细胞生物学PPT

合集下载

细胞生物学实验PPT课件

细胞生物学实验PPT课件
细胞生物学实验ppt课件
目录
• 引言 • 细胞生物学基础知识 • 实验操作流程 • 实验结果分析 • 结论
01 引言
实验目的
01
02
03
04
掌握细胞生物学的基本 实验技能
了解细胞的结构和功能
学习细胞培养和细胞转 染技术
探究细胞信号转导的机 制
实验背景
细胞是生命的基本单位,是生物体结 构和功能的基础
能量转换
细胞中的线粒体和叶绿体 可以将光能或化学能转换 为细胞可利用的ATP等能 量形式。
信息传递
细胞通过分泌化学信号和 电信号传递信息,协调各 种生理活动。
细胞的生命活动
细胞分裂
通过有丝分裂和减数分裂,细胞 可以复制自身并产生新的子细胞。
细胞分化
在发育过程中,细胞会逐渐失去其 全能性,并获得特定的功能和形态。
定性分析
根据实验结果,对实验现象进行解释 和推理,探究可能的机制和影响因素 。
结果解读与讨论
结果解读
根据实验结果,结合理论知识,对实验结果进行解释和解读,明确实验目的和 结论。
结果讨论
对实验结果进行深入讨论,探讨实验的局限性和改进方向,提出可能的假设和 研究方向。
05 结论
实验总结
实验目的
通过实验,学生能够掌握细胞生物学的基本实验技能,了 解细胞的结构和功能,以及细胞的生命活动规律。
实验步骤
实验包括细胞培养、显微观察、细胞计数等步骤,每个步 骤都有详细的操作说明和注意事项。
实验原理
实验涉及细胞培养、显微观察、细胞计数等技术,通过这 些技术,学生可以深入了解细胞的结构和功能,以及细胞 分裂、分化等生命活动过程。
实验结果
实验结果清晰,学生能够观察到细胞的形态、结构和功能 ,并得出准确的实验结论。

《细胞生物学》ppt课件(2024)

《细胞生物学》ppt课件(2024)
叶绿体
主要功能是进行光合作用,将光能转化为化学能储存在有 机物中。其结构包括外膜、内膜和类囊体,类囊体上附有 大量与光合作用有关的色素和酶。
高尔基体
主要功能是参与蛋白质的加工、分类和包装,形成分泌泡 或分泌颗粒,将其运输到细胞表面或分泌到细胞外。其结 构包括扁平囊泡、大泡和小泡。
2024/1/30
核糖体
2024/1/30
01 02 03 04
推动医学发展
细胞生物学在医学领域有着广泛 的应用,如研究疾病的发病机理 、开发新的治疗方法和药物等。
探索生命起源与进化
通过研究细胞的起源、进化和多 样性,可以深入了解生命的起源 和进化过程,探索生命科学的奥 秘。
6
02
细胞的基本结构与功能
Chapter
2024/1/30
能量代谢的调节机制
受到细胞内能量状态、激素水平、神经调节等多 种因素的影响。
2024/1/30
14
细胞的信号传导与调控
信号传导的基本概念
信号传导的主要途径
信号传导是指细胞通过特定的信号分子和 信号通路,将外界刺激转化为细胞内生物 化学反应的过程。
包括G蛋白偶联受体信号通路、酶联受体信 号通路、离子通道受体信号通路等。
7
细胞膜的结构与功能
2024/1/30
细胞膜的主要成分
01
脂质、蛋白质和糖类
细胞膜的结构特点
02
流动性、选择透过性
细胞膜的功能
03
物质运输、信息传递、能量转换、细胞识别等
8
细胞质的结构与功能
2024/1/30
细胞质的主要成分
水、无机盐、脂质、蛋白质、糖类等
细胞质的结构特点
胶态、不均一性

