精馏塔的设计详解-共21页

合集下载

《精馏塔设计》课件

《精馏塔设计》课件
产品要求
明确产品指标,如纯度、回收率、能耗等,以满足用 户需求。
处理能力
根据生产规模和市场需求,确定精馏塔的处理能力。
设计方案的确定
塔型选择
01
根据原料和产品的性质,选择合适的塔型(如板式塔或填料塔
)。
塔内件设计
02
根据工艺流程和操作条件,设计适宜的塔内件,如溢流装置、
进料分布器、降液管等。
控制系统
精馏塔的维护保养
定期检查
对精馏塔进行定期全面检查,包括塔体、内 部构件、加热和冷却系统等。
更换磨损件
及时更换精馏塔内部磨损严重的构件,保证 设备性能和效率。
清洗和防腐
根据需要,对精馏塔进行清洗,并采取防腐 措施,延长设备使用寿命。
记录维护情况
建立维护记录,详细记录精馏塔的维护保养 情况,方便追踪和管理。
05
精馏塔的操作和维护
精馏塔的操作规程
严格控制进料量
根据生产需求和设备能力,合理调节进料量 ,保持精馏塔稳定运行。
监控温度和压力
密切关注精馏塔内各段的温度和压力变化, 确保在正常范围内波动。
定期取样分析
对精馏塔出口的液体进行取样,分析其成分 ,以便及时调整操作参数。
防止堵塞和腐蚀
定期检查精馏塔内部,清理堵塞物,防止腐 蚀,确保设备正常运行。
确定能源和水资源
根据能源和水资源的供应情况,选择合适的工艺流程,以提高能源 和水资源的利用效率。
工艺流程的优化
优化工艺参数
通过调整工艺参数,如温度、压力、流量等, 提高产品的质量和产量。
优化设备配置
合理配置设备,降低投资成本,提高设备的利 用率和稳定性。
优化操作条件
通过优化操作条件,如进料量、回流量、加热方式等,提高产品的分离效果和 节能减排。

