数字功率放大器的工作原理是什么
t类数功放
T类数功放1. 简介T类数功放是一种音频功率放大器,采用了T类(Tripath)数字功率放大技术。
相比传统的A类、B类和D类功放,T类功放具有更高的效率和更低的失真。
它广泛应用于音响设备、汽车音响系统、家庭影院系统等领域。
2. T类数字功率放大技术原理T类数字功率放大技术是将数字信号直接转换为模拟输出信号的一种方法。
它通过将输入信号分为两个部分:PWM(脉冲宽度调制)信号和PDM(脉冲密度调制)信号,然后分别处理这两个信号,并最终将它们合并成模拟输出信号。
具体来说,T类数字功率放大器首先对输入信号进行采样和量化,得到PWM信号。
PWM信号是由一系列脉冲组成的,每个脉冲的宽度表示该时刻的输入电平值。
然后,通过比较PWM信号和一个高频三角波信号,得到PDM信号。
PDM信号是由一系列脉冲组成的,每个脉冲的密度表示该时刻的输入电平值。
接下来,T类数字功率放大器将PWM信号和PDM信号分别放大,并将它们合并成一个模拟输出信号。
具体放大的方法可以采用不同的电路设计,如H桥电路、双向开关电路等。
最终,这个模拟输出信号经过滤波器处理后,就可以驱动扬声器或其他音响设备。
3. T类数字功率放大技术的优势相比传统的A类、B类和D类功放,T类数字功率放大技术具有以下优势:3.1 高效率T类数字功放的效率通常可以达到90%以上,远高于传统功放技术。
这主要得益于其采用PWM和PDM两个信号进行处理的方式,使得功耗更低。
3.2 低失真T类数字功放在处理输入信号时,能够更准确地还原原始信号。
相比传统功放技术,在同样输出功率下,T类数字功放的失真更低。
3.3 小尺寸由于T类数字功放采用了数字处理技术,相比传统功放来说,它可以实现更小尺寸、更轻便的设计。
这对于一些对体积有限制的应用场景非常有利。
3.4 低热量由于T类数字功放的高效率特点,它产生的热量相对较低。
这不仅可以延长设备的寿命,还可以减少散热系统的成本和复杂度。
4. T类数字功放应用领域T类数字功放广泛应用于各种音响设备、汽车音响系统和家庭影院系统等领域。
数字ldo 原理
数字ldo 原理ldo (低压差动放大器) 是一种常用于电源管理和集成电路的器件。
它被设计用于将高压输入转换为稳定的低压输出。
ldo 的工作原理基于负反馈回路和功率放大器的组合。
在一个典型的ldo中,输入电压被馈送到功率放大器的非反相输入端,同时也被馈送到反馈网络。
反馈网络通过将输出电压与参考电压进行比较,产生一个误差电压。
误差电压被放大并反向馈入功率放大器的反相输入端。
这种负反馈机制使得ldo能够自动调节输出电压以使其保持稳定。
通过将输入电压与参考电压进行比较,ldo能够调整输出电压的大小。
当输出电压低于设定值时,ldo会增加功率放大器的增益,使输出电压上升。
相反,当输出电压高于设定值时,ldo会降低功率放大器的增益,使输出电压下降。
这种反馈机制能够确保输出电压的稳定性,并抵消输入电压变化和负载变化所引起的波动。
ldo还具有短路保护和过热保护等功能,以确保在异常情况下保护电路和器件的安全。
短路保护机制能够防止输出短路时电流过大,过热保护机制能够在温度超过安全范围时自动关闭ldo以防止器件损坏。
除了稳定输出电压,ldo还具有其他优点。
它的输出电压稳定性高,噪声低,并且具有快速的响应时间。
此外,ldo采用集成电路技术制造,使其体积小巧,适用于各种小型电子设备。
ldo作为一种广泛应用于电源管理和集成电路的器件,通过负反馈回路和功率放大器的组合实现了高效稳定的电压转换。
其工作原理简单而可靠,具有稳定性高、噪声低和快速响应的优点。
通过短路保护和过热保护等功能,ldo能够确保电路和器件的安全运行。
随着技术的不断进步,ldo在电子设备中的应用前景将更加广阔。
K10数字音频功率放大器 说明书
模拟信号 输入
2.8244MHz 超高速采样
Δ—Σ调制
1bit 超高速 码流放大器
Σ变化音 频滤波器
模拟信号 功率输出
光纤或同轴 2.822MHz 数字输入 过采样
图 3 1bit 数字功率放大器原理
1bit 数字功放与 D 类和 T 类数字功放相比具有很多优点,完全克服了过零失真问题,电源转换效率 可达到 90%以上,频率响应特性可达到 2Hz~50KHz,信号动态范围可达到 95db 以上,其它的优点包括 音频范围内的噪声极微和频率范围内的相移极小等等。它的最大缺点是系统复杂,成本太高,尚未达到 应用阶段。而近年来 D 类和 T 类数字功放的价格已逐步降到用户可接受的商业价格了。
表 1 是数字功放与模拟功放的主要技术 特性对比。 目前小功率数字功放已广泛用于 DVD 内置功放、组合音响、汽车音响、家庭影院等,在专业音响 工程方面,2001 意大利 POWERSOFT 公司推出的 DIGAM 系列大功率专业数字功放已被世界广泛采用, 且很快进入中国市场,在一些专业音响工程中获得了应用,并得到了一致的好评。
晶体管功放具有许多宝贵优点,它的失真指标可做到万分之一以上,但其音质听感总不如电子
1
管功放那么逼真、细腻,尤其是在表现瞬态变化快而清脆的打击乐和浑厚回荡的钢琴曲方面感觉最 明显。上个世纪 80 年代初,欧洲有些专业公司开始研究晶体管功放与电子管功放之间的性能差异和 解决办法。电子管是一种电压控制器件,需要的控制功率极微,开关速率很快。晶体管是一种电流 控制器件,需有较大的控制电流,转换速率较慢。这是最基本的差别。80 年代中期欧洲首先推出了 采用 MOS FET 音频场效应管功放。MOS FET 场效应晶体管既具有晶体管的基本优点,又有电子管 的电压控制及转换速率较快的优点。但使用不久发现这种功放的可靠性不高(无法外电路保护),开 关速度提高的不多和最大输出功率仅为 150W/8Ω等等。90 年代初,MOS FET 的制造技术有了很大突 破,出现了一种高速 MOS FET 大功率开关场效应晶体管。西班牙艺格公司(ECLER)经多年研究,攻 克了非破坏性保护系统的 SPM 专利技术,推出了集电子管功放和晶体管功放两者优点结合的第三代 功放产品,在欧洲市场上获得了认可,并逐步在世界上得到了应用。第三代 MOS FET 功放的中频和 高频音质接近电子管功放,但低频的柔和度比晶体管功放差一些,此外 MOS FET 开关场效应管容易 被输出和输入过载损坏。
D类功放的设计原理
D类功放的设计原理D类功放,全称为“数字功率放大器”,是一种电子功率放大器的类型,它的设计原理基于数字信号的处理和模拟功率放大电路的协同工作。
相比于传统的A类、B类、AB类功放,D类功放具有更高的功率效率,更小的尺寸和重量,更好的线性度,以及更低的功率损耗。
下面将详细介绍D类功放的设计原理。
1.PWM调制原理D类功放的核心设计原理是采用脉宽调制(PWM)技术。
PWM是一种通过调整信号的脉冲宽度来控制平均输出功率的方法。
D类功放通过将原始的模拟音频信号转换为数字信号,并通过比较器产生一个与模拟信号频率相同的矩形波,然后根据输入音频信号的幅值调整矩形波的脉宽,最后通过滤波器将调制后的PWM信号转换为模拟音频信号输出。