细胞生物学PPT

细胞生物学PPT
4. 合成生物大分子
外核膜上附着核糖体,参与蛋白质合成。
第二节 核纤层与核骨架
一、核纤层(nuclear lamina)
紧贴内核膜的一层高电子密度纤维蛋白网,核内与核骨架相 连,核外与中间纤维相连。
• 核纤层由核纤层蛋白(lamin)构成。
• 核纤层的作用:
1.支持核膜,固定核孔位置; 2.为染色质提供附着点; 3.参与细胞分裂中染色质凝集的调节; 4.与核膜的裂解和重建有关.
• 活性染色质 (active chromatin):具有转录活性的 染色质,为常染色质。
• 非活性染色质 (inactive chromatin):没有转录活性 的染色质,占大多数,包括常染色质与异染色质。
三、染色质的结构与装配
• 染色质的基本结构单位 — 核小体 (nucleosome) (一)染色质的一级结构 -- 11nm 染色质纤维
• 结构异染色质 (constitutive-heterochromatin) 为主
除复制期以外,在整个细胞周期均处于聚缩状态,形成多 个染色中心。多定位于着丝粒、次缢痕。
• 兼性异染色质 (facultative-heterochromatin) 在某些细胞类型或一定的发育阶段, 原来的常染色质聚缩, 并丧失基因转录活性, 变为异染色质,如X染色体随机异染 色质化失活。 异染色质化可能是关闭基因活性的一种途径。
主动转运过程中,核孔复合体上的酶水解ATP提供能量。
• 核孔复合体上还存在识别RNA或RNA结合蛋白的受体,将 转录产物RNA由细胞核转运到细胞质。
• 核孔复合体的选择性转运具有双向性 — 核输入与核输出:
细胞质
DNA复制、RNA转录相关的酶类 RNA、RNA结合蛋白等

细胞生物学全套ppt课件(共277张PPT)

细胞生物学全套ppt课件(共277张PPT)

激光共聚焦显微镜
结合激光扫描和共聚焦技术,实现三 维重建和动态观察,用于研究细胞内 分子定位和相互作用。
电子显微镜
利用电子束代替光束,通过电磁透镜 成像,可观察细胞的超微结构,如透 射电子显微镜和扫描电子显微镜。
分子生物学技术在细胞生物学中应用
DNA重组技术
通过体外操作DNA片段,实现基因克隆、表达和调控研究,用于 解析基因功能和调控网络。
细胞周期调控异常可能导致细胞增殖失控和肿瘤发生。因此,深入研究 细胞周期调控因子和机制对于理解细胞增殖、分化和癌变等生物学过程 具有重要意义。
06
细胞分化、衰老与凋亡
细胞分化类型和影响因素
细胞分化类型 多能干细胞分化
专能干细胞分化
细胞分化类型和影响因素
01
终末分化细胞
02
影响因素
基因表达调控
03
系。
蛋白质组学技术
利用质谱技术、蛋白质芯片等方 法,研究细胞内蛋白质组成、相 互作用和修饰等,揭示蛋白质在
细胞生命活动中的作用。
生物信息学分析
运用生物信息学方法对基因组学 和蛋白质组学数据进行挖掘和分 析,发现新的基因、蛋白质和调 控网络及其与细胞生物学过程的
关系。
THANKS
胞内外环境的稳定。
物质跨膜运输方式及机制
被动运输
01
包括简单扩散和易化扩散两种方式,不需要消耗能量,物质顺
浓度梯度进行运输。
主动运输
02
包括原发性主动转运和继发性主动转运两种方式,需要消耗能
量,物质逆浓度梯度进行运输。
膜泡运输
03
包括出胞和入胞两种方式,通过膜泡的形成和移动来实现物质
的跨膜运输。
膜蛋白功能及其调控

细胞生物学课件(共137张PPT)

