第一讲:实数的有关概念及运算教案
实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。
2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。
3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。
二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。
2. 教学难点:实数的运算规则,特别是乘方和开方运算。
四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。
2. 运用案例分析法,分析实数在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作意识。
4. 利用信息技术手段,如PPT、网络资源等,辅助教学。
五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。
3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。
4. 总结课堂内容:回顾本节课所学,强调实数的重要性。
5. 布置作业:设计适量作业,巩固课堂所学。
6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。
3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。
七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。
2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。
3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。
4. 练习题库:准备各类实数练习题,巩固学生所学知识。
八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。
2. 第3-4课时:讲解实数的运算规则。
2024年《实数》实数教学标准课件

2024年《实数》实数教学标准课件一、教学内容本节课选自2024年教材《数学》七年级下册第十章《实数》,主要内容包括:实数的定义,无理数的概念及其与有理数的区别,实数的分类,实数与数轴的关系,以及实数的四则运算法则。
二、教学目标1. 理解实数的定义,掌握实数的分类及特点。
2. 掌握无理数的概念,了解无理数与有理数的区别。
3. 学会使用数轴表示实数,并能解决相关问题。
三、教学难点与重点难点:无理数的概念,实数的四则运算。
重点:实数的定义,实数与数轴的关系,实数的分类。
四、教具与学具准备教具:黑板,粉笔,实数教学课件。
学具:直尺,圆规,计算器。
五、教学过程1. 导入:通过实际情景引入实数概念,如测量物体长度时,得到的数值可能是整数,也可能是分数,还有可能是无限不循环小数,这些数统称为实数。
2. 基本概念讲解:(1)实数的定义:实数包括有理数和无理数,有理数是可以表示为两个整数之比的数,无理数则不能。
(2)实数的分类:整数、分数、无理数。
(3)实数与数轴的关系:实数可以在数轴上表示出来,数轴上的每一个点都对应一个实数。
3. 例题讲解:4. 随堂练习:让学生在数轴上表示一些实数,并判断它们是有理数还是无理数。
5. 实数的四则运算:(1)有理数的四则运算规则同样适用于实数。
(2)无理数的四则运算需要特别注意,如√2 √2 = 2。
六、板书设计1. 实数的定义及分类。
2. 实数与数轴的关系。
3. 实数的四则运算规则。
4. 例题及解答。
七、作业设计1. 作业题目:2. 答案:(1)5/3(有理数),√5(无理数),2π(无理数),0.666(有理数)。
(2)√9 + √16 = 3 + 4 = 7,√2 √3 = √6,(√2 + √3)² = 5 + 2√6。
(3)见附件。
八、课后反思及拓展延伸1. 反思:本节课通过实际情景引入实数概念,让学生了解实数的定义及分类,掌握实数的四则运算,培养学生运用数轴解决问题的能力。
课题:10.3实数数学教案

课题:10.3实数数学教案
标题:10.3 实数数学教案
一、教学目标:
1. 学生能理解和掌握实数的概念。
2. 学生能够运用实数进行基本运算(加法、减法、乘法、除法)。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:
1. 实数的定义
2. 实数的分类:有理数和无理数
3. 实数的基本运算
三、教学过程:
(1) 引入新课:
通过日常生活中的实例引入实数的概念,如测量长度、重量等。
(2) 新课讲解:
1) 实数的定义:所有能用数轴上的点表示的数都是实数。
2) 实数的分类:有理数和无理数。
- 有理数:可以用两个整数的比表示的数。
- 无理数:不能用两个整数的比表示的数。
3) 实数的基本运算:加法、减法、乘法、除法。
(3) 课堂练习:
设计一些简单的实数运算题目,让学生进行练习。
(4) 小结与作业:
对本节课的主要内容进行回顾,并布置一些相关的课后习题。
四、教学方法:
1. 讲解法:通过教师讲解,使学生理解实数的概念和性质。
2. 演示法:通过数轴演示,帮助学生理解实数在数轴上的表示。
3. 练习法:通过实际操作,使学生熟练掌握实数的运算。
五、教学评价:
通过课堂提问、小测验和课后作业等方式,检查学生对实数的理解程度和运算能力。
浙教版初中数学实数教案

浙教版初中数学实数教案一、教学内容本节课选自浙教版初中数学教材八年级下册第十二章“实数”的第一节“实数的概念与性质”。
具体内容包括:1. 实数的定义与分类;2. 实数的性质,包括大小比较、运算规律等;3. 实数与数轴的关系;4. 实数的四则运算。
二、教学目标1. 理解实数的概念,掌握实数的分类;2. 掌握实数的大小比较和运算规律,提高运算能力;3. 建立实数与数轴的联系,培养学生的数形结合思想。
三、教学难点与重点教学难点:实数的性质与运算规律。
教学重点:实数的概念、分类及与数轴的关系。
四、教具与学具准备1. 教具:黑板、粉笔、实数教学挂图;2. 学具:学生用计算器、数轴模型。
五、教学过程1. 实践情景引入利用数轴模型,引导学生思考:有理数能否表示所有的数?是否存在无法用有理数表示的数?2. 教学内容讲解(1)实数的概念与分类(2)实数的性质(3)实数与数轴的关系(4)实数的四则运算3. 例题讲解(1)判断下列数是否为实数:① 3/4;② √2;③ 1.414;(2)比较下列数的大小:① 3/2 与√2;② 1 与 1/2;(3)计算下列各式的值:① 2 + 3;② 5 2;③ 4 × 3;④ 6 ÷ 2。
4. 随堂练习(1)判断下列数是否为实数,并说明理由:① √(1);② 22/7;③ 2.5;(2)比较下列数的大小:① √3 与√4;② 1/3 与 1/3;(3)计算下列各式的值:① 3 + 2;② 7 4;③ 6 × 2;④ 10 ÷ 2。
5. 课堂小结六、板书设计1. 实数的概念、分类、性质;2. 实数与数轴的关系;3. 实数的四则运算;4. 例题及解答。
七、作业设计1. 作业题目:(1)判断下列数是否为实数,并说明理由:① √(3);② π;③ 5/3;(2)比较下列数的大小:① √5 与√6;② 2 与 2;(3)计算下列各式的值:① 4 + 5;② 9 3;③ 8 × 2;④ 12 ÷ 3。
2024年华东师大版八年级数学上册教案1122实数

2024年华东师大版八年级数学上册教案1122实数一、教学内容本节课选自2024年华东师大版八年级数学上册第十一章第二节数学广角,主题为“实数”。
具体内容包括实数的概念、分类和性质,以及实数在数轴上的表示。
教材涉及章节为11.2节。
二、教学目标1. 理解实数的概念,掌握实数的分类及性质。
2. 学会实数在数轴上的表示方法,并能运用其解决实际问题。
3. 培养学生的数感和逻辑思维能力。
三、教学难点与重点教学难点:实数的性质及其在数轴上的表示方法。
教学重点:实数的概念及其分类。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、练习本。
五、教学过程1. 引入:通过生活中的实例,如气温、身高等,引导学生了解实数的概念。
2. 新课导入:讲解实数的定义、分类(有理数、无理数)及性质。
3. 例题讲解:讲解实数在数轴上的表示方法,并举例说明。
4. 随堂练习:让学生在数轴上表示给定的实数,并判断其大小关系。
6. 知识拓展:介绍实数在数学及其他学科中的应用。
六、板书设计1. 实数的定义、分类及性质。
2. 实数在数轴上的表示方法。
3. 例题及解答步骤。
七、作业设计1. 作业题目:实数填空题、选择题、解答题。
(1)填空题:填写实数的分类及性质。
(2)选择题:选择正确的实数表示方法。
(3)解答题:求解实数的大小关系,并在数轴上表示。
2. 答案:课后提供标准答案。
八、课后反思及拓展延伸1. 反思:回顾本节课的教学过程,分析学生的掌握情况,针对问题进行改进。
2. 拓展延伸:引导学生了解实数与数的其他概念(如复数、虚数)的关系,激发学生的学习兴趣。
重点和难点解析1. 实数的性质及其在数轴上的表示方法。
2. 实数的概念及其分类。
3. 教学过程中的例题讲解和随堂练习。
4. 作业设计中的解答题和答案。
一、实数的性质及其在数轴上的表示方法实数的有序性:任意两个实数可以比较大小,这是实数在数轴上表示的基础。
实数的封闭性:实数的加、减、乘、除(除数不为零)结果仍为实数。
3.3实数-湘教版八年级数学上册教案

