大学物理课后答案 第七章 静电场中的导体和电介质
大学物理第7章静电场中的导体和电介质课后习题及答案
1第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1s 和2s 。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr =21s s。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为的导体球的电势为R R V 0211π4e p s =014e s R =半径为r 的导体球的电势为的导体球的电势为r r V 0222π4e p s =024e s r = 用细导线连接两球,有21V V =,所以,所以Rr=21s s 2. 证明:对于两个无限大的平行平面带电导体板来说,证明:对于两个无限大的平行平面带电导体板来说,(1)(1)(1)相向的两面上,电荷的面密度总是相向的两面上,电荷的面密度总是大小相等而符号相反;大小相等而符号相反;(2)(2)(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1s ,2s ,3s ,4s (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得内部的闭合圆柱面为高斯面,由高斯定理得S S d E SD +==×ò)(10320s s e故+2s 03=s上式说明相向两面上电荷面密度大小相等、符号相反。
上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即电平面产生的场强叠加而成的,即0222204030201=---e s e s e s e s又+2s 03=s 故 1s 4s =3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。
大学物理课后答案第七章.doc
第七章静电场中的导体和电介质一、基本要求1. 掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律;2. 学会计算电容器的电容;3. 了解介质的极化现象及其微观解释;4. 了解各向同性介质中D和E的关系和区别;5. 了解介质中电场的高斯定理;6. 理解电场能量密度的概念。
二、基本内容1. 导体静电平衡(1) 静电平衡条件:导体任一点的电场强度为零(2) 导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3) 导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2. 电容(1) 孤立导体的电容c=勺V电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。
(2) 电容器的电容C =—9-V A~ Vq为构成电容器两极板上所带等量异号电荷的绝对值。
V A-V B为A、B两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3) 电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之111 1和。
等效电容由一=—+—+川+一进行计算。
C C C C1 2 n并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为C=C +C ,川*C o 1 2 n(4) 计算电容的一般步骤+ 一%1设两极带电分别为q和q,由电荷分布求出两极间电场分布。
~ = J B%1由V V E dl求两极板间的电势差。
A B A%1根据电容定义求c wV A VB3. 电位移矢量D=£ +人为引入的辅助物理量,定义D E P, D既与E有关,又与P有关。
说明D 0不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向号惟会质都适用。
大学物理课后答案
第七章 静电场中的导体和电介质一、基本要求1.掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律; 2.学会计算电容器的电容;3.了解介质的极化现象及其微观解释; 4.了解各向同性介质中D 和E 的关系和区别; 5.了解介质中电场的高斯定理; 6.理解电场能量密度的概念。
二、基本内容1.导体静电平衡(1)静电平衡条件:导体任一点的电场强度为零(2)导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3)导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2.电容(1)孤立导体的电容 q C V=电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。
(2)电容器的电容BA V V qC -=q 为构成电容器两极板上所带等量异号电荷的绝对值。
B A V V -为A 、B 两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3)电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之和。
等效电容由121111nC C C C =+++进行计算。
并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为12n C C C C =+++。
(4)计算电容的一般步骤①设两极带电分别为q +和q -,由电荷分布求出两极间电场分布。
②由BA B A V V d -=⋅⎰E l 求两极板间的电势差。
③根据电容定义求BA V V qC -=3.电位移矢量D人为引入的辅助物理量,定义0ε=+D E P ,D 既与E 有关,又与P 有关。
说明D 不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向异性介质都适用。
大学物理同步训练第2版第七章静电场中的导体详解
第七章 静电场中的导体和电介质一、选择题1. (★★)一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处(a <R )放一点电荷+q ,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为(A )q 2πε0a ⁄ (B )0(C )−q 4πε0R ⁄ (D )q 4πε0⁄∙(1a ⁄−1R ⁄)答案:D分析:由静电平衡的知识可知:①当空腔导体内放入点电荷+q 时,空腔导体的内表面会带上等量异号的电荷−q ,由电荷守恒可知不带电的空腔导体的外表面带有的+q 电荷;②当球壳接地后,球壳电势变为零,故球壳外表面电量变为零。
因此接地后去掉地线,该体系的电荷分布如图所示,球壳内表面带有−q 的电量,外表面不带电。
由电势叠加原理可得球心O 处的电势为V O =q 4πε0a +∫dq 4πε0R 内=q 4πε0a +14πε0R ∫dq 内=q 4πε0(1a −1R ) 故选项D 正确。
注:式中∫dq 内=−q 为内表面的电量之和。
【补充】带电量为Q 半径为R 的球面(电荷分布无论均匀或不均匀)在球心处产生的电势为V =Q 4πε0R ⁄。
