电气化铁道供电原理
铁路资料(电气化铁路供电原理)
电气化铁道供电原理电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而是从电力系统取得电能.目前我国一般由110kV以上地高压电力系统向牵引变电所供电.目前牵引供电系统地供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆和直供加回流线供电方式四种,京沪、沪杭、浙赣都是采用地直供加回流线方式.一、直接供电方式直接供电方式(T—R供电>是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨及大地直接返回牵引变电所地供电方式.这种供电方式地电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低.但由于接触网在空中产生地强大磁场得不到平衡,对邻近地广播、通信干扰较大,所以一般不采用.我国现在多采用加回流线地直接供电方式.二、BT供电方式所谓BT供电方式就是在牵引供电系统中加装吸流变压器(约3~4km安装一台>和回流线地供电方式.这种供电方式由于在接触网同高度地外侧增设了一条回流线,回流线上地电流与接触网上地电流方向相反,这样大大减轻了接触网对邻近通信线路地干扰.BT供电地电路是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成.由图可知,牵引变电所作为电源向接触网供电;电力机车(EL>运行于接触网与轨道之间;吸流变压器地原边串接在接触网中,副边串接在回流线中.吸流变压器是变比为1:1地特殊变压器.它使流过原、副边线圈地电流相等,即接触网上地电流和回流线上地电流相等.因此可以说是吸流变压器把经钢轨、大地回路返回变电所地电流吸引到回流线上,经回流线返回牵引变电所.这样,回流线上地电流与接触网上地电流大小基本相等,方向却相反,故能抵消接触网产生地电磁场,从而起到防干扰作用.以上是从理论上分析地理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线地电流总小于接触网上地电流,因此不能完全抵消接触网对通信线路地电磁感应影响.另外,当机车位于吸流变压器附近时回流还是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上地电流会小于接触网上地电流,这种情况称为“半段效应”.此外,吸流变压器地原边线圈串接在接触网中,所以在每个吸流变压器安装处接触网必须安装电分段,这样就增加了接触网地维修工作量和事故率.当高速大功率机车通过,该电分段时产生很大电弧,极易烧损机车受电弓和接触线.且BT供电方式地牵引网阻抗较大,造成较大地电压和电能损失,故已很小采用.三、AT供电方式随着铁路电气化技术地发展,高速、大功率电力机车地投入运行,吸—回装置供电方式已不能适应需要.各国开始采用AT供电方式.所谓AT供电方式就是在牵引供电系统中并联自耦变压器地供电方式.实践证明,这种供电方式是一种既能有效地减弱接触网对邻近通信线地感应影响,又能适应高速、大功率电力机车运行地一种比较先进地供电方式.AT供电方式地电路包括牵引变电所S、接触悬挂T、轨道R、自耦变压器AT、正馈线AF、电力机车EL等.牵引变电所作为电源向牵引网输送地电压为25kV.而接触悬挂与轨道之间地电压仍为25kV,正馈线与轨道之间地电压也是25kV.自耦变压器是并联在接触悬挂和正馈线之间地,其中性点与钢轨(保护线>相连接.彼此相隔一定距离(一般间距为10~16km>地自耦变压器将整个供电区段分成若干个小地区段,叫做AT区段.从而形成了一个多网孔地复杂供电网络.接触悬挂是去路,正馈线是回路.接触悬挂上地电流与正馈线上地电流大小相等,方向相反,因此其电磁感应影响可互相抵消,故对邻近地通信线有很好地防护作用.AT供电方式与BT供电方式相比具有以下优点:1、AT供电方式供电电压高.AT 供电方式无需提高牵引网地绝缘水平即可将牵引网地电压提高一倍.BT供电方式牵引变电所地输出电压为27.5kV,而AT供电方式牵引变电所地输出电压为55kV,线路电流为负载电流地一半,所以线路上地电压损失和电能损失大大减小.2、AT供电方式防护效果好.AT供电方式,接触悬挂上地电流与正馈线上地电流大小相等,方向相反,其电磁感应相互抵消,所以防护效果好.并且,由于AT供电地自耦变压器是并联在接触悬挂和正馈线间地,不象BT供电地吸流变压器,串联在接触悬挂和回流线之间,因此没有因励磁电流地存在而使原副边绕组电流不等,以及在短路时吸流变压器铁芯饱和导致防护效果很差等问题.另外也不存在“半段效应”问题.3、AT供电方式能适应高速大功率电力机车运行.因AT供电方式地供电电压高、线路电流小、阻抗小(仅为BT供电方式地1/4左右>、输出功率大,使接触网有较好地电压水平,能适应高速大功率电力机车运行地要求.另外,AT供电也不象BT供电那样,在吸流变压器处对接触网进行电分段,当高速大功率电力机车通过时产生电弧,烧坏机车受电弓滑板和接触线,对机车地高速运行和接触网和接触网地运营维修极为不利.4、AT供电牵引变电所间距大、数量少.由于AT供电方式地输送电压高、线路电流小、电压损失和电能损失都小,输送功率大,所以牵引变电所地距离加大为80~120km,而BT供电方式牵引变电所地间距为30~60km,因此牵引变电所地距离大大减少,同时运营管理人员也相应减少,那么,建设投资和运营管理费用都会减少.四、同轴电缆供电方式同轴电力电缆供电方式(简称CC 供电方式>,是一种新型地供电方式,它地同轴电力电缆沿铁路线路埋设,内部芯线作为供电线与接触网连接,外部导体作为回流线与钢轨连接.每隔5~10km 作一个分段.由于供电线与回流线在同一电缆中,间隔很小,而且同轴布置,使互感系数增大.由于同轴电力电缆地阻抗比接触网和钢轨地阻抗小得多,因此牵引电流和回流几乎全部经由同轴电力电缆中流过.同时由于电缆芯线与外层导体电流大小相等,方向相反,二者形成地磁场相互抵消,对邻近地通信线路几乎无干扰.由于电路阻抗小,因而供电距离长.但由于同轴电力电缆造价高、投资大,很少采用.五、直供加回流线供电方式直供加回流线供电方式结构比较简单.这种供电方式由于在接触网同高度地外侧增设了一条回流线,回流线上地电流与接触网上地电流方向相反,这样大大减轻了接触网对邻近通信线路地干扰.