楞次定律的应用
电磁感应中的楞次定律的实验验证与应用
电磁感应中的楞次定律的实验验证与应用楞次定律是电磁感应的基本定律之一,它描述了电磁感应中的电动势和电流的产生关系。
通过实验验证楞次定律的适用性和应用,可以更好地理解和应用电磁感应原理。
一种常见的验证楞次定律的实验是利用恒强磁场和匀速运动的导体实验。
实验装置包括一个平行磁场的恒强磁铁和一根可以在磁场中自由运动的导体。
首先,将导体置于磁场中,并使之保持匀速直线运动,此时由于导体切割磁场线产生感应电动势。
进一步,通过连接导体两端的电路,可以观察到感应电动势引起的电流。
在实验过程中,可以通过一系列探究来验证楞次定律。
例如,改变导体的速度、磁场的强度或者导体与磁场的相对角度等因素,观察感应电流的变化。
实验结果表明,感应电动势和产生的电流都与上述因素有关,符合楞次定律的规律。
根据楞次定律,感应电动势的大小与导体速度、磁场强度、导体与磁场的相对角度以及导体的长度等因素有关系。
在实验验证的基础上,楞次定律的应用十分广泛。
一个重要的应用是发电机的原理。
发电机利用动磁场切割导线产生感应电动势,通过导线两端的电路产生电流,从而实现电能的转换。
根据楞次定律,当导线在磁场中切割线条越多,产生的感应电动势越大,电流也相应增大。
因此,通过控制磁场和导线的运动方式,可以实现不同功率和频率的发电机。
另外,楞次定律还可以应用于电动机的原理。
电动机与发电机相反,它利用电流在磁场中的作用力,实现电能向机械能的转换。
根据楞次定律,通过改变电流的方向和大小,可以改变电动机的运动方式和速度。
电动机的应用非常广泛,从家用电器到工业机械都有它的身影。
此外,楞次定律还被应用于电磁感应传感器和电磁感应计算器等设备中。
电磁感应传感器利用楞次定律实现对物理量的测量,如流量、温度和压力等。
电磁感应计数器则是在楞次定律的基础上实现的,它利用导体切割磁场产生的感应电动势来统计物体的数量。
综上所述,楞次定律通过实验验证得以验证其适用性,同时也在各种应用中得以应用。
楞次定律的应用
楞次定律的应用回顾深化:1、右手定则、左手定则、安培定则的应用比较: 关键是抓住因果关系(1) 因电而生磁(I →B )→安培定则;(2) 因动而生电(v 、B →I 安)→右手定则;(3) 因电而受力(I 、B →F 安)→左手定则.磁感应强度为B 的匀强磁场仅存在于边长为2L 的正方形范围内,有一个电阻为R 、边长为L 的正方形导线框abcd,沿垂直于磁感线方向,以速度v 匀速通过磁场,如图9-1-14所示,从ab 进入磁场时开始计时,到线框离开磁场为止.(1)画出穿过线框的磁通量随时间变化的图象;(2)判断线框中有无感应电流.若有,答出感应电流的方向.【解析】(1)如图9-1-15所示(2)线框进入磁场阶段,电流方向逆时针;线框在磁场中运动阶段,无电流;线框离开磁场阶段,电流方向顺时针.2.楞次定律的推广含义的应用① 阻碍原磁通量的变化,即“增反减同”;② 阻碍相对运动,即“来拒去留”;③ 使线圈面积有扩大或缩小的趋势,即“大小小大”;④ 阻碍导体中原来的电流发生变化,即“自感现象”.感应电流方向的判定-----(1)阻碍原磁通量的变化——“增反减同”.(2009年广州模拟)电阻R 、电容器C 与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N 极朝下,如图12-1-6所示.现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流方向和电容器极板的带电情况是( )【解析】 在N 极接近线圈上端的过程中,通过线圈的磁感线方向向下,磁通量增大,由楞次定律可判定流过线圈的电流方向向下,外电路电流由b 流向a ,同时线圈作为电源,下端应为正极,则电容器下极板电势高,带正电.【答案】 从b 到a ,下极板带正电图9-1-14图9-1-15如图9-1-8所示,A、B是两根互相平行的、固定的长直通电导线,二者电流大小和方向都相同.一个矩形闭合金属线圈与A、B在同一平面内,并且ab边保持与通电导线平行,线圈从图中的位置1匀速向左移动,经过位置2,最后到位置3,其中位置2恰在A、B的正中间,则下面的说法中正确的是()A.在位置2这一时刻,穿过线圈的磁通量为零B.在位置2这一时刻,穿过线圈的磁通量的变化率为零C.从位置1到位置3的整个过程中,线圈内感应电流的方向发生了变化D.从位置1到位置3的整个过程中,线圈受到的磁场力的方向保持不变解析:由右手螺旋定则知A正确,此时穿过线圈的磁通量的变化率最大;从位置1到位置3的整个过程中,穿过线圈的磁通量是先向外逐渐减小到零,然后向里逐渐增大,由楞次定律知C错,D对.答案:AD2.