精馏塔设计书

精馏塔设计书

精馏塔设计书精馏塔是化学和石油工业中常用的一种分离设备,其设计非常重要。

本文将从精馏塔的结构、操作条件、材料选择等方面进行详细介绍和建议,以帮助读者更好地进行精馏塔的设计。

一、结构设计1.1 塔体结构精馏塔的塔体一般分为直立式和横卧式两种类型。

直立式适合于处理高粘度、高沸点和易结晶的物料,横卧式适合于处理低粘度、低沸点和易挥发的物料。

在塔体的结构设计上,需要根据具体的工艺要求,确定塔的高度、直径和壁厚等参数,保证其能够在长期运行中保持稳定的分离效果。

1.2 塔盘结构塔盘是精馏塔的关键部件,其结构应该符合两相流动的要求,在连续计量流量的同时,实现物料的良好分离。

在设计塔盘时,需考虑填料的种类、布置和高度等因素,以保证塔盘的稳定性和分离效率。

二、操作条件2.1 进料方式精馏塔的进料方式有顶进、底进、侧进等多种方式,需根据具体的物料性质、流量和工艺特点等因素来选择。

在进料过程中,需控制进料速度和温度,避免液位过高和温度变化过大导致塔内压力波动,影响精馏效果。

2.2 温度和压力控制精馏塔的温度和压力是影响精馏效果的重要因素。

在运行过程中,需控制塔底温度和塔顶温度,避免出现气液两相不均匀、突然变化和温度不足等现象。

同时,还需控制塔内的压力,保证物料能够在塔内正常流动,达到良好的分离效果。

三、材料选择3.1 塔体材料精馏塔的塔体材料应该根据物料的性质和使用环境等因素选用。

常用的材料有碳钢、不锈钢、玻璃钢和聚合物等。

在选择材料时,需考虑其耐腐蚀性、强度和可焊性等因素,以保证塔体的稳定性和可靠性。

3.2 塔盘材料对于均相物料的精馏,塔盘一般选用不锈钢、有机玻璃或塑料等材料;对于非均相物料的精馏,塔盘则需选用更耐磨、更耐腐蚀的材料,如钛合金和镍基合金等。

总之,精馏塔的设计需要考虑多方面的因素,包括结构、操作条件和材料选择等,以保证其达到良好的分离效果和稳定性能。

通过科学、合理的设计,可实现更加高效、节能的生产过程,大大提高生产效率和质量,为工业生产带来更大的经济效益。

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。

设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。

酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。

物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。

本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。

此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。

塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。

筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属不易分离物系,最小回流比较小,采用其1.5倍。

设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。

塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。

(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。

精馏塔的设计

精馏塔的设计

第一章生产工艺流程的确定本设计的任务为分离正庚烷和正辛烷混合物的精馏塔设计。

对于此二元混合物的分离,采用常压下的连续精馏操作装置。

本设计采用饱和蒸汽进料,将原料以饱和蒸汽状态送人精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液体在泡点下一部分经回流装置回流至塔内,其余的部分经产品冷凝冷却器冷凝冷却后送人储罐。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

该物系属于易分离物系,最小回流比较小,操作回流比为最小回流比的2倍。

本设计带控制点的生产工艺流程图见附图-1。

第二章精馏塔2.1 精馏塔的物料衡算通过查阅资料知,一个大气压下,正庚烷的沸点为98.4℃,正辛烷的沸点125.6℃,所以混合液中,正庚烷是易挥发成分。

2.1.1已知条件:混合液的流量:F=12t/h正庚烷的含量:x F=0.42正庚烷的回收率:φ=0.98釜残夜中正庚烷的含量:x w =0.032.1.2物料衡算过程:混合液的平均相对分子质量:M F=0.42*100+0.58*114=108.12Kg/kmol混合液的流量:F=12*1000/108.12=110.99Kmol/h总物料衡算:110.99=D+W110.99*0.42=D* x D +W* x w0.98=D* x D /F*x F计算结果:D=79.77 W=31.22 x D=0.5732.2 塔板数的确定2.2.1塔板理论数N T的求取正庚烷—正辛烷属于理想物系,采用图解法求理论板层数。

(1)由资料查得正庚烷—正辛烷在101.3KPa的气液平衡数据如下:温度(℃):98.4 105 110 115 120 125.6X: 1.0 0.656 0.487 0.311 0.157 0.0y: 1.0 0.810 0.673 0.491 0.280 0.0绘出x-y图,见附图2。

(2)求最小回流比及操作回流比采用作图法求最小回流比。

在附图2中对角线上,自点e(0.42,0.42)作垂线ef即为进料线,该线与平衡线的交点坐标y q = 0.42 x q=0.26最小回流比为R min= (x D- y q )/ (y q - x q)=(0.573-0.42) / ( 0.42-0.26) = 0.96取操作回流比为R=2 R min=2*0.96=1.92(3)求精馏塔的气液负荷线L=RD=1.96*79.77=156.35V=(R+1)D=(1+1.96)*79.77=232.93L=L=156.35V=V-F=232.93-110.99=122.0(4) 求操作线方程精馏段操作线方程为y=L x /V + D x D /V =0.658x+0.196提馏段操作线方程为y=L x /V -W x W /V =1.282x-0.008(5)图解法取理论板层数采用图解法取理论板层数,如附图2所示。

板式精馏塔设计PPT课件

板式精馏塔设计PPT课件

要求: hOW6mm
bc
(4) 塔板及其布置 ① 受液区和降液区 一般两区面积相等。
bs
r
lW
x
② 入口安定区和出口安定区
bsbs50 10m0m
bd
③ 边缘区:bc 50mm
29
④ 有效传质区:
bc
单流型弓形降液管塔板:
A a2(xr2x2r2si 1 nr x)
bs
r
x
lW
双流型弓形降液管塔板:
8
二元连续板式精馏塔的工艺计算
物料衡算 实际塔板数的确定 塔高和塔径的计算 塔板结构参数的确定 塔板流动性能校核
9
一、物料衡算
全塔物料衡算 间接加热时:
F=D+W FxF= DxD+WxW 可以解出F,W。
10
二 实际塔板数的确定
1.确定理论板数 可以采用图解法或逐板计算法.
平衡数据 回流比 精馏段操作线 加料线 提馏段操作线
14物性参数的查找计算塔径由精馏塔内各段物料的摩尔流率或说体积流率决定的其影响因素有f进料流率r回流比及q涉及单位换算15轻组分1x轻组分1x重组分2进料板的平均分子量进料板对应的组成x进料板对应的组成由逐板计算得到n值各人不同ynm轻组分1y轻组分1x重组分16轻组分1y轻组分1x重组分4精馏段提馏段的平均分子量精馏段平均分子量mlm1液相平均密度查物性数据
主要设备的工艺设计计算
板式塔的结构
辅助设备的选型
主要设备的工艺条件图
设计说明书的编写
3
设计方案的确定
(一)装置流 程的确定
要求在设计说明 书上画出流程 简图。
4
塔顶冷凝装置根据生产情况以决定采用 分凝器或全凝器。一般,塔顶分凝器对 上升蒸汽虽有一定增浓作用,但在石油 等工业中获取液相产品时往往采用全凝 器,以便于准确地控制回流比。若后继 装置使用气态物料,则宜用分凝器。