与直供方式比较,能对沿线通信防干扰;比BT供电减少了BT装置,既减少了建设投资,又便于维修.与AT供电方式比较,减少了AT所和沿线架设地正馈线,不仅减少了投资,还便于接触网维修.所以自大秦线以后地电气化铁道,基本都采用这种方式.我段所管辖地京沪、沪昆都采用这种供电方式.直供加回流线供电方式地原理如下图所示.六、牵引变电所向接触网供电有单边供电和双边供电两种方式.接触网在牵引变电所处及相邻地两个变电所中央是断开地,将两个牵引变电所之间地接触网分成两独立地供电分区,又叫供电臂.每个供电臂只从一端地牵引变电所获得电能地供电方式称为单边供电.每个供电臂同时从两侧变电所获得电能地供电方式称为双边供电.双边供电可提高供电质量,减少线路损耗,但继电保护等技术存在问题.所以我国及多数国家均采用单边供电.但在事故情况下,位于两变电所之间地分区亭可将两个供电臂连接进来,实行越区供电,越区供电是在非常状态下采用地,因供电距离过长,难以保证末端地电压质量,所以只是一种临时应急措施,并且在实行越区供电时,应校核供电末端地电压水平是否符合要求.在复线区段同一供电臂上、下行接触网接地是同相电,但在牵引变电所及分区亭内设有开关装置,可将上、下行接触网连通,实行并联供电,以减小线路阻抗,降低电压损失和电能损失,提高接触网地电压水平.在事故情况下,又可将上、下行接触网分开,互不影响,使供电更加灵活可靠.牵引变电所馈电线馈出地两供电臂上地电压是不同相位地.为了减少对电力系统地不平衡影响,各牵引变电所要采用换连接,不同相位地接触网间要设置电分相装置.为了灵活供电和缩小事故范围,便于检修,接触网还设置了许多电分段装置.。
电气化铁路供电系统的设计及实现
电气化铁路供电系统的设计及实现近年来,随着科技的不断进步,人们的出行方式也在不断地改变。
现如今,高铁、城际列车等电气化铁路交通工具越来越受到人们的青睐。
电气化铁路供电系统是实现电气化铁路运行的核心部分之一,也是现代化铁路系统的必备组件。
一、电气化铁路供电系统的基本原理电气化铁路供电系统主要由供电设备、供电附属设备和电缆等三部分组成。
供电设备主要是负责将高压交流电转化为铁路交流电,使电力能够传送到供电车辆上。
为保证供电设备的正常运行,必须要安装高压开关、变电所、配电室等相关设备。
供电附属设备主要是用于传送电能,包括主变电所、轨道分区、接触网等。
这些设备的作用是将供电设备得到的电能传送到铁路上。
电缆是铁路上至关重要的组件,有着传输力电、信号、数据等不同的作用和需求。
铁路电缆一般分为三个部分:信号电缆、轨道电缆和供电电缆。
其中,信号电缆主要负责人工行车和自动化设备的操作,一般采用屏蔽电缆来保证其安全性;轨道电缆主要用于铁路安全设备的运行,如道岔、防护门等;供电电缆则是将轨道上的电能传输给列车和站房,一般采用铜芯电缆或铝合金芯电缆。
二、电气化铁路供电系统的设计和实现1. 设计电气化铁路供电系统的设计十分复杂,需要考虑很多因素,包括环境因素、铁路线路和列车的要求等。
设计时需要遵循以下几点:(1)环境要素的考虑。
铁路供电系统的设计要考虑到铁路线路所处的环境,比如气候、地形、土壤等因素。
(2)列车匹配。
要根据列车的运营要求,选择不同的供电方式和电缆材料,确保供电系统正常运行。
(3)安全性的保障。
在设计过程中,需要关注铁路设备的安全性,保证稳定的供电过程。
同时,要考虑到供电方式的环保性,在设计过程中尽可能减少供电对环境的污染。
2. 实现实现电气化铁路供电系统需要遵循以下几个步骤:(1)铁路线路的规划。
在规划阶段,需要考虑到地形、气候、土壤等因素,为购置供电设备和设计供电附属设备做好准备。
(2)供电设备的购置。
供电设备的购置需要考虑性能、质量、价格等多个因素,保证供电设备的质量和性能。
电气化铁道自耦变压器(AT)供电方式简介
电气化铁道自耦变压器(AT)供电方式简介前言在电气化铁路中,电能的传输和变换至关重要。
自耦变压器(AT)的供电方式是铁路电气化中一个重要的技术应用,接下来我们将简单介绍该供电方式的相关内容。
自耦变压器(AT)供电方式的基本原理在电气化铁路供电系统中,自耦变压器(AT)的电路原理是由交流电源频率的高压电流通过自耦变压器(AT)降压后,再通过断路器、刀闸等开关进行控制和保护,最后通过铁路电网向电气化铁路传输能量。
自耦变压器(AT)供电方式的特点1.供电范围广:自耦变压器(AT)的供电范围广,可以为电气化铁路的各类设备提供稳定而高效的电能。
2.储能能力强:自耦变压器(AT)具有较强的储能能力,可根据铁路电气化设备的需求进行适配。
3.维修简便:自耦变压器(AT)的内部结构较为简单,维护和维修较为便捷。
4.安全稳定:自耦变压器(AT)供电方式可通过断路器等开关进行保护和控制,能够保证电气化铁路运行的安全稳定。
自耦变压器(AT)供电方式的应用领域自耦变压器(AT)供电方式主要应用于电气化铁路设备的供电和能量传输方面,如轨道电缆和牵引变流器等。
自耦变压器(AT)供电方式的优势相比传统的供电方式,自耦变压器(AT)供电方式具有以下几个方面的优势:1.成本更低:相比于传统的供电方式,自耦变压器(AT)供电方式的成本更低,能够为铁路建设的节约带来一定的经济效益。
2.设备效率更高:自耦变压器(AT)供电方式采用了高效的能量传输方式,能够为电气化铁路设备的使用效率带来提升。
3.更为稳定可靠:自耦变压器(AT)供电方式通过断路器等开关控制,能够为电气化铁路的安全稳定运行提供保障。
总结在电气化铁路中,自耦变压器(AT)供电方式是一种应用广泛且具有良好效果的能量传输技术。
通过了解自耦变压器(AT)供电方式的基本原理、特点、应用领域以及优势,我们可以更好地掌握这一技术,为电气化铁路的建设和运行提供更加稳定可靠的保障。
电气化铁道主要供电方式
电气化铁道主要供电方式
电气化铁道的主要供电方式通常有以下几种:
1.架空线供电(Overhead Line Electrification):这是最常见的
供电方式,也称为接触网供电。
在架空线供电系统中,铁道上方架设一条称为接触网的电线,电动列车通过集电装置与接触网接触,从而获取所需的电能。
接触网将高压直流(DC)或交流(AC)电源通过变电站供应到铁道上,以满足列车运行的电力需求。