细胞生物学课件(共137张PPT)
DNA存在细胞核和线粒体内,携带和传递遗传信息, 决定细胞和个体的基因型(gene type)。
RNA存在于细胞质和细胞核内,参入细胞内DNA 遗传信息的表达。
病毒中,RNA也可作为遗传信息的载体。
Section 1 DNA的结构与功能
一、DNA的一级结构
4种核苷酸的连接及排列顺序 四种脱氧核糖核苷酸分别表示为:
(6)核小体沿DNA的定位受不同因素的影响,进 而通过核小体相位改变影响基因表达 。
核小体的性质及结构要点示意图(引自等)
在用微球菌核酸酶降解染色质时,反应早期可得到166bp的片段,但不稳定;进一步降解则得到146bp片段,
比较稳定。推测可能原因是失去H1后,DNA两端各有10bp的DNA,易被核酸酶作用而降解。
Chromatin Packing
Chromatin Packing
Section 3 基因与基因组
• 基因:表达一种蛋白质或功能RNA的基 本单位。
• 基因组:是指某种生物所包含的全套基
因。
人类基因组的C值在3*109 bp ; 病毒含 103~105bp;细菌含105~107bp;
基因与蛋白质
(1)铺展染色质的电镜观察
Isolated from interphase nucleus: 30nm thick Chromatin unpacked, show the nuclesome
(2)用非特异性微球菌核酸酶消化染色质,部分酶解片
段检测结果
(3)应用X射线衍射、中子散射和电镜三维重建 技术研究染色质结晶颗粒
五、分子及细胞生物学研究技术
基因组的维持
真核基因组的结构
染色质结构及其调控 DNA的复制 、修复和转座
1

细胞生物学教学完整ppt课件

细胞生物学教学完整ppt课件
.
在非细胞系统中蛋白质的翻译过程与SRP、 DP和微粒体的关系(表8-1)
.
分泌性蛋白的合成与跨越内质网膜的共翻 译转运图解(图8-3)
共翻译转运(cotranslational translocation):分泌 蛋白向rER腔内的转运是同蛋白质翻译过程偶联进行的,这 种蛋白在信号肽引导下边翻译边跨膜转运的过程称为共翻译 转运。
多次跨膜蛋白:含有多个SA和多个STA的肽链将成为多次跨 膜蛋白。
跨内质网膜肽段的取向:一般而言,带正电荷氨基酸残基多
的一端,或带正电荷氨基酸残基多的一侧,朝向细胞质基质
一侧(外侧)。
.
线粒体、叶绿体和过氧化物酶体的蛋白质的信 号序列特称为导肽(leader peptide),其基本 的特征是蛋白质在细胞质基质中的游离核糖体 上合成以后再转移到这些细胞器中,因此称这 种翻译后再转运的方式为翻译后转运(posttranslational translocation)。这种转运方式 在蛋白质跨膜过程中不仅需要消耗ATP使多肽 去折叠,而且还需要跨膜后由分子伴侣帮助蛋 白质再正确折叠形成有功能的蛋白。
继信号假说提出与确证后,人们又发现一系列
蛋白质分选信号序列,统称信号序列(signal
sequence),而且有些信号序列还可形成三维
结构的信号斑(signal patch),指导蛋白的靶
向转运和定位。
.
指导蛋白质从细胞基质转运到细胞器的靶 向序列的主要特征(表8-2)
.
二、蛋白质分选转运的基本途径与类型
第八章 蛋白质分选与膜泡运输
第一节 细胞内蛋白质的分选 第二节 细胞内膜泡运输
.
第一节 细胞内蛋白质的分选
真核细胞中绝大多数蛋白质都是由核基因编码,起始合 成均发生在游离核糖体上,然后或在细胞质基质中游离核糖 体上完成翻译过程,或在粗面内质网膜结合核糖体上完成合 成。之后蛋白质各就各位并组装成结构与功能的复合体,参 与实现细胞的各种生命活动。这一过程称蛋白质分选 (protein sorting)或蛋白质寻靶(protein targeting)。 蛋白质分选主要依靠蛋白质自身信号序列,从蛋白质起始合 成部位转运到其功能发挥部位的过程。