2.数字信号处理D类功放的设计中需要进行数字信号处理。
首先,输入的模拟音频信号需要经过模数转换器(ADC)转换为数字信号,然后通过数字信号处理器(DSP)进行数字信号的滤波、均衡、增益控制等处理,最后再经过数字模数转换器(DAC)转换回模拟信号。
3.比较器比较器是D类功放中的一个关键组件,用于将模拟音频信号与产生的PWM矩形波进行比较。
比较器的作用是根据输入信号的幅值调整PWM信号的脉宽,从而控制输出功率。
比较器通常由操作放大器和参考电压产生器组成。
4.滤波器在PWM调制之后,需要通过滤波器将调制后的PWM信号转换为模拟音频信号输出。
滤波器的作用是去除PWM信号中的高频分量,保留音频信号的低频成分。
常见的滤波器类型包括低通滤波器和带通滤波器。
5.输出级D类功放的输出级通常采用开关管(如MOSFET)构成。
开关管的特点是具有较低的开通电阻和较高的关断电阻,从而实现更小的功率损耗和更高的功率效率。
输出级通常由多个开关管组成,根据功率需求可以并联或串联排列。
输出级的设计需要考虑电压和电流的控制,包括过电压和过电流的保护。
6.反馈控制为了提高D类功放的线性度和稳定性,通常需要采用反馈控制。
通过对输出信号与输入信号进行比较,调整PWM信号的脉宽和幅值,以使输出信号尽可能接近输入信号。
数字功放原理
数字功放原理数字功放(Digital Power Amplifier)是一种基于数字信号处理技术的功放系统,它将模拟音频信号转换为数字信号,并在数字域内进行精确的处理和放大。
与传统模拟功放相比,数字功放具有功率效率高、体积小、重量轻、功率密度高、失真低等优势。
数字功放的工作原理主要包括两个关键环节:数字信号处理和功率放大。
在数字信号处理方面,模拟音频信号首先经过A/D转换器(模数转换器),将其转换为二进制数字信号。
然后,数字信号经过数学算法和滤波器等处理器件,进一步削弱或放大、滤波和修正等,以实现各种音频特性的调整和优化。
例如,可以调整频率响应、相位特性、失真、降噪等,以及实现均衡、混响、环绕声等音效处理。
在功率放大方面,数字信号经过数字的放大器模块(Digital Power Amplifier Module),实现对信号的放大和驱动。
数字功放采用数字信号直接驱动功放器件(如MOSFET等)的方式,通过PWM(脉宽调制)技术,将数字信号转换为相应的高速开关脉冲信号。
这些高速开关脉冲信号通过功放器件,经过放大和滤波处理后,再次转换为模拟信号,通过输出端口输出。
数字功放的核心技术包括高效的PWM技术、高速的功放器件、数字信号处理算法等。
高效的PWM技术可以实现高效的能量转换和功率放大,提高功率放大的效率和性能。
高速的功放器件能够实现更精确和快速的信号放大和响应,减少失真和噪声。
而数字信号处理算法的优化则可以实现更精确、准确和高保真度的音频处理和放大。
总结起来,数字功放通过数字信号处理和功率放大的两个主要环节,将模拟音频信号转换为数字信号,并在数字域内进行精确的处理和放大,从而实现高效、高保真度的音频放大。
该技术在音响设备、汽车音响等领域得到广泛应用,并逐渐取代传统的模拟功放。
oc5031b工作原理
oc5031b工作原理
OC5031B是一种数字式带宽极限放大器,用于放大高频信号。
它的工作原理基于前级放大电路和输出级放大电路之间相互配合的运作。
具体工作原理如下:
1. 前级放大电路接收输入信号,并放大到较高的电压水平。
该电路通常采用高增益的放大器,如运算放大器,以便将输入信号的幅度增大到合适的水平。
2. 输出级放大电路接收前级放大电路的输出信号,并进一步放大到更高的电压水平。
该电路通常采用功率放大器,以便能够提供足够大的输出功率。
3. 在放大的过程中,OC5031B采用负反馈原理控制放大电路
的增益和频率响应。
负反馈意味着从输出到输入的一小部分反馈信号与输入信号相减,以限制放大电路的增益和提高稳定性。
4. 由于OC5031B是数字式的极限放大器,它还可以通过数字
控制节点调整增益、频率响应和其他性能参数。
总之,OC5031B的工作原理是通过前级放大电路接收和放大
输入信号,然后通过输出级放大电路进一步放大,并通过负反馈机制控制放大电路的性能。
功率放大器工作原理
功率放大器工作原理功率放大器是一种用于放大电信号的电子设备,可以将低功率输入信号转换为高功率输出信号。
它在各种电子设备中被广泛应用,包括音频放大器、无线通信系统和雷达系统等。
本文将介绍功率放大器的工作原理和其基本分类。
一、功率放大器的基本原理功率放大器的工作原理基于晶体管的放大特性。
晶体管是一种半导体器件,可以通过控制输入信号的电流或电压来放大电流或电压。
功率放大器通常由多个晶体管级联组成,每个晶体管负责放大输入信号的一部分。
下面将详细介绍功率放大器的几个关键组成部分。
1. 输入级功率放大器的输入级通常是一个小信号放大器,用于放大输入信号的幅度。
输入级由一个或多个晶体管组成,输入信号通过这些晶体管进行放大,并传递给下一个级联的放大器。
2. 驱动级驱动级是功率放大器中的中间级,用于信号的进一步放大和处理。
驱动级通常由多个晶体管级联组成,其输入信号来自输入级,并将信号放大到足够的幅度,以供给功率放大级使用。
3. 功率放大级功率放大级是功率放大器的核心部分,用于放大信号的功率。
功率放大级由多个功率晶体管并联或并联放大组成,每个晶体管负责放大输入信号的一部分功率。
通过合理设计功率放大级,可以实现较大的输出功率。
4. 输出级输出级负责将信号的功率放大到所需的水平,并驱动负载。
通常情况下,输出级具有较低的输出阻抗,并能够输出相应的高功率信号。
输出级通常由一个或多个功率晶体管组成,其输出信号可用来驱动扬声器、天线或其他负载。
二、功率放大器的基本分类根据不同的工作原理和应用,功率放大器可以分为各种不同的类型。
下面介绍几种常见的功率放大器分类。
1. A类功率放大器A类功率放大器是最常见的一种功率放大器,适用于音频放大器等应用。
它通过将输入信号与直流电压进行叠加,实现对信号的放大。
A类功率放大器的优势在于放大器的线性度高,但效率相对较低。
2. B类功率放大器B类功率放大器是一种高效率的功率放大器,在音频放大器和激光器等应用中广泛使用。
数字功放基础知识
Post Filter (2nd Order)
OUTP
OUTN
Differential Voltage
+5v 0v
Across Load -5v
Current Decaying
Current
Current Increasing
Current Increasing
Current Decaying
PWM_SL+ PWM_SL+ PWM_SL- PWM_SL-
R603 50R
C604 0.1uF
C605 1uF
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