精馏塔(板式)设计

精馏塔(板式)设计

精馏塔板的设计还需要考虑到不同物 质的沸点、蒸汽压等物性参数,以及 操作条件下的温度、压力等参数,以 确保分离过程的顺利进行。
精馏塔板的设计需要考虑到液体的流 动特性、蒸汽的流动特性以及它们之 间的相对流动方向,以达到最佳的分 离效果。
设计流程
选择合适的塔板类型
根据设计目标和工艺要求,选 择适合的塔板类型,如泡罩塔 板、浮阀塔板、筛孔塔板等。
详细描述
石油精馏塔设计需要考虑多方面的因素,如原料性质、产品 要求、操作条件等。在设计过程中,需要选择合适的塔板类 型和数量,确定适宜的工艺流程和操作参数,以满足生产需 求。
案例二:酒精精馏塔设计
总结词
酒精精馏塔设计是一种常见的精馏塔设计案例,主要应用于酿酒和生物燃料领域 。
详细描述
酒精精馏塔设计需要考虑酒精的提取和纯化过程。在设计过程中,需要选择适合 的塔板和填料,确定适宜的操作压力和温度,以保证酒精的纯度和回收率。
设计的重要性
01
02
03
提高分离效率
精馏塔板设计的核心目标 是提高分离效率,使产品 达到更高的纯度或回收率。
降低能耗
精馏塔板设计的另一个重 要目标是降低能耗,通过 优化设计,降低操作过程 中的热能消耗。
提高生产能力
良好的精馏塔板设计可以 提高生产能力,从而提高 设备的产能和经济效益。
02 精馏塔(板式)的工艺设计
塔板热力学计算
传热系数
根据物料特性和工艺要求,计算并选 择合适的传热系数,以提高热力学效 率。
温度分布
通过计算温度分布,可以了解物料在 塔板上的温度变化情况,从而优化操 作条件和塔板结构。
03 精馏塔(板式)的设备设计
塔体设计
塔体直径

精馏塔(板式)设计

精馏塔(板式)设计

PA α= ∗ PB
(三)塔板数的确定 1、作出x-y相图 、作出 相图 2、最小回流比及操作回流比 、 3、理论板数及加料位置 、 ①求精馏塔的汽、液相负荷 求精馏塔的汽、

R = 1.5 Rmin
L′ = L + qF = RD + qF
V ′ = V + (q − 1) F = ( R + 1) D + (q − 1) F
化工原理课程设计
(6)冷凝器的选择 ) 塔顶产品(全凝器)和塔釜产品(冷却器) 塔顶产品(全凝器)和塔釜产品(冷却器) (7)加料方式的选择 ) 高位槽或泵 (8)工艺流程 ) 3、正戊烷和正己烷的性质、用途等 、正戊烷和正己烷的性质、
化工原理课程设计
二.工艺计算
主要内容是( 主要内容是(1)物料衡算 (2)确定回流比 (3)确定理论板数和实 际板数 (4)塔的气液负荷计算 (5)热量衡算 塔设备的生产能力一般以千克/小时或吨/年表示, 塔设备的生产能力一般以千克/小时或吨/年表示,但在理论板 计算时均须转换成kmol/h,在塔板设计时 在塔板设计时, 计算时均须转换成kmol/h,在塔板设计时,气液流量又须用体积 流量m /s表示 因此要注意不同的场合应使用不同的流量单位。 表示。 流量 m3/s 表示 。 因此要注意不同的场合应使用不同的流量单位 。 (一)全塔物料衡算 1、原料液及塔顶、塔底产品的摩尔分数 、原料液及塔顶、
化工原理课程设计
②求精馏段、提馏段的操作线方程 求精馏段、
R xD y= x+ R +1 R +1
③作图求出理论板数 ④逐板计算求理论板数
WxW L + qF y′ = x′ − L + qF − W L + qF − W