细胞生物学ppt课件完整版

细胞生物学ppt课件完整版

原核与真核细胞区别
原核细胞:无核膜包被的细胞 核,遗传物质裸露,细胞器简 单,只有核糖体一种细胞器。
真核细胞:有核膜包被的细胞 核,遗传物质被核膜包裹,细 胞器复杂多样,包括线粒体、 叶绿体、内质网等。
原核与真核细胞的主要区别: 有无以核膜为界限的细胞核。
细胞大小、形态与功能关系
细胞大小
01
不同生物和同一生物不同部位的细胞大小差异很大,细胞大小Biblioteka 03细胞质基质与细胞器
细胞质基质组成及作用
组成:水、无机盐、脂质、糖类、氨基酸、核 苷酸和多种酶等。
01
为细胞内的生化反应提供场所;
03
02
作用
04
维持细胞形态;
参与细胞内物质运输;
05
06
与能量转换有关。
线粒体结构和功能
01
结构:线粒体由外膜、内膜和 基质组成,内膜向内折叠形成
嵴,嵴上有基粒。
膜受体介导信号传导途径
G蛋白偶联受体介导的信号传导途径
当配体与G蛋白偶联受体结合后,激活G蛋白,进而激活或抑制下游效应器,产 生生物学效应。如肾上腺素与β受体结合后,激活腺苷酸环化酶,产生cAMP, 进而激活PKA等激酶产生生物学效应。
酶联型受体介导的信号传导途径
当配体与酶联型受体结合后,激活受体本身具有的酶活性,催化下游底物产生生 物学效应。如胰岛素与胰岛素受体结合后,激活受体酪氨酸激酶活性,催化下游 底物产生生物学效应。
细胞核
真核细胞的重要结构,包 含遗传物质DNA和RNA, 控制细胞的代谢和遗传。
02
细胞膜及其功能
膜组成与结构特点
膜组成
主要由脂质、蛋白质和糖类组成,其中脂质双层是膜的基本骨架,蛋白质镶嵌 或贯穿于脂质双层中,糖类与蛋白质和脂质结合形成糖蛋白和糖脂。

细胞生物学第四版详细课件 PPT

细胞生物学第四版详细课件 PPT

本章概要(二)
• 细菌与蓝藻是原核细胞的两个重要代表。原核细胞的共同特征:没有核膜、遗传信息载体仅仅是一个 裸露的环状DNA分子,除核糖体与细胞质膜及其特化结构外,几乎不存在其他复杂的细胞器。将原核 细胞与真核细胞进行比较,从进化与动态的观点分析,主要有两个基本差异:一是以生物膜系统的分 化与演变为基础,真核细胞形成了复杂的内膜系统,构建成各种具有独立功能的细胞器,双层核膜将 细胞分隔为细胞核与细胞质两个基本部分;二是遗传结构装置的扩增与基因表达方式的相应变化。由 于上述的根本差异,真核细胞的体积也相应增大,内部结构更趋复杂化,生命活动的时间与空间的布 局更为严格,细胞内部出现精密的网架结构——细胞骨架。 • 古核细胞在形态结构、遗传装置虽与原核细胞相似,但一些基本分子生物学特点又与真核细胞接近。 • 真核细胞的结构可以概括为三大体系:(1)生物膜体系以及以生物膜为基础构建的各种独立的细胞 器;(2)遗传信息表达的结构体系;(3)细胞骨架体系。此外,细胞体积的守恒规律及其制约因素 的分析,细胞的形态结构和功能的相关性与一致性,动植物细胞的差异等均是真核细胞知识的重要组 成部分。 • 病毒是非细胞形态的生命体,但所有的病毒,必须在细胞内才能表现它们的基本生命活动——复制与 增殖。病毒是最小、最简单的生命体,主要是由一个核酸分子(DNA或RNA)与蛋白质构成的复合结 构,类病毒仅由一条有感染性的RNA构成。病毒在细胞内的复制(增殖)过程大致可分为: 侵染、脱 衣壳、早基因复制与表达、晚基因复制、结构蛋白合成、装配与释放等过程。
生物界的基本类群(图2-2)
支原体(A)及其模式图(B) (图2-3)
细菌的结构(图2-4)
革兰氏阳性菌(A)与革兰氏阴性菌 (B)的细胞壁(图2-5)
细菌的复制、转录和翻译同时进行 (图2-6)

