应用回归分析第二章课后习题答案 PPT课件

合集下载

应用回归分析+第2章详细答案word资料7页

应用回归分析+第2章详细答案word资料7页

由⎪⎪⎩⎪⎪⎨⎧=β-β-=β∂∂=β-β-=β∂∂∑∑=β=β=β=βn1i i i 10i ˆ1n 1i i 10i ˆ00x )x ˆˆy (Q 0)x ˆˆy (Q 1100得⎪⎪⎩⎪⎪⎨⎧==-==-∑∑∑∑====n 1i n 1i i i i i i n 1i n1i i i i 0x e x )y ˆy (0e )y ˆy ( 2.4在),0(N ~2i σε的正态分布假定下,10,ββ的最小二乘估计与最大似然估计等价,求对数似然函数的极大值等价于对∑=β+β-n1i 2i 10i )]x (y [求极小值,至此与最小二乘估计原理完全相同2.52.6 2.7 2.8(1)22i2i 2i2i 2i2i2i i2i i xx 1xx 1r 12n r )y y ()y y ˆ(12n r )y y ()y yˆ()y y (2n r )y y ()yˆy (2n r )y ˆy (2n L ˆˆL ˆt --=----=-----=---=--β=σβ=∑∑∑∑∑∑∑∑(2)F )2n /(SSE 1/SSR SSE SSR )2n (SSTSSR 1SST SSR)2n (r 1r )2n (t 222=-=-=--=--= 2.92.11如果一个线性回归方程通过F 检验,只能说明x 与y 之间的线性关系是显著的,不能说明数据拟合得很好,决定系数r 2是一个回归直线与样本观测值拟合优度的相对指标。

2.12如果自变量观测值都乘以2,回归参数的最小二乘估计0ˆβ不变,1ˆβ变为原来的½; 如果自变量观测值都加上2,回归参数的最小二乘估计0ˆβ,1ˆβ都扩大两倍; 2.13不成立,相关系数与样本量n 有关,当n 较小时,相关系数的绝对值容易接近于1;当n 较大时,相关系数绝对值容易偏小。

2.14(1)散点图为(2)x 与y 之间大致呈线性关系(3)设回归方程为 x ˆˆy ˆ10β+β= 模型非标准化系数 标准系数 tSig.B标准 误差试用版1(常量)-1.0006.351-.157.885x7.0001.915.9043.656.035由系数分析表可知:7ˆ,1ˆ10=β-=β (4)模型汇总b模型RR 方调整 R 方标准 估计的误差1.904a.817 .756 6.05530a. 预测变量: (常量), x 。

应用回归分析-第2章课后习题参考答案

应用回归分析-第2章课后习题参考答案

第二章 一元線性回歸分析思考與練習參考答案2.1 一元線性回歸有哪些基本假定?答: 假設1、解釋變數X 是確定性變數,Y 是隨機變數;假設2、隨機誤差項ε具有零均值、同方差和不序列相關性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假設3、隨機誤差項ε與解釋變數X 之間不相關: Cov(X i , εi )=0 i=1,2, …,n假設4、ε服從零均值、同方差、零協方差の正態分佈 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考慮過原點の線性回歸模型 Y i =β1X i +εi i=1,2, …,n誤差εi (i=1,2, …,n )仍滿足基本假定。

求β1の最小二乘估計 解: 得:2.3 證明(2.27式),∑e i =0 ,∑e i X i =0 。

證明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =021112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂2.4回歸方程E (Y )=β0+β1X の參數β0,β1の最小二乘估計與最大似然估計在什麼條件下等價?給出證明。

答:由於εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函數:使得Ln (L )最大の0ˆβ,1ˆβ就是β0,β1の最大似然估計值。