精馏塔的设计计算课件

精馏塔的设计计算课件
◇确定理论塔板数(作图法)、实际板数; ◇确定塔高和塔径。
第6页,幻灯片共70页
3、塔板设计:
◇设计塔板各主要工艺尺寸
溢流装置、塔板布置、筛孔或浮阀的设计及排列(图); ◇进行流体力学校核计算; ◇画出塔的负荷性能图。 4、管路及附属设备的设计与选型,如冷凝器、泵等。 5、抄写说明书。
6、绘制精馏装置工艺流程图和精馏塔装配图。
第27页,幻灯片共70页
② 降液管形式和底隙 降液管:弓形、圆形。 降液管截面积:一般Ad/AT = 0.06 ~ 0.12 ,由lw /D确定(图11-16) Ad/AT 过大,气液两相接触传质区小,生产能力和板效率将较低;
Ad/AT 过小,易产生气泡夹带,引起降液管液泛。 底隙 hb :应小于hw ,通常在 30 ~ 40 mm。 液体流经底隙的流速ub =Ls/ (lwhb), 一般ub = 0.07—0.25m/s。
提馏段平均温度:
tm=( tW+ tF)/2 =(92+108)/2=100 ℃
110
100 90 80
0
第13页,幻灯片共70页
p=101.3kPa
t-y t-x
x (y) 1.0
2、平均摩尔质量
(1)由塔顶、塔底、进料处的浓度计算平均摩尔质量; (2)计算精馏段平均摩尔质量MVm (精)、 MLm (精); (3)计算提馏段平均摩尔质量MVm (提)、 MLm (提)。
第19页,幻灯片共70页
一、精馏塔的结构设计
1、塔的有效高度和板间距
已知:实际塔板数 NP ; 选取塔板间距 HT;
有效塔高: ZHT Np
塔体高度=有效高+顶部空间+底部空间+塔裙座高度 选取塔板间距 HT :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一.前言 (3)二.塔设备任务书 (4)三.塔设备已知条件 (5)四.塔设备设计计算 (6)1、选择塔体和裙座的材料 (6)2、塔体和封头壁厚的计算 (6)3、设备质量载荷计算 (7)4、风载荷与风弯距计算 (9)5、地震载荷与地震弯距计算 (12)6、偏心载荷与偏心弯距计算 (13)7、最大弯距计算 (14)8、塔体危险截面强度和稳定性校核 (14)9、裙座强度和稳定性校核 (16)10、塔设备压力试验时的应力校核 (18)11、基础环设计 (18)12、地脚螺栓设计 (19)五.塔设备结构设计 (20)六.参考文献 (21)七.结束语 (21)前言苯(C6H6)在常温下为一种无色、有甜味的透明液体,并具有强烈的芳香气味。

苯可燃,有毒,也是一种致癌物质。

它难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。

苯具有的环系叫苯环,是最简单的芳环。

苯分子去掉一个氢以后的结构叫苯基,用Ph表示。

因此苯也可表示为PhH。

苯是一种石油化工基本原料。

苯的产量和生产的技术水平是一个国家石油化工发展水平的标志之一。

甲苯是有机化合物,属芳香烃,分子式为C6H5CH3。

在常温下呈液体状,无色、易燃。

它的沸点为110.8℃,凝固点为-95℃,密度为0.866克/厘米3。

甲苯不溶于水,但溶于乙醇和苯的溶剂中。

甲苯容易发生氯化,生成苯—氯甲烷或苯三氯甲烷,它们都是工业上很好的溶剂;它还容易硝化,生成对硝基甲苯或邻硝基甲苯,它们都是染料的原料;它还容易磺化,生成邻甲苯磺酸或对甲苯磺酸,它们是做染料或制糖精的原料。