利用楞次定律判断导体的运动-----(2)阻碍(导体的)相对运动——“来拒去留”.如图9-1-9所示,老师做了一个物理小实验让学生观察:一轻质横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是()A.磁铁插向左环,横杆发生转动B.磁铁插向右环,横杆发生转动C.无论磁铁插向左环还是右环,横杆都不发生转动D.无论磁铁插向左环还是右环,横杆都发生转动解析:由于左环没有闭合,在磁铁插入过程中,不产生感应电流,故横杆不发生转动.故A、D两项都错误;由楞次定律知道,感应电流导致的结果总是阻碍引起感应电流的原因,磁体与线圈之间发生相对运动时,感应电流施加的磁场力总是阻碍磁极相对运动的.右环闭合,相当于一线圈,在磁铁插入过程中,产生感应电流,横杆将发生转动.故C项错误,只有B 项正确.答案:B如图9-1-7所示,在载流直导线近旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两可自由滑动的导体ab和cd.当载流直导线中的电流逐渐增强时,导体ab和cd的运动情况是()解析:电流增强时,电流在abdc回路中产生的垂直向里的磁场增强,回路磁通量增大,根据运动阻变法,可知回路要减小面积以阻碍磁通量的增加,因此,两导体要相向运动,相互靠拢.(2009年高考海南卷)一长直铁芯上绕有一固定线圈M,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木质圆柱上无摩擦移动.M连接在如图12-1-8所示的电路中,其中R为滑动变阻器,E1和E2为直流电源,S为单刀双掷开关.下列情况中,可观测到N向左运动的是()【解析】由楞次定律及左手定则可知:只要线圈中电流增强,即穿过N的磁通量增加,则N受排斥而向右,只要线圈中电流减弱,即穿过N的磁通量减少,则N受吸引而向左.故C选项正确.【答案】在S已向a闭合的情况下,将R的滑动头向c端移动时3.楞次定律和左、右手定则的综合应用如图12-1-10所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经标出.左线圈连着平行导轨M和N,导轨电阻不计,在导轨垂直方向上放着金属棒ab,金属棒处于垂直纸面向外的匀强磁场中,下列说法中正确的是()【解析】当金属棒ab向右匀速运动切割磁感线时,金属棒产生恒定感应电动势,由右手定则判断电流方向由a→b.根据电流从电源(ab相当于电源)正极流出沿外电路回到电源负极的特点,可以判断b点电势高于a点.又左线圈中的感应电动势恒定,则感应电流也恒定,所以穿过右线圈的磁通量保持不变,不产生感应电流,c点与d点等电势,故B正确.当金属棒ab向右加速运动时,由右手定则可推断φb>φa,电流沿逆时针方向,又由E=Blv可知ab导体两端的E不断增大,那么左边电路中的感应电流也不断增大,由安培定则可判断它在铁芯中的磁感线是沿逆时针方向的,并且磁感应强度不断增强,所以右边电路的线圈中向上的磁通量不断增加.由楞次定律可判断右边电路的感应电流应沿逆时针方向,而在右边电路中,感应电动势仅产生于绕在铁芯上的那部分线圈上,把这个线圈看成电源,由于电流是从c沿内电路(即右线圈)流向d,所以d点电势高于c点,故D正确.【答案】BD(3)使线圈面积有扩大或缩小的趋势,即“大小小大”;如图9-1-10所示,通电螺线管置于闭合金属环a的轴线上,当螺线管中电流I减小时() A.环有缩小的趋势以阻碍原磁通量的减小B.环有扩大的趋势以阻碍原磁通量的减小C.环有缩小的趋势以阻碍原磁通量的增大D.环有扩大的趋势以阻碍原磁通量的增大解析:由于电流I减小,闭合金属环的磁通量变小,故环通过减小面积来阻碍磁通量减小,即环有缩小的趋势,A项正确.答案:A如图9-1-11所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力的作用下运动时,MN在磁场力的作用下向右运动,则PQ所做的运动可能是()A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动执因搜果法:解析:由右手定则,PQ向右加速运动,穿过L1的磁通量向上且增加,由楞次定律和左手定则可判断MN向左运动,故A项错.若PQ向左加速运动,情况正好和A项相反,故B项对.若PQ向右减速运动,由右手定则,穿过L1的磁通量向上且减小,由楞次定律和左手定则可判知MN向右运动,故C项对.若PQ向左减速运动,情况恰好和C项相反,故D项错,故选B、C.答案:BC如图9-1-12所示,在匀强磁场中放有平行铜导轨,它与大导线圈M相连接,要使小导线圈N获得顺时针方向的感应电流,则放在导轨中的裸金属棒ab的运动情况是(两导线圈共面放置)()A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动解析:欲使N产生顺时针方向的感应电流,感应电流的磁场垂直纸面向里,由楞次定律可知有两种情况:一是M中有顺时针方向逐渐减小的电流,使其在N中的磁场方向向里,且磁通量在减小,二是M中有逆时针方向逐渐增大的电流,使其在N中的磁场方向向外,且磁通量在增大.因此,对于前者应使ab向右减速运动,对于后者则应使ab向左加速运动.应选B、C.答案:BC。