GND GND GR EG /OTW /SD_CD /SD_AB PWM_DP PWM_DM /RESET_CD PWM_C M PWM_C P DR EG_RTN M3 M2 M1 DR EG PWM_B P PWM_B M /RESET_AB PWM_AM PWM_AP GND DGND GND DVDD GR EG GND GND
Binary modulation scheme's output voltage and current waveforms into
an inductive load
输出低通滤波器
采用开关放大技术的数字功放工作原理与模拟功放完全不同 其开关功率 级输出的高频PWM 信号中包含有音频信号,PWM 频率为几百kHz比音频 信号带宽20~20kHz 大得多为了从PWM 开关信号中恢复出音频信号 通常 采用低通滤波器LPF 低通滤波器频率特性如图1所示。 图2 与图3 为PWM 滤波前后的时域与频域分析从图中可以看出减小音频 信号得到恢复但也总会残留部分高频开关成分 。
数字功放芯片
数字功放芯片数字功放芯片,全名为数字功率放大器芯片,是一种用于音频信号放大的集成电路芯片。
它能够将低电平音频信号放大为高功率音频信号,常用于音响设备、汽车音响系统等领域。
数字功放芯片的基本原理是通过运算放大和数字信号处理来实现音频信号的放大。
与传统的模拟功放不同,数字功放芯片采用了数字化处理技术,能够更好地保留音频信号的原始数字信息,提供更准确、更纯净的音质输出。
由于数字功放芯片采用了数字信号处理的技术,它具有更高的精度、更强的稳定性和更低的功率消耗。
数字功放芯片的工作原理主要分为两个步骤:数字信号处理和功率放大。
在数字信号处理阶段,音频信号会经过ADC(模数转换器)进行模数转换,将模拟音频信号转换为数字音频信号。
然后,数字音频信号会经过数字信号处理器(DSP)进行数字信号处理,如滤波、均衡等操作。
最后,处理后的数字音频信号会输入到功率放大器模块进行功率放大。
在功率放大阶段,数字音频信号经过DAC(数字模数转换器)进行数字转模拟转换,将数字音频信号转换为模拟音频信号。
然后,模拟音频信号会经过功率放大器进行功率放大。
数字功放芯片的功率放大器通常采用PWM(脉冲宽度调制)技术,通过控制脉冲的宽度来调节输出功率。
最后,放大后的音频信号会输出到喇叭或扬声器,实现声音放大。
数字功放芯片相比传统的模拟功放具有很多优势。
首先,数字功放芯片具有更高的功率转换效率,可以更有效地利用电能。
其次,数字功放芯片具有更好的稳定性和可靠性,可以避免传统功放中常见的温度漂移和各种失真问题。
此外,数字功放芯片还可以通过软件调节参数进行音频信号的实时控制和优化,提供更灵活、更精确的音质调整。
总的来说,数字功放芯片是一种用于音频信号放大的集成电路芯片,通过数字信号处理和功率放大来实现音频信号的放大。
它具有高效、稳定、可靠和灵活的特点,是现代音响设备和汽车音响系统中不可或缺的重要组成部分。
数字功放芯片的技术不断发展,推动着音频设备领域的创新和进步。
功率放大电路工作原理
功率放大电路工作原理功率放大电路是指能够将输入信号的功率放大的电路。
在现代电子设备中,功率放大电路被广泛应用于音频放大、射频放大等领域。
本文将介绍功率放大电路的工作原理,帮助读者更好地理解其工作原理。
首先,功率放大电路的基本结构包括输入端、输出端和放大器。
输入端接收输入信号,经过放大器放大后,输出到输出端。
放大器是功率放大电路的核心部件,它能够将输入信号的功率放大到一定的水平,以满足实际应用的需求。
在功率放大电路中,放大器通常采用晶体管、场效应管等器件。
这些器件能够根据输入信号的变化,控制电流或电压的变化,从而实现对输入信号的放大。
在放大器中,通常还会加入负载电阻、耦合电容等元件,以提高放大器的稳定性和线性度。
功率放大电路的工作原理可以通过以下步骤来解释,首先,输入信号经过输入端进入放大器,放大器根据输入信号的变化,控制输出端的电流或电压变化;其次,输出端的信号经过负载电阻等元件,最终输出到外部电路。
在这个过程中,放大器起到了将输入信号功率放大的作用。
在实际应用中,功率放大电路通常需要满足一定的性能要求,比如输出功率、频率响应、失真度等。
为了实现这些性能要求,设计功率放大电路需要考虑放大器的工作点、负载匹配、反馈电路等因素。
通过合理的设计,可以使功率放大电路达到较好的性能指标。
除了单级功率放大电路外,还有级联放大、并联放大等多种功率放大电路结构。
这些结构能够根据实际应用的需求,灵活地组合使用,以满足不同的功率放大要求。
总的来说,功率放大电路是现代电子设备中不可或缺的部分,它能够将输入信号的功率放大到一定水平,满足实际应用的需求。
通过合理的设计和优化,可以使功率放大电路达到较好的性能指标,为各种电子设备的正常工作提供保障。
综上所述,功率放大电路的工作原理是基于放大器对输入信号功率的放大,通过合理的设计和优化,能够实现对输入信号的有效放大,满足实际应用的需求。
希望本文能够帮助读者更好地理解功率放大电路的工作原理,为相关领域的研究和应用提供参考。
数字放大器的基本工作原理
图 2 功 率 开关 电 路 的组 成 ( 以 沟 道 M OS —FE 为 例 T
对 直流电源进行通断、 控制负载 电流的功率 开关电路可
二、功率开关电路
●7 ● 4 20 年 5 02 第 期
_■ ■■ ——_■一 _
¨
j
维普资讯
g
0
e 赣 号 ^
形器 的整形特性 ( £调 △
一
制特性 ) 图6 如 所示 的那样变化 。
如果 不 作 噪 声整 形 的话 , 量化噪声是均匀分布 的。 进行 若 噪声整形的次数越多, 低频 量化 噪声将 越少 , 相应地高 频噪声将
输人信号处理电路在输人信号为模拟信号时 , 对输人 的 模 拟信 号作电平调 整和信号放大等处理 , 使输人信号在幅度 方面能满足后级 电路的要求 , 并根据需要对输人信号进 行均 衡处理。当输人信号为数字信号时 , 输人信 号处理电路则作 为数 字接 口电路, 对输人信 号进 行解码处理 和相 应的加工处
极型三极管 。但 由于没有 载波存储效应 的 F T更适台用于 E
高速开羌 ,所 很- 就转而采用 v— E ( 向 F T,又名 FT 纵 E ST)和 MOS F T。现在 MO — E 已成为 了主流 。 I —E SFT
在采用 MO — E S F T的方式 中,叉分用 P沟道 F T和 基本工作原理
口 从 余
本 文就数字放大器的基 本组成 、 分类、 类数字放大器 各
的工作原理及优 缺点进行较详细 的介绍 。
功放工作原理讲解
功放,即功率放大器,是音频设备中的重要部分。
它的主要作用是将弱音频信号放大成强有力的音频信号,以便驱动扬声器或耳机,使音乐或声音能够清晰地传递给听众。
功放的工作原理可以简单地描述为输入信号经过放大电路,经过放大后输出给扬声器。
具体来说,功放工作原理包括两个主要的环节:输入和输出。
首先,让我们来看看功放的输入部分。
输入信号会经过一个预放大电路,该电路负责将信号调整为适合后续放大的水平。