2.第三轨供电(Third Rail Electrification):在第三轨供电系统
中,铁道旁边或中间安装一条额外的供电轨道,称为第三轨。
电动列车通过集电装置与第三轨接触,从而获得所需的电能。
第三轨通常使用直流供电,但也有一些使用交流供电的系统。
3.混合供电方式:某些铁路系统采用混合供电方式,同时使
用架空线和第三轨供电。
这种方式通常用于铁路线路的不同区段或分支线路,以适应不同的运行要求和设备技术。
不同地区和铁路系统可能采用不同的主要供电方式,其中选用的供电方式取决于多个因素,包括成本、技术要求、环境影响以及安全性等考虑。
另外,电气化铁道的供电方式也在不断发展和创新,例如可再生能源和蓄电池技术的引入,以提高能源效率和减少环境影响。
铁道供电原理
铁道供电原理
铁道供电是指为铁路交通提供电力的一种方式。
铁道供电原理主要有以下几个方面:
1. 直流供电:铁路供电系统通常采用直流供电的方式,直流供电可以减少电能损耗和电力线路的电压降低。
直流供电系统通常包括电源变电所、接触网、牵引变电所、牵引系统和辅助设备等。
2. 电源变电所:电源变电所是铁路供电系统的起始点,它将交流电转换为直流电,并通过接触网供给给牵引变电所。
3. 接触网:接触网是铁路供电系统的重要组成部分,它由一系列的接触线组成,一端连接到电源变电所,另一端固定在架空的铁道架子上。
列车通过接触线与接触网之间的接触滑行,从而获取所需的电能。
4. 牵引变电所:牵引变电所是供应列车牵引系统所需电能的设施,它将接触网提供的电能通过牵引变压器转换为适合列车牵引设备的电压和电流。
5. 牵引系统:牵引系统由列车上的电力设备和电机组成,它将接触线提供的电能转换为机械能,驱动列车运行。
6. 辅助设备:铁路供电系统还包括为列车和车站提供电力的辅助设备,例如车站照明、信号系统等。
这些设备通常由牵引变电所直接供电。
#011:电气化铁路供电系统
机车在过电分相时,其过程可举例 说明为:受电弓由带电的接触导线(a 相)滑入中性段,中性段由两台断路器 分别连接到分相两侧的带电部分,在机 车进入中性段时,先使中性段带电(a 相),当机车接近分相另一侧带电导线 (b相)时,断开a相电,延时使中性段 带b相电,保证机车顺利运动到b相。
图3-53 电力牵引系统的组成
1 牵引变电所
(1)定义 牵引变电所是设置于电气化铁路沿线,安装有受电、变电、配电 设备的建筑物。 (2)任务 牵引变电所的任务是将电力系统高压输电线输送来的110千伏 (或220千伏)的三相交流电,变压为27.5千伏的单相交流电,向其 邻近区间和所在站场线路的接触网送电,保证可靠而又不间断地向接 触网供电。 (3)设备 在牵引变电所里,主要设有主变压器、电压互感器、电流互感器、 高压断路器、各种高压隔离开关以及避雷器等电气设备。
• 供电能力:满足在不同牵引工况下电能的输 送。关键点:牵引供电臂末端电压水平。
• 运行方式的灵活性:在确保供电的前提下, 为设备的检修、运行方式的调整等提供灵活 的操作方式。改变运行方式的动作迅速。
• 完备的确保一次系统运行可靠性的措施。
目前牵引供电系统面临的主要问题: 谐波问题 负序电流问题 功率因数问题 机车过分相问题 接地问题 继电保护问题 弓网关系问题 绝缘配合问题 电磁兼容问题
对牵引供电系统的基本要求:
可靠性:一级负荷、电源为双电源、电源接入 电压等级高(110kV、220kV、330kV)、两座 主变压器、馈出断路器备用。可靠性薄弱环 节:接触网系统(无备用、在运动中列车作 用下容易发生故障)。弥补措施:必要时实 施越区供电(越区供电时,由于供电能力不 足,列车无法按正常运行图运行)。
电力部门要求大工业用户的功率因数达 到0.9以上,高出部分奖励、低于该数值将罚 款。
简述铁路供电系统的供电原理
简述铁路供电系统的供电原理铁路供电系统是铁路运输系统的重要组成部分,它为列车提供所需的电能以保证安全、高效地运行。
铁路供电系统的供电原理是通过输送电能给列车,使其能够运行,并提供驱动力和照明等功能。
在这篇文章中,我们将一步一步回答中括号内的内容,全面介绍铁路供电系统的供电原理。
一、什么是铁路供电系统?铁路供电系统是指为铁路运输系统提供电能的设备和网络,包括电网传输线路、变电站、接触网、牵引变电所和电气化设备等。
铁路供电系统的主要功能是为列车提供所需的电能,以保证其运行、驱动和照明等功能的正常运行。
二、铁路供电系统的整体架构铁路供电系统主要由能源输送部分和牵引和照明设备两大部分组成。
能源输送部分包括电网传输线路和变电站。
电网传输线路是将高压电能从发电厂输送到变电站,然后将其通过变压器转换为适合铁路供电的电压。
变电站则起到转换电能和分配电能的作用,将电能分配给接触网和牵引变电所。
牵引和照明设备部分包括接触网、牵引变电所和电气化设备。
接触网是一套覆盖在铁路车辆上方的电源装置,它的主要作用是通过与列车上的受电弓接触,将电能传输给列车。
牵引变电所是通过接触网将电能传输给列车,并提供所需的驱动力。
电气化设备主要包括信号设备、照明设备和空调设备等,它们通过供电系统提供所需的电能,保证列车的正常运行。
三、供电原理的具体步骤1. 发电厂生产电能铁路供电系统的电能主要来源于发电厂。
发电厂通过燃煤、水力、核能等方式产生高压电能,然后通过输电线路将电能传输到变电站。
2. 电网传输线路输送电能电网传输线路负责将发电厂产生的高压电能传输到变电站。
电网传输线路通常采用高压输电线路,通过高压输电线路将电能输送到变电站。
3. 变电站转换电压变电站是铁路供电系统中的关键设备之一。
它接收到高压的电能后,通过变压器将电能转换为适合铁路供电的电压。
变电站还具有分配电能的功能,将电能分配给接触网和牵引变电所。
4. 接触网传输电能接触网是铁路供电系统中的核心部分,它是一套覆盖在铁路车辆上方的电源装置。
2-第二章电气化铁道基本知识
第二章电气化铁道基本原理第一节电气化铁道的概念及优越性一、电气化铁道的概念采用电力牵引的铁道叫电气化铁道。
它改变了蒸汽牵引和内燃牵引的常规牵引模式,给现代铁道运输带来了强大的生命力,是现代轨道运输发展的必由之路。
二、电气化铁路的优越性电气化铁路由电力机车通过接触网从外部电源取得电能牵引列车前进,所以它具有如下优点。