楞次定律的应用
楞次定律的应用楞次定律反映了感应电流的方向与磁通量变化间的关系,可结合右手螺旋法则、左手定则等判断法则,确定感应电流的方向或感应电动势的正极、负极。
运用楞次定律解题的关键是集中全力去分析所研究的那一瞬间的情况。
分析穿过所研究的闭合回路所包围面积的磁通量的变化情况。
这需要树立正确的时间观念和空间观念。
应用楞次定律的解题步骤为:画出引起感应电流的原磁场的磁感线,并使之穿过所研究的闭合回路所包围的面积;根据楞次定律画出穿过该闭合回路所包围面积的感应电流的磁场的磁感线;根据感应电流的磁场方向,借助于右手螺旋法则,确定感应电流的方向。
[例1]如图1所示,试画出闭合电键K时,线圈B中感应电流的方向。
分析:由于题还没有导线明显地做切割磁感线运动,所以,本题解题的出发点应为楞次定律,并依据上述解题步骤求解。
解:根据楞次定律判断感应电流的方向。
(按照楞次定律的解题步骤)1.画出闭合电键K时,通电线圈A中的电流的方向,依据右手螺旋法则,画出线圈A的磁场(原磁场)的磁感线,并使这些磁感线穿过所研究的线圈B所包围的面积,如图2实线所示。
2.闭合电键K,穿过所研究的线圈B的磁通量由零增至某一值,即磁通量增大。
3.根据楞次定律,在线圈B中产生感应电流,感应电流磁场的磁感线方向应与原磁场的磁感线方向相反,如图2虚线所示。
4.因为在通电线圈内部,磁感线从S极到N极,可标出线圈B中感应电流磁场的N极和S极,借助于右手螺旋法则,判断出感应电流的方向,如图2所示。
[例2]如图3所示,当可移动导线段AB向右平移时,图中小磁针的指向如何?若AB向左平移呢?分析:可移动导线段AB向右平移,穿过闭合回路的磁通量增大,有感应电流产生,可依据楞次定律判断感应电流的方向。
解:可移动导线段AB向右平移,切割磁感线运动,根据右手定则,画出AB中感应电流的方向。
如图4所示,通过线圈C中的电流的磁场在线圈D处将增强。
根据楞次定律。
1.画出线圈C中的电流的磁场的磁感线,并使之穿过线圈D所包围的面积;3.根据楞次定律画出线圈D中的感应电流磁场的磁感线,如图4虚线所示;4.借助于右手螺旋法则,画出线圈D中的感应电流的方向,如图4所示。
楞次定律应用-上课用-教案
课题:楞次定律的应用学科:物理授课教师:李授课班级:高二1班一、教材分析1、楞次定律是高中课程标准实验教科书选修3—2第四章第三节课的教学内容,它是电磁学中的重要定律,也是本章的重点和难点。
电磁感应作为联系电场和磁场的纽带,不仅是学过的电场和磁场知识的综合和扩展,也是以后学习交流电、电磁振荡和电磁波的基础。
楞次定律是电磁感应规律的重要组成部分,是分析和处理电磁感应现象问题的两个重要支柱之一。
在实际教学中要引导学生在实验的基础上,自主学习总结规律。
2、楞次定律第一节采用探究式教学模式,通过学生动手实验,学生得出了楞次定律的内容,学会了如何去判断感应电流的方向.但是由于时间关系,楞次定律的使用步骤、右手定则都没有讲。
学生知道了楞次定律的内容,应用的时候可能还有一定的困难,本节课就是要解决这个问题,通过理论分析探究,实验验证等方式加深学生对楞次定律的理解和应用。
二、学情分析本节内容要求一定的理论理解应用水平,选择理论探究和学生自主学习是有益的尝试。
通过探究得出结论并进一步深化结论是学生学习的重点。
1.学生已经掌握了磁通量的概念,并会分析磁通量的变化。
2.已经知道了几种典型磁场的磁感线的分布。
3.学生已经利用(条形磁铁、电流计、线圈等)实验器材研究感应电流产生的条件,并探究了感应电流方向的判断方法,知道了楞次定律的内容,现在要加深理解,学会解决实际问题。
三、教学目标1、知识与技能(1)通过楞次定律的实例应用分析,体会楞次定律内容中“阻碍”二字的含义,探明“磁通量变化”的方式和途径。
(2)通过实验和理论探究,学生理解楞次定律的其他表述内涵和应该方法。
(3)掌握右手定则2、过程与方法(1)学生通过教师引导,体验楞次定律的应用步骤,理解并掌握右手定则。
(2)学生在老师指导下,动手实验操作,并确定观察重点,进行观察,分析得出结论。
(3)通过讨论分析总结,找出实验现象的共性,并总结出规律,培养学生抽象思维能力和创新思维能力。
楞次定律的理解和应用