同時發現使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估計の目標函數相同。

何晓群:《应用回归分析》第四版-第二章一元线性回归

何晓群:《应用回归分析》第四版-第二章一元线性回归

1998年19年的样本数据 分布情况见图2.2.
( xi
,
yi
)(i

1,2,
, n)
.
数据见表2.2;样本
表2.2
人均国民收入表
年份 人均国民 人均消费金 收入(元) 额(元)
年份 人均国民 人均消费金
收入(元)
额(元)
1980 460
234.75
1990 1634
797.08
1981 489
259.26
返 回 前一页 后一页
二、一元线性回归模型的数学形式
1、一元线性理论回归模型
y 0 1x 称为变量 y 对 x 的一元线性理论回归模型.
y
被解释变量(因变量)
x
解释变量(自变量)

随机误差(不可观测)
未知 0 参数 1
回归常数 回归系数
回归分析
(2.1)
返 回 前一页 后一页
火灾损失 y (千元) 19.6 31.3 24.0 17.3 43.2 36.4 26.1
y
60
45 30 15

图2.1 0 1 2 3 4 5 6 7 8 9 x
返 回 前一页 后一页
回归分析
【例2.2】在研究我国人均消费水平的问题中, 把全国人均消费
金额记作 y (元); 气人均国民收入记为 x (元). 我们收集到1980-
( x1, y1 )
0
图2.3
x
返 回 前一页 后一页
回归分析
5、0, 1的最小二乘估计(OLSE)
求回归参数 0, 1 的最小二乘估计, 即求
n
Q(0,1) (yi 0 1xi)2 i1

《应用回归分析》课后习题部分答案何晓群版

《应用回归分析》课后习题部分答案何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈ /2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

应用统计学:回归分析PPT课件

应用统计学:回归分析PPT课件

03
使用方法
通过菜单和对话框选择分析方法,导入数据,设置参数,运行分析并查
看结果。
Stata软件介绍
适用范围
Stata(Statistical Data Analysis) 是一款适用于各种统计分析和数 据管理的软件,尤其适用于回归 分析。
特点
功能强大、命令语言简洁,支持多 种数据管理操作,提供多种统计分 析方法,结果输出详细且可视化效 果好。
使用方法
通过命令行输入分析命令,导入数 据,设置参数,运行分析并查看结 果。
R软件介绍
适用范围
R(Software for Statistical Computing)是一款开源的统 计软件,适用于各种统计分析,
包括回归分析。
特点
功能强大、社区活跃、可扩展性 强,支持多种编程语言和数据可 视化工具,提供丰富的统计函数
分层回归分析的基本思想是将多个自变量分为若干个层次,每个层次内 部的自变量之间存在较强的相关性,而不同层次的自变量之间相关性较
弱。
分层回归分析在生态学、社会学、医学等领域有广泛应用,例如研究不 同层次的人口特征对健康状况的影响、研究不同层次的社会经济因素对 犯罪率的影响等。
主成分回归分析
主成分回归分析的基本思想是将多个自变量进行主成 分分析,得到少数几个主成分,这些主成分能够反映 原始数据的大部分变异,然后利用这些主成分进行回 归分析。
线性回归模型
线性回归模型是回归分析中最常用的一种模型,其形式为 (Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)。
其中 (Y) 是因变量,(X_1, X_2, ldots, X_p) 是自变量,(beta_0, beta_1, ldots, beta_p) 是回归系数,(epsilon) 是误差项。

应用回归分析_第2章课后习题参考答案.

应用回归分析_第2章课后习题参考答案.

应用回归分析_第2章课后习题参考答案1. 简答题1.1 什么是回归分析?回归分析是一种统计建模方法,用于研究自变量与因变量之间的关系。

它通过建立数学模型,根据已知的自变量和因变量数据,预测因变量与自变量之间的关系,并进行相关的推断和预测。

1.2 什么是简单线性回归和多元线性回归?简单线性回归是指只包含一个自变量和一个因变量的回归模型,通过拟合一条直线来描述两者之间的关系。

多元线性回归是指包含多个自变量和一个因变量的回归模型,通过拟合一个超平面来描述多个自变量和因变量之间的关系。

1.3 什么是残差?残差是指回归模型中,观测值与模型预测值之间的差异。

在回归分析中,我们希望最小化残差,使得模型与观测数据的拟合效果更好。

1.4 什么是拟合优度?拟合优度是用来评估回归模型对观测数据的拟合程度的指标。

一般使用R方(Coefficient of Determination)来表示拟合优度,其值范围为0到1,值越接近1表示模型拟合效果越好。

2. 计算题2.1 简单线性回归假设我们有一组数据,其中X为自变量,Y为因变量,如下所示:X Y13253749511我们想要建立一个简单线性回归模型,计算X与Y之间的线性关系。