1、牵引功率大,运输能力高由于电力机车本身不带能源,也不需要带能源转换设备,可从外部电源取得所需全部电能,所以在同样机车重量情况下,电力机车容易做到大功率运行实践证明,电气化铁路在地形复杂的长大坡道、隧道群、高原和沙漠区段有着明显优势。
在地理条件较好的繁忙干线也显示了其优越性,在石—太线的石阳段,年运输能力由电化前的2000吨提高到电化后的6000万吨,从而显示了电气化铁路多拉快跑的特点。
2、牵引效率高,综合利用能源电力牵引消耗的是电能,而电能可以集中化现代化生产,大型现代发电设备可使热效率达到60%以上,若采用水力发电水能利用率更高,并且核能发电正在蓬勃发展之中,电力牵引是内燃牵引效率的两倍。
电力牵引可以综合利用能源,尤其在石油、煤炭资源面临枯竭的今天,人们努力开发、利用新能源,如风能、光能、地热能和潮汐能等。
随着科学的发展,会有更广泛更廉价的再生能源被利用,电气化铁路可以利用一切能源发出的电能。
3、环保运输,工作条件好随着人们物质文明和精神文明的提高,人们对环境的要求也越来越高。
人类也受到了掠夺式占有的惩罚,保护环境可持续发展已是人们的共识。
电力机车直接使用电能,免除了燃煤燃油排放的一氧化碳及其他有害气体的污染,给旅客及沿线人民创造了良好的生活、生产环境。
电力牵引利用了集约化发电设备的低能耗、低污染的生产优势。
电力牵引减少了余热及费气排放,给司乘人员及铁路工作人员创造了舒适、清洁的工作环境,特别是在长大隧道及其他通风条件差的区段尤为显著。
4、劳动生产率高,运输成本底由于电力机车可以连续不断地从外部电源取得电能,并且功率大,运行速度高。
011:电气化铁路供电系统_2022年学习资料
谐波问题-整改措施:在牵引变电所增加滤波器-单调谐滤波器、高通滤波器,存在-增加投资的问题。-限制:谐波电 问题一直是铁路部门-和电力部门之间争论的焦点问题。
负序电流问题-牵引供电系统的负荷为单相负荷,导致-从电力系统三相去用的电能不平衡,从而向-电力系统注入负序 流。-负序电流的危害:降低用户电能的利用-率,引起用户旋转电机转子表面温升过高。-整改措施:牵引供电系统采 换相方式-接入电力系统,采用新型供电方式。-限制:电力部门一直在对牵引供电系统-注入电力系统的负序电流进行 制。
电气化铁路供电系统#011:电气化铁路供电系统
一,电气化铁道牵引供电系统设置-将电能从电力系统传送到电力机车的电力设备,总称为电气化铁-道的供电系统。牵 供电系统主要包括牵引变电所和接触网两部分。-发电厂厂-高压输电线-避雷器开变压器操以盘-馈电线-关-接触导 -7-供电系统示意图
发电厂(发出的电-流,经升压变压器2提-1、发电厂2、高压输电线3、区域变电站-110KW-高电压后,由高 输电-线3送到铁路沿线的牵-4、牵引变电所-5、馈电线-引变电所4。在牵引变-22KV-6、接触网-电所里 电流变换成所-7、回流线-要求的电流或电压后,-8、钢轨-经馈流线5转送到邻近-10、电力机车-9、接地网 区间和站场线路的接触-网6上供电力机车使用。-图3-53电力牵引系统的组成
供电能力:满足在不同牵引工况下电能的输-送。关键点:牵引供电臂末端电压水平。-·运行方式的灵活性:在确保供 的前提下,-为设备的检修、运行方式的调整等提供灵活-的操作方式。改变运行方式的动作迅速。-·完备的确保一次 统运行可靠性的措施。
目前牵引供电系统面临的主要问题:-谐波问题-负序电流问题-功率因数问题-机车过分相问题合问题-电磁兼容问题
交流电气化铁路供电系统
交流电气化铁路供电系统一、概述交流电气化铁路供电系统是指铁路运营中采用交流电进行供电的系统。
它是现代铁路运输中的重要组成部分,旨在提供稳定可靠的电力供应,以支持列车的运行和设施的运作。
本文将介绍交流电气化铁路供电系统的基本原理、组成部分、工作原理以及优势等内容。
二、组成部分交流电气化铁路供电系统主要由以下几个组成部分构成:1.电源装置:交流电供电系统的电源装置通常是由变电所提供的。
变电所将来自电网的高压交流电通过变压器进行变压变流,以得到适合铁路运营的电压和频率。
2.牵引变流器:牵引变流器是将来自电源装置的交流电转换为适合牵引系统的交流电的装置。
它具有较大的功率调节能力和较高的效率,能够满足列车加速、制动和恒速运行的需求。
3.架空线:架空线是供电系统的主要部分,它悬挂在铁路线路的两侧,并通过电力塔或电线杆来支撑。
交流电能通过架空线传输到接触网。
4.接触网:接触网是铁路供电系统的接收装置,位于铁路上方的架空线下方。
接触网由一系列的钢丝组成,通过电气连接器与列车车顶的接触装置相连。
当列车通过时,接触装置会与接触网接触,实现电力传输。
5.台区设备:台区设备主要用于电能的监测、保护和控制。
台区设备包括隔离开关、断路器、变压器等,以确保供电系统的安全和可靠运行。
三、工作原理交流电气化铁路供电系统的工作原理可以概括为以下几个步骤:1.电源装置将电网的高压交流电通过变压器进行变压变流,以得到适合铁路运营的电压和频率。
2.变流器将变压变流后的交流电转换为适合牵引系统的交流电,并通过连接器与列车车顶的供电装置相连。
3.架空线悬挂在铁路线路两侧,并通过电力塔或电线杆来支撑。
架空线上的交流电经由接触网传输到列车供电装置。
4.接触网由一系列的钢丝组成,位于架空线下方。
当列车通过时,接触装置与接触网相连,实现电力传输。
5.列车供电装置将接收到的交流电转换为直流电以供给列车内部使用,例如给牵引电机供电。
交流电气化铁路供电系统相比直流电供电系统具有以下一些优势:1.传输损耗低:交流电的传输损耗比直流电要低,这意味着供电系统可以更远距离地传输电能,从而减少了供电设备的数量和成本。
简述电气化铁道牵引供电系统的组成。
电气化铁道牵引供电系统是铁路运输系统中不可或缺的组成部分,其主要功能是为铁路牵引动力提供电能。
该系统的组成主要包括接触网、供电系统、牵引供电设备等几个方面。
1.接触网:接触网是电气化铁道牵引供电系统中最重要的部分之一。
它由电气化铁道沿线的两根悬挂在架空的导线组成,这两根导线之间对应着电气化铁道的两条轨道。
在接触网系统中,导线与运行中的列车之间通过受电弓来实现电能的传输。
受电弓是列车上的一个导电接触器,它与接触网的导线之间形成一个电气连接,从而实现了列车对接触网的电能获取。
2.供电系统:供电系统是电气化铁道牵引供电系统的另一个关键组成部分。
它主要负责为接触网系统提供稳定的电能。