预放大电路通常包括放大器和滤波器,用于消除噪音和不必要的频率。
一旦信号经过预放大电路处理,它就会进入放大电路。
放大电路是功放的核心组成部分。
它由一个或多个放大器级联组成,每个级别都负责放大输入信号的一部分。
每个级别中的放大器通常由晶体管或管子构成。
当输入信号通过放大器时,放大器会增加信号幅度,使其达到更高的功率水平。
这种级联的放大过程可以将信号的幅度逐渐提升到足够的水平,以驱动扬声器或耳机。
一旦输入信号通过放大电路放大,它就会进入功放的输出部分。
输出部分通常包括一个输出变压器和一个输出级,它们负责将放大后的信号传递给扬声器或耳机。
输出变压器的作用是将放大后的信号转换为适合扬声器或耳机的电压和电流。
输出级是为了匹配输出变压器和扬声器或耳机的阻抗,并确保信号能够以最佳方式传递给扬声器或耳机。
综上所述,功放的工作原理可以概括为输入信号经过预放大电路调整,然后经过放大电路放大,最后通过输出变压器和输出级传递给扬声器或耳机。
这种放大过程能够使音乐或声音以更高的功率水平传递给听众,确保音频的清晰度和可听性。
作为音频设备的重要组成部分,功放在音乐产业、娱乐场所和家庭音响系统中发挥着重要的作用。
对功放工作原理的理解有助于我们更好地了解音频设备的工作机制,并在选择和使用功放时做出明智的决策。
D类数字功率放大器
3.3 D 类数字功放D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。
早先在音响领域里人们一直坚守着 A 类功放的阵地,认为 A 类功放声音最为清新透明,具有很高的保真度。
但 A 类功放的低效率和高损耗却是它无法克服的先天顽疾。
后来效率较高的 B 类功放得到广泛的应用,然而,虽然效率比 A 类功放提高很多,但实际效率仍只有50%左右,这在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。
所以,如今效率极高的 D 类功放,因其符合绿色革命的潮流正受着各方面的重视,并得到广泛的应用。
3.3.1 D 类功放的特点与电路组成1 . D类功放的特点( 1)效率高。
在理想情况下, D 类功放的效率为 100%(实际效率可达 90%左右)。
B功放的效率为 78.5%(实际效率约 50% ),A 类功放的效率才 50%或 25%(按负载方式而定)类。
这是因为 D 类功放的放大元件是处于开关工作状态的一种放大模式。
无信号输入时放大器处于截止状态,不耗电。
工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。
理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。
(2)功率大。
在 D 类功放中,功率管的耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合,输出功率可达数百瓦。
( 3)失真低。
D 类功放因工作在开关状态,因而功放管的线性已没有太大意义。
在类功放中,没有 B 类功放的交越失真,也不存在功率管放大区的线性问题,更无需电路的负反馈来改善线性,也不需要电路工作点的调试。
( 4)体积小、重量轻。
D 类功放的管耗很小,小功率时的功放管无需加装体积庞大的散热片,大功率时所用的散热片也要比一般功放小得多。
而且一般的 D 类功放现在都有多种专用的 IC 芯片,使得整个 D 类功放电路的结构很紧凑,外接元器件很少,成本也不高。
数字功放工作原理
数字功放工作原理数字功放(Digital Power Amplifier)是一种使用数字信号处理技术来实现音频信号功率放大的电子设备。
它采用了数字信号处理器(DSP)和PWM(脉宽调制)技术,能够将数字音频信号转换为模拟信号并进行功率放大,以驱动扬声器产生音频声音。
数字功放的工作原理如下:1. 输入信号处理:数字功放首先接收音频输入信号。
这个信号可以是通过麦克风、CD播放器或其他音频设备提供的模拟信号,也可以是经过模数转换器(ADC)转换为数字信号后的数字音频信号。
2. 数字信号处理:数字功放将输入信号经过数字信号处理器(DSP)进行处理。
DSP可以对音频信号进行各种处理,如均衡、滤波、时延控制、喇叭校准等,以优化音频质量。
3. 数字到模拟转换:经过数字信号处理的音频信号被送入数字到模拟转换器(DAC),将其转换为模拟信号。
DAC会将离散的数字音频样本以一定频率合成为连续的模拟音频信号。
4. 模拟信号放大:转换为模拟信号后,音频信号经过PWM脉宽调制技术被送入功率放大器。
PWM技术将音频信号转换为脉冲信号,通过调整脉冲的宽度来控制输出信号的幅值。
5. 输出功率放大:脉冲信号经过功率放大器进行功率放大,以便驱动扬声器产生大功率的音频声音。
功率放大器的工作原理是通过对电流或电压进行放大,将低功率的音频信号转换为足够大的功率信号。
6. 扬声器输出:经过功率放大后,放大器的输出信号被传送到扬声器,驱动扬声器震动产生声音。
通过数字信号处理和PWM技术的结合,数字功放能够实现高效率的功率放大,具有音频精度高、信噪比好、失真低、功率利用率高等优势。
同时,数字功放还能够实现灵活的数字信号处理和音频参数调整,提供更好的音频体验。
pwm功率放大器工作原理
pwm功率放大器工作原理
PWM(脉宽调制)功率放大器是一种将输入信号转换为输出信号的电子设备。
它通过控制输出信号的脉冲宽度来实现对信号的放大。
其工作原理如下:
1. 输入信号:PWM功率放大器接收来自信号源的输入信号。
这个信号可以是任意形式的模拟或数字信号。
2. 脉宽调制:输入信号通过PWM调制器,将其转换为一系列长度可调的脉冲信号。
脉冲的宽度由控制信号决定,通常是一个以固定频率运行的时钟信号。
3. 比较器:脉冲信号经过比较器,与一个参考信号进行比较。
比较器根据输入信号的幅值和参考信号的幅值之间的差异来确定输出信号的幅值。
4. 输出信号:根据输入信号的幅值和比较器的结果,PWM功率放大器会输出一系列带有不同幅值和宽度的信号脉冲。
这些信号脉冲通常被放大后驱动负载,如音频扬声器或电机。
在PWM功率放大器中,输出信号的幅值和宽度决定了输出功率的大小。
因此,通过调整脉冲的宽度和控制信号的大小,可以实现对输出信号的精确控制和放大。
综上所述,PWM功率放大器通过脉冲宽度调制的方式,将输
入信号转换为输出信号。
通过调整脉冲的宽度和控制信号的大小,可以实现对输出信号的放大和精确控制。
功率放大器的放大原理
功率放大器的放大原理
功率放大器利用三极管或场效应管的电流控制作用或电压控制作用,将电源的功率转换为按照输入信号变化的电流。
具体来说,声音是不同振幅和不同频率的波,即交流信号电流。
三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数。
若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。