首先,我们需要计算拟合直线的斜率和截距。

根据简单线性回归模型的公式Y = β0 + β1*X,我们可以通过最小二乘法计算出斜率和截距的估计值。

首先,计算X和Y的均值:mean_x = (1 + 2 + 3 + 4 + 5) / 5 = 3mean_y = (3 + 5 + 7 + 9 + 11) / 5 = 7然后,计算X和Y的方差:var_x = ((1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2) / 5 = 2var_y = ((3-7)^2 + (5-7)^2 + (7-7)^2 + (9-7)^2 + (11-7)^2) / 5 = 8接下来,计算X和Y的协方差:cov_xy = ((1-3) * (3-7) + (2-3) * (5-7) + (3-3) * (7-7) + (4-3) * (9-7) + (5-3) * (11-7)) / 5 = 4根据最小二乘法的公式:β1 = cov_xy / var_x = 4 / 2 = 2β0 = mean_y - β1 * mean_x = 7 - (2 * 3) = 1因此,拟合直线的方程为:Y = 1 + 2X。

第二章回归分析ppt课件

第二章回归分析ppt课件

U和Q的相对大小反映了因子x对y的影响程度, 在n固定的情况下,如果回归
方差所占y方差的比重越大,剩余方差所占的比重越小,就表明回归的效果
越好, 即:x的变化对y的变化起主要作用, 利用回归方程所估计出的ŷ也会
越接近观测值y。
ŷ的方差占y的方差的比重(U/(U+Q))可作为衡量回归模型效果的标准:
ŷ
y -y
ŷ -y
y
x
syy
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
yt )2
“回归平方和”与“剩余平方和”
对上式两边分别乘以n,研究各变量的离差平方和的关系。为避免过多数学符
号,等号左边仍采用方差的记号syy。
n
n
syy ( yt y)2 ( yt yt )2 U Q
回忆前文所讲, y的第i个观测值yi服从怎样的分布?
yi ~ N (β0 +βxi , σ2)
e=yi- (β0 +βxi ) 服从N(0, σ2)
于是, yi (0 xi ) 服从标准正态分布N (0,1)
0.4
在95%的置信概率下:
因为定理: 若有z ~ N (, 2 ), 则有 z ~ N (0,1)
通过方差分析可知,可用“回归平方和”U与“剩余平方和”Q的比值来衡 量回归效果的好坏。可以证明,假设总体的回归系数为0的条件下,统计 量:
U
F=
1 Q
注意Q的自由度为n-2, 即:残差e的方差的无 偏估计为:Q/(n-2)
n2 服从分子自由度为1,分母自由度为n - 2的F分布
上式可以用相关系数的平方来表示:

《应用回归分析》课后习题部分答案何晓群版

《应用回归分析》课后习题部分答案何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈ /2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

应用回归分析-第2章课后习题参考答案

应用回归分析-第2章课后习题参考答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中: 即: ∑e i =0 ,∑e i X i =02.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,上式恰好就是最小二乘估计的目标函数相同。

值得注意的是:最大似然估计是在εi ~N (0, σ2 )21112)ˆ()ˆ(i ni i ni ii e X Y Y Y Q β∑∑==-=-=01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂的假设下求得,最小二乘估计则不要求分布假设。

应用回归分析-课后习题答案-何晓群

应用回归分析-课后习题答案-何晓群

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈(5)由于2 11(,)xxNLσββ∧:tσ∧==服从自由度为n-2的t分布。

因而/2|(2)1P t nαασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t tααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353即为:(2.49,11.5)22001()(,())xxxNn Lββσ-∧+:t∧∧==服从自由度为n-2的t分布。