供电系统一般由发电站、变电站和电缆线路等部分组成。
发电站负责发电,将电能送至变电站。
变电站将来自发电站的高压交流电能转化为适合接触网使用的额定电压,然后通过电缆线路输送至各个区段的接触全球信息站。
3.牵引供电设备:除了接触网和供电系统,电气化铁道牵引供电系统还包括了一些专门的牵引供电设备。
这些设备包括牵引变流器、牵引电动机、牵引逆变器等。
牵引变流器是用来将接触全球信息站的交流电能转化为适合牵引驱动装置使用的直流电能的设备。
牵引电动机则是用来提供列车牵引动力的设备,它将电能转化为机械能,从而推动列车行驶。
牵引逆变器则是将列车上的电能转化为适合送回接触网的电能的设备,它可以实现对列车制动时的能量回馈。
在电气化铁道牵引供电系统中,这些不同的组成部分相互配合,共同保障了铁路运输的电能供应和牵引动力输出。
通过接触网、供电系统和牵引供电设备的协同作用,电气化铁道牵引供电系统为铁路运输提供了高效、稳定的电能支持,为铁路运输的安全、高速、高效发挥了重要作用。
电气化铁道的牵引供电系统是现代铁路运输中不可或缺的一部分,它的完备与否直接影响着铁路运输的安全性、可靠性和效率。
接触网、供电系统和牵引供电设备是构成电气化铁道牵引供电系统的关键要素,下面将就这些要素做进一步的深入扩写。
电气化铁道主要供电方式
接触网的供电方式我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能〔从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用。
复线区段可通过分区亭将上下行接触网联接,实现"并联供电",可适当提高末端网压。
当牵引变电所发生故障时,相邻变电所通过分区亭实现"越区供电",此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。
1、直接供电方式如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。
我国早期电气化铁路〔如宝成线、阳安线建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式〔简称TR供电方式。
随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。
目前有所谓的BT、AT和DN供电方式。
从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。
电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲〔或理想中大小相等、方向相反,从而两者产生的电磁干扰相互抵消。
但实际上是做不到的,所以不同的供电方式有不同的防护效果。
2、吸流变压器〔BT供电方式这种供电方式,在接触网上每隔一段距离装一台吸流变压器〔变比为1:1,其原边串入接触网,次边串入回流线〔简称NF线,架在接触网支柱田野侧,与接触悬挂等高,每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流"吸上"去,经回流线返回牵引变电所,起到防干扰效果。
电气化铁路知识
电气化铁路知识电气化铁路是指通过直流或交流电来供电的铁路系统,它的主要特点是节能、环保、减少噪声、运行效率高等。
本文将介绍电气化铁路的相关知识。
电流类型电气化铁路可以采用直流供电或交流供电,其选择主要取决于成本、技术和区域等因素。
直流供电直流供电是指电压和电流的方向不变,它主要使用在铁路的城市轨道交通系统上,如地铁、轻轨等。
直流供电方式成本相对较低,但是功率损耗较大,需要在供电线路中添加减阻和扼流圈等设备来减小功率损失。
交流供电交流供电是指电压和电流的方向周期性变化,它主要应用在高速铁路和城际铁路等长程铁路系统上。
相比于直流供电方式,交流供电方式的功率损失较小,可以减少线路中的设备数量和成本。
电气化铁路的优点电气化铁路相比于传统的非电气化铁路系统,拥有许多优点,包括:节能环保电气化铁路采用的是直流或交流电来供电,相比于传统的机车牵引方式,其能效更高,可以更有效地利用能源,减少能源浪费。
同时,电气化铁路的能量来源可以多样化,可以利用可再生能源如太阳能、风能等,实现更加可持续的发展。
运行效率高电气化铁路的供电方式基于电网系统,可以实现紧密的电力系统网络拓扑结构,对于铁路的运行管理和运输效率提高有着重要的作用。
此外,电气化铁路的控制系统可以更加精准地控制列车的运行速度和方向,从而提高运行效率。
减少噪声电气化铁路的列车不会产生机械摩擦或爆震等产生的噪声,且电气化铁路的线路设施和维护工作也相对较安静,减轻了城市生活的噪音污染。
提高安全性电气化铁路可以通过自动化控制、信号和通信等技术手段,来改善铁路的运营安全性。
例如,列车的自动驾驶系统可以实现更加精准的控制和监控,提高铁路运行的安全性和可靠性。
电气化铁路的缺点电气化铁路虽然有着许多优点,但也存在一些缺点,如成本、技术等。
成本电气化铁路需要投入的资金巨大,在建设和维护系统、拓展电力网络、设备安装和维修等方面都需要大量的资金投入。
技术要求高电气化铁路的建设和维护需要专业的技术人才和先进的设备和技术支持,因此成本较高,对于一些技术落后的地区或国家,难以快速开展电气化铁路建设。
《铁道概论》项目8电气化铁路供电
《铁道概论》项目8电气化铁路供电电气化铁路供电是指使用电力替代传统的蒸汽或柴油机械以提供动力,使列车运行更加高效、环保和经济。
本文将对电气化铁路供电进行详细的介绍,并分析其优点、挑战和发展前景。
一、电气化铁路供电的原理和组成部分电气化铁路供电的基本原理是通过接触网和供电系统将电能输送到列车上,供给电力机车或电力动车组。
电能的输送和利用过程需要接触网、变电所、继电保护系统、配电系统和动力机车/电力动车组等多个组成部分进行协调工作。
1.接触网:接触网是电气化铁路供电系统的主要组成部分,它由架空电缆和接触线构成。
接触线通过电气连接将电能传输到机车/动车组的受电弓上,以提供动力。
2.变电所:变电所是将高压输电线路中的交流电转换为适合列车使用的直流电的设施。
变电所负责电能的转换、配电和监控等工作。
3.继电保护系统:继电保护系统用于监控和保护电气化铁路供电系统的运行。
它能够检测系统中的异常,并及时采取措施防止事故的发生。