楞次定律的理解和应用楞次定律,又称“楞次正弦定律”,是由美国物理学家伊斯诺F楞次于1877年提出的物理定律。
它的本质是一种物理现象,即固定的传递物质在空间上的位移与其传输时间成正比。
在物理学领域,楞次定律是一种重要的基本原理,在日常生活中也有广泛的应用。
楞次定律认为,物体在给定的时间内以等速度运动,其位移与时间成正比,即“位移=速度×时间”,这就是楞次定律。
楞次定律认为,只要物体运动速度不变,它经过的时间越长,其位移越大,这一点在物理学中受到广泛认可,它还被用来预测物体在某一时间段的运动轨迹。
楞次定律的应用主要分为三大类:一是物理学,二是生活中的应用,三是工程学领域的应用。
1.理学领域的应用在物理学领域,楞次定律为运动学的理论提供了一个有力的解释。
它是解释物理现象的基础。
一般来说,物理学中的实验有关物体运动速度和时间段、物体位置和位移等,都可以用楞次定律来解释。
例如,物体从原点A到点B的距离可以用楞次定律来计算。
若物体的速度为v,则从A到B的总距离等于v×t,其中t为从A到B所花的时间。
因此,可以用楞次定律来计算物体从A到B的距离。
2.活中的应用除了物理学,楞次定律也在日常生活中得到广泛应用,例如设计交通规划和火车路线,在交通出行中有重要作用,可以更有效地安排运输工作。
此外,在经济领域,可以利用楞次定律来预测市场变化,这对于投资者、消费者和政府都很重要。
同时,楞次定律也可以帮助人们更好地预测股票的走势,有助于准确判断股市行情。
3.程学领域的应用楞次定律也在工程学领域有重要应用。
它可以应用于多种机械系统,并允许工程师更好地设计运动系统,准确预测机械系统的运动轨迹。
例如,炮弹发射时,可以用楞次定律来确定炮弹发射的角度、距离以及发射的速度,从而更准确地击中目标。
此外,楞次定律在机械设计中也有重要应用,如齿轮系统和摆线机构的设计,可以利用楞次定律来估算齿轮的大小及形状,以及摆线机构的运动轨迹,从而绘制更准确的机械系统图。
楞次定律的应用
闭合回路的整体与部分 ②从适用范围来看:
一般与特殊
例4、如图,导体棒AB在金属框CDEF上 从左向右移动,试判断E、F间和C、D 间的电流方向
A
C
F
G E
G
v
D B
例5、如图示,当条形磁铁做下列运动时,线圈 中感应电流方向是(从左向右看)( AD)
A、磁铁靠近线圈时,电流方向是逆时针 B、磁铁靠近线圈时,电流方向是顺时针 C、磁铁远离线圈时,电流方向是逆时针 D、磁铁远离线圈时,电流方向是顺时针
第四节 愣次定律的应用
一、应用楞次定律判定感应电流的方向的步骤 :
(1)先确定原磁场方向。 (2)确定磁通量的变化趋势(增大或减小)。 (3)确定感应电流产生的磁场方向。 (4)用上)运动
时,试确定回路中感应电流的方向
S
S
S
N
N
S
例2:确定线圈B中感应电流的方向
? 例6、如图所示,两导轨光滑,当给CD一 个向右运动的初速度v时,它们将如何运动?
A
C
v
B
D
导轨
A
A
B
B
A中电流增大时 A中电流减小时
例3:确定导体在磁场中做切割磁感线 运动时,产生的感应电流的方向
B
v
A
二、右手定则:
1、内容:
伸开右手,让大拇指跟其它四个手指 垂直,且都在手掌的同一平面内,让磁感 线垂直穿入手心,拇指指向导体的运动方 向,其余四指所指的方向就是感应电流的 方向。
2、适用条件:导体切割磁感线而产生感 应电流方向的判定。
楞次定律及应用
例1.如图1—1所示,一水平放置的矩形线圈
abcd,在细长的磁铁的N极附近竖直下落,保持
bc边在纸外,ad边在纸内,从图中的位置Ⅰ经过
位置Ⅱ到位置Ⅲ,位置Ⅰ和Ⅲ都很靠近Ⅱ,在这个
过程中,线圈中感应电流A( ) A.沿abcd流动
Ⅰ
a
d
B.沿dcba流动
N
C.由Ⅰ到Ⅱ都是abcd流动, b
的方向相反吗? 不一定! “增反减同”
阻碍是阻止吗?否,只是使磁通量的变化变慢
从另一个角度认识楞次定律
在下面四个图中标出线圈上的N、S极
S
S
N
N
N
N
N
S
S
S
S
N
G
G
G
G
S
N
N
S
移近时 移去时
斥力 引力
阻碍相互靠近 阻碍相互远离
楞次定律表述二: 感应电流的效果总是阻碍导体和引 “来拒去留” 起感应电流的磁体间的相对运动
2.适用范围:适用于闭合电路一部分导线 切割磁感线产生感应电流的情况。
二、重点·难点·疑点解释
(一)怎样正确理解楞次定律第一种表述?
1.围绕“两个磁场”来理解楞次定律。所 谓“两个磁场”是指原磁场(引起感应电 流的磁场)和感应磁场(由感应电流产生 的磁场)楞次定律直接反映了两磁场之间 关系,即感应电流产生的磁场总要阻碍原 磁场的磁通量的变化。并没有直接指明感 应电流的方向。
(三)楞次定律与右手定则在判定感 应电流的方向问题上有无区别?