3.3 实数-湘教版八年级数学上册教案一、教学目标1.了解有理数和无理数的概念。
2.掌握实数的基本性质。
3.能够正确比较实数大小。
4.能够解决实数的加减乘除问题。
二、教学重点和难点1.教学重点:实数的概念和基本性质。
2.教学难点:实数的分类和比较大小。
三、教学内容和方法1. 实数的概念和分类•教学内容:介绍实数的定义和有理数、无理数的概念。
•教学方法:通过课堂讲解和实际例子分析,使学生理解实数的概念和分类。
2. 实数的基本性质•教学内容:介绍实数的加减乘除运算,以及实数的比较大小的方法,说明实数是一个有序数域。
•教学方法:通过计算实数的加减乘除以及实例解题,使学生掌握实数的基本性质。
3. 实数的比较大小•教学内容:介绍实数的大小比较,包括数轴和大小关系符号的使用。
•教学方法:通过举例说明实数的大小比较方法,让学生熟练掌握。
4. 实数的加减乘除•教学内容:介绍实数的加减乘除方法,以及应用场景。
•教学方法:通过实例讲解和练习,让学生掌握实数的加减乘除方法。
四、教学设计1. 导入环节请学生用数轴表示数-2和数3,让学生感受有理数和无理数的概念。
2. 展开教学•第一步,介绍实数的概念和分类。
通过实际例子,让学生清楚地认识到有理数和无理数的含义,理解实数的概念和分类。
•第二步,介绍实数的基本性质。
通过计算实数的加减乘除,让学生掌握实数的基本性质。
同时,说明实数是一个有序数域。
•第三步,介绍实数的大小比较。
通过举例说明实数的大小比较方法,让学生熟练掌握。
•第四步,介绍实数的加减乘除。
通过实例讲解和练习,让学生掌握实数的加减乘除方法。
说明实数加减乘除的应用场景。
3. 总结与作业通过小组讨论,总结本节课的知识点,以及加深对实数的理解。
布置作业:完成教材中的练习。
五、教学反思本节课通过课堂讲解和实例分析,使学生掌握实数的概念和基本性质,以及实数的大小比较和加减乘除方法。
通过让学生进行动手实践,实践出真知,提高了学生的综合能力。
初中数学实数教案模板

初中数学实数教案模板一、教学目标1. 知识与技能:使学生了解实数的定义和性质,能够运用实数解决一些简单的问题。
2. 过程与方法:通过学生自主探究、合作交流,培养学生推理、概括的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和自信心。
二、教学重点与难点1. 重点:实数的定义和性质。
2. 难点:实数的运算和应用。
三、教学过程1. 复习提问:复习有关有理数的相关知识,提问学生有理数的运算规则。
2. 引入新课:讲解实数的定义和性质,通过实例让学生理解实数的概念。
3. 自主探究:让学生自主探究实数的性质,如加法、减法、乘法、除法的运算规则。
4. 合作交流:学生分组讨论,分享自己探究的结果,教师给予指导和点评。
5. 巩固练习:给出一些练习题,让学生运用实数的知识解决问题,教师及时给予反馈和讲解。
6. 课堂小结:让学生总结实数的定义和性质,以及运算规则。
7. 课后作业:布置一些相关的作业题,让学生巩固所学知识。
四、教学策略1. 情境教学:通过生活实例引入实数的概念,让学生感受数学与实际的联系。
2. 启发式教学:引导学生自主探究实数的性质,培养学生的推理能力。
3. 合作学习:鼓励学生分组讨论,培养学生的合作意识和沟通能力。
4. 及时反馈:教师在学生练习时及时给予反馈,帮助学生纠正错误,提高正确率。
五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,提问和回答问题的积极性。
2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性和解题过程的清晰度。
3. 自主学习能力:评价学生在自主探究过程中的表现,如独立思考、解决问题的能力。
4. 合作交流能力:评价学生在合作交流中的表现,如沟通、协调、合作的能力。
六、教学资源1. 教材:使用符合课程标准的数学教材,提供丰富的学习材料。
2. 课件:制作多媒体课件,生动展示实数的定义和性质。
3. 练习题:准备一些实数相关的练习题,包括基础题和拓展题。
七年级数学下《实数》教学设计

七年级数学下《实数》教学设计
一、教学目标
1.知识与技能:学生能够理解实数的概念,掌握实数的性质和运算方法。
2.过程与方法:通过探究活动,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们认真思考、勇于探索的
精神。
二、教学内容与过程
1.导入:回顾有理数的概念,通过与有理数对比,引出实数的概念。
2.知识讲解:详细讲解实数的定义、性质和运算方法,强调实数与有理数的区别
与联系。
3.探究活动:设计探究活动,如比较实数的大小、进行实数的四则运算等,让学
生通过实际操作深入理解实数的性质和运算方法。
4.应用实践:引导学生运用所学知识解决实际问题,如测量长度或质量时产生的
误差等,让学生体会实数在实际生活中的应用。
5.总结与提升:总结实数的主要知识点,通过综合性题目提升学生运用知识解决
实际问题的能力。
三、教学方法与手段
1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。
2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更
好地理解实数的概念和性质。
四、教学评价与反馈
1.课堂互动:通过课堂提问、小组讨论等方式了解学生的学习情况,调整教学策
略。
2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。
3.测试与反馈:组织阶段性测试,检测学生对实数知识的掌握程度,及时发现问
题并进行针对性辅导。
五、作业布置
1.完成相关练习题,巩固所学知识。
2.预习下一节内容,了解无理数的基本概念。
6.3.1实数的概念-人教版七年级数学下册教案

3.加强对讨论环节的引导,确保学生们围绕主题展开讨论,提高讨论效果。
4.关注沉默的学生,鼓励他们积极参与讨论,提高他们的自信心。
5.在教学过程中,注意观察学生的反应,及时调整教学方法,以提高教学效果。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“实数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
6.3.1实数的概念-人教版七年级数学下册教案
一、教学内容
本节课选自人教版七年级数学下册第六章第三节,标题为“6.3.1实数的概念”。教学内容主要包括以下三个方面:
1.实数的定义:介绍实数的概念,让学生了解实数是包含有理数和无理数的全体数,是数轴上的所有点对应的数。
2.实数的分类:将有理数和无理数进行分类,并举例说明。有理数包括整数、分数等,无理数如π、√2等。
-实数的精确表示:学生在表示无理数时可能会遇到困难,如何用有限的小数或分数精确表示无理数。
-实数运算的规则:尤其是无理数参与运算时,如何进行合理化简和计算。
-实数在数轴上的定位:在数轴上准确地找到无理数的位置,以及理解无理数与有理数之间的关系。
举例解释:
-对于无理数的理解,可通过π的近似值3.14的由来,说明π是无限不循环的小数,从而引出无理数的概念。
3.增强学生的空间观念:结合数轴,让学生在实际操作中感受实数与数轴的关系,提高空间想象力和直观感知能力。
(中考复习)第1讲 实数的有关概念 公开课获奖课件