甲苯的蒸汽与空气混合形成爆炸性物质,因此它可以制造梯思梯炸药。

甲苯与苯的性质很相似,是工业上应用很广的原料。

但其蒸汽有毒,可以通过呼吸道对人体造成危害,使用和生产时要防止它进入呼吸器官。

苯和甲苯都是重要的基本有机化工原料。

工业上常用精馏方法将他们分离。

精馏是分离液体混合物最早实现工业化的典型单元操作,广泛应用于化工,石油,医药,冶金及环境保护等领域。

它是通过加热造成汽液两相体系,利用混合物中各组分挥发度的差别实现组分的分离与提纯的目的。

实现精馏操作的主要设备是精馏塔。

精馏塔主要有板式塔和填料塔。

板式塔的核心部件为塔板,其功能是使气液两相保持密切而又充分的接触。

塔板的结构主要由气体通道、溢流堰和降液管。

本设计主要是对板式塔的设计。

一.塔设备任务书简图与说明比例设计参数与要求工作压力MPa 0.004 腐蚀速率mm/a 0.01设计压力MPa 0.0044 设计寿命 a 20工作温度ºC120 浮阀个数设计温度ºC150 浮阀间距介质名称苯、甲苯保温材料厚度/mm 100介质密度 kg/m3799.054保温材料密度kg/m3300基本风压 Pa 300 存留介质高度 mm 52.5/49地震烈度9 壳体材料Q235-A场地类别Ⅱ内件材料塔形筛板塔裙座材料Q235-A塔板数目21 偏心质量 kg 2019塔板间距 mm 500 偏心距 mm 1000接管表符号公称尺寸连接面形式用途符号公称尺寸连接面形式用途a1,2 450mm -人孔g 45mm 突面回流口b1,2 -突面温度计h1-3 25mm突面取样口c -突面进气口i1,2 -突面液面计d1,2 38mm 突面加料口j 38mm突面出料口e1,2 -突面压力计k1-3 450 mm 突面人孔f 127mm 突面排气口条件内容修改修改标记修改内容签字日期塔径(原设计算错)备注甲苯-苯精馏塔设计单位名称化工系2班刘丽娟工程名称提出人刘丽娟日期08.7.25三 . 塔设备已知条件表二:已知条件列表四. 塔设备设计计算1、 选择塔体和裙座的材料设计压力是指设定的容器顶部的最高压力,由“工艺部分”的工艺条件可知塔顶表压为='p 4kPa ;通常情况下将容器在正常操作情况下容器顶部可能出现的最高工作压力称为容器的最大工作压力用w p 表示,即w p =='p 0.004MPa ;取设计压力==w p p 1.10.0044MPa 。

设计温度是指容器在正常操作情况下,在相应设计压力下,设定的受压组件的金属温度,其值不得低于容器工作是器壁金属达到的最高温度。

本设计塔内最高温度塔底取得max 120t =ºC,设计温度可以取为150t =ºC。

从上可知,设计压力和设计温度都属于低压、低温状态,塔体和裙座的材料可用: Q235-A ,GB912,热轧,厚度为3~4mm ,常温下强度指标=b σ375MPa 、=s σ235MPa ,设计温度下的许用应力=t][σ113MPa 。

2、 塔体和封头壁厚的计算2.1 塔体壁厚的计算塔体的壁厚是值塔体计算出来的有效厚度,有效厚度可以用下式计算21C C n e --=∆+=δδδ(式中δ为理论计算厚度,mm ;∆为除去负偏差以后的圆整值,mm ;n δ为名义厚度,mm ;1C 为钢板厚度负偏差,mm ;2C 为腐蚀裕量,mm 。

) 2.1.1理论计算厚度ppD t i-=ϕσδ][2,其中i D 指塔体的内径,由工艺部分计算可知i D =1.2m ;ϕ为焊接头系数,本设计采用双面焊、局部无损探伤,ϕ=0.85。

p pD t i -=ϕσδ][2==-⨯⨯⨯0044.085.0113212000044.00.03mm 对于碳素钢和低合金钢制容器,mm 3min ≥δ,而δ<min δ,且mm 97.2min =-δδ>1C (钢板厚度按8~25mm 计)。