▪ 在判断由导体切割磁感线产生的感应电流 时右手定则与楞次定律是等效的而右手定 则比楞次定律更方便。
▪ 楞次定律可适用于由磁通量变化引起感应 电流的各种情况,而右手定则只适用于一 部分导体在磁场中做切割磁感线运动的情 况,导线不动时不能应用,因此右手定则 可以看作楞次定律的特殊情况。
学习技巧:“楞次定律”应用的“四步曲”
“楞次定律”的应用的“四步曲”“楞次定律”是判断感生电流的方向的规律,是“电磁感应”一章的重点,也是高考的热点。
一、愣次定律的内容感生电流的方向,总是使自己的磁场阻碍引起感生电流的磁通量的变化。
关键词:感生电流,磁场,阻碍,磁通量,变化。
它的意思是:如果引起感生电流的磁通量在增加,则感生电流的磁场与引起感生电流的磁场方向相反;如果引起感生电流的磁通量在减少,则感生电流的磁场与引起感生电流的磁场方向相同。
二、“楞次定律”的应用的“四步曲”在应用楞次定律判断感生电流的方向时,通常采取以下四步:1.确定引起感生电流的磁场(称为原磁场)的方向。
2.确定引起感生电流的磁通量在怎样变化,即是在增加,还是在减少?3.用楞次定律判断感生电流的方向,即如果原磁场的磁通量在增加,则感生电流的磁场与原磁场方向相反;如果原磁场的磁通量在减少,则感生电流的磁场与原磁场方向相同。
4.根据感生电流的磁场的方向,用安培定则判定感生电流的方向。
三、“楞次定律”的应用的“四步曲”的程序在应用楞次定律解题时,上述四步的先后不是固定不变的,其程序通常有以下几种:1.已知原磁场的方向,求感生电流的方向。
例1.如图1-1所示,一矩形线圈位于一随时间t变化的匀强磁场中,磁场的方向垂直于线圈所在的平面(纸面)向里,磁感应强度B随时间t变化的规律如图1-2所示,以I 表示线圈中的感生电流,以图1-1中线圈上箭头所示的方向的电流为正方向,则以下的I-t图中正确的是图1-3中的()图1-1图1-2A BC D图1-3解:0-1s,原磁场向里,原磁场的磁通量增加,据楞次定律,感生电流的磁场向外,据安培定则,感生电流方向为负。
1-2s,原磁场向里,原磁场的磁通量减少,据楞次定律,感生电流的磁场向里,据安培定则,感生电流方向为正。
2-3s,原磁场为0,感生电流为0。
3-4s,原磁场向里,原磁场的磁通量增加,据楞次定律,感生电流的磁场向外,据安培定则,感生电流方向为负。
楞次定律内容
楞次定律内容
楞次定律是指楞次矩阵的一种数学定律,它是由美国数学家詹姆斯·楞次于1857年提出的。
楞次定律是一种简单的数学定律,它指出,如果一个矩阵的每一行和每一列的元素之和相等,那么这个矩阵就是楞次矩阵。
楞次定律的应用非常广泛,它可以用来解决许多数学问题,比如求解线性方程组、求解矩阵的特征值和特征向量等。
此外,楞次定律还可以用来解决许多实际问题,比如解决经济学中的一些问题,比如解决货币的流动性问题,以及解决社会经济中的一些问题,比如解决贫富差距问题。
楞次定律的另一个重要应用是在统计学中,它可以用来解决一些复杂的统计问题,比如解决多元统计分析中的问题,以及解决回归分析中的问题。
总之,楞次定律是一种非常有用的数学定律,它可以用来解决许多数学问题,也可以用来解决许多实际问题,因此,它在数学和实际应用中都有着重要的作用。
楞次定律及右手定则的应用-课件
•
16、业余生活要有意义,不要越轨。2021/3/42021/3/4Marc h 4, 2021
•
17、一个人即使已登上顶峰,也仍要 自强不 息。2021/3/21/3/42021/3/42021/3/4
谢谢观赏
You made my day!
我们,还在路上……
【答案】 A
电磁感应中的电路问题
1.用法拉第电磁感应定律求出感应电动势的大 小,主要依据是 E=nΔΔΦt 或 E=Blv. 2.用楞次定律或右手定则判定感应电流的方向. 3.画出等效电路(产生电磁感应的那部分电路 为电源,电流由负极流向正极). 4.运用全电路欧姆定律、串并联电路性质、电 功率公式等.
例4 (2011年济南高二检测)一直升机停在南半 球的地磁极上空,该处地磁场的方向竖直向上, 磁感应强度为B.直升机螺旋桨叶片的长度为l, 螺旋桨转动的频率为f,顺着地磁场的方向看螺 旋桨,螺旋桨按顺时针方向转动.螺旋桨叶片 的近轴端为a,远轴端为b,如图2-4所示.如 果忽略a到轴中心线的距离,用E表示每个叶片 中的感应电动势,则( )
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/42021/3/42021/3/43/4/2021 9:02:20 AM
•
11、越是没有本领的就越加自命不凡 。2021/3/42021/3/42021/3/4M ar-214- Mar-21
•
12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/42021/3/42021/3/4T hursday, March 04, 2021
时间为 t,由焦耳定律 Q=2I2Rt,L=vt,求出 Q
=2BR2L3v.
(3)在 0~L 阶段:U1=14BLv 在 L~3L 阶段:U2=BLv 在 3L~4L 阶段 U3=I·34R=34BLv. 其 Uab 随 x 变化的图象如图 2-7 所示.