经过不断的电流放大,就完成了功率放大。
以上内容仅供参考,如需更多信息,建议查阅功率放大器相关书籍或咨询相关专业技术人员。
数字功放简介
数字功放简介数字功放采用早已存在的D类放大器电路,D类放大器的电路采用场效应管H-桥式链接。
电路场效应输出的脉冲波经过恢复得到原来的正弦波,驱动扬声器产生声音。
数字功放原理数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗;而截止时,内阻无穷大,电流又为零,也不消耗.所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高.图1是数字D类功放的工作原理框图.D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中.图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低.双向信号可用其它方式调制,如占空比50%,即脉冲宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负.因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制.音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频.二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM 码.获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码.输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定.功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便.由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠.开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确.数字功放由于效率高,管子的耗损小,功放的散热结构可以做得非常小巧简单,整个电路可以做得很小.所以,首先在笔记本电脑、有源音箱和声卡上采用.带有数字功放的声卡可直接接通普通音箱,这样使用就方便得多.随着技术的发展,数字功放也进入音响领域,TACT公司2000年推出的一款数字功放TACT Audio"黄金时代",令发烧音响界改变发结数字功放的成见,国内成都天奥公司更早就推出了用于家庭影院的数字多声道功放,深圳的三诺公司也在研发数字功放的有源音箱.国外多家芯片公司已推出带各种功能的数字功放IC器件,为整机生产厂更新产品提供了便利条件.一场功放革命正在悄然兴起.从图1可以看出数字功放的另一优点是可以直接放大数字音频信号.CD和DVD碟片上输出的音频信号是数字化的,现在播放机解码后要经过数模变换,变成模拟音频后再送出.而采用数字功放后,就可把解码后的PCM数字音频信号直接进入数字信号处理电路处理成PWM码进行放大.省去了播放机中的数模变换和数字功放中的模数变换二个较贵重部分,不但音质受损少,成本也可降低.利用数字功放技术生产整机时,音量调节方案会成为机种档次的分界线.简单方案就像传统模拟功放那样由电位器衰减模拟信号的输入幅度,实现音量衰减.这种方式数字信号的量化比特率得不到充分利用,小音量时信噪比下降,动态范围变小.而且也不能用于数字音频直接输入系统.较好的方案是采用调节电源电压的方式来衰减音量,以改变加到低通滤波器上的脉冲电压幅度来改变输出功率.这样量化比特率仍可充分利用,由于电压下降,量化噪声也随之下降,所以音量减小,但信噪比和动态范围仍能保持不变.由于功放电源的功率较大,改变电源电压不能用电阻衰减或分压方式来实现,必须从电源整流稳压部分就开始.TACT公司采用的方法是在数字稳压电源的DC-DC逆变过程中,改变占空比来改变最终输出电压.这类方案目前还只能在分立元件做功率输出部分的整机中采用,集成化数字功放IC仍用衰减模拟输入为主来调节音量.从现状来看,数字功放已能商品运用在功率一般的普通用途放大器上性价比和小型、节电等方面都有长处.几瓦的小功率型集成功放芯片,控制电路和功率开关器件已一体化,使用非常方便.几十瓦以上的大功率用数字功放芯片,一般只集成控制电路部分,大功率开关器件需另外集成或自行配置,以便整机设计灵活.在H F领域中,数字功放还只能算是在探索,离商品化还有一段过程.但数字功放是功率放大后起之秀这点是不容置疑的.数字功放制作方法在音频的领域中功率放大器一般可以分为5类,就是A类、AB类、B类、C类和D类,一般C类功放在发射电路中,不能直接性采用模拟信号输入,而其他的四种可以直接输出模拟信号,放大之后信号用来推动扬声器发出声音.D类是比较特殊的一种功放,它以通、断两种状态存在.因此,它不能直接放大模拟音频信号,而需要把模拟信号经"脉宽调制"变换后再放大.外行曾把此种具有"开关"方式的放大,称为"数字放大器",事实上,这种放大器还不是真正意义的数字放大器,它仅仅使用PWM调制,即用采样器的脉宽来模拟信号幅度.这种放大器没有量化和PCM编码,信号是不可恢复的.传统D类的PWM调制,信号精度完全依赖于脉宽精度,大功率下的脉宽精度远远不能满足要求.因此必须研究真正意义的数字功放,即全(纯)数字功率放大器.数字功放是新一代高保真的功放系统,它将数字信号进行功率转换后,通过滤波器直接转换为音频信号,没有任何模拟放大的功率转换过程.CD唱机(或DVD机)、DAT(数字录音机)、PCM(脉冲编码调制录音机)都可作为数字音源,用光纤和同轴电缆口直接输出到数字功放.此外,数字功放也具备模拟音频输入接口,可适应现有模拟音源.国外对数字音频功率放大器领域进行了二三十年的研究.在20世纪60年代中期,日本研制出8bit的数字音频功率放大器;1983年,国外提出了D类(数字)PWM功率放大器的基本结构.但是这些功放仅能实现低位D/A功率转换,若要实现16bit、44.1KHz采样的功率放大器.随着数字信号处理(DSP)和音频数字压缩技术的结合、新型离散功率器件及其应用的发展,使开发实用化的16bit数字音频功率放大器成为可能.国内外一些从事数字信号处理的技术人员,专门研究音频数字编码技术,在不损伤音频信号质量的情况下,尽量压缩数据库.经过多次实验,终于将末级功放开关频率由没有压缩数据时的约2.8GHz减至小于1MHz,从而降低了对开关功放管的要求.同时在开关功率放大部分,采用了驱动缓冲器和平衡电桥技术,实现了在不提高工作电压的情况下能够输出较大的功率,并且设计了完善的防止开关管击穿的保护电路.2.技术特点国内外一些公司研制出的数字功放,直接从CD唱机的接口(光纤和数字同轴电缆)接受数字PCM音频信号(模拟音频信号必须经过内置的A/D转换变成数字信号后才能进行处理),在整个信号处理和功率放大过程中,全部采用数字方式,只有在功率放大后为了推动音箱才转化为模拟信号.