对接点一:有理数与无理数
常考角度:1.实数的分类,无理数的定义; 2.算术平方根、零指数、负整数指数的直接计算; 3.特殊角的三角函数值.
【例题 1】 (2013·湖州)实数π ,15,0,-1 中,无理数
是
()
A.π
1 B.5
Hale Waihona Puke C.0D.-1解析 根据常见的无理数的三种形式判断,只有π
是无理数.
-1,∴a2 013=(-1)2 013=-1.
答案 B
对接点三:科学记数法、近似数与有效数字
常考角度:1.用科学记数法表示一个数及单位换算;
2.根据要求取近似数和保留有效数字;
3.近似数精确到的位数.
【例题3】 (2013·嘉兴)据统计,1959年南湖革命纪念馆成
立以来,约有2 500万人次参观了南湖红船(中共一大会
-1 在 3 和 4 之间.
答案 C
【名师课堂】
1.两边逼近法:用能开的尽方的两个正数的算术平方根逼 近:如(1) 9< 13< 16,即 3< 13<4;(2) 2.42< 6<
2.52,2.4< 6<2.5. 2.要特别注意算术平方根和平方根的区别和联系.
【预测4】 实数-27的立方根是____________. 解析 ∵(-3)3=-27,∴-27的立方根是-3. 答案 -3
第一板块 基础知识梳理
第一部分 数与式 第一讲 实数的有关概念
考纲要求
1.理解有理数的意义,能用数轴上的点表示有理数; b 2.理解相反数和绝对值的意义,会求有理数的相反数、 b
倒数和绝对值(绝对值符号内不含字母); 3.了解无理数和实数的概念,知道实数与数轴上的点的 a
一一对应关系; 4.了解平方根、算术平方根、立方根的概念;知道开方 a
第1课时 实数的有关概念