因而/2(2)1P t nαα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1pβσββσα∧∧∧∧-<<+=-可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x与y的决定系数22121()490/6000.817()niiniiy yry y∧-=-=-==≈-∑∑(7)ANOVAx平方和df均方 F显着性组间(组合) 9.000 2 4.500 9.000 .100线性项加权的 8.167 1 8.167 16.333 .056偏差.833 1 .833 1.667.326组内 1.000 2 .500总数10.0004由于(1,3)F F α>,拒绝0H ,说明回归方程显着,x 与y 有显着的线性关系。

《回归分析二》PPT课件

《回归分析二》PPT课件
估计值



y
的估计值 h
10
参数的最小二乘估计
h
11
参数的最小二乘法
1. 使因变量的观察值与估计值之间的离差平方和
达到最小来求得 bˆ0,bˆ1,bˆ2, ,bˆp。即
n
n
Q (bˆ0,bˆ1,bˆ2, ,bˆp) (yiy ˆ)2 ei2最小
i 1
i 1
2. 求解各回归参数的标准方程如下
n
Sy
yi yˆi2
i1
np1
SSE np1
MSE
SPSS输出结果的分析
h
18
如何选择自变量进入模型
•Enter:强行进入法:候选自变量全部纳入模型,
不作任何筛选,默认选项。 •Stepwise:逐步法,根据在Options框中设定
的•B纳ac入kw和ar排d:除向标后准法进,行筛变选量步筛骤选和。逐具步体法做类法似, ••但首Fo只先rw出分a不r别d进:计向算前各法自,变筛量选对步Y的骤贡和献逐大步小法,类按似, 由但•对大只己到进纳小不入挑出方选;程贡的献变最量大按的对先Y进的入贡方献程大小由小 ••也•到到 •重考R对每是方e大新察己剔m只程依o计己纳除v出外次e算在入一:不变剔各方方个强进量除自程程变制均。变中的量剔达量的变,除不对变量则法到量Y不重,入的是再新和选贡否考计”标献因察算向准新其各后,变显自法没量著变”有引性量一自入。对样变而直Y, 不•量的但再可贡它有被献的统引。筛计入直选意方到是义程方以。为程B如l止中oc果。所k为有有单则变位将量。它均即剔符按除合照,选移并入除重标标 新准准计将,算同没各一有自个自变B变lo量量ck对可内Y被的的剔变贡除量献为一;如止次仍。全有部变剔量除低。于

《应用回归分析》课后习题部分答案何晓群版

《应用回归分析》课后习题部分答案何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈ /2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(d)综上,x与y的线性回归方程为:
y ˆ12.6 12 1 3 9 2 .31 *x 4
(3)用线性回归的Plots功能绘制标准残差的直方图 和正态概率图,检验误差项的正态性假设。
Page 7
如图所示:
Page 8
图1 标准残差的直方图
由图1可见图形略呈右偏,由图2可见正态概率图中的各个散点基本呈 直线趋势,残差在0附近波动,可以认为残差服从正态分布。
Page 9
图2 标准残差的正态概率图
Page 10
2.16 表是1985年美国50个州和哥伦比亚特区公立学校中 教师的人均年工资y(美元)和学生的人均经费投入x(美元).
Page 2
解答: (1)绘制y对x的散点图,可以用直线回归描 述 两者之间的关系吗? 如图所示:
Page 3
由上图可以看出,y与x的散点分布大致呈直线趋势,所以可以用回归描 述两者之间的关系。 (2)建立y对x的线性回归。 利用SPSS建立y对x的线性回归,输出结果如下:
Page 4
Page 5
Page 6
(a)由表1可知,x与y决定系数为,说明模型的拟合效果一般。x与 y线性相关系数R=0.835,说明x与y有较显著的线性关系。
(b)由表2(方差分析表中)看到,F=112.811,显著性Sig.p=0,说 明回归方程显著。
(ห้องสมุดไป่ตู้)由表3 可见对的显著性t检验P值近似为零,故显著不为0,说明 x对y有显著的线性影响。
相关文档
最新文档