和功能方面密切相关,但 分子生物学更侧重于研究细胞内的分子机制和信号传导。
与医学的关系
分子生物学在医学领域有着广泛的应用,如基因诊断、基因治疗和药 物研发等,为医学的发展提供了重要的理论和技术支持。
THANKS
感谢观看
REPORTING
识别并携带氨基酸,参与蛋白质合成。
其他非编码RNA
如microRNA、siRNA等,参与基因表达调 控。
RNA转录后加工与修饰
01
02
03
04
5'端加帽
在mRNA的5'端加上甲基鸟嘌 呤帽子结构,保护mRNA不被
降解。
3'端加尾
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重组DNA (recombinant DNA)技术是近 代分子生物学技术的核心。 基因操作 (gene manipulation) 分子克隆 (molecular cloning) 基因克隆 (gene cloning) 基因工程 (gene engineering)
2015-4-13 14
分子医学(molecular medicine): 由于分子生物学渗透进入生物学和医学 的每一分支领域,全面推动了生命科学和 医学的发展,如疾病的发病机理研究、疾 病的诊断和治疗,使医学进入了一个崭新 的时代。
2015-4-13
15
☻遗传性状改变或治疗疾病
可能从某一生物体的基因组中分离出某一特定 功能基因,导入到另一种生物的基因组。
Friedeich Miescher
核酸的生物学功能?
1928年以后,核酸功能研究取得了重大进展
2015-4-13 21
In 1928, an experiment of Frederick Griffith using pneumonia bacteria and mice
2015-4-13 22
2. 核酸功能研究的重大进展 1944年,Avery OT等首次证明肺炎双 球菌的DNA与其转化和遗传有关。 1952年, Hershey AD和 Chase M用 35S和 32p分别标记T2噬菌体的蛋白质和核酸, 感染大肠杆菌。在大肠杆菌细胞内增殖的 噬菌体中都只含有32P而不含35S, 这表明噬 菌体的增殖直接取决于DNA而不是蛋白质。
构。
2015-4-13
8
核酸结构研究的重大进展
Furbery S 等(1949~1952年)应用X线衍 射分析阐明了核苷酸并非平面的空间构象, 提出了DNA是螺旋型结构。 Chargaff等(1948~1953年)用新的层析 和电泳技术分析了组成 DNA的碱基和核苷酸 量,积累了大量的数据,提出了 DNA碱基组 成含量比A=T、G=C的Chargaff规则,为碱 基配对的DNA结构打下了基础。
2015-4-13 23
In 1952, Alfred Hershey and Martha Chase did an experiment which is so significant, it has been nicknamed the ―Hershey-Chase Experiment‖.
2015-4-13 6
分子生物学——从分子水平 研究生命现象及其规律的一门新 兴学科。
它是生命科学中发展最快并 且与其他学科广泛交叉和渗透的 前沿领域。
2015-4-13 7
现代分子生物学的建立
1950年,Astbury在一次讲演中 首先使用“分子生物学(Molecular Biology)‖这一术语, 用以说明它是 研究生物大分子的化学和物理学结
2015-4-13
4
生命科学的发展过程: 整体水平 细胞水平 分子水平
Robert Hooke,1665
Watson,Crick,1953
从整体水平到分子水平示意图
2015-4-13
5
生命科学是研究生命现象和生命活动 规律的一门综合性学科。
生命科学的研究内容: 生命物质的结构与功能,生物与生物 之间及生物与环境之间相互关系。 生命科学的前沿领域: 分子生物学、分子遗传学、细胞生物学、 发育生物学和神经生物学,而分子生物学是 生命科学的核心前沿。
2015-4-13 12
分子生物学技术:
由生物化学、生物物理学、细胞生物学、 遗传学、应用微生物学及免疫学等各专业技术 的渗透、综合而成,并在此基础上发明和创造 了一系列新的技术。 例如:DNA及RNA的印迹转移、核酸分子 杂交、基因克隆、基因体外扩增、DNA 测序等, 形成了独特的重组DNA技术及其相关技术。
2015-4-13 9
DNA双螺旋结构模型的建立
罗沙琳德· 弗兰克林 (Rosalind Franklin, 1920-1958)英国
DNA的X光衍射照片 1952年5月拍摄
10
2015-4-13
DNA双螺旋结构模型的建立
诺贝尔医学与生理学奖 1962年
2015-4-13 11
Watson和Crick的“双螺 旋结构模型”启动了现代分子 生物学及重组DNA技术的发展。 确立了核酸作为信息分子的结 构基础;提出了碱基配对是核 酸复制、遗传信息传递的基本 方式,最终确定了核酸是遗传 的物质基础。
☻基因工程和蛋白质工程
外源DNA与载体在体外进行连接,或在基因
水平上进行有目的的定向诱变。
2015-4-13
16
按照自己的意愿和社会需求改造基因,制备
各种具有生物活性的大分子。
DNA、RNA 和蛋白质成为人类治病、防病的
一类新型的生物制品或药物。
生物技术在农业上用于快速育种,改良品种, 提高农作物的产量、质量以及抗病虫害,抗干旱
19
(一) 核酸分子生物学:
核酸的分子生物学主要研究核酸的结构 与功能。核酸的主要作用是携带和传递遗传 信息,因此形成了分子遗传学。 分子遗传学:形成了比较完整的理论体 系和研究技术,它是目前分子生物学中内容 最丰富、研究最活跃的一个领域。
2015-4-13
20
1. 核酸的发现
1868年,Miescher从脓细胞中 分离出细胞核,用稀碱抽提再加 入酸,得到了一种含氮和磷特别 丰富的物质,当时称其为核素 (nuclein)。 1872年,他又在鲑鱼精子细胞 核中发现了这类物质,而且呈酸 性,故称之为核酸(nucleic acid)。
医学分子生物学
Medical Molecular Biology
第一章 Chapter 1 绪论 Introduction
2015-4-13
1
2015-4-13
2
内容概要
1.分子生物学的定义 2.分子生物学的研究内容
3.分子生物学与生物技术 4.分子生物学与医学
2015-4-13
3
一、分子生物学的定义
等能力。
2015-4-13
17
二、分子生物学的研究内容
2015-4-13
18
分子生物学的主要研究内容 生物大分子的结构、功能,生物大分 子之间的相互作用及其与疾病发生、发展 的关系。主要包含三个方面的内容:
(一)核酸分子生物学 (二)蛋白质分子生物学 (三)细胞信号转导机制研究
2015-4-13