第1课时 实数的有关概念【知识梳理】1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限 环循小数)都是有理数. 有理数和无理数统称为实数.2. 数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3. 绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记作∣a ∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a 的相反数是-a ,0的相反数是0.5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字. 6. 科学记数法:把一个数写成a×10n 的形式(其中1≤a<10,n 是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5. 7. 大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂. 9. 平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10. 开平方:求一个数a 的平方根的运算,叫做开平方.11. 算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 就叫做a的算术平方根,0的算术平方根是0.12. 立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13. 开立方:求一个数a 的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】 例1.下列运算正确的是( )A .33--=B .3)31(1-=-C 3=±D 3=-例 )A . B C . D 例3.2的平方根是( )A .4BC .D .例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元 D .117.2610⨯元 例5.实数a b ,在数轴上对应点的位置如图所示,则必有( )1 0 b 例5图A .0a b +>B .0a b -<C .0ab >D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3 现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18- 2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( ) A .1 B .1-C .12a -D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 .8.如果2()13⨯-=,则―‖内应填的实数是( )A .32B .23C .23-D .32-【课后作业】 一、选择题1.计算(-2)2-(-2) 3的结果是( ) A. -4 B. 2 C. 4 D. 122.下列计算错误的是( )A .-(-2)=2 B= C .2+32x =52x D .235()a a =3.2008年5月27日,北京奥运会火炬接力传递活动在古城南京境内举行,火炬传递路线全程约12900m ,将12900用科学记数法表示应为( )A .0.129×105B .41.2910⨯ C .312.910⨯ D .212910⨯ 4.下列各式正确的是( )第4题图A .33--=B .326-=-C .(3)3--=D .0(π2)0-= 5.若23(2)0m n -++=,则2m n +的值为( ) A .4-B .1-C .0D .46.计算2(3)-的结果是( )A .6-B .6C .9-D .9 7.方程063=+x 的解的相反数是( )A .2B .-2C .3D .-3 8.下列实数中,无理数是( )B.2π C.13D.129.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过5410-⨯秒到达另一座山峰,已知光速为8310⨯米/秒,则两座山峰之间的距离用科学记数法......表示为( ) A .31.210⨯米B .31210⨯米C .41.210⨯米D .51.210⨯米11.纳米是非常小的长度单位,已知1纳米=10-6毫米,某种病毒的直径为100纳米,如将这种病毒排成1毫米长,则病毒的个数是( )A.102个 B 104个 C 106个 D 108个12.巳知某种型号的纸100张厚度约为lcm ,那么这种型号的纸13亿张厚度约为( ) A .1.3×107km B .1.3×103km C .1.3×102km D .1.3×10km 二、填空题: 13.若n m ,互为相反数,=-+555n m .14.唐家山堰塞湖是―5.12汶川地震‖形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为 立方米. 15.如果2180a -=,那么a 的算术平方根是 .16.若商品的价格上涨5%,记为+5%,则价格下跌3%,记作 . 17.如果□+2=0,那么―□‖内应填的实数是______________. 18.―五一‖期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为280元的运动服,打折后他比按标价购买节省 元.19. 某校认真落实苏州市教育局出台的―三项规定‖,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学有_________名.20.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.21.一组有规律排列的式子:―ab 2,25a b ,―38a b ,411a b …,(ab≠0),其中第7个式子是 , 第n 个式子是 .(n 为正整数)22.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只 环保购物袋至少..应付给超市元.23.将正整数按如图所示的规律排列下去,若有序实数对 (n ,m )表示第n 排,从左到右 第m 个数,如(4,2)表示实数9, 则表示实数17的有序实数对是 . 24.如图所示, ①中多边形(边数为12)是由 正三角形―扩展‖而来的, ②中多边形是由正方形―扩展‖ 而来的, ,依此类推,则由正n 边形―扩展‖而来的多边形的边数为 . 25.探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是( )第2课时 实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】第25题图① ② ③ ④ 第24题图例1.某校认真落实苏州市教育局出台的―三项规定‖,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.例4.下列运算正确的是( ) A .523=+ B .623=⨯C .13)13(2-=-D .353522-=- 例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-+【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元 B .9101.4⨯元 C .9102.4⨯元 D .8107.41⨯元北京 汉城伦敦多伦多纽约-5 例2图……例3图3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) AB.C . 3.2- D.5.计算: (1)02200960cos 16)21()1(-+--- (2))1112-⎛⎫- ⎪⎝⎭【课后作业】一、选择题1.某市今年1月份某一天的最高气温是3℃,最低气温是﹣4℃,那么这一天的最高气温比最低气温高( )A .﹣7℃B .7℃C .﹣1℃D .1℃ 2.在2008年德国世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是 ( )A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负3.扬州市旅游经济发展迅速,据扬州市统计局统计,2008年全年接待境内外游客约11370000人次,11370000用科学记数法表示为( ) A .1.137×107 B .1.137×108 C .0.1137×108 D .1137×1044.在下列实数中,无理数是( ) A .13B .CD .2275.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( ) A .15号 B .16号 C .17号 D .18号6.()23-运算的结果是( )A .-6B .6C .-9D .97.(2009年武汉)) A .3-B .3或3-C .9D .38.估计30的值 ( ) A .在3到4之间 B .在4到5之间 C .在5到6之间D .在6到7之间9.若―!‖是一种数学运算符号,并且1!=1,2!=2×1=2, 3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( )-第4题图A.5049B. 99!C. 9900D. 2!二、填空题:10.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.11.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:12.如图,在数轴上表示到原点的距离为3个单位的点有13. 2008(1)-+_______420=-.14.2008年5月26日下午,奥运圣火扬州站的传递在一路―中国加油‖声中胜利结束,全程11.8千米,11.8千米用科学记数法表示是________米.15.计算:23-+= ;(2)(3)-⨯-= . 16.若()2240a c -+-=,则=+-c b a . 17.在函数y =x 的取值范围是____________.三、计算:(1)0(1)π-⋅sin 60°+321(2)()4-⋅(2)0113(()3---(3)9212)1(103+⎪⎭⎫ ⎝⎛-+--(4)1301()(2)39-+-+--第3课时 整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nn n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:nna a 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.第12题图(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. ⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项― 1‖易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2∙a 3=a 6 D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行―广‖字,按照这种规律,第5个―广‖字中的棋子个数是________,第n 个―广‖字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时,(a ,b )=(c ,d ).定义运算―⊗‖:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中22a b =-=.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.【课后作业】一、选择题1.下列运算正确的是( )A.a 2·a=3aB.a 6÷a 2=a 4C.a+a=a 2D.(a 2)3=a 5 2.计算:()23ab=( )A .22a b B .23a b C .26a b D .6ab 3.下列计算正确的是( )A .623a a a ÷= B .()122--=C .()236326x x x -=-· D .()0π31-=4.下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+5.若的值为则2y -x 2,54,32==y x ( )A.53 B. -2 C. 553 D. 56 6.下列命题是假.命题的是( ) A. 若x y <,则x +2008<y +2008 B. 单项式2347x y -的系数是-4C. 若21(3)0,x y -+-=则1,3x y ==D. 平移不改变图形的形状和大小 7.一个正方体的表面展开图如图所示,每一个面上都写有一个整数,并且相对两个面上所写的两个整数之和都相等,那么( )A .a=1,b=5B .a=5,b=1C .a=11,b=5D .a=5,b=118. 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2222)(b ab a b a ++=+B .2222)(b ab ab a +-=-C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+二.填空题.9.分解因式:328m m -= .33416m n mn -=3214x x x +-= ____.33222ax y axy ax y +-= _______. =++22363b ab a . 2232ab a b a -+= ___.10.计算:31(2)(1)4a a -⋅- = .11.计算: ⎪⎭⎫⎝⎛-⋅23913x x =________;()=÷523y y ________. 12.用正三角形和正六边形按如图所示的规律 拼图案,即从第二个图案开始,每个图案都比 上一个图案多一个正六边形和两个正三角形, 则第n 个图案中正三角形的个数为 (用含n 的代数式表示).三.解答题:13.先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.14.已知2514x x -=,求()()()212111x x x ---++的值第一个图案第二个图案第三个图案…第12题图 ab图甲第8题第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =+3.先化简11112-÷-+x x x )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x 有意义;当x 时,该式的值为0.3.计算22()ab ab 的结果为.4. .若分式方程xx k x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2) x 2)3(x 22x x -=--;(3)11322xx x -=--- (4)11-x 1x 1x 22=+--【课后作业】 一、选择题 1.