楞次定律实际应用
楞次定律实际应用
楞次定律是一种经典的统计学定律,它指出,在一定条件下,一个随机变量的概率分布满足楞次定律,即概率分布的曲线呈现出一种特定的楞次曲线。
楞次定律的实际应用非常广泛,它可以用于研究社会经济、社会心理学、社会学等多个领域。
首先,楞次定律可以用于研究社会经济。
楞次定律可以用来研究社会经济中的收入分配情况,即收入分配的概率分布满足楞次定律。
研究发现,在一定条件下,收入分配的概率分布满足楞次定律,即收入分配的概率分布呈现出一种特定的楞次曲线。
这表明,在一定条件下,收入分配的概率分布是不均衡的,即收入分配的概率分布存在一定的偏差,这就是楞次定律的实际应用。
其次,楞次定律可以用于研究社会心理学。
楞次定律可以用来研究社会心理学中的人际关系,即人际关系的概率分布满足楞次定律。
研究发现,在一定条件下,人际关系的概率分布满足楞次定律,即人际关系的概率分布呈现出一种特定的楞次曲线。
这表明,在一定条件下,人际关系的概率分布是不均衡的,即人际关系的概率分布存在一定的偏差,这就是楞次定律的实际应用。
最后,楞次定律可以用于研究社会学。
楞次定律可以用来研究社会学中的社会结构,即社会结构的概率分布满足楞次定律。
研究发现,在一定条件下,社会结构的概率分布满足楞次定律,即社会结构的概率分布呈现出一种特定的楞次曲线。
这表明,在一定条件下,社会结构的概率分布是不均衡的,即社会结构的概率分布存在一定的偏差,这就是楞次定律的实际应用。
总之,楞次定律是一种经典的统计学定律,它的实际应用非常广泛,可以用于研究社会经济、社会心理学、社会学等多个领域。
楞次定律可以用来研究社会经济、。
92. 高中物理中的楞次定律如何应用?
92. 高中物理中的楞次定律如何应用?一、关键信息1、楞次定律的定义和原理定义:____________________________原理:____________________________2、常见的应用场景电磁感应现象中的应用:____________________________电路中感应电流方向的判断:____________________________磁场变化与导体运动的关系:____________________________3、解题方法和步骤确定研究对象和物理过程:____________________________分析磁通量的变化:____________________________根据楞次定律判断感应电流的方向:____________________________应用右手定则进一步确定感应电流的方向:____________________________4、实例分析实例一:____________________________实例二:____________________________实例三:____________________________二、协议内容11 楞次定律的介绍楞次定律是电磁学中的一个重要定律,它指出了感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
这一定律反映了电磁感应现象中的能量守恒和转化规律。
111 楞次定律的定义楞次定律是指:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
112 楞次定律的原理当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电流。
感应电流的磁场会对原磁场产生反作用,以阻碍磁通量的变化。
这种阻碍作用不是阻止,而是延缓磁通量的变化过程。
12 常见的应用场景121 电磁感应现象中的应用在电磁感应现象中,如导体在磁场中运动、磁场强度的变化等,都可以运用楞次定律来判断感应电流的方向。
楞次定律在生活中的举例
楞次定律在生活中的举例楞次定律是电磁学中的一条基本定律,描述了电流在磁场中所受的力的大小和方向关系。
在生活中,我们可以通过以下十个例子来说明楞次定律的应用。
1. 电磁铁吸铁块:当电磁铁通电时,产生的磁场会使得铁块被吸附在电磁铁上。
根据楞次定律,电流产生的磁场会产生一个反向的磁通量变化,从而产生一个与原始磁场相反的力,使得铁块被吸附。
2. 电动机:电动机的转子内部有线圈,当电流通过线圈时,产生的磁场与外磁场相互作用,根据楞次定律,产生的电动力会使得转子转动。
3. 变压器:变压器中的两个线圈通过电磁感应制造互感,当输入线圈通电时,产生的磁场会感应出输出线圈中的电流,根据楞次定律,产生的磁场会与输入线圈的磁场相反,从而实现变压器的功能。
4. 电磁炉:电磁炉通过电磁感应加热锅底,当电流通过线圈时,产生的磁场会感应出锅底中的涡流,根据楞次定律,产生的磁场会与线圈的磁场相反,从而使锅底加热。
5. 发电机:发电机通过磁场和线圈的相互作用产生电流,根据楞次定律,如果要增加输出电流,可以增大磁场或者增加线圈的转速。
6. 电磁闸:电磁闸是一种利用电磁感应原理实现的制动装置,当电流通过电磁线圈时,产生的磁场会使得闸片受到制动力,根据楞次定律,制动力与电流的方向相关。