2. 三块互相平行的导体板之间的距离d 1和d 2比板间面积线度小得多,如果d 2=2d 1,外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为σ1和σ2,如图2所示,则σ1σ2⁄为(A )1 (B )2 (C )3 (D )4答案:B分析:【知识点】达到静电平衡的导体:①内部电场强度为E =0,表面附近电场强度垂直于导体表面,大小为E =σε0⁄,其中σ为导体表面电荷面密度;②导体是一个等势体,导体表面为等势面;③导体内部处处无净电荷,即电荷只分布在导体的表面上,电荷面密度与导体表面的曲率有关,曲率越大(越尖)电荷面密度越大。
由静电平衡的知识点①可知,中间导体板左侧电场强度为σ1ε0⁄,右侧为σ2ε0⁄;由静电平衡的知识点②可知,用导线连接起来的左右两个导体板等势,即中间导体板与左右两导体板的电势差U 相同,由U =Ed 可得σ1ε0⁄∙d 1=σ2ε0⁄∙d 2,故σ1σ2⁄=d 2d 1⁄=2,故选项B 正确。
第7章+静电场+习题和思考题
1 E d S 根据高斯定理
0
q
S内
i
S
Q
q q
习题图7-1
第七章 习题解答 第七章 习题解答
C 3. 关于电场线,以下说法哪个正确。 (A)电场线上各点的电场强度大小相等; (B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点 的电场强度方向平行; (C) 匀强电场中开始处于静止的电荷,在电场力的作用下运动 的轨迹必与一条电场线重合; (D) 在无电荷的电场空间,电场线可以相交。 答 :电场线上任意点的切线方向为该点处电场强度的方向; 电场线密度表针该点处电场强度的大小;电场为有源场,任 意电场线不相交;在均匀场中,电场强度处处相等;电荷在 均匀电场中静止开始运动,其运动轨迹必沿与一条电场线运 动。
解: (1) (0,a)处点电荷在 O 点产生的电场方向从 O 点指 向 y 轴正向;(0,-a)处点电荷在 O 点产生的电场方向从 O 点 指向 y 轴负向;(2a,0)处点电荷在 O 点产生的电场方向从 O 点指向 x 轴正向。 (2)
Eao 2Q Q j j 2 2 40 a 20a 1
1 2Q Q j j 2 2 40 a 20a
y
E ao
a
2Q
Q
a
O
2Q
a 2a
x
E2ao
Q Q i i 2 2 40 ( 2a) 160a 1
第七章 习题解答 第七章 习题解答
(3)
Eo Eao Eao E2ao Q Q Q j ( j) i 2 2 2 20a 20a 160a
第七章 习题解答 第七章 习题解答 球心电势
U E dl
大学物理A静电场中的导体和电介质习题答案及解法201064
静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处放一点电荷q +,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。
参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。
[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。
设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。
参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==•+•=•=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。
参考答案:带电导体达到静电平衡时,导体是一个等势体,其外表面是一个等势面。
大物AI作业参考解答_No.08 静电场中的导体和电介质
《大学物理AI 》作业No.08静电场中的导体和电介质班级________学号________姓名_________成绩______--------------------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解静电平衡的条件,理解静电感应、静电屏蔽的原理;2、掌握静电平衡时导体表面感应电荷的分布和电场、电势的计算;3、了解电介质的极化现象和微观解释,理解电位移矢量D的定义,确切理解电介质中的高斯定理,并能利用它求解有电介质存在时具有一定对称性的电场问题;4、理解电容的定义,掌握电容器电容的计算方法;5、掌握电容器的储能公式,理解电场能量密度的概念,并能计算电荷系的静电能;6、理解电流强度和电流密度的概念,理解恒定电场的特点及电源电动势的概念。
--------------------------------------------------------------------------------------------------------------------一、选择题:1.把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示。
设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则[D ](A)U B >U A ≠0(B)U B >U A =0(C)U B =U A (D)U B <U A解:电力线如图所示,电力线指向电势降低的方向,所以U B <U A 。
2.半径分别为R 和r 的两个金属球,相距很远。
用一根细长导线将两球连接在一起并使它们带电。
在忽略导线的影响下,两球表面的电荷面密度之比为[D ](A)R/r (B)R 2/r 2(C)r 2/R 2(D)r/R解:两个金属球用导线相接意味着它们的电势相等,设它们各自带电为21q q 、,选无穷远处为电势0点,那么有:rq Rq 020144,我们对这个等式变下形r R rr r q R R R q 21020144 ,即面电荷密度与半径成反比。
《大学物理学》习题解答静电场中的导体和电介质
根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。
大学大学物理习题解答参考答案-导体与电介质的静电场(一)
20XX年复习资料大学复习资料专业:班级:科目老师:日期:导体与电介质的静电场(一)20XXXX-1-1. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小.(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ] 20XXXX-1-2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A)N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ]20XXXX-1-3. 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+ ,则在导体板B 的两个表面1和2上的感生电荷面密度为:(A) 1 = -, 2 = +.(B) 1 =σ21-, 2 =σ21+. (C) 1 =σ21-, 1 =σ21-. (D) 1 = -, 2 = 0. [ ]20XXXX-1-4. 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ ] 20XXXX-1-5. 一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:q 0PM N A B +σ12(A) 204r E ελπ=,a b U ln 20ελπ=. (B) 204r E ελπ=,r b U ln 20ελπ=. (C) r E 02ελπ=,ra U ln 20ελπ=. (D) r E 02ελπ=,rb U ln 20ελπ=. [ ] 20XXXX-1-6. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 02εσ. (C) 0εσh . (D) 02εσh . [ ] 20XXXX-1-7. 一带电大导体平板,平板二个表面的电荷面密度的代数和为 ,置于电场强度为0E 的均匀外电场中,且使板面垂直于0E 的方向.设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为:(A) 002εσ-E ,002εσ+E . (B) 002εσ+E ,002εσ+E . (C) 002εσ+E ,002εσ-E . (D) 002εσ-E ,002εσ-E . [ ] 20XXXX-1-8. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B板接地,则AB 间电场强度的大小E 为 (A) S Q 012ε . (B) SQ Q 0212ε-. (C) S Q 01ε. (D) SQ Q 0212ε+. [ ] 20XXXX-1-9. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为 (A) 104R q επ . (B) 204R q επ . O P r a b d b a hh σ 0E +Q 1 +Q 2 A B q q R 1 R 2(C) 102R q επ . (D) 20R qε2π . [ ] 20XXXX-1-20XXXX. 两个同心薄金属球壳,半径分别为R 1和R 2 (R 2 > R 1 ),若分别带上电荷q 1和q 2,则两者的电势分别为U 1和U 2 (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A) U 1. (B) U 2.(C) U 1 + U 2. (D) )(2121U U +. [ ]20XXXX-1-20XXXX. 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为(A) 0 . (B) dq 04επ. (C)R q 04επ-. (D) )11(40R d q -πε. [ ]20XXXX-1-20XXXX. 三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为1和2,如图所示.则比值1 / 2为(A) d 1 / d 2. (B) d 2 / d 1.(C) 1. (D) 2122/d d . [ ]20XXXX-1-20XXXX. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.[ ]20XXXX-1-20XXXX. 一半径为R 的薄金属球壳,带电荷-Q .设无穷远处电势为零,则球壳内各点的电势U 可表示为: (041επ=K ) (A) R Q K U -<. (B) RQ K U -=. R O d +q d 1 d 2 σ2 σ1P(C) R Q K U ->. (D) 0<<-U RQ K . [ ] 20XXXX-1-20XXXX. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A) 球壳内、外场强分布均无变化.(B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ ] 20XXXX-1-20XXXX. 在带有电荷+Q 的金属球产生的电场中,为测量某点场强E ,在该点引入一电荷为+Q/3的点电荷,测得其受力为F .则该点场强E 的大小(A) Q F E 3=. (B) QF E 3>. (C) QF E 3<. (D) 无法判断. [ ] 20XXXX-1-20XXXX. 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀.(B) 内表面不均匀,外表面均匀.(C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ ]20XXXX-1-20XXXX. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D 通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]20XXXX-1-20XXXX. 关于静电场中的电位移线,下列说法中,哪一个是正确的?(A) 起自正电荷,止于负电荷,不形成闭合线,不中断.(B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ ]20XXXX-1-20XX. 一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为(A) 0 E . (B) 0 r E .(C) r E . (D) (0 r -0)E . [ ]导体与电介质的静电场(二)20XXXX-2-1. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有(A) E > E 0,两者方向相同. (B) E = E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ ]20XXXX-2-2. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2.(C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ ]20XXXX-2-3. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]20XXXX-2-4. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动.(C) 向下运动. (D) 是否运动不能确定. [ ]20XXXX-2-5. 两只电容器,C 1 = 8 F ,C 2 = 2 F ,分别把它们充电到 20XXXX00 V ,然后将它们反接(如图所示),此时两极板间的电势差为:(A) 0 V . (B) 20XX0 V .(C) 600 V . (D) 20XXXX00V . [ ]20XXXX-2-6. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 20XXXX 、电场强度的大小E 、电场能量W 将发生如下变化:(A)U 20XXXX 减小,E 减小,W 减小.(B) U 20XXXX 增大,E 增大,W 增大.(C) U 20XXXX 增大,E 不变,W 增大.(D) U 20XXXX 减小,E 不变,W 不变. [ ] E E 0+q mC 1 C 220XXXX-2-7. C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则 (A) C 1极板上电荷增加,C 2极板上电荷增加.(B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷减少. [ ]20XXXX-2-8. C 1和C 2两空气电容器串联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示. 则 (A) C 1上电势差减小,C 2上电势差增大.(B) C 1上电势差减小,C 2上电势差不变.(C) C 1上电势差增大,C 2上电势差减小.(D) C 1上电势差增大,C 2上电势差不变. [ ]20XXXX-2-9. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则(A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 1极板上电荷减少,C 2极板上电荷不变. [ ]20XXXX-2-10. C 1和C 2两空气电容器,把它们串联成一电容器组.若在C 1中插入一电介质板,则(A) C 1的电容增大,电容器组总电容减小.(B) C 1的电容增大,电容器组总电容增大. (C) C 1的电容减小,电容器组总电容减小. (D) C 1的电容减小,电容器组总电容增大. [ ]20XXXX-2-11. C 1和C 2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示, 则 (A) C 1和C 2极板上电荷都不变.(B) C 1极板上电荷增大,C 2极板上电荷不变.(C) C 1极板上电荷增大,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷增大. [ ]20XXXX-2-12. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关.(B) 使电容减小,且与介质板相对极板的位置有关.(C) 使电容增大,但与介质板相对极板的位置无关.(D) 使电容增大,且与介质板相对极板的位置有关. [ ]C 1 C 2C 1 C 2C 1 C 212C 1 C 220XXXX-2-13. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:(A) 使电容减小,但与金属板相对极板的位置无关.(B) 使电容减小,且与金属板相对极板的位置有关.(C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ ]20XXXX-2-14. 如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的(A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ ]20XXXX-2-15. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ]20XXXX-2-16. 用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将(A) 都增加.(B) 都减少.(C) (a)增加,(b)减少.(D) (a)减少,(b)增加. [ ]20XXXX-2-17. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑.(B) E ↓,C ↑,U ↓,W ↓.(C) E ↓,C ↑,U ↑,W ↓.(D) E ↑,C ↓,U ↓,W ↑. [ ]20XXXX-2-18. 两个完全相同的电容器C 1和C 2,串联后与电源连接.现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小.(B) C 1上的电荷大于C 2上的电荷.(C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. [ ]20XXXX-2-19. 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两qF F 充电后仍与电源连接 充电后与电源断开C 1C 2极板间距离拉大,则极板上的电荷Q、电场强度的大小E和电场能量W将发生如下变化(A) Q增大,E增大,W增大.(B) Q减小,E减小,W减小.(C) Q增大,E减小,W增大.(D) Q增大,E增大,W减小.[]20XXXX-2-20. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.[]。
大学物理课后答案 第七章 静电场中的导体和电介质
习题77-2 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题7-2图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q(1)(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题7-3图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=7-4 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U7-4图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 -='q 3q 7-5有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力00294π432322F r qq F ==ε7-6如题7-6图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题7-6图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσS q d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 Sqd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 7-7 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rrQ E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内2020π4)11(π4R QR r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε7-8如题7-8图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题7-8图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题7-8图7-9 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题7-9图7-10 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题7-10图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε= 3R r >时 302π4r rQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F。
大学物理静电场中的导体和电介质习题答案
第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
大学物理第七章和第八章习题答案
2
R2 R1
(5) C'
rC
4 0 r R1R2 R2 R1
2. 如图所示,,两块分别带有等量异号电荷的平行金属平板 A 和 B,相距为 d=5.0mm,两板 面积均为 S=150 cm2。所带电量均为 q=2.66×10-8C, A 板带正电并接地。求:(1)B 板的电 势;(2)A、B 板间距 A 板 1.0mm 处的电势。
(4)该电容存储的电场能量;
(5)若在两极板之间充满相对介电常数为r 的各向同性均匀电介质,则电容值变为多少?