化简分式2bab b +的结果为( ) A .1a b+ B .11a b + C .21a b +D .1ab b+ 2.要使22969m m m --+的值为0,则m 的值为( )A .m=3B .m=-3C .m=±3D .不存在 3.若解方程333-=-x mx x 出现增根,则m 的值为( ) A . 0 B .-1 C .3 D .14.如果04422=+-y xy x ,那么yx y x +-的值等于( )A .31- B . y31- C . 31 D .y31二、填空题.5.当x = 时,分式6422---x x x 的值为0.6.若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 .(写出一个..即可) 7.已知432z y x ==,求分式yx zy x 32534++-= 8.若分式方程12552=-+-x ax x 的解为x =0,则a 的值为 . 9.已知分式方程k x k=++131无解,则k 的值是 . 三、解答题 10.化简: (1)211()(1)11x x x ---+ (2)24142x x +-+11.先化简,再求值:224242x x x +---,其中2x =.12.当a=2时,求1121422-÷+--a a a a 的值.13.先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程2310x x ++=的根.三、解分式方程.(1)01221=---x x (2) 123514-+=--+x x x x (3)163104245--+=--x x x x (4)4)25.01(11=++x x (5)52742316--=+-x x x x (6) 141112-=--+-x x x x x四、当m 为何值时,分式方程xxx m --=+-2142无解?第5课时 二次根式【知识梳理】1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1a 0b 0≥≥,)(2a 0b 0≥ ,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用【例题精讲】 【例1x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,2(0y =,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有52π7-,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)11(1)52-⎛⎫π-+-+- ⎪⎝⎭【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1032tan 60(1--+- . (2)cos45°·(-21)-2 -(22-3)0+|-32|+121- (3)023cos 304sin 60++-.2.如图,实数a 、b在数轴上的位置,化简【课后作业】 一、选择题: 1. 2的值()A .在1到2之间B .在2到3之间C .在3到4之间 D.在4到5之间2.的倒数是()A .BC .2-D .23. 下列运算正确的是()A 3=B .0(π 3.14)1-=C .1122-⎛⎫=- ⎪⎝⎭D 3=±4. 若b a y b a x +=-=,,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a - 5.下列计算正确的是( )A . 22-=-= C. 325a a a ⋅= D.22x x x-=6. )A .点PB .点QC .点MD .点N7.下列根式中属最简二次根式的是( )8. +y)2,则x -y 的值为( )A.-1B.1C.2D.39. 一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( )A. 4cm~5cm 之间B. 5cm~6cm 之间C. 6cm~7cm 之间D. 7cm~8cm 之间二、填空题:1.=_________.2.的结果是.3. 若|1|0a +=,则a b -=.4= .5.函数y =x 的取值范围是________.6. 对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba ba -+, 如3※2=52323=-+.那么12※4= . 7.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是________8.计算:tan60°-2-2 + 20080_________ 三、解答题 : 1.计算:(1) 103130tan 3)14.3(27-+︒---)(π (2)101(1)52-⎛⎫π-+-+- ⎪⎝⎭(3)0112sin 602-⎛⎫+- ⎪⎝⎭(4)01)41.12(45tan 32)31(-++---2.先化简,再求值:33)225(423-=---÷--a a a a a ,其中第6课时 一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到―等量关系‖,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】方程思想和转化思想【例题精讲】例1. (1)解方程.x x+--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________.例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元. 3.若关于x 的方程x k =-153的解是x =-3,则k =_________. 4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____. 5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023; (3)⎩⎨⎧=+=+832152y x y x ; (4)x x -+=-2114135;⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x6.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?【课后作业】一、选择题1.在解方程()()032312=---x x 中,去括号正确的是 ( ) A .09612=+--x x B.03622=---x xC.09622=---x x .D.09622=+--x x2.几个同学在日历竖列上圈出了三个数,算出它们的和,其中错误的一个是( )A. 28B. 33C. 45D. 573.甲、乙两个工程队共有100人,且甲队的人数比乙队的人数的4倍少10人,如果设乙队的人数为x 人,则所列的方程为( )A. 1004=+x xB. 100104=-+x xC.()100104=-+x xD. 1001041=+-x x4.若2(341)3250x y y x +-+--=则x =( )A .-1B .1C .2D .-25.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为( )A.43-B.43C.34D.34-6.已知 与 是同类项,则 与 的值分别是 ( ) A.4、1 B.1、4 C.0、8 D.8、0 二、填空题7.在349x y +=中,如果26y =,那么x = .8.在方程组 中,m 与n 互为相反数,则 9.娃哈哈矿泉水有大箱和小箱两种包装,3大箱、2小箱共92瓶;5大箱、3小箱共150瓶,那么一大箱有___________瓶,一小箱有__________瓶.10.当m=______,n=______时, 是二元一次方程. 11.如果 那么 12.写出一个二元一次方程组,使这个方程组的解为x 2y 2=⎧⎨=-⎩,你所写的方程组是 .⎩⎨⎧=+=+032ny x my x .__________=x 821=+-n m y x ,53=-y x .________38=+-y x mn my x 344-yx n5m n13.一个三位数的数字和为11,十位数字是x ,个位数字是十位数字的3倍,百位数字比十位数字的2倍少1,则这个三位数是______________ . 三、解方程(组)14.35122--=+x x 15. 16. 17.四.解答题 18.已知方程 的两个解为 和 ,求 的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为 4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0()()x x x x --=--320379⎩⎨⎧=+-=8372y x x y ⎩⎨⎧=-=-74143y x y x ⎩⎨⎧==333y x b kx y +=⎩⎨⎧-==271y x b k ,aacb b x 242-±-=例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根; (2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长.【当堂检测】 一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=--⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 . 4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = . 5.一元二次方程ax 2+bx+c=0有一根-2,则bc a 4+的值为 .6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 . 二、选择题:8.对于任意的实数x,代数式x 2-5x +10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数 9.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( ) A.3 B.3或-2 C.2或-3 D. 210.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) (A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=0 三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x 2-4x-4=0(4)x 2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0【课后作业】 一、选择题1.下列方程中是一元二次方程的是( )A .2x +1=0B .y 2+x =1C .x 2+1=0D . 2.用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x +=D .()229x -=3.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对4.方程2x =x 的解是 ( )A .x =1B .x =0C . x 1=1 x 2=0D . x 1=﹣1 x 2=0 5.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D .1k <且0k ≠6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=二、填空题7.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______. 8.某种品牌的手机经过四.五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .9.两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 .10.若方程022=+-cx x 有两个相等的实数根,则c = .11.已知:m 是方程0322=--x x 的一个根,则代数式=-22m m . 三、解方程:12.(1)(2) (3)11=+x x 2410x x +-=0132=--x x )1(332+=+x x 第6题图13.如图,利用一面墙(墙长度不超过45m ),用80m 长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m 2?⑵能否使所围矩形场地的面积为810m 2,为什么?14.试说明:不论m 为何值,关于x 的方程2)2)(3(m x x =--总有两个不相等的实数根.第8课时 方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要. 【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( )A .4场B .5场C .6场D .13场 例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1) B .⎩⎨⎧x+y= 49y=2(x+1) C .⎩⎨⎧x –y= 49y=2(x –1) D .⎩⎨⎧x+y= 49y=2(x –1)例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=--例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x 张,•信封个数分别为第21题图第13题图y 个,则可列方程组 .今有甲、乙两个旅行团,已知甲团人数少于50人,乙团人数不超过100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元. (1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm ,则可得方程 .2. ―鸡兔同笼‖是我国民间流传的诗歌形式的数学题,•―鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?‖解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( ) ⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B •型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km 远的郊区进行抢修.维修工骑摩托车先走,15min 后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000张,已知体。
《实数》精品教案