《医学细胞生物学》PPT课件

《医学细胞生物学》PPT课件

激光共聚焦扫描显微镜
绿蓝 色色 为为 微细 管胞

激光共聚焦扫描显微镜用激光作扫描光源,由于激光束的波长较短, 光束很细,所以共焦激光扫描显微镜有较高的分辨力,大约是普通光 学显微镜的3倍。
调焦深度不一样时,就可以获得样品不同深度层次的图像,这些 图像信息都储于计算机内,通过计算机分析和模拟,就能显示细胞样 品的立体结构。
1932年Ruska发明了以电子束为光源,用 电磁场作透镜的电子显微镜 。 电子显微镜的放大倍数最高可达近百万倍 透射电子显微镜 扫描电子显微镜
透射电子显微镜
RER的形态
显 与分子生物学技术
细胞化学技术
组织化学或细胞化学染色:是利用染色剂可同细胞的某种成分发生反应而着色 的原理,对某种成分进行定性或定位研究的技术。
分子杂交技术
具有互补核苷酸序列的两条单链核苷酸分子片段,在适当条件下,通过氢键 结合,形成DNA-DNA,DNA-RNA或RNA-RNA杂交的双链分子。 这种技术可用来测定单链分子核苷酸序列间是否具有互补关系。
人类染色体 端粒DNA的 荧光原位杂交
最初是使用带放射性的DNA探针,通过放射自显影 来显示位置。后来又发明了免疫探针法,将探针核 苷酸的侧链加以改造,探针杂交后,其侧链可被带 有荧光标记的抗体所识别,从而显示出位置。
显微光谱分析技术
细胞中有一些成分具有特定的吸收光谱,核酸、蛋白质、细胞色素、维生素 等都有自己特征性的吸收曲线。例如,核酸的吸收波长为260nm,而蛋白质 的则为280nm。根据细胞成分所具有的这种特性,可利用显微分光光度计对 某些成分进行定位、定性,甚至定量测定
放射自显影术
用于研究标记化合物在机体、组织和细胞中的分布、定位、排出以及合成、 更新、作用机理、作用部位等等。 原理是将放射性同位素(如14C和3H)标记的化合物导入生物体内,将标本 制成切片或涂片,涂上卤化银乳胶,组织中的放射性即可使乳胶感光。显 示还原的黑色银颗粒,即可得知标本中标记物的准确位置和数量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原核细胞 真核细胞
第三节 细胞周期

细 胞 周 期 的 概 念


细胞周期(cell cycle)是指连续分裂的细胞从一次有 丝分裂结束到下一次有丝分裂所经历的过程。 合成前期(G1期) 合成期(S期,synthetic phase) 间期 合成后期(G2期) 有丝分裂期(M期) 细胞生长,DNA复制,RNA和蛋白质的合成主要发生 在间期。

中期(metaphase)



染色体最大程度地 被压缩,由动粒微 管牵引排列在纺锤 体中央形成赤道板。 纺锤体、中心粒和 染色体构成有丝分 裂器,确保染色体 均等分配给两个子 细胞。 秋水仙素抑制微管 聚合,从而把细胞 阻断在中期。
后期(anaphase)

排列在赤道面上的染色 体的姐妹染色单体分离 产生向极运动。
胞质分裂


开始于后期; 纺锤体微管趋于瓦解, 而赤道部分的微管增 多,形成中间体; 细胞中央细胞膜下肌 动蛋白和肌球蛋白聚 集形成收缩环,通过 微丝滑动,收缩环变 小,细胞膜凹陷,产 生分裂沟。分裂沟逐 渐加深,与中间体接 触,最后收缩环处细 胞膜融合,形成两个 子细胞。
第四节 减数分裂
S期