解:(1)设极板上分别带电量+Q 和-Q,距离为 d,极板间产生均匀电场,
E Q /( 0 S ) 方向为由带+Q 的极板指向带-Q 的极板
极板外侧 E' 0
(2)两极板间的电势差为U12
金属球壳、设无穷远处为电势零点,则在
球壳内半径为 r 的 P 点处的场强和电势为:
[D]
(A)E= Q ,U Q (B)E=0,U Q
4 0r 2
4 0r
4 0 r1
(C)E=0,U Q 4 0 r
(D)E=0,U Q 40r2
r1
+Q
r
r2
P
5. 关于高斯定理,下列说法中哪一个是正确的? [ C ]
专业班级_____ 姓名________ 学号________
第七章 静电场中的导体和电介质
一、选择题:
1,在带电体 A 旁有一不带电的导体壳 B,C 为导体壳空腔内的一点,如下图所示。则由静电 屏蔽可知:[ B ]
(A)带电体 A 在 C 点产生的电场强度为零; (B)带电体 A 与导体壳 B 的外表面的感应电荷在 C 点所产生的
《静电场中的导体与电介质》选择题解答与分析
13静电场中的导体与电介质 13.1静电平衡1. 当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. 答案:(D) 参考解答:静电平衡时的导体电荷、场强和电势分布的特点: (1) 电荷仅分布在导体的表面,体内静电荷为零.(2) 导体表面附近的场强方向与导体表面垂直,大小与导体表面面电荷密度成正比;(3) 导体为等势体,表面为等势面.答案(D)正确,而(A)(B)(C)均需考虑电势是一个相对量,在场电荷的电量以及分布确定的同时,还必须选定一个电势零点,在这样的情况下,场中各点电势才能确定。
给出参考解答,进入下一题:2. 设一带电导体表面上某点附近电荷面密度为σ,则紧靠该表面外侧的场强为0/εσ=E . 若将另一带电体移近,(1) 该处场强改变,公式0/εσ=E 仍能用。
(2) 该处场强改变,公式0/εσ=E 不能用。
上述两种表述中正确的是(A) (1) . (B) (2).答案:(A) 参考解答:处于静电平衡的导体,其表面上各处的面电荷密度与相应表面外侧紧邻处的电场强度的大小成正比,即0εσ=E . 将另一带电体移近带电导体,紧表面外侧的场强会发生改变,电荷面密度为σ也会改变,但公式0εσ=E 仍能用。
给出参考解答,进入下一题:3. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。
大学物理下 静电场中的导体和电介质习题解答
q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为
,
电势 (选U∞=0)为
。
D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题7
7-2 三个平行金属板A ,B 与C 的面积都就是200cm 2
,A 与B 相距4.0mm,A 与C 相距2.0 mm.B ,C 都接地,如题7-2图所示.如果使A 板带正电3、0×10-7
C,略去边缘效应,问B 板与C 板上的感应电荷各就是多少?以地的电势为零,则A 板的电势就是多少?
解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ
题7-2图
(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d =
∴
2d d 21===AC
AB
AB AC E E σσ 且 1σ+2σS
q A
=
得 ,32S q A =
σ S
q A 321=σ 而 711023
2
-⨯-=-
=-=A C q S q σC C
10172-⨯-=-=S q B σ
(2) 30
1
103.2d d ⨯==
=AC AC AC A E U εσV 7-3 两个半径分别为1R 与2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:
(1)外球壳上的电荷分布及电势大小;
(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;
*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.
解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势
题7-3图
⎰
⎰
∞
∞==⋅=2
2
02
0π4π4d d R R R q
r
r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.