《实数》精品教案一、教学内容本节课选自人教版数学教材八年级下册第十六章《实数》的第一节,内容包括实数的定义、分类及性质。
详细内容如下:1. 实数的定义:有理数和无理数的统称,表示为R。
2. 实数的分类:整数、分数、无理数。
3. 实数的性质:实数具有有序性、稠密性和完备性。
二、教学目标1. 知识与技能:理解实数的定义和分类,掌握实数的性质。
2. 过程与方法:通过例题讲解和随堂练习,提高学生的实数运算能力和解决问题的能力。
3. 情感态度与价值观:培养学生对实数概念的理解,激发学生学习数学的兴趣。
三、教学难点与重点1. 教学难点:实数的定义和性质,尤其是无理数的理解。
2. 教学重点:实数的分类和实数运算。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 引入:通过生活实例,如测量物体长度、计算面积等,引导学生体会实数的必要性。
2. 新课导入:讲解实数的定义、分类及性质,结合多媒体课件进行演示。
3. 例题讲解:选取具有代表性的例题,如实数运算、比较大小等,详细讲解解题思路和方法。
4. 随堂练习:设计具有梯度的问题,让学生独立完成,巩固所学知识。
六、板书设计1. 实数的定义2. 实数的分类1. 整数2. 分数3. 无理数3. 实数的性质4. 实数运算5. 例题及解题方法七、作业设计1. 作业题目:(3)计算:2/3 + √5,(√3 √2)²。
2. 答案:(1)实数:0,3/4,√2,5.6,π,e,…(2)从大到小:e,π,√5,3/2,√3,2(3)2/3 + √5 = 2/3 + √5;(√3 √2)² = 5 2√6。
八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的定义和性质掌握较好,但在实数运算方面还需加强练习。
2. 拓展延伸:引导学生研究实数与数轴的关系,了解实数在数轴上的表示方法,为后续学习函数打下基础。
同时,鼓励学生探索实数在实际问题中的应用,提高学生的数学素养。
浙教版初中数学实数教案

浙教版初中数学实数教案一、教学内容本节课选自浙教版初中数学七年级下册第十二章“实数”第一课时。
内容包括实数的定义、分类及运算规则,具体涉及教材第十二章第一节“实数的概念”,包括有理数与无理数的定义,实数的性质,以及实数的加、减、乘、除基本运算。
二、教学目标1. 让学生理解实数的概念,掌握有理数与无理数的区别和联系。
2. 使学生掌握实数的性质,能够进行简单的实数运算。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点难点:实数的概念及无理数的理解,实数的运算。
重点:实数的定义,实数的性质,实数的运算规则。
四、教具与学具准备教具:黑板、粉笔、教学PPT。
学具:练习本、铅笔、直尺。
五、教学过程1. 导入:通过生活中的实例,如测量长度、面积等,引出实数的概念。
2. 基本概念:讲解实数的定义,区分有理数与无理数,阐述实数的性质。
a. 有理数的定义与性质b. 无理数的定义与性质c. 实数的定义与性质3. 实数运算:讲解实数的加、减、乘、除运算规则,通过例题进行讲解。
a. 实数加法运算b. 实数减法运算c. 实数乘法运算d. 实数除法运算4. 随堂练习:布置一些实数运算的题目,让学生当堂完成,并及时给予反馈。
5. 应用拓展:给出一些实际问题,让学生运用实数知识解决问题。
六、板书设计1. 实数的定义2. 有理数与无理数的区别与联系3. 实数的性质4. 实数的运算规则5. 例题及解答过程七、作业设计1. 作业题目:2. 答案:a. 有理数:0.333…,无理数:π,2.1211211121112…b. (1)5.32;(2)3.3;(3)6π;(4)1.6八、课后反思及拓展延伸本节课通过讲解实数的概念、性质和运算,让学生掌握了实数的基本知识。
课后反思如下:1. 加强学生对实数概念的理解,特别是无理数的认识。
2. 增加实数运算的练习,提高学生的实际运算能力。
3. 拓展延伸:让学生了解实数在生活中的应用,如科学计算、工程技术等领域,激发学生的学习兴趣。
第一课实数的概念课件

