飞行器翼型设计.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、翼型的定义与研究发展
在飞机的各种飞行状态下,机翼是飞机承受升力的主要部件,而立尾和平尾是飞机保持安定性和操纵性的气动部件。一般飞机都有对称面,如果平行于对称面在机翼展向任意位置切一刀,切下来的机翼剖面称作为翼剖面或翼型。翼型是机翼和尾翼成形重要组成部分,其直接影响到飞机的气动性能和飞行品质。
通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力小、并有小的零升俯仰力矩。因此,对于不同的飞行速度,机翼的翼型形状是不同的。
对于低亚声速飞机,为了提高升力系数,翼型形状为圆头尖尾形;
对于高亚声速飞机,为了提高阻力发散Ma数,采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘向下凹;
对于超声速飞机,为了减小激波阻力,采用尖头、尖尾形翼型。
3、NACA翼型编号
NACA四位数翼族:
其中第一位数代表f,是弦长的百分数;第二位数代表p,是弦长的十分数;最后两位数代表厚度,是弦长的百分数。例如NACA 0012是一个无弯度、厚12%的对称翼型。有现成实验数据的NACA四位数翼族的翼型有6%、8%、9%、10%、12%、15%、18%、21%、24
五位数翼族的厚度分布与四位数翼型相同。不同的是中弧线。具体的数码意义如下:第一位数表示弯度,但不是一个直接的几何参数,而是通过设计升力系数来表达的,这个数乘以3/2就等于设计升力系数的十倍。第二、第三两位数是2p,以弦长的百分数来表示。最后
两位数仍是百分厚度。
例如NACA 23012这种翼型,它的设计升力系数是(2)×3/20=0.30;p=30/2,即中弧线最高点的弦向位置在15%弦长处,厚度仍为12%。
一般情况下的五位数编号意义如下
有现成实验数据的五位数翼族都是230-系列的,设计升力系数都是0.30,中弧线最高点的弦向位置p都在15%弦长处,厚度有12%、15%、18%、21%、24%五种。其它改型的五位数翼型在此就不介绍了。
1、低速翼型绕流图画
低速圆头翼型在小迎角时,其绕流图画如下图示。总体流动特点是
(1)整个绕翼型的流动是无分离的附着流动,在物面上的边界层和翼型后缘的尾迹区很薄;(2)前驻点位于下翼面距前缘点不远处,流经驻点的流线分成两部分,一部分从驻点起绕过前缘点经上翼面顺壁面流去,另一部分从驻点起经下翼面顺壁面流去,在后缘处流动平滑地汇合后下向流去。
(3)在上翼面近区的流体质点速度从前驻点的零值很快加速到最大值,然后逐渐减速。根据Bernoulli方程,压力分布是在驻点处压力最大,在最大速度点处压力最小,然后压力逐渐增大(过了最小压力点为逆压梯度区)。而在下翼面流体质点速度从驻点开始一直加速到后缘,但不是均加速的。
NACA2412在迎角 7.40时的压强分布曲线
(4)随着迎角的增大,驻点逐渐后移,最大速度点越靠近前缘,最大速度值越大,上下翼面的压差越大,因而升力越大。
(5)气流到后缘处,从上下翼面平顺流出,因此后缘点不一定是后驻点。
当迎角大过一定的值之后,就开始弯曲,再大一些,就达到了它的最大值,此值记为最大升力系数,这是翼型用增大迎角的办法所能获得的最大升力系数,相对应的迎角称为临界迎角。过此再增大迎角,升力系数反而开始下降,这一现象称为翼型的失速。这个临界迎角也称为失速迎角。
归纳起来,翼型升力系数曲线具有的形状为
3、翼型失速
随着迎角增大,翼型升力系数将出现最大,然后减小。这是气流绕过翼型时发生分离的结果。翼型的失速特性是指在最大升力系数附近的气动性能。翼型分离现象与翼型背风面上的流动情况和压力分布密切相关。
在一定迎角下,当低速气流绕过翼型时,从上翼面的压力分布和速度变化可知:气流在
上翼面的流动是,过前驻点开始快速加速减压到最大速度点(顺压梯度区),然后开始减速增压到翼型后缘点处(逆压梯度区)。
小迎角翼型附着绕流
随着迎角的增加,前驻点向后移动,气流绕前缘近区的吸力峰在增大,造成峰值点后的气流顶着逆压梯度向后流动越困难,气流的减速越严重。这不仅促使边界层增厚,变成湍流,而且迎角大到一定程度以后,逆压梯度达到一定数值后,气流就无力顶着逆压减速了,而发生分离。这时气流分成分离区内部的流动和分离区外部的主流两部分。
在分离边界(称为自由边界)上,二者的静压必处处相等。分离后的主流就不再减速不再增压了。分离区内的气流,由于主流在自由边界上通过粘性的作用不断地带走质量,中心部分便不断有气流从后面来填补,而形成中心部分的倒流。
大迎角翼型分离绕流
不同迎角下翼型的绕流实验结果
根据大量实验,大Re数下翼型分离可根据其厚度不同分为:
(1)后缘分离(湍流分离),升力曲线如左图(a);
(2)前缘分离(前缘短泡分离),如(b);
(3)薄翼分离(前缘长气泡分离),如(c)。
(1)后缘分离(湍流分离)
这种分离对应的翼型厚度大于12%-15%,翼型头部的负压不是特别大,分离从翼型上翼面后缘近区开始,随着迎角的增加,分离点逐渐向前缘发展,起初升力线斜率偏离直线,当迎角达到一定数值时,分离点发展到上翼面某一位置时(大约翼面的一半),升力系数达到最大,以后升力系数下降。后缘分离的发展是比较缓慢的,流谱的变化是连续的,失速区的升力曲线也变化缓慢,失速特性好。
NACA4412——后缘分离(湍流分离)
(2)前缘分离(前缘短泡分离)
对于中等厚度的翼型(厚度6%-9%),前缘半径较小,气流绕前缘时负压很大,从而产生很大的逆压梯度,即使在不大迎角下,前缘附近发生流动分离,分离后的边界层转捩成湍流,
从外流中获取能量,然后在附到翼面上,形成分离气泡。起初这种短气泡很短,只有弦长的0.5 ~ 1%,当迎角达到失速角时,短气泡突然打开,气流不能再附,导致上翼面突然完全分离,使升力和力矩突然变化。
(3)薄翼分离(前缘长气泡分离)
对于薄的翼型(厚度4%-6%),前缘半径更小,气流绕前缘时负压更大,从而产生很大的逆压梯度,即使在不大迎角下,前缘附近引起流动分离,分离后的边界层转捩成湍流,从外流中获取能量,流动一段较长距离后再附到翼面上,形成长分离气泡。起初这种气泡不长,只有弦长的2%-3%;随着迎角增加,再附点不断向下游移动;当达到失速迎角时,气泡不再附着,上翼面完全分离之后,升力达到最大值;迎角继续增加,升力逐渐下降。
(4)除上述三种分离外,还可能存在混合分离形式,气流绕翼型是同时在前缘和后缘发生分离。
按产生阻力的原因分类,低速飞行时飞机上的阻力有:摩擦阻力,压差阻力,诱导阻力和干扰阻力等。摩擦阻力
空气也具有粘性。当气流流过飞机表面时,由于粘性,空气微团与飞机表面发生摩擦,阻滞了气流的流动,由此而产生的阻力就叫做“摩擦阻力"。