4.配电系统:配电系统将变电所产生的电能传输到不同区段的铁路线路上,以满足列车的供电需求。
5.动力机车/电力动车组:动力机车或电力动车组是电气化铁路供电系统的最终受益者,它们通过接触线和受电弓将电能转化为机械能,驱动列车行驶。
二、电气化铁路供电的优点电气化铁路供电相比传统的蒸汽或柴油机械具有以下优点:1.节能环保:电气化铁路供电可以大大减少对化石燃料的依赖,降低对环境的污染。
采用清洁能源供电有助于减少温室气体排放,对缓解气候变化具有积极作用。
2.高效便捷:电气化铁路供电改善了列车的运行效率和可靠性。
电力驱动系统响应迅速,加速性能好,能够更好地满足列车运行的需求,同时减少了动车组的机械磨损和维护成本。
3.运行成本低:电力供电的运营成本相对较低,电力机车和电力动车组的能耗较低,维护成本相对较少。
这也有助于降低铁路运输的经营成本,提高铁路运输的竞争力。
三、电气化铁路供电面临的挑战电气化铁路供电在实施过程中也面临一些挑战:1.基础设施投资大:电气化铁路供电需要大规模的基础设施建设投资,包括接触网、变电所、配电系统等。
铁道供电技术基本知识点
铁道供电技术基本知识点铁道供电是指为铁路运输提供稳定电能的技术系统。
它主要包括供电系统的构成、工作原理以及相关设备的基本知识。
下面将从基本概念、供电系统组成、工作原理和设备等方面进行详细介绍。
一、基本概念铁道供电技术是铁路运输系统中的重要组成部分,它为铁路运输提供安全、稳定的电能。
铁道供电系统主要包括接触网、牵引变电所、配电装置等多个组成部分。
接触网是通过电气连接与运行的电气车辆接触的部分,它负责将电能传输到电气车辆上。
牵引变电所是铁路接触网中的一个重要设备,它将高压电能转化为适合电气车辆使用的低压电能。
配电装置则负责将低压电能进行分配和控制,确保电气车辆的正常工作。
二、供电系统组成铁道供电系统主要由接触网、牵引变电所和配电装置组成。
1.接触网接触网是供电系统中最重要的组成部分,它负责将电能传输到电气车辆上。
接触网通常由一根或多根导线和支撑系统组成,导线负责传输电能,支撑系统则负责支撑导线。
接触网一般采用直流供电,也有部分地区采用交流供电。
为了确保安全,接触网的导线必须具备良好的电气性能和机械性能,同时要经过定期维护和检修。
2.牵引变电所牵引变电所是铁路接触网中的重要设备,它将高压电能转化为适合电气车辆使用的低压电能。
牵引变电所通常由主变压器、整流装置、配电装置等组成。
主变压器负责将输送来的高压电能降压,整流装置将交流电转化为直流电,配电装置负责将电能分配到不同的区域。
3.配电装置配电装置负责将低压电能进行分配和控制,确保电气车辆的正常工作。
它通常由开关设备、保护设备和计量设备组成。
开关设备用于控制和分配电能,保护设备用于监测电路状态并进行保护,计量设备用于测量电能的使用情况。
三、工作原理铁道供电系统的工作原理主要是将接触网上的高压电能转化为适合电气车辆使用的低压电能。
具体流程如下:1.高压输电供电系统首先将高压电能传输到牵引变电所。
这一过程通常涉及输电线路和变电设备,输电线路将电能从电源输送到牵引变电所,变电设备则负责将高压电能转化为适合电气车辆使用的低压电能。
电气化铁道供电专业介绍
电气化铁道供电专业介绍电气化铁道供电专业是指负责铁路系统供电系统的设计、建设、运维和管理的专业领域。
随着现代交通运输的发展,电气化铁道供电系统已经成为现代铁路系统的重要组成部分。
本文将从供电系统的概念、发展历程、工作原理、设备组成以及未来发展趋势等方面对电气化铁道供电专业进行介绍。
一、供电系统的概念供电系统是指为铁道运输提供所需电能的系统。
在电气化铁道中,供电系统起到向列车提供动力能源的作用,它不仅能够为列车牵引提供电能,还能为列车的照明、空调、信号系统等提供所需电力。
二、发展历程电气化铁道供电系统的发展可以追溯到19世纪末20世纪初,最早的电气化铁道出现在欧洲。
随着科技的进步和电力技术的发展,电气化铁道供电系统逐渐成熟并得到广泛应用。
目前,电气化铁道已经在世界范围内得到广泛推广和应用。
三、工作原理电气化铁道供电系统主要由供电变电所、接触网、牵引变压器、牵引网和列车等组成。
供电变电所将高压交流电转换为适合列车牵引的直流电,然后通过接触网和牵引网将电能传输到列车上,最终由列车上的牵引装置将电能转化为机械能,驱动列车运行。
四、设备组成1. 供电变电所:负责将电力系统的高压交流电转换为适合铁路牵引的直流电,并进行分配和调度。
2. 接触网:安装在铁路线路上方,通过接触网与列车上的受电弓接触,将电能传输到列车。
3. 牵引变压器:将供电变电所输出的直流电转换为适合列车牵引的低压直流电。
4. 牵引网:安装在列车车顶,通过接触网与列车上的受电弓接触,将电能传输到列车上。
5. 列车:通过牵引装置将电能转化为机械能,驱动列车运行。
五、未来发展趋势随着科技的不断进步和社会的发展需求,电气化铁道供电系统也在不断创新和发展。
未来的电气化铁道供电系统将更加智能化、高效化和可持续化。
例如,采用新型的智能变电站和能量回馈技术,可以提高供电系统的稳定性和能源利用效率。
此外,还可以采用新能源技术,如太阳能和风能等,来提供更加清洁和环保的能源供应。
2-第二章电气化铁道基本知识
2-第⼆章电⽓化铁道基本知识第⼆章电⽓化铁道基本原理第⼀节电⽓化铁道的概念及优越性⼀、电⽓化铁道的概念采⽤电⼒牵引的铁道叫电⽓化铁道。
它改变了蒸汽牵引和内燃牵引的常规牵引模式,给现代铁道运输带来了强⼤的⽣命⼒,是现代轨道运输发展的必由之路。
⼆、电⽓化铁路的优越性电⽓化铁路由电⼒机车通过接触⽹从外部电源取得电能牵引列车前进,所以它具有如下优点。
1、牵引功率⼤,运输能⼒⾼由于电⼒机车本⾝不带能源,也不需要带能源转换设备,可从外部电源取得所需全部电能,所以在同样机车重量情况下,电⼒机车容易做到⼤功率运⾏实践证明,电⽓化铁路在地形复杂的长⼤坡道、隧道群、⾼原和沙漠区段有着明显优势。
在地理条件较好的繁忙⼲线也显⽰了其优越性,在⽯—太线的⽯阳段,年运输能⼒由电化前的2000吨提⾼到电化后的6000万吨,从⽽显⽰了电⽓化铁路多拉快跑的特点。
2、牵引效率⾼,综合利⽤能源电⼒牵引消耗的是电能,⽽电能可以集中化现代化⽣产,⼤型现代发电设备可使热效率达到60%以上,若采⽤⽔⼒发电⽔能利⽤率更⾼,并且核能发电正在蓬勃发展之中,电⼒牵引是内燃牵引效率的两倍。