数字功放的主要技术特点为:(1) 采用两电平(0、1)多脉宽脉冲差值编码.(2) 采用平衡电桥脉冲速推技术.(3) 采用高倍率数字滤波技术.(4) 利用数字算法处理噪声问题.(5) 采用非线性抵消技术.{{分页}}3. 工作原理如图1所示,数字功放从光纤或数字同轴电缆接口接受数字PCM音频编码信号,或通过模拟音频输入接口接收模拟音频信号,并通过内部A/D转换器得到数字音频信号,再通过专用音频DSP芯片进行码型变换,得到所需要的音频数字编码格式,经过小信号数字驱动电路送入开关功率放大电路进行功率放大,最后将功率脉冲信号通过滤波器,提取模拟音频信号.图1 全数字音频功放电路的组成框图由图1可知,音频数字信号经过DSP编码后,直接控制场效应管开关网络的工作状态.场效应管驱动器用来缓冲DSP并增强信号,使之能驱动大功率MOSFET开关管.由于高电平脉冲信号只有微分分量,故需通过积分电路才能得到大功率原始音频信息.下面用一个简单的数字和物理模型来阐述数字功放的编码过程,如图2所示.图2 数字功放编码过程示意图图中表示两个相邻采样点N和N+1的采样值为AN和AN+1,中间点a1、a2、a3……为超采样点.超采样点是由数字滤波器计算产生的.通过数字滤波器后,所有采样点包括超采样点所构成的音频信号是比较平滑的.{{分页}}在数字功放中,首先建立一组不同脉宽的脉冲单元,它的脉宽虽然各不相同,但其宽度始终固定的,都是系统时钟周期的倍数.第一个超采样点a1与数值AN的差为Δx1,即a1-AN=Δx1,得到Δx1后,即用上述脉冲单元去量度它,仅用一个脉冲单元表示,余数保留至下次量度,假设余数为ΔΔx1.接着传送的第二个差值编码为a2-a1=Δx2,由于上次还保留余数ΔΔx1,所以还应加上,即当前应用一个脉冲单元去量度Δx2+ΔΔx1,同样余数保留至下一次累计.由此看出,用脉冲单元表示后的余数,即低于最小量度单位的部分并没有丢失,而是累加至相邻超采样点上.而从音频信号的角度来说,曲线AN,a1,a2,a3……AN+1下方的面积和原值相等,因此音频信号并没有产生失真,但曲线增加了以ΔΔx1,ΔΔx2……ΔΔxN幅度上下波动的噪声,这种噪声分量不大,频率很高,用一个较简单的滤波器就可滤除,不会影响到音频信号还原.在能量放大部分,采用平衡电桥开关技术,每通道使用四只MOSFET开关功放管构成平衡电桥开关网络.当功放管处于开关放大状态时,输出波形和输入的脉冲信号波形相同,但幅度近似于工作电压,即VOUT=VBUS,经滤波器滤波后,输出到负载上的波形峰值为VBUS.设MOSFET管内阻为rDSON,负载阻值为RLOAD,电源电压为VBUS,滤波器阻抗为Rx,则负载上均方值电流IRMS=VBUS/[(2rDSON+RLOAD+Rx)]所以负载上承受的功率为PLOAD=I2RMSXRLOAD={V2BUS/[2(2rDSON+RLOAD+Rx)2]}XRLOADη=[RLOAD/(2rDSON+RLOAD+Rx)]/[1+fX(■+▲)]其中■=16VBUS/[π2XIRATEX(2rDSON+RLOAD+Rx)]▲=2IRATE(t2RR/VBUS)(2rDSON+RLOAD+Rx)当包含有开关损耗时,效率可由下式计算:采用RFP22N10 MOSFET功放,内阻rDSON为0.08Ω,负载RLOAD为8Ω,工作电压VBUS为40V,开关频率f为700KHz,变换速率IRATE 为50A/us,翻转恢复时间tRR为100ns,滤波器内阻Rx为0.04Ω,可算出:PLOAD=95W,η=78%.在滤波器设计时,我们采用六阶巴特沃斯低通滤波器,用于将大功率数字脉冲信号转换为模拟音频信号.巴特沃斯滤波器的特点是带内平坦度高,从而使得输出音频信号幅频特性较好.数字功放中音质和载波频率的关系数字功放一直以来被许多人认为低音很不错,但是高音刺耳.在我们开发这个产品的过程当中,其实也发现了这个问题.我们回到数字功放的原理: 音频信号(20~20K)经过一个PWM的调制,然后通过一个开关功率放大电路,把PWM信号放大,最后通过滤波器,把PWM信号滤除掉,这样就剩下一个大功率的音频信号可以直接推动喇叭了.这个调制过程是数字功放的关键.一般现在流行的几个数字功放的方案的PWM频率都是工作在300K~500K范围,有些低音跑甚至工作在100K以下的频率.工作频率越高,越难选择开关管,开关的速度如果变慢了,容易发热,想减轻发热,就需要把死区调大,死区调大了,就导致失真变大.这个是一个两难的选择.于是选用极端快速的开关管,是数字功放第一要务.数字功放的采样频率,直接决定了音质,这个是我们在开发数字功放的过程中发现的一个重要现象.举个简单的例子,应该可以很好理解这个原理.假设PWM的开关频率为300K(300~450K是现在市面上的数字功放的最常见的频率),1: 如果输入一个20HZ的低频信号进入,那么等于把一个20HZ的低频信号周期分割为15000个采样点,这个采样点足够在输出的时候完美表达一个正玄波的波形,低音可以得到很好的表现.2: 如果输入一个1K的中频信号,那么他就产生300K/1K , 也就是一个周期300个采样点,这个还是可以接受的,但是已经开始恶化了.3: 如果输入一个20K的中频信号,那么只产生300K/20K ,也就是一个周期15个采样点, 已经不能完整表达一个正玄波了,个人认为,这就是高音恶化难听的主要原因,我们再来看看,到底多高的频率能高好的表达音频信号.下面是一个表:PWM 20 250 500 1K 2K 5K 10K 15K 20K100K 5000 400 200 100 50 20 10 7 5300K 15000 1200 600 300 150 60 30 20 15500K 25000 2000 1000 500 250 100 50 33 25600K 30000 2400 1200 600 300 120 60 40 301000K 50000 4000 2000 1000 500 200 100 67 502000K 100000 8000 4000 2000 1000 400 200 133 100从上表,可以看出,如果PWM的频率是100K 输入一个20K的音频信号,他只能把20K的一个周期分辨出5个信号,这显然不行,100K最高可以比较好的表达1K的信号(有100个采样点),所以工作在100K的数字功放只能是作为低音炮(20~250HZ).一个300K的数字功放也只能比较完美的表达5K(有60个采样点)的高音.一个600K的数字功放,可以比较好的表达10K的音频当工作频率达到1~2M的时候,才能真正的把高音的失真减低,减低并不等于完美:)能追求更高的频率是每个数字功放设计师的梦想,但是必须基于更先进的器件(更高的工作频率的功率管).采样频率越低,高频波形的折线化越严重,为什么有些低频率(400K)的数字功放失真怎么那么低呢.