7. 电子秤:电子秤通过电磁感应的原理来测量物体的质量,当物体放在电子秤上时,电子秤会通过电磁感应产生一个磁场,根据楞次定律,物体的质量会改变电子秤感应出的电流的大小。
8. 电能表:电能表通过电磁感应的原理来测量电能的消耗,当电流通过电能表时,产生的磁场会与电能表内部的线圈相互作用,根据楞次定律,电能表可以测量电流的大小。
9. 电磁波的传播:根据楞次定律,电流在变化时会产生变化的磁场,而变化的磁场又会产生变化的电场,从而形成电磁波并传播出去。
10. 电磁屏蔽:电磁屏蔽是指通过合适的材料和结构来阻挡或减弱外界电磁场的干扰。
根据楞次定律,外界电磁场会在屏蔽体表面产生感应电流,从而产生与原始电磁场相反的磁场,从而达到屏蔽的效果。
楞次定律在生活中的举例
楞次定律在生活中的举例
楞次定律(也称作法拉第-楞次定律)是电磁学的基本定律之一,描述了电磁感应现象。
在生活中有许多例子可以用来解释楞次定律。
1. 电磁感应充电器:当将智能手机或其他电子设备放置在无线
充电器上时,无线充电器会通过感应产生电磁场。
这个电磁场会导致
手机内部的线圈中发生电流,从而实现充电。
2. 变压器:变压器通过楞次定律来工作。
当交流电通过一侧的
线圈时,变压器中的磁场会随之改变。
这种改变的磁场会感应电流在
另一侧的线圈中产生,从而改变电压。
3. 电动自行车发电机:一些电动自行车的刹车系统采用发电机
来回收能量。
当骑车者刹车时,楞次定律的应用会将机械能转换为电能,使电动自行车的电池得到充电。
4. 家用感应灯:一些家用灯具配备了感应开关。
当有人靠近或
经过时,人体周围的电磁场会改变,通过感应开关的工作,灯由关变
为开或亮度增加。
5. 感应加热炉:家用感应加热炉通过楞次定律工作。
感应加热
炉内部的线圈会产生变化的磁场,感应加热炉的上方会放置铁制锅具,当打开电源时,磁场变化将会在锅具内产生电流并发热。
这些例子都是通过楞次定律来解释了电磁感应现象,将电磁场的
变化转化为电流或能量的变化。
楞次定律简单应用
楞次定律简单应用
楞次定律是电磁学中最基本的定律之一,它描述了导体中电流的变化会产生电动势,从而引起感应电流的现象。
在日常生活中,我们经常会用到楞次定律来解决一些实际问题,比如说:
1. 在电磁炉中,食物的加热原理就是利用楞次定律。
电磁炉的底部有一个电线圈,当通电时会产生一个交变磁场,这个磁场会感应锅底中的涡流,使锅底产生热量,进而将食物加热。
2. 电动汽车的充电也涉及到楞次定律。
当电动汽车通过充电器充电时,充电器内部的电线圈会产生一个交变磁场,这个磁场会感应电动汽车中的电池产生电动势,从而将电池充电。
3. 在实验室中进行电磁感应实验时,我们会用到一个导体环和一个磁铁。
当将磁铁快速穿过导体环时,磁铁的运动会产生一个交变磁场,这个磁场会感应导体环中的涡流,从而产生电动势,可以用电表来检测这个电动势的大小。
总之,楞次定律是一个非常重要的定律,它不仅在理论研究中有着广泛的应用,同时也在我们日常生活中扮演着重要的角色。
- 1 -。
楞次定律的应用
楞次定律的应用介绍楞次定律是电磁学中的一条基本定律,描述了电磁感应现象。
根据楞次定律,当一个导体中的磁通量发生变化时,导体中就会产生感应电动势,并且这个感应电动势的方向是反向的,以抵消磁通量变化的效果。
楞次定律在许多电磁学的应用中起到了重要的作用,本文将介绍楞次定律的应用。
电动机原理电动机是利用楞次定律的应用之一。
根据楞次定律,一个导体在磁场中运动时,会感受到磁场中的磁力,从而产生运动。
电动机利用这个原理,通过在一定规律下改变磁场的方向和大小,使得导体能够在磁场中旋转,从而实现电能转化为机械能。
发电机原理发电机也是利用楞次定律的应用之一。
根据楞次定律,当一个导体在磁场中运动时,导体中会产生感应电动势。
发电机利用这个原理,在磁场中旋转的导体产生感应电动势,从而将机械能转化为电能。
发电机是现代社会中不可或缺的能源转换设备之一。
电感的工作原理电感是电子电路中常见的元件之一,利用了楞次定律的应用。
当通过电感的电流发生变化时,由于磁场的变化,电感中会产生感应电动势,抵消电流变化。
电感的工作原理就是利用了楞次定律,通过磁场的变化来抵消电流的变化。
变压器的原理变压器也是利用楞次定律的原理工作的。
变压器是一种能够改变电压大小的设备,根据楞次定律,当在一个线圈中的电流发生变化时,在另一个线圈中会感应出电动势。
利用这个原理,变压器可以通过改变线圈的绕组比例,实现输入电压与输出电压的不同。
磁流计的测量原理磁流计是一种用来测量电流大小的仪器,它利用了楞次定律的应用。
根据楞次定律,当电流通过一个导体时,会在周围产生一个磁场。
磁流计利用这个原理,通过测量磁场的大小,来间接测量电流的大小。
电磁铁的原理电磁铁是一种利用楞次定律的应用制造的设备。
电磁铁主要由一个线圈和一个铁磁材料组成。
当通过线圈流过电流时,根据楞次定律,就会在铁磁材料中产生一个强磁场。
这样,电磁铁就可以利用磁场的力量来吸附和释放物体。
电磁感应加热的原理电磁感应加热是一种利用楞次定律的应用来加热物体的技术。
楞次定律的应用(12个经典例题)
06
结论
楞次定律的重要性和应用价值