电⼒牵引可以综合利⽤能源,尤其在⽯油、煤炭资源⾯临枯竭的今天,⼈们努⼒开发、利⽤新能源,如风能、光能、地热能和潮汐能等。
随着科学的发展,会有更⼴泛更廉价的再⽣能源被利⽤,电⽓化铁路可以利⽤⼀切能源发出的电能。
3、环保运输,⼯作条件好随着⼈们物质⽂明和精神⽂明的提⾼,⼈们对环境的要求也越来越⾼。
⼈类也受到了掠夺式占有的惩罚,保护环境可持续发展已是⼈们的共识。
电⼒机车直接使⽤电能,免除了燃煤燃油排放的⼀氧化碳及其他有害⽓体的污染,给旅客及沿线⼈民创造了良好的⽣活、⽣产环境。
电⼒牵引利⽤了集约化发电设备的低能耗、低污染的⽣产优势。
电⼒牵引减少了余热及费⽓排放,给司乘⼈员及铁路⼯作⼈员创造了舒适、清洁的⼯作环境,特别是在长⼤隧道及其他通风条件差的区段尤为显著。
4、劳动⽣产率⾼,运输成本底由于电⼒机车可以连续不断地从外部电源取得电能,并且功率⼤,运⾏速度⾼。
分析电气化铁路供电系统
分析电气化铁路供电系统【摘要】本文从电气化铁路的开展动手,对电气化铁路的牵引供电原理、牵引变电站及接触网、其对电力系统的影响进行了讨论,提呈现阶段国内外应采取的措施,文章具有一定的指导意义。
自1879年世界第一条电气化铁路在德国柏林建成以来,电气化铁路开展疾速。
1961,年我国第一条电气化铁路宝成线的宝鸡至凤州段建成,电气化铁路开展五十多年。
随着大批客运专线、煤运通道、城际铁路等项目的开工,现代铁路对电气化的请求越来越高,估计到2020年,中国铁路电气化率可达60%。
电气化铁路有着俭省能源、运输功率大、运输成本低、车辆周转快、维修成本低、以及耗能少污染少等多方面的优点,同时,也存在挪动性和动摇性大、负序及谐波电流影响电能质量招致三相电压不均衡、波形畸变及电压闪变等问题需求处理。
1.电气化铁路概述1.1 电气化铁路牵引供电原理与传统铁路不同,电气化铁路运转的动力不是自带能源机车,而需牵引供电系统送电以提供动力。
铁路沿线有若干个牵引变电站,经降压器降压至27.5kV,再经过牵引网向电力机车供电,牵引变电站采用双线双变供电以保证供电的牢靠性,两路供电互为热备用。
机车普通为25kV单相工频交流电压,行驶在架空接触导线与钢轨之间。
电气化铁路的牵引变压器普通为单相,从电网两相受电。
牵引供电系统一次侧包括牵引变电站及接触网。
每个牵引变电站有两个供电臂,当牵引变电站停电时,两接触网臂便可经倒闸由相邻两牵引变电站供电。
1.2 牵引变电所牵引变电所是牵引供电系统的心脏,是电气化铁路的中心。
牵引变电所的主要任务是将由电力系统接入的三相高压电变为可供电力机车运用的单相交流电。
普通来说,牵引变电所内设备分为一次和二次设备,其中一次设备主要功用为完成电能的保送、变换、分配等,包括接触高压电气设备如母线、避雷器、互感器等;二次设备则请求智能化与集成化,构成牵引变电所系统,为变电所的远动控制提供可能。
牵引变电所接入国网侧为220kv或入110kv的三相交流电,将其转变为源将27.5kv的单相交流电电气列车运用。
电气化铁道供电原理
电气化铁道供电原理
电气化铁道牵引供电装置, 又称为牵引供电系统,其系统本 身没有发电设备,而是从电力系 统取得电能。目前我国一般由110kV 及以上的高压电力系统向牵引变 电所供电。
供电系统示意图
发电厂 区域变电所
~
分区亭 馈电线 接触线
回流线
钢轨
电力机车
AT 供 电 方 式 ⑵
AT供电方式⑶
接触导线 CPW
2U ∽
钢轨
正馈线 PW
AT供电方式原理图
AT供电方式的优点⑴
AT供电方式供电电压高。AT供电 方式无需提高牵引网的绝缘水平即可 将牵引网的电压提高一倍。BT供电方 式牵引变电所的输出电压为27.5kV,而 AT供电方式牵引变电所的输出电压为 55kV,线路电流为负载电流的一半,所 以线路上的电压损失和电能损失大大 减小。
目
录
电气化铁道的供电原理……………..3
供电系统……………………………..4 供电方式……………………………..5 直接供电方式………………………..6 BT供电方式………………………….8 AT供电方式………………………..12 同轴电缆供电方式…………………19
直供加回流线供电方式……………22
AT供电方式的优点⑵
AT供电方式防护效果好。AT供电方式, 接触悬挂上的电流与正馈线上的电流大小 相等,方向相反,其电磁感应相互抵消, 所以防护效果好。并且,由于AT供电的自 耦变压器是并联在接触悬挂和正馈线间的, 不象BT供电的吸流变压器,串联在接触悬 挂和回流线之间,因此没有因励磁电流的 存在而使原副边绕组电流不等,以及在短 路时吸流变压器铁芯饱和导致防护效果很 差等问题。另外也不存在“半段效应”问 题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气化铁道供电原理
电气化铁道牵引供电装置,又称为牵引供电系统,其系统本身没有发电设备,而是从电力系统取得电能。
目前我国一般由110kV以上的高压电力系统向牵引变电所供电。
目前牵引供电系统的供电方式有直接供电方式、BT供电方式、AT供电方式、同轴电缆和直供加回流线供电方式四种,京沪、沪杭、浙赣都是采用的直供加回流线方式。
一、直接供电方式
直接供电方式(T—R供电)是指牵引变电所通过接触网直接向电力机车供电,及回流经钢轨
及大地直接返回牵引变电所的供电方式。
这种供电方式的电路构成及结构简单,设备少,施工及运营维修都较方便,因此造价也低。
但由于接触网在空中产生的强大磁场得不到平衡,对邻近的广播、通信干扰较大,所以一般不采用。
我国现在多采用加回流线的直接供电方式。
二、BT供电方式
所谓BT供电方式就是在牵引供电系统中加装吸流变压器(约3~4km安装一台)和回流线的供电方式。
这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,这样大大减轻了接触网对邻近通信线路的干扰。
BT供电的电路是由牵引变电所、接触悬挂、回流线、轨道以及吸上线等组成。
由图可知,牵引变电所作为电源向接触网供电;电力机车(EL)运行于接触网与轨道之间;吸流变压器的原边串接在接触网中,副边串接在回流线中。
吸流变压器是变比为1:1的特殊变压器。
它使流过原、副边线圈的电流相等,即接触网上的电流和回流线上的电流相等。