第一课实数的概念课件教案内容:一、教学内容:本节课的主要内容是实数的概念,我们将学习实数的定义、分类以及实数与数轴的关系。
教材的章节为《数学》第一册第六章第一节。
二、教学目标:1. 了解实数的定义和分类,理解实数与数轴的关系。
2. 能够正确运用实数进行运算,解决实际问题。
3. 培养学生的逻辑思维能力和数学素养。
三、教学难点与重点:难点:实数与数轴的关系,实数的运算。
重点:实数的定义和分类,实数的运算规则。
四、教具与学具准备:教具:黑板、粉笔、数轴模型。
学具:笔记本、尺子、铅笔。
五、教学过程:1. 实践情景引入:利用数轴模型,引导学生观察数轴上的点与实数的关系,让学生感受实数与数轴的密切联系。
2. 知识讲解:(1)实数的定义:实数是包括有理数和无理数的所有数。
(2)实数的分类:有理数和无理数。
(3)实数与数轴的关系:数轴上的每一个点都对应一个实数,实数也可以用数轴上的点来表示。
3. 例题讲解:例题:求解方程x + 2 = 5。
讲解:将方程转化为x = 5 2,得到x = 3。
4. 随堂练习:练习题:求解方程2x 3 = 7。
5. 板书设计:实数的定义、分类及与数轴的关系。
六、作业设计:1. 作业题目:(1)列举三个有理数和三个无理数。
(2)根据数轴上的点,写出对应的实数。
(3)求解方程3x + 4 = 19。
2. 答案:(1)有理数:1, 2, 3;无理数:√2, √3, π。
(2)实数:5, 0, 4。
(3)x = 19 4 / 3 = 11 / 3。
七、课后反思及拓展延伸:本节课通过数轴模型,让学生直观地理解了实数与数轴的关系,通过例题和随堂练习,巩固了实数的运算规则。
但在教学过程中,要注意引导学生积极参与,提高学生的动手操作能力。
拓展延伸:研究实数的其他性质,如实数的乘方、开方等。
重点和难点解析:一、教学内容中的重点细节1. 实数的定义和分类:实数包括有理数和无理数,这是学生理解实数系统的关键。
实数(单元复习)标准教案

实数(单元复习)标准教案第一章:实数的概念与分类一、教学目标:1. 理解实数的定义及其分类;2. 掌握有理数和无理数的特点;3. 能够正确区分各种实数类型。
二、教学内容:1. 实数的定义;2. 有理数的概念及其分类;3. 无理数的概念及其分类;4. 实数的性质。
三、教学重点与难点:1. 实数的分类;2. 有理数与无理数的区别;3. 实数的性质。
四、教学方法:1. 讲授法:讲解实数的定义、分类及性质;2. 案例分析法:分析具体案例,引导学生理解实数的分类;3. 讨论法:组织学生讨论实数的性质。
五、教学步骤:1. 引入实数的概念,让学生回顾实数的定义;2. 讲解有理数的概念及其分类,让学生通过实例理解有理数的性质;3. 讲解无理数的概念及其分类,让学生通过实例理解无理数的性质;4. 组织学生讨论实数的性质,总结实数的特点;5. 布置练习题,巩固所学内容。
第二章:实数的运算一、教学目标:1. 掌握实数的运算方法;2. 能够熟练进行实数运算;3. 理解实数运算的性质。
二、教学内容:1. 实数的加减乘除运算;2. 实数的乘方与开方运算;3. 实数运算的性质。
三、教学重点与难点:1. 实数运算的规则;2. 实数运算的性质。
四、教学方法:1. 讲授法:讲解实数的运算方法及性质;2. 练习法:让学生通过练习题巩固实数运算的方法;3. 小组合作法:组织学生分组讨论实数运算的问题。
五、教学步骤:1. 复习实数的运算方法,让学生回顾加减乘除运算的规则;2. 讲解实数的乘方与开方运算,让学生理解乘方与开方的意义;3. 组织学生进行实数运算的练习,让学生熟练掌握运算方法;4. 讲解实数运算的性质,让学生理解运算的规律;5. 布置练习题,巩固所学内容。
第三章:实数与函数一、教学目标:1. 理解实数与函数的关系;2. 掌握函数的定义及性质;3. 能够运用实数解决函数问题。
二、教学内容:1. 实数与函数的关系;2. 函数的定义及其性质;3. 函数的图像与实数的关系。
《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容本节课选自人教版《数学》七年级下册第十章《实数》,具体内容包括教材第1节“实数的概念”、第2节“实数的性质”以及第3节“实数的运算”。
通过本节课的学习,使学生掌握实数的定义、性质以及运算方法。
二、教学目标1. 知识与技能:理解实数的概念,掌握实数的性质,熟练进行实数的运算。
2. 过程与方法:通过自主探究、合作交流的方式,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生运用数学知识解决实际问题的意识。
三、教学难点与重点重点:实数的概念、性质及运算方法。
难点:理解无理数的概念,掌握实数的运算规则。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:直尺、圆规、三角板。
五、教学过程1. 导入:通过生活中的实例,引入实数的概念,激发学生的学习兴趣。
实践情景:测量一根木料的长度,得到一个无法用分数表示的数值。
2. 自主探究:让学生阅读教材,了解实数的概念、性质及运算方法。
例题讲解:讲解教材例题,引导学生掌握实数的性质和运算规则。
如何表示一个无理数?实数与有理数的区别是什么?随堂练习:布置一些实数运算的练习题,让学生当堂完成。
六、板书设计1. 实数的概念2. 实数的性质3. 实数的运算方法4. 实数与有理数的区别七、作业设计1. 作业题目:证明:如果a、b是实数,那么a²+b²≥0。
2. 答案:(1)3+√2;(2)52√3;(3)8√5;(4)3√2。
证明:根据平方的性质,a²≥0,b²≥0,所以a²+b²≥0。
八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念、性质及运算方法掌握程度如何?哪些地方需要加强?2. 拓展延伸:了解实数在生活中的应用,如测量、建筑等领域,提高学生运用数学知识解决实际问题的能力。
重点和难点解析1. 实数的概念及与有理数的区别。
2024年浙教版初中数学实数教案

2024年浙教版初中数学实数教案一、教学内容本节课选自2024年浙教版初中数学教材第七章实数部分,具体内容包括:7.1节“实数的概念与分类”,7.2节“实数的运算”,以及7.3节“实数与数轴”。
二、教学目标1. 理解实数的概念,掌握实数的分类。
2. 掌握实数的运算规律,能够进行实数的加减乘除运算。
3. 理解实数与数轴的关系,能够用数轴表示实数。
三、教学难点与重点重点:实数的概念、分类及运算。
难点:实数与数轴的关系,实数的运算。
四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。
2. 学具:学生用教材、练习本、铅笔。
五、教学过程1. 实践情景引入通过介绍温度、长度等实际生活中的量,引导学生了解实数的概念。
2. 教学新课(1)讲解7.1节“实数的概念与分类”,让学生明确实数包括有理数和无理数,并举例说明。
(2)讲解7.2节“实数的运算”,通过例题讲解,让学生掌握实数的加减乘除运算规律。
(3)讲解7.3节“实数与数轴”,让学生理解实数与数轴的关系,并用数轴表示实数。
3. 例题讲解(1)计算题:进行实数的加减乘除运算练习。
(2)应用题:结合实际情景,求解实数问题。
4. 随堂练习根据所学内容,布置相关练习题,让学生当堂巩固。
六、板书设计1. 实数的概念与分类2. 实数的运算规律3. 实数与数轴的关系七、作业设计1. 作业题目(2)应用题:一根铁丝的长度为2米,现要将其剪成长度相等的四段,每段的长度为多少?(3)思考题:实数与数轴上的点有何关系?2. 答案(1)计算题答案:5,7,√5,1/5。
(2)应用题答案:每段长度为0.5米。
(3)思考题答案:实数与数轴上的点一一对应。
八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念、分类及运算掌握程度如何?实数与数轴的关系是否理解透彻?2. 拓展延伸:引导学生探索实数的更多性质,如大小比较、绝对值等。
同时,让学生了解实数在生活中的应用,提高数学素养。
重点和难点解析1. 实数的概念与分类的理解。
实数的概念,运算教案