楞次定律是电磁学中的基本定律之一,它描述了磁场变化的 感应电动势的方向和大小。这个定律在实践中有着广泛的应 用,如发电机、变压器、感应电机等。
楞次定律的应用价值在于,它提供了判断感应电动势方向的 方法,从而可以预测电磁感应现象中的电流和电压的变化, 进一步指导电路设计、电机控制等领域的工作。
对未来学习和研究的建议
可以通过阅读经典的电磁学教材和文献,了解楞次定 律在不同领域的应用实例,加深对其重要性的认识。 同时,也可以尝试探索楞次定律在其他领域的应用, 如生物医学、材料科学等。
楞次定律的应用(12个经 典例题)
• 引言 • 楞次定律的基本概念 • 楞次定律的应用场景 • 经典例题解析 • 楞次定律的应用技巧 • 结论
01
引言
主题简介
楞次定律是电磁学中的基本定律 之一,它描述了磁场变化的感应
电流方向。
通过应用楞次定律,可以解决一 系列与电磁感应相关的物理问题。
本文将通过12个经典例题来展 示楞次定律的应用。
楞次定律的实质是:当磁通量增加时 ,感应电流产生的磁场与原磁场方向 相反;当磁通量减少时,感应电流产 生的磁场与原磁场方向相同。
掌握定律的实质有助于正确判断感应 电流的方向,从而准确分析电磁感应 现象。
分析磁场和电流的变化趋势
分析磁场和电流的变化趋势是应用楞次定律的关键步骤,需要明确磁通量的变化 情况,以及感应电流的方向与原磁场方向的关系。
Hale Waihona Puke 定律的表述表述一感应电流的方向总是阻碍原磁场的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.4 楞次定律的应用
一、教学目的
1.熟练运用楞次定律判断感应电流的方向。
2.熟练运用楞次定律,由感应电流的方向判断引起感应电流的原磁场方向及磁通量变化。
3.理解楞次定律与能的转化和守恒定律的一种具体表现形式。
二、教学重点
熟练运用楞次定律解决实际问题。
三、教学难点
熟练运用楞次定律解决实际问题。
四、教学方法
实验+启发式
五、教具
线圈、灵敏电流计、磁铁、投影片
六、教学过程
(一)复习引入
上节课讲了楞次定律,其内容是什么?而操作步骤又是什么?
操作步骤:
1.明确原磁场方向。
2.明确穿过闭合电路的磁通量是增加还是减少。
3.根据楞次定律确定感应电流的磁场方向。
4.利用安培定则确定感应电流的方向。
(二)进行新课
I.应用楞次定律,判断感应电流的方向
1.原磁场为条形磁铁的磁场。
【例1】(用投影仪展示)一个接通灵敏电流计的螺线管,当磁铁的S 极移近或远离螺线管时判断感应电流的方向。
(引导学生操作楞次定律)
(1)条形磁铁移近螺线管
①确定线圈所在区域磁场分布,及磁场方向;(判断:原磁场方向向上,有向上的磁感线穿过螺线管)
②确定穿过闭合回路的磁通量的变化;(判断:当S极靠近螺线管时,穿过螺线管的磁通量增加)
③由楞次定律可知:感应电流的磁场(判断:由于感应电流的磁场要阻碍磁通量的增加,因此感应电流的磁场方向跟原来的磁场方向相反)
④利用安培定则确定感应电流的方向。
磁通量增加,感应电流磁场与原磁场反向。
(2)条形磁铁远离螺线管
①确定线圈所在区域磁场分布,及磁场方向;(判断:原磁场方向向上,有向上的磁感
线穿过螺线管)
②确定穿过闭合回路的磁通量的变化;(减少)
③由楞次定律可知:感应电流的磁场(感应电流的磁场方向跟原来的磁场方向相同:体现“阻碍”)
④利用安培定则确定感应电流的方向。
磁通量减少,感应电流磁场与原磁场相同。
注意:
①感应电流的磁场对原磁场的作用,“阻碍”相对运动
②磁通量变化过程,对应克服磁场力做功过程,伴随其它形式能转化为电能过程,说明楞次定律是能的转化和守恒定律的表现形式。
2.原磁场为电流的磁场
【例2】一可控通电螺线管A ,外有一个闭合螺线管B ,当闭合电键或减小电阻的阻值,使螺线管A 中的电流增大时,B 中的感应电流方向如何?电键断开或增大电阻的阻值时,B 中的感应电流方向又如何?(投影)
(引导学生操作楞次定律)
(1)当A 中电流增加时,判断B 中感应电流方向。
(2)当A 中电流减少时,判断B 中感应电流方向。
小结:只要穿过闭合回路的磁通量发生变化就产生感应电流,且感应电流的方向一定遵循楞次定律
(让学生注意理论判定与演示实验一致。
)
II. 利用右手定则,判断导体切割磁感线
【例3】(投影:课本图16-25),判断金属棒中感应电流方向
由楞次定律判断:顺时针
右手定则:由A →B
右手定则与楞次定律本质一致,在导体切割磁感线时,用右手定则判断感应电流方向更简便。
说明:利用楞次定律及右手定则均可以进行逆向判断。
(三)练习
1.如图1所示,把S 极接近金属框或从金属框上移开时,感应电流的方向如何?
2如图2所示,金属框abcd 穿过匀强磁场B 时,是否有感应电流?它通过A 、B 、C 三处位置时感应电流的方向如何?
(四)作业布置
练习三:(1)至(6)题
板书设计:
v v 图1 图2
利用楞次定律判断感应电流的方向——操作步骤:
①明确原磁场方向。
②明确穿过闭合电路的磁通量是增加还是减少。
③根据楞次定律确定感应电流的磁场方向。
④利用安培定则确定感应电流的方向。