因此可以说是吸流变压器把经钢轨、大地回路返回变电所的电流吸引到回流线上,经回流线返回牵引变电所。
这样,回流线上的电流与接触网上的电流大小基本相等,方向却相反,故能抵消接触网产生的电磁场,从而起到防干扰作用。
以上是从理论上分析的理想情况,但实际上由于吸流变压器线圈中总需要励磁电流,所以经回流线的电流总小于接触网上的电流,因此不能完全抵消接触网对通信线路的电磁感应影响。
另外,当机车位于吸流变压器附近时回流还是从轨道中流过一段距离,至吸上线处才流向回流线,则该段回流线上的电流会小于接触网上的电流,这种情况称为“半段效应”。
此外,吸流变压器的原边线圈串接在接触网中,所以在每个吸流变压器安装处接触网必须安装电分段,这样就增加了接触网的维修工作量和事故率。
当高速大功率机车通过,该电分段时产生很大电弧,极易烧损机车受电弓和接触线。
且BT供电方式的牵引网阻抗较大,造成较大的电压和电能损失,故已很小采用。
三、AT供电方式
随着铁路电气化技术的发展,高速、大功率电力机车的投入运行,吸—回装置供电方式已不能适应需要。
各国开始采用AT供电方式。
所谓AT供电方式就是在牵引供电系统中并联自耦变压器的供电方式。
实践证明,这种供电方式是一种既能有效地减弱接触网对邻近通
信线的感应影响,又能适应高速、大功率电力机车运行的一种比较先进的供电方式。
AT供电方式的电路包括牵引变电所S、接触悬挂T、轨道R、自耦变压器AT、正馈线AF、电力机车EL等。
牵引变电所作为电源向牵引网输送的电压为25kV。
而接触悬挂与轨道之间的电压仍为25kV,正馈线与轨道之间的电压也是25kV。
自耦变压器是并联在接触悬挂和正馈线之间的,其中性点与钢轨(保护线)相连接。
彼此相隔一定距离(一般间距为10~16km)的自耦变压器将整个供电区段分成若干个小的区段,叫做AT区段。
从而形成了一个多网孔的复杂供电网络。
接触悬挂是去路,正馈线是回路。
接触悬挂上的电流与正馈线上的电流大小相等,方向相反,因此其电磁感应影响可互相抵消,故对邻近的通信线有很好的防护
作用。
AT供电方式与BT供电方式相比具有以下优点:
1、AT供电方式供电电压高。
AT供电方式无需提高牵引网的绝缘水平即可将牵引网的电压提高一倍。
BT供电方式牵引变电所的输出电压为27.5kV,而AT供电方式牵引变电所的输出电压为55kV,线路电流为负载电流的一半,所以线路上的电压损失和电能损失大大减小。
2、AT供电方式防护效果好。
AT供电方式,接触悬挂上的电流与正馈线上的电流大小相等,方向相反,其电磁感应相互抵消,所以防护效果好。
并且,由于AT供电的自耦变压器是并联在接触悬挂和正馈线间的,不象BT供电的吸流变压器,串联在接触悬挂和回流线之间,因此没有因励磁电流的存在而使原副边绕组电流不等,以及在短路时吸流变压器铁芯饱和导致防护效果很差等问题。
另外也不存在“半段效应”问题。
3、AT供电方式能适应高速大功率电力机车运行。
因AT供电方式的供电电压高、线路电流小、阻抗小(仅为BT供电方式的1/4左右)、输出功率大,使接触网有较好的电压水平,能适应高速大功率电力机车运行的要求。
另外,AT供电也不象BT供电那样,在吸流变压器处对接触网进行电分段,当高速大功率电力机车通过时产生电弧,烧坏机车受电弓滑板和接触线,对机车的高速运行和接触网和接触网的运营维修极为不利。
4、AT供电牵引变电所间距大、数量少。
由于AT供电方式的输送电压高、线路电流小、电压损失和电能损失都小,输送功率大,所以牵引变电所的距离加大为80~120km,而BT供电方式牵引变电所的间距为30~60km,因此牵引变电所的距离大大减少,同时运营管理人员也相应减少,那么,建设投资和运营管理费用都会减少。
四、同轴电缆供电方式
同轴电力电缆供电方式(简称CC供电方式),是一种新型的供电方式,它的同轴电力电缆沿铁路线路埋设,内部芯线作为供电线与接触网连接,外部导体作为回流线与钢轨连接。
每
隔5~10km作一个分段。
由于供电线与回流线在同一电缆中,间隔很小,而且同轴布置,使互感系数增大。
由于同轴电力电缆的阻抗比接触网和钢轨的阻抗小得多,因此牵引电流和回流几乎全部经由同轴电力电缆中流过。
同时由于电缆芯线与外层导体电流大小相等,方向相反,二者形成的磁场相互抵消,对邻近的通信线路几乎无干扰。
由于电路阻抗小,因而供电距离长。
但由于
同轴电力电缆造价高、投资大,很少采用。
五、直供加回流线供电方式
直供加回流线供电方式结构比较简单。
这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,这样大大减轻了接触网对邻近通信线路的干扰。
与直供方式比较,能对沿线通信防干扰;比BT供电减少了BT装置,既减少了建设投资,又便于维修。
与AT供电方式比较,减少了AT所和沿线架设的正馈线,不仅减少了投资,还便于接触网维修。
所以自大秦线以后的电气化铁道,基本都采用这种方式。
我段所管辖的京沪、沪昆都采用这种供电方式。
直供加回流线供电方式的原理如下图
所示。
六、牵引变电所向接触网供电有单边供电和双边供电两种方式。
接触网在牵引变电所处及相邻的两个变电所中央是断开的,将两个牵引变电所之间的接触网分成两独立的供电分区,又叫供电臂。
每个供电臂只从一端的牵引变电所获得电能的供电方式称为单边供电。
每个供电臂同时从两侧变电所获得电能的供电方式称为双边供电。
双边供电可提高供电质量,减少线路损耗,但继电保护等技术存在问题。
所以我国及多数国家均采用单边供电。
但在事故情况下,位于两变电所之间的分区亭可将两个供电臂连接进来,实行越区供电,越区供电是在非常状态下采用的,因供电距离过长,难以保证末端的电压质量,所以只是一种临时应急措施,并且在实行越区供电时,应校核供电末端的电
压水平是否符合要求。
在复线区段同一供电臂上、下行接触网接的是同相电,但在牵引变电所及分区亭内设有开关装置,可将上、下行接触网连通,实行并联供电,以减小线路阻抗,降低电压损失和电能损失,提高接触网的电压水平。
在事故情况下,又可将上、下行接触网分开,互不影响,
使供电更加灵活可靠。
牵引变电所馈电线馈出的两供电臂上的电压是不同相位的。
为了减少对电力系统的不平衡影响,各牵引变电所要采用换连接,不同相位的接触网间要设置电分相装置。
为了灵活供电和缩小事故范围,便于检修,接触网还设置了许多电分段装置。