所以球壳电势由内球q +与内表面q -产生:
0π4π42
02
0=-
=
R q R q U εε
(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且
0π4'
π4'π4'2
02
01
0=+-+
-
=
R q q R q R q U A εεε
得 q R R q 2
1
=' 外球壳上电势
()2
2
021202
02
0π4π4'π4'π4'R q
R R R q q R q R q U B εεεε-=+-+
-
=
7-4 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为
R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.
解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U
7-4图
由电势叠加原理有:
=
O U 03π4π4'00=+R
q
R q εε
得 -
='q 3
q 7-5有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:
(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;
(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.
解: 由题意知 2
02
0π4r
q F ε=
(1)小球3接触小球1后,小球3与小球1均带电
2
q q =
', 小球3再与小球2接触后,小球2与小球3均带电
q q 4
3=''
∴ 此时小球1与小球2间相互作用力
00220183π483π4"'2
F r
q
r q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为
3
2q
、
∴ 小球1、2间的作用力002
9
4
π432322F r q
q F ==ε
7-6如题7-6图所示,一平行板电容器两极板面积都就是S,相距为d ,分别维持
电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也就是S,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为
1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持
U U AB =可得以下6个方程
题7-6图
⎪
⎪⎪⎪⎪⎩⎪
⎪⎪⎪
⎪⎨⎧
++++==+=+-==+=+===+6
543215432
0654
30021
00
1σσσσσσσσσσεσσσσεσσd U
S q S q
d
U U C S S q B A 解得 S
q
261==σσ
S
q d U
2032-=
-=εσσ S
q d
U
2054+
=
-=εσσ
所以CB 间电场 S q
d U E 00
422εεσ+==
)2d (212d 02
S
q U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠
,若C 片不带电,显然2
U U C = 7-7 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;
(2)电介质层内、外的电势; (3)金属球的电势.
解: 利用有介质时的高斯定理∑⎰=⋅q S D S
d
(1)介质内)(21R r R <<场强
3
03π4,π4r
r
Q E r r Q D r εε ==内; 介质外)(2R r <场强
3
03π4,π4r
r Q E r Qr D ε ==外 (2)介质外)(2R r >电势
r
Q
E U 0r
π4r d ε=
⋅=⎰
∞
外 介质内)(21R r R <<电势
r
d r d ⋅+⋅=⎰⎰
∞∞
r
r
E E U 外内
2020π4)11(π4R Q R r q
r εεε+-=
)1
1(π42
0R r Q
r r -+=
εεε
(3)金属球的电势
r d r d 2
2
1 ⋅+⋅=⎰⎰
∞R R R E E U 外内
⎰
⎰∞
+=22
2
20π44πdr R R R
r r Qdr
r Q εεε
)11(
π42
10R R Q
r r
-+=
εεε 7-8如题7-8图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分与无电介质部分极板上自由电荷面密度的比
值.
解: 如题7-8图所示,充满电介质部分场强为2E ,真空部分场强为1E
,自由
电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D
得
11σ=D ,22σ=D
而 101E D ε=,202E D r εε=
d
21U E E =
= ∴
r D D εσσ==1
2
12
题7-8图
7-9 金属球壳A 与B 的中心相距为r ,A 与B 原来都不带电.现在A 的中心
放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;
(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即
2
2
10π41r q q F ε=
但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍就是2
2
10π41r q q F ε=
,但此时
2q 受合力不为零,有加速度.
题7-9图
7-10 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 与3R =5.0cm,当内球带电荷Q =3、0×10-8
C 时,求:
(1)整个电场储存的能量; (2)此电容器的电容值.
解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q
题7-10图
(1)在1R r <与32R r R <<区域
0=E
在21R r R <<时 301π4r r
Q E ε
=
3R r >时 3
02π4r r
Q E ε
=
∴在21R r R <<区域
⎰
=2
1
d π4)π4(21222001R R r r r
Q W εε ⎰
-==2
1
)1
1(π8π8d 2
102202R R R R Q r r Q εε
在3R r >区域
⎰∞
==323022
20021π8d π4)π4(21R R Q r r r
Q W εεε ∴ 总能量 )1
11(π83
210221R R R Q W W W +-=+=ε
41082.1-⨯=J
(2)电容器电容 )1
1/(π42210
2
R R Q W C -==
ε 121049.4-⨯=F。