这个主要是出现在失真的测量方法上,普通的失真测量是输入1K信号,输出后测量1K信号产生的谐波(2K 3K,4K ,5K等),2K 4K 比较高,那是偶次失真(电子管常见的失真),3K5K比较高是奇次失真(晶体管电路常见的失真),也就是说实际上标称的失真只是代表1KHZ的失真,而不能代表其他信号频率的失真.于是就会产生了标称失真很低,但是实际的听感不舒服了.大家可以回头去看看上面哪个表,300K以上的数字功放对1KHZ的表达是比较完美的了.从这个角度,也证明了平时大家的感觉,为什么数字功放高音总是不舒服.关键的问题还是基频不够高.从另一个角度,我们再探讨一下基频和音频信号的关系.----关于滤波器.数字功放,基本都有滤波器(小功率的现在发展到没滤波器了),这个滤波器的作用主要是把PWM的基频滤除,一个陡峭的滤波器是非常难以设计的.双方的频率越靠近,想用简单的滤波器把两个不同频率的信号分离越困难.所以说,频率越高滤波器越容易处理.当然频率高滤波器使用的材料是有很大区别的.很多300~500K的数字功放只使用一个两阶滤波器.这个是远远不够的,很多数字功放输出都有0.3~1V的静态电压,我测试过两家提供的半成品板,有家甚至达到了3V的高频电压输出,这个是非常恐怖的事情.这个输出电压是高频电压,频率就是PWM的基频,虽然理论上这个信号是听不见的,但是他会严重干扰高音喇叭的工作.我初期设计过600K的CLASS-D 必须使用4阶以上的滤波器才能有效减低这个输出电压.DDX的数字功放解决方案前言随着现在数字音源和数字音频的快速发展,在对数字音频信号直接放大的数字音频放大器也得到了飞速的发展.它有效率的与数字音源对接,实现了端到端的纯数字音频处理和放大的优点.这种DDX音频放大器可以接受来自DSP直接输入的数字音频编码信号,采用专利的DDX信号处理技术来控制高效的功率器件,不需要为每个声道准备D/A转换器,从而减少了中间不必要的转换层级,音质得到显着的改善,成本也随着零部件数目的减少而下降,从而把高音质、低功耗和低制造成本带到人气很旺的高速增长的应用领域,如平板电视机、无线产品和个人音响系统.DDX音频放大器的基本结构DDX音频放大器包括2个主要部分:第一部分是采用专利DDX技术的调制器,它把数字音频接口得到的或者A/D转换得到的PCM数字音频数据转换成三态调制信号输出;第二部分是功率输出级,它包括三态驱动逻辑电路和全桥电路.经过三态调制的脉冲信号控制全桥电路中晶体管的导通与截止,在负载的两端产生极性相反的脉冲信号,脉冲的频率成份包含还原的音频信号和与调制过程相关的高频分量,因此通常需要在输出级和扬声器之间插入一个低通滤波器,避免高频分量直接驱动扬声器,从而在扬声器上得到还原并且放大的音频输出(如图1所示).图1 DDX基本功能块图DDX音频放大器驱动方式和调制方式DDX音频放大器的输出级采用全桥电路,它包含两个半桥输出级.每个半桥电路包括两个输出晶体管,一个是连接到正电源的高端功率管,另一个是连接到负电源的低端功率管.全桥电路可以由单电源供电,在相同的电源电压下,全桥电路的输出信号摆幅是半桥电路的两倍,理论上可以提供的最大输出功率是其四倍.传统的D类放大器采用差分工作方式,开关信号控制两个半桥电路中功率管的导通与截止,半桥A的输出极性必须与半桥B的输出极性相反,使负载电流从一个半桥流入,从另一个半桥流出,为滤波器提供极性相反的脉冲信号,因此只存在正态和负态这两种差分工作状态.图2 DDX驱动状态DDX音频放大器的调制器采用DDX专利的三态调制技术,增加了一个共模工作状态,即两个半桥输出的极性相同(都为低),从而使滤波器的两端被连接到地.这个共模状态称为阴尼态,和差分工作状态配合产生DDX三态调制,如图2所示.阴尼态用于表示低功率水平,代替两态方案中在正态和负态之间的开关.当音频信号处于低功率水平的时候,传统的两态方案仍然使输出晶体管处于开关状态,输出正负抵消的无用信号给滤波器和扬声器,这样不但增加了的开关损耗和能量开销,降低了音频放大器的效率和信噪比,而且不断地处于开关状态不可避免地产生EMI.DDX三态调制方案利用阴尼态表示低功率水平,正态和负态用于对扬声器提供大功率.在相同测试条件下,DDX三态调制方案比采用两态调制方案的传统D 类放大器产生的高频载波分量低16dB,在低功率水平时的放大器效率提高了20%.DDX三态调制方案的独有特性也改善了电源抑制比(PSRR),因为在低功率水平时,滤波器的差分动作非常小,阴尼态使扬声器的两端接地,从而使电源的噪声不被听见.许多D类放大器采用PWM输出至器件输入的负反馈环路以改善器件的线性,通过控制环路对输出进行校正,以减少失真问题和电源问题.闭环设计的优势是以可能出现的稳定性问题为代价的,这也是所有反馈系统共同面临的问题.而DDX音频放大器采用数字开环的设计,即使在驱动低阻抗扬声器的时候也不会产生放大器的稳定性问题.同时,利用先进的数字信号处理技术(DSP),对预期的输出级误差进行预补偿或者校正,也可以改善放大器的线性输出特性.并且可以在数字域对每个通道音频信号独立地编程,进行诸如分段EQ控制,低音/高音控制和音量控制等处理,而这些都可以通过I2C数字接口对内部寄存器进行编程来实现,不仅方便了用户的开发和使用,而且为用户增加了附加价值.DDX音频放大器种类DDX音频放大器芯片主要分成两类,一类是完全独立的设计,即DDX控制芯片和音频功率放大器芯片是分开的,最多能处理八个音频通道,最大输出功率为单通道350W;另一类是单芯片设计,即集成了DDX控制和音频功率放大器功能,同时拥有2.1通道的DDX控制和音频放大器,输出总功率为40W至160W.用户可以根据产品开发的实际需要进行灵活地选择和搭配组合.参考设计方案-平板电视专用音箱下面我们以意法半导体(STM)最新推出的一款DDX音频放大器STA328为例,来具体了解DDX音频放大器的结构和功能,以及如何利用DDX音频放大器进行产品设计和开发.该解决方案的主要特征:*音频放大器的输出为2.0通道(2×80W)或者2.1通道(2×40W+1×80W);*32条预设音频EQ曲线;*四选一HDMI选择开关控制器;*接收模拟立体声音频信号;*接收光纤和同轴接口的真数字编码音频信号(立体声PCM);*红外线遥控.随着平板电视设计变得更薄,扬声器变得更小,机箱声学特性越来越不理想,修正音频信号变得十分重要.我们为平板电视设计的这种2.1通道专用音箱,就是充分利用了DDX单芯片的高集成度,结合从声源到扬声器的纯数字流处理能力,为平板电视提供低成本、高效能、高音质的外置音响系统.这套专用音箱参考方案的电路结构如图3所示.图3 平板电视专用音箱参考方案的电路结构示意图这套音箱可以通过红外线遥控进行操作,意法半导体(STM)- ST72324作为人机界面控制MCU,接受来自红外遥控器的指令,向DDX音频放大器STA328发出相应的控制命令.