细胞由G1期进入S期,主要进行DNA的复制, 组蛋白和非组蛋白等染色质蛋白的合成。 S期活化因子由G1期过渡到S期时开始合成,到 S期中期含量最高, S期结束时瞬即消失。 组蛋白的合成与DNA复制同步,但是DNA合成 不同步。 DNA合成抑制剂如羟基脲、阿糖胞苷作用时, 组蛋白合成很快停止。
第九章 细胞增殖
细胞增殖(cell proliferation)是细胞通过生 长和分裂而产生子代细胞,增加细胞数目, 并使子细胞获得与母细胞相同或几乎相同遗 传特性的过程。通过细胞增殖,个体得以生 长发育,生命得以延续。
第一节 细胞增殖的意义(略)
第二节 细胞增殖的方式

裂殖 无丝分裂 有丝分裂(mitosis) 减数分裂(meiosis)
G2期
• • •

为M期进行多种结构与功能准备。 合成一些特殊的蛋白质,如: 使核纤层蛋白磷酸化的蛋白激酶; 使染色质凝集的成熟促进因子; 构成纺锤丝的微管蛋白。 G2期有一R点。
M期(分裂期)


M期即细胞分裂期,真核细胞的细胞分裂主要 包括两种方式,即有丝分裂(mitosis)和减 数分裂(meiosis)。遗传物质和细胞内其他物 质分配给子细胞。 包括核的分裂和细胞质的分裂。 分为前、中、后、末四个时期。
(三)后期 I

二价体中的同源染色体彼此分开,每一级只获 得同源染色体的1条,即二分体(dyad)。 每条染色体的染色单体上的DNA的组成不同。
(四)末期 I


各二分体移制至两极后,解旋、伸展,核膜重 新形成。 成对的同源染色体分离,进入不同的细胞。
二、第二次减数分裂
间期短,无DNA复制。 类似有丝分裂。 分裂后形成的细胞中只含单倍数染色体,人类 是23条。 上述两次连续分裂过程中,只在减数分裂Ⅰ中染 色体复制了一次,所以,分裂结果所形成的4 个细胞中,染色体数目减少一半,由二倍数 (2n)变成单倍数(n),称为减数分裂。

后期A,动粒微管去装配 变短,染色体产生两极 运动。
后期B,极间微管长度增 加,两极之间的距离逐 渐拉长,介导染色体向 极运动。

末期(telophase)

染色单体到达两极,染
色单体开始去浓缩

核膜开始重新组装

Golgi体和ER重新形成
并生长

核仁也开始重新组装, RNA合成功能逐渐恢复, 有丝分裂结束
有丝分裂各期的主要特征
前期(prophase)



标志前期开始的第 一个特征是染色质 开始浓缩形成有丝 分裂染色体 第二个特征细胞骨 架解聚,有丝分裂 纺锤体开始装配 Golgi 体 、 ER 等 细 胞器解体,形成小 的膜泡
前中期(prometaphase)

核膜破裂成小的膜泡, 这一过程是由核纤层蛋 白中特异的丝氨酸残基 磷酸化导致核纤层解体。 纺锤体微管与染色体的 动粒结合,捕捉住染色 体每个已复制的染色体 有两个动粒,朝相反方 向,保证与两极的微管 结合;纺锤体微管捕捉 住染色体后,形成三种 类型的微管。
4.双线期:重组结束,联会复合体解体,同源染色体发 生分离,交叉端化(terminalization)。
5.终变期:二价体高度螺旋化,移至核周边区,端部保 留交叉。
发生在减数分裂I前期中的几个事件:
(二)中期I