实数的概念、运算教学目标:1.了解算数平方根、平方根和立方根的概念,会求非负数的算数平方根和实数的立方根。
2.了解无理数与实数的概念,知道实数与数轴上的点的一一对应关系,能用有理数估计一个无理数的大致范围。
3.会用算术平方根的性质进行实数的简单四则运算,会用计算器进行近似计算。
重点难点:1.重点:用算术平方根的性质进行实数的简单四则运算。
2.难点:实数的分类及无理数的概念、近似估计。
一、复习导入1.想一想:边长为1的正方形其对角线长为 ,它是有理数吗?合作学习:(教材P71)思考1.由对角线围成的正方形面积是其边长是?如何表示正方形的边长?介于那两个相邻整数之间?2.估算2的大小,表格数据在教材P72。
因此,2既不是有限小数也不是循环小数,因此2不是分数,又2不是整数,根据有理数的分类,2不是有理数。
所以,2是无理数。
有理数与无理数统称为实数。
师生共同完成实数的分类(教材P72)。
有理数的相反数、绝对值同样适用于实数。
试一试:数轴上的任何一点与实数一一对应,试一试:你能用直尺和 圆规精确地在数轴上表示出2吗?5呢?2.练一练:16= 3064.0=41= 41×16=想一想:实数的运算与有理数的运算有什么不同?引出实数的运算。
回顾有理数的运算法则和运算律,如下表:加法 减法 乘法 除法 乘方 开方 运算法则加法法则减法法则乘法法则除法法则,除法转化为乘法法则乘方法则开方法则运算律 加法交换律,结合律乘法交换律,结合律和分配律思考有理数的运算法则和运算律在实数中是否也能成立?实数的运算与有理数的运算之间就是增加了无理数的运算,那么,这些运算法则在无理数的运算中是否也能成立呢?举例说明在实数范围中增加了开方运算,开方运算与乘方运算是同级运算。
结论:实数的运算:先算乘方和开方,再算乘除,最后算加减。
如果遇到括号,则先进行括号里的运算。
试一试:1.计算:(1)38-9 (2)9-2×(4+25)2.计算:2×(3+5)+4-2×5二、知识要点复习1.平方根:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做a 的二次方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数的有关概念及运算知识点:1.有理数、无理数、实数、非负数、相反数、倒数、数的绝对值;2.有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字。
教学目标:1. 使学生复习巩固有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义;2. 会求一个数的相反数和绝对值,会比较实数的大小;3. 会画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小;4. 了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算律和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算;5. 了解有理数的运算率和运算法则在实数运算中同样适用,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算;6. 了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。
教学重难点:1.有理数、无理数、实数、非负数、相反数、倒数、数的绝对值的概念;2.在已知中,以非负数a2、|a|、 a (a≥0)之和为零作为条件,解决有关问题;3.实数的运算和近似数、有效数字、科学计算法。
教学过程:1、实数的有关概念: 考点1 实数的分类: 1)按定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数自然数零正整数整数有理数实数2)按正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数零正无理数正分数正整数正有理数正实数实数注意:1)任何分数都是有理数,如22/7,-3/11等; 2)0既不是正数,也不是负数,但0是自然数; 3)常见的几种无理数:①根号型:2,8等开不尽方的; ②构造型:如1.323223…; ③与π有关的,如π/3,π-1等。
考点2 实数的有关概念:1)数轴:规定了原点、正方向和单位长度的直线叫做数轴。
(画数轴时,要注童上述规定的三要素缺一个不可)注意:①实数与数轴上的点是一一对应的;②数轴上任一点对应的数总大于这个点左边的点对应的数。
2)相反数:只有符号不同的两个数,叫做互为相反数,零的相反数是零。
注意:① 若a 、b 互为相反数,则0=+b a ,n n b a 22=(n 为正整数),b a =; ② 相反数等于它本身的数是零;③从数轴上看,互为相反数的两个数所对应的点关于原点对称。
3)倒数:乘积是1的两个数互为倒数。
注意:零是唯一没有倒数的数,倒数等于本身的数是1或-1。
4)绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离。
注意:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a5)科学记数法:把一个数写成n a 10⨯形式(其中1≤ | a | <10,n 为整数),这种记数法叫做科学记数法6)近似数与有效数字:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字。
对于数值较大的数,可利用先用科学记数法表示,再确定其有效数字或取其近似数。
7)非负数:零和正数统称非负数。
注意:①常见的非负数的形式:|a| 、2a 、)0(≥a a ;②非负数的常用应用类型: 几个非负数之和为0,则每一个非负数都为0; 考点3 实数的大小比较:1)数轴比较法: 将两实数分别表示在数轴上,右边的数总比左边的数大,两数表示在同一点则相等;2)差值比较法:设a 、b 是任意两实数,则b a b a >⇔>-0;b a b a <⇔<-0 ;b a b a =⇔=-0.3)商值比较法:设a 、b 是两正实数,则ba ba >⇔>1;ba ba =⇔=1;b a ba <⇔<14)绝对值比较法:设a 、b 是两负实数,则|a|>|b|⇔a<b ;|a|=|b|⇔a=b ;|a|<|b|⇔a>b除此之外,还有平方法、倒数法等方法。
注意:比较实数大小时,常常用到实数的减法(作差)和除法(作商)运算。
2.实数的运算: 考点4 实数的运算:实数的运算顺序:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号内的,若没有括号,在同一级运算中,要从左到右依次进行运算。
1)加法:①同号两数相加,取原来的符号,并把绝对值相加;②异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③任何数与零相加等于原数。
2)减法:)(b a b a -+=-3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零。
4)除法:)0(1≠⋅=b ba b a5)乘方:个n n a aa a = 6)开方:如果x 2=a 且x ≥0,那么a =x ; 如果x 3=a ,那么x a =3 7)实数的运算律①加法交换律:a b b a +=+ ②加法结合律:)()(c b a c b a ++=++ ③乘法交换律:ba ab = ④乘法结合律:)()(bc a c ab = ⑤分配律:ac ab c b a +=+)(其中a 、b 、c 表示任意实数,运用运算律有时可使运算简便。
基础自测1.(2011·金华)有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是 ( )A .+2B .-3C .+3D .+42.(2011·衢州)数-2的相反数为 ( ) A .2 B. 21 C .-2 D .-213.(2011·义乌)-3的绝对值是 ( ) A .3 B .-3 C .-31 D.314.(2011·宁波)下列各数中,是正整数的是 ( )A .-1 B. 2 C .0.5 D.25.(2011·陕西)我国第六次人口普查显示,全国人口为1370536875 人,将这个总人口数(保留三个有效数字)用科学计数法表示为( )A . 91037.1⨯B .71037.1⨯C .81037.1⨯D .101037.1⨯题型分类深度剖析题型一实数的分类【例1】(1)在0,1,-2,-3.5这四个数中,是负整数的是( )A.0 B.1 C.-2 D.-3.5解析:负整数既是负数,又是整数,这里只有-2符合.(2)在实数0,1,2,0.1235中,无理数的个数为()A.0个B.1个C.2个D.3个解析:无理数是无限不循环小数,开不尽方,是无限不循环小数.探究提高判断一个数是不是无理数,关键就看它能否写成无限不循环小数.初中常见的无理数共分三种类型:(1)含根号且开不尽方的数;(2)化简后含π(圆周率)的式子;(3)有规律但不循环的无限小数.掌握常见无理数类型有助于识别无理数.知能迁移1(1)下列五个实数:38-,()03π-,tan 45°,-|-3|,121-⎪⎭⎫⎝⎛.其中正数的和为( )A.4 B.5 C.6 D.7解析:(3-π)0+tan45°+121-⎪⎭⎫⎝⎛=1+1+2=4,这三个正数的和等于4,选A.(2)下列四个数中,在0到3之间的无理数是()A.32 B.3C .πD .-1解析:0<3<9,只有3是0到3之间的无理数,选B.题型二 科学记数法与近似值、有效数字【例 2】 (1)(2011·浙江)中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们要为中国节水,为世界节水.若每人每天浪费水0.32L ,那么100万人每天浪费的水,用科学记数法表示为 ( ) A. 7102.3⨯L B.6102.3⨯ L C.5102.3⨯ L D.4102.3⨯ L 解析:0.32×100万=5102.3⨯(L).(2)下列近似数中精确到千位的是 ( ) A .90200 B .210450.3⨯ C .4104.3⨯ D .2104.3⨯ 解析:4104.3⨯表示3万4千,精确到千位,选C.探究提高(1)科学记数法一般表示的数较大,所以解题时一定要仔细.确定n 的值时,从最后一位起数到最高位的下一位即可,最后可将答案还原成原数进行检验. (2)用有效数字表示的数,在确定其精确度时,要还原成原数后再进行判断.知能迁移2 (1)近似数2.5万精确到____位;有效数字分别是 ___________.解析:2.5万=2万5千,精确到千位,有效数字分别是2,5.(2)0.5796保留三个有效数字的近似数是_______;由四舍五入法得到的近似数2.30亿精确到_______位,有_______个有效数字.解析:0.5796≈0.580,保留三位有效数字的近似数是0.580; 2.30亿≈2亿3千0百万,精确到百万位,有3个有效数字.(3)(2011·安徽芜湖)我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为 ( )A .6101.3⨯西弗B .6101.3⨯西弗C .3101.3-⨯西弗D .6101.3-⨯西弗题型三 实数的运算【例 3】 (1)计算:()121240-++- ;(2)计算:()()1231322-⎪⎭⎫⎝⎛+-⨯+-;解题示范——规范步骤,该得的分,一分不丢! 解:(1)()121240-++-=4+1-32 [3分]=5-32 [4分] (2)()()1231322-⎪⎭⎫⎝⎛+-⨯+-=4-6+3 [3分]=1 [4分]探究提高实数运算要严格按照法则进行,对于实数混合运算,注意符号和顺序是非常重要的.知能迁移3 (1)(2011·温州)计算:()()122011202--+-解:()()122011202--+-=4+1-23 =5-23 .(2)(2011·舟山)计算:()()239202---+-解:原式=4-3+1+2=4.题型四 与实数相关的概念【例 4】 (1)已知|a|=1,|b|=2,|c|=3,且a>b>c ,那么a +b -c =________.解析:由|a|=1,|b|=2,|c|=3,得a =±1,b =±2,c =±3. 又a>b>c. 可以a =±1,b =-2,c =-3, 所以a +b -c =1+(-2)-(-3)=2, 或a +b -c =(-1)+(-2)-(-3)=0.(2)设|a|=4,|b|=2,且|a +b|=-(a +b),试求a -b 所有值的和.解:∵|a|=4,|b|=2,∴a =±4,b =±2,又|a +b|=-(a +b)≥0,∴a +b<0, 可知a =-4,b =±2, 所以a -b =-4-2=-6,或a -b =-4-(-2)=-2,-6+(-2)=-8, a -b 所有值的和是-8.探究提高(1)两个互为相反数的和为0; (2)正数的绝对值是它本身,负数的绝对值是它的相反数, 0的绝对值是0.知能迁移4 (1)(2011·镇江)计算:______21-_____21_______21_____211-0=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-=-=⎪⎭⎫⎝⎛--(2)若ab>0,则abab b b a a -+的值等于________.解析:由ab>0,得a>0且b>0或a<0且b<0, 于是 abab b b a a -+=1+1-1=1或 ab ab b b a a -+=(-1)+(-1)-1=-3.题型五 与数轴联系【例 5】 (1)如图,若A 是实数a 在数轴上对应的点,则关于 a ,-a,1的大小关系,表示正确的是 ( )A .a<1<-aB .a<-a<1C .1<-a<aD .-a<a<1(2)观察图中的数轴,用字母a ,b ,c 依次表示点A 、B 、C 所对应的数,则c a b ab 111、、-的大小关系是( )A.c a b ab 111<-<B.cab a b 111<<- C.abab c111<-< D.ab ab c-<<111探究提高数形结合借助数轴找到数的位置,或由数找到在数轴上点的位置,及其相反数的位置.再根据数轴上右边的数大于左边的数,确定各数的大小. 知能迁移5 (1)(2011·宜昌)如图,数轴上A 、B 两点分别对应实数 a 、 b ,则下列结论正确的是 ( )A. a < b B .a =b C. a > b D .ab > 0(2)有理数a 、b 满足a<0,b>0,且|a|>|b|,试用“<”号把a 、b ,-a 、-b 连接起来:________________.易错警示:1.实数概念中的常见错误试题若一个实数的(1)倒数;(2)绝对值;(3)平方数;(4)立方;(5)平方根;(6)算术平方根;(7)立方根等于它的本身,则这个数分别为:(1)_____(2)______ (3)_____(4)_____(5)____(6)____(7)_____.学生答案展示(1)1;(2)正数;(3)1;(4)1或-1;(5)1;(6)0;(7)1和-1.正解(1)1和-1;(2)正数和0(或非负数);(3)1和0;(4)-1、0和1;(5)0;(6)0和1;(7)-1、0和1.剖析实数概念理解往往似是而非或不够全面,出现一些不该有的错误.上述给出的答案不完整,漏掉了一些符合条件的数,产生错误的原因是忽略了引进负数对数的范围扩展不适应.思想方法感悟提高方法与技巧1.重视实数概念的学习,理解实数与数轴上的点是一一对应的.2.注意实数乘方概念的理解,防止概念之间的混淆.3.可借助数轴,“数形结合”,找到数与点的关系,根据对称性质找出互为相反数的位置,再比较大小.失误与防范引进负数,使数的概念得以扩展,实现了算术数到有理数的飞跃,许多小学形成的认识被推翻了:1.“+”“-”除了仍表示运算符号外,还可以看作一个数的性质符号;“-”还可以用来表示原数的相反数,即在一个数前面添上“-”号,可得到原数的相反数.2.减法可以转化为加法,在小学里,加法与减法是两回事,但引进负数后,减法就不再作为独立的运算而存在,而是把减法转化为加法.3.原来的一些结论不再成立,如“差一定小于或等于被减数”这个结论就是不一定正确了.4.数“0”被赋予新的含义,具有独特的性质,思考相关问题要全面,否则的话,极易落入“0”设置的陷阱.。