另外,ASAHI KASEI MICROSYSTEMS (AKM)- AK4113是一个24位立体声数字音频接收器,可以接收来自光纤接口和同轴接口的高保真数字编码音频信号,然后转化为PCM音频信号,通过I2S总线输出,可以支持高达216KHz的采样率;AKM - AK5358A是一个高性价比的24位立体声A/D转换器,把立体声模拟音频信号转换为PCM音频信号,通过I2S总线输出.AK4113和AK5358A可以分别接收来自数字接口和模拟接口的音频信号源,为DDX音频放大器STA328提供PCM数字音频信号.设置STA328的输出级为2.1通道(2×40W+1×80W),搭配相应的音箱,还原并且放大来自前端数字音源或者模拟音源的音频信号.由于是针对平板电视这样的显示播放平台,当面临多个高清内容源的输入选择时,大多数平板电视的HDMI接口在使用上就会显得不方便,因此我们加入了英特矽尔(Intersil)-ISL54100.它是一个四选一HDMI选择开关控制器,不仅可以切换各路数字视频和音频信号,而且具有重新整理功能,通过一个内置的锁相环进行重新同步调整和均衡,可有效恢复因线材物理上的问题造成的信号衰变,能将高清信号传输距离延长15米.结语利用DDX音频放大器对数字音源输出的音频信号进行直接处理和放大,可以方便地实现高保真,高效率和低成本的音频放大器,为数字音源,音频处理和功率放大的整合提供了完整的端到端数字解决方案.。
数字电视发射机功率放大器损坏及维修
数字电视发射机功率放大器损坏及维修1数字电视发射机的构成及工作原理数字电视发射机主要由电源、功率放大器、激励器与冷却系统组成,各个构件之间相互影响与作用,保证数字电视发射机的正常运行与使用。
在这四部分中,功率放大器是成本最高、最具核心技术的配件,调控发射机的正常运行。
此外,激励器与冷却系统也是电视发射机运行的关键。
电流信号进入激励器中被转换为射频信号,随机进入控制器与切换器,接受处理之后进入功率放大器,最后沿着天线传播出去。
功率放大器的主要功能是调节输出功率的大小,放大数字电视发射机中的数据,从而进一步扩大信号的传输范围,提高数据传输的进程与传输效果,因此,是关系到数字电视发射机工作效果的核心元件。
激励器为数字电视发射机的各类信号提供处理技术,完成视频与音频信号的数字化和校正处理。
激励器中的压缩编码系统将视频音频信号处理压缩,接下来被合成形成完整的图像画面,提高图像的清晰度与处理的准确度。
冷却系统主要功能为散热与降噪,其中,液冷系统通过使用冷冻液降低数字发射机工作时产生的噪音,改善数字发射机的工作效果;风冷系统通过高速旋转的风扇散发数字发射机运行时产生的热量。
冷却系统的散热与降噪功能为发射机的运行提供良好的工作环境,提高发射机的运行质量。
2功率放大器的构成元件及工作原理2.1功率放大器的主要元件构成。
功率放大器主要由调制器、D类功放和还原大功率PWM中的声音的元件构成,三个组成部分完成功率放大器的基本工作――放大原视频音频信号的功率。
数字电视发射机中的功率放大器即放大接收到的视频音频的声音与影像,将微弱的电信号处理后进行放大。
2.2功率放大器的工作原理。
调制器的基础形式为运放构成比较器,主要作用是将音频视频信号调制到波形中,在调制器的起始端,原始音频视频信号进入后会结合一定的直流偏置,经过调制生成通过自激振荡生成相应的波形输出到终端。
在这个过程中,随着视频音频信号的输入,比较器输出的高低电平持续的时间会发生变化,形成一个有规律的、被视频音频信号调制后的波形,即PWM波形。
数字功放原理
数字功放原理数字功放(Digital Power Amplifier)是一种利用数字信号处理技术对音频信号进行处理和放大的功放器。
与传统的模拟功放相比,数字功放具有更高的效率、更低的失真和更小的体积,因此在音响领域得到了广泛的应用。
本文将对数字功放的原理进行介绍,以便读者对其工作原理有一个清晰的认识。
数字功放的基本原理可以分为数字信号处理和功率放大两个部分。
首先,输入的模拟音频信号会经过模数转换器(ADC)转换成数字信号。
然后,经过数字信号处理单元(DSP)对数字信号进行滤波、均衡和混响等处理,最终得到经过处理的数字音频信号。
接下来,经过数字-模拟转换器(DAC)将处理后的数字信号转换成模拟信号,再经过功率放大器放大后输出到喇叭上。
数字功放的核心是数字信号处理单元(DSP),它能够对音频信号进行高精度的处理,包括均衡、滤波、混响等效果。
与传统的模拟功放相比,数字功放在信号处理上具有更大的灵活性和精度,可以实现更多种类的音效处理,同时也更容易实现数字音频处理器的功能集成。
另外,数字功放的功率放大部分也采用了数字控制技术。
传统的模拟功放在功率放大部分使用的是类比电路,效率较低,同时容易产生较大的热量。
而数字功放采用数字功率放大器,能够根据音频信号的实际情况动态调整功率放大器的工作状态,使得功率放大器的工作效率更高,同时也减少了功放器的发热量。
总的来说,数字功放的原理是利用数字信号处理技术对音频信号进行处理和放大,具有高效率、低失真和小体积的特点。
通过数字信号处理单元对音频信号进行精确处理,再经过数字功率放大器放大输出,实现了高保真的音频放大效果。
数字功放在音响领域的应用前景广阔,相信随着技术的进步和成本的降低,数字功放会成为音响行业的主流产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字功率放大器的工作原理是什么
数字功率放大器其实就是D类功率放大器。
传统功率放大器都是模拟功率放大器,也就是说利用模拟电路对信号进行功率放大,放大处理的是连续信号,而D类功率放大器是一种数字功率放大器,其功率输出管处于开关工作状态,即在饱和导通和截止两种状态间变化,用一种固定频率的矩形脉冲来控制功率输出管的饱和导通或截止。
一般D类功率放大器中的矩形脉冲频率(其作用相当于采样频率)为100~200kHz,每台D类功率放大器生产出来后其矩形脉冲的频率就固定为一具体频率了,也就是脉冲周期固定了。
矩形脉冲在一个周期内的宽度(或者说占空比)受到音频模拟信号的控制而改变,从而改变了功率输出管在一个脉冲周期内的导通时间,脉冲越宽(占空比越大),功率输出管在一个(采样)脉冲周期内导通时间越长,则输出电压就越高,输出功率就越大。
调制波形原理图见图,称为脉冲宽度调制(PWM),它是一种对模拟信号电平进行数字编码的方法。
数字功率放大器的特点是效率远远比传统的模拟功率放大器高得多,可以达到80%多甚至达90%多。
由于D类功率放大器比AB类功率放大器在功率输出管上损耗的功率小得多,产生的热量也少得多,所以D类功率放大器的散热器可以减小,重量可以减轻。
数字功率放大器的电源部分采用开关电源,因此整机效率将进一步提高,所以可以设计出输出功率相当大的数字功率放大器。
早期的D类功率放大器的失真比较大,经过不断改进,目前失真已经降到比较低的水平,可以满足专业音响的要求。
但是由于D类功率放大器功率输出管的开关频率很高,功率又很大,所以难免会有信号泄漏,这样也就容易引起信息的泄漏,所以在一些需要保密的场合还是以不采用D类功率放大器为好。
目前一些数字功率放大器产品已经同时具有模拟输入口和数字输入口,既适合模拟信号输入,也可以数字信号输入,应用更灵活。