各二价体排列在赤道面上,一对同源染色体 的动原粒朝向两极。 二价体仍有交叉相连。
深,称为染色粒(chromosome)。
2.偶线期:同源染色体发生联会,形成二价体。
联会(synapsis):同源染色体从靠近核膜的某一点开 始相互靠拢,在相同位置上的染色粒准确配对,这个过 程称为联会。 二价体(bivalent):联会后,每对紧密相伴的同源染色 体,称二价体。
联会复合体(synaptonemal complex):联会时,同源染色体之 间形成的一种蛋白质的复合结构,同源染色体的非姐妹染色单体 之间介此联会在一起。联会复合体沿同源染色体长轴分布,宽约 1.5~2 μm , 由位于中间的中央成分(central element)和位于两 侧的侧成分(lateral element)共同构成。侧成分的外侧则为配 对的同源染色体。联会复合体中央成分宽约100nm,侧成分宽约 20~40nm。从两侧的侧成分向中央成分发出横向纤维 (transverse fibers),交会于中央成分的中间部位。
Meiosis
stages
一、第一次减数分裂

包括前期I、中期I、后期I、末期I。 前期I分为细线期(leptotene)、偶线 期(zygotene)、粗线期(pachytene)、 双线期(diplotene)和终变期 (diakinesis)。
(一)前期I
1.细线期:染色体呈细线状,盘旋凝缩的部分染色较

减数分裂的遗传学意义?



1.减数分裂保证了物种及遗传性状的相对稳定。 在人的有性 生殖过程中,经减数分裂所形成的精子和卵子,都是单倍体 (n=23),在受精后,精卵结合成受精卵,受精卵的染色体数 目为n+n=46(2n=46),又成为二倍体细胞,受精卵进一步 分裂,生长,经胚胎期后发育成正常个体,正是因为如此,人 类的染色体在传种接代中始终保持数目恒定不变,从而也保证 了人类各种形状在遗传中保持相对稳定。 2.在减数分裂前期Ⅰ,同源染色体的非姐妹染色单体间出现 染色体片段的交换,染色体片段上控制遗传性状的基因也随之 进行了交换,同时,非同源染色体之间随机组合进入生殖细胞, 使得配子的染色体组成多种多样,这对于生物遗传性状的变异, 进化,适应性等都具有实际意义。 3.减数分裂为经典遗传学三大定律——分离律,自由组合律, 连锁互换律提供了细胞学基础和证据。 同源染色体的配对, 分离及非姐妹染色体之间的交换,非同源染色体之间的随机组 合,合理地解释了配子形成过程中基因的行为。
不同细胞的细胞周期时间差异很大,S+G2+M 的时间变 化较小,细胞周期时间长短主要差别在G1期。


周期性细胞; G0期细胞; 终末分化细胞
二、细胞周期各时相特点
G1期
• • •
细胞生长主要阶段,为S期作准备。
产生大量的RNA和蛋白质,碳水化合物、脂等; 与DNA合成有关的酶活性增高; 染色质去凝集,处在复制前感受态与蛋白质分子形成前复制复 合物,在S期活化因子作用下开始复制。
3.粗线期:每个二价体含4个染色单体,称为四分体 (tetrad)。两条非姐妹染色单体之间存在交叉(chiasma), 代表它们之间发生了DNA片段的交换(crossing-over)和重组, 产生新的等位基因的组合。交叉处的联会复合体中央区有一重 组节,是与交换有关的结构。
联会复合体的中央区有一些圆球形、椭球形或长约0.2μm的棒状, 称为重组节(recombination nodule)。重组节直径约90nm的蛋白 质集合体,重组节中含有大量与DNA重组有关的酶。Leabharlann G1期 ••
• •
G1期有限制点(restriction point,R点)决定细胞进入S期,还 是进入G0期。 在各种生长因子或激素的作用下,细胞可合成某种触发蛋白, 当其积累到一定的浓度时,细胞才越过R点进入S期。 当细胞DNA受到损伤,会在P53蛋白的作用下,使细胞停止于 G1期。 放线菌素D(actinomyclin D)抑制细胞从G1期向S期过渡。 G1期的长短是细胞对环境条件变化的一种自我调节。
相关文档
最新文档