假设腐蚀裕量2C =2mm 。

n δ=min δ+2C =5mm21C C n e --=∆+=δδδ=5-0.5-2=2.5mm2.2 封头壁厚的确定根据塔径i D =1200mm ,取用标准椭圆形封头,可选用EHA 的标准椭圆形封头(JB/T 4746-2019),公称直径DN=1200mm ,曲面高度300mm ,直边高度25mm ,内表面积1.665m 2,容积0.255m3,厚度6mm ,质量49kg 。

3、设备质量载荷计算塔设备的操作质量kg m o /: e a m m m m m m m m ++++++=05040302010 塔设备的最大质量kg m /max :e a w m m m m m m m m ++++++=04030201max 塔设备的最小质量kg m /min :e a m m m m m m m +++++=04030201min 2.0 3.1 塔体质量1o m 单位长度筒体的质量:]1200)101200[(1085.7785.0])2[(4226221-+⨯⨯⨯=-+=⨯=-i n i m D D s m δρπρ=148.5kg/m由工艺部分计算可知塔高H=10.55m ,取裙座高度h=1.55m ; 筒体质量:1110.55148.5m m H m =⨯=⨯=1566.7kg 裙座质量:31 1.5148.5m m h m =⨯=⨯=222.75kg由前面可知一个封头质量G=77kg ,则有封头质量:=2m 77×2=98kg⇒1o m =1231566.7222.7598m m m ++=++=1887.5kg3.2 塔段内件质量2o m查数据可知筛板塔质量 2/65m kg q N =;由工艺部分计算可知塔盘数为N=21块⇒2220.78521 1.2654o i N m ND q π==⨯⨯⨯=1542 kg3.3 保温层质量3o保温材料密度为 =2ρ300kg/m 3,厚度为 =s δ100mm 筒体部分保温层的质量:222])2()22[(4ρδδδπH D D s i s n i +-++=220.785[1.41 1.4]10.5530069.8kg ⨯-⨯⨯=封头部分保温层的质量:直边部分+曲面部分直边部分:kg 166.0300025.0]4.141.1[785.022=⨯⨯-⨯曲面部分近似计算为:内表面积×厚度×密度 ⇒ 1.665×0.1×300=50kg⇒ 封头部分质量=2×(0.166+50)=100.23kg所以,3o m =69.8+100.23=170kg3.4 平台、扶梯质量4o m本设计用5个钢制平台,笼式扶梯,查资料可知刚直平台和笼式扶梯的单位质量分别为:2/150m kg q p =,2/40m kg q F =。

4o m =F F p n i n i H q nq D B D +⨯++-+++21])22()222[(422δδδδπ=220.785[3.22 1.42]0.5415040(9.45 1.55)⨯-⨯⨯⨯+⨯+=2632.4kg3.5 操作时塔内物料质量5o m由工艺部分计算可知精馏段塔盘数为9,m h w 0633.0=,m h o 0083.0=,31/04.826m kg L =ρ;提馏段塔盘数为12,m h w 06.0'=,m h o 0086.0'=,32/18.931m kg L =ρ⇒5o m =)(])''()[(42122112L L f L o w L o w i V h N h h N h D ρρρρπ+++++=0.785×21.2[(0.063390.0083)826.04(0.06120.0086)931.18]0.255(826.04931.18)⨯++⨯++⨯+=1754.7kg.3.6 附件质量a按经验取附件质量 a m =0.251o m =0.25×1887.5=471.9kg 3.7 充液质量 wmw m =2220.785 1.210.55100020.25510004i w f w D H V πρρ+=⨯⨯⨯+⨯⨯=12435.7kg3.8 偏心质量em当塔设备的外侧挂有分离器、再沸器、冷凝器等附属设备时,可将其视为偏心载荷。

本设计中将再沸器挂于塔上,所以再沸器构成塔的偏心质量,再沸器质量为2000kg ,偏心距为1000mm 。

所以 e m =2000kg 。

3.9 操作质量、最小质量、最大质量e a m m m m m m m m ++++++=05040302010=1887.5+1542+170+2632.4+1754.7+471.9+2019=10458.5kge a m m m m m m m +++++=04030201min 2.0=1887.5+0.2×1542+170+2632.4+471.9+2019=7470.2kg e a w m m m m m m m m ++++++=04030201max=1887.5+1542+170+2632.4+12435.7+471.9+2019=21139.5kg4、 风载荷和风弯距的计算塔设备受风压作用时,塔体会发生弯曲变形。

相关文档
最新文档