c51单片机的定时器和中断

合集下载

51单片机定时器的使用

51单片机定时器的使用

151单片机定时器/计时器的使用步骤:1、 打开中断允许位:对IE 寄存器进行控制,IE 寄存器各位的信息如下图所示:EA : 为0时关所有中断;为1时开所有中断ET2:为0时关T2中断;为1时开T2中断,只有8032、8052、8752才有此中断 ES : 为0时关串口中断;为1时开串口中断 ET1:为0时关T1中断;为1时开T1中断 EX1:为0时关1时开 ET0:为0时关T0中断;为1时开T0中断 EX0:为0时关1时开2、 选择定时器/计时器的工作方式:定时器TMOD 格式CPU 在每个机器周期内对T0/T1检测一次,但只有在前一次检测为1和后一次检测为0时才会使计数器加1。

因此,计数器不是由外部时钟负边沿触发,而是在两次检测到负跳变存在时才进行计数的。

由于两次检测需要24个时钟脉冲,故T0/T1线上输入的0或1的持续时间不能少于一个机器周期。

通常,T0或T1输入线上的计数脉冲频率总小于100kHz 。

方式0:定时器/计时器按13位加1计数,这13位由TH 中的高8位和TL 中的低5位组成,其中TL 中的高3位弃之不用(与MCS-48兼容)。

13位计数器按加1计数器计数,计满为0时能自动向CPU 发出溢出中断请求,但要它再次计数,CPU 必须在其中断服务程序中为它重装初值。

方式1:16位加1计数器,由TH 和TL 组成,在方式1的工作情况和方式0的相同,只是计数器值是方式0的8倍。

2方式2:计数器被拆成一个8位寄存器TH 和一个8位计数器TL ,CPU 对它们初始化时必须送相同的定时初值。

当计数器启动后,TL 按8位加1计数,当它计满回零时,一方面向CPU 发送溢出中断请求,另一方面从TH 中重新获得初值并启动计数。

方式3:T0和T1工作方式不同,TH0和TL0按两个独立的8位计数器工作,T1只能按不需要中断的方式2工作。

在方式3下的TH0和TL0是有区别的:TL0可以设定为定时器/计时器或计数器模式工作,仍由TR0控制,并采用TF0作为溢出中断标志;TH0只能按定时器/计时器模式工作,它借用TR1和TF1来控制并存放溢出中断标志。

第05章 MCS-51单片机的中断与定时(1-4)

第05章 MCS-51单片机的中断与定时(1-4)

2
1
TH0
;P1.0输出“0” ;P1.0输出“1”
5.2 MCS-51单片机的中断系统
五、外中断应用举例
1. 中断初始化程序
设置外中断源的触发方式 设置中断允许寄存器IE 设置中断优先级寄存器IP
2. 中断服务程序
保护现场 中断处理 恢复现场
23/65
5.2 MCS-51单片机的中断系统
【例5-3】 设外部中断0为下降沿触发方 式,高优先级,试编写中断初始化程序
5.2 MCS-51单片机的中断系统
【例5-4】 将单脉冲接到外中断0(INT0)引脚,利 用P1.0作为输出,经反相器接发光二极管。编写程 序,每按动一次按钮,产生一个外中断信号,使发 光二极管的状态发生变化,由亮变暗,或反之
P1.0 单脉冲 发生器 INT0
1
+5V
8031
26/65
5.2 MCS-51单片机的中断系统
串口:0023H
20/65
5.2 MCS-51单片机的中断系统
四、中断请求的撤除
1.定时/计数器中断请求标志TF0/TF1会自动撤除 2.串行口中断请求标志TI/RI要用指令撤除
CLR TI ;清TI标志位 CLR RI ;清RI标志位
3.负脉冲触发的外中断请求标志IE0/IE1会自动撤除 4.低电平触发的外中断请求信号需要外加电路撤除
下次课前请预习5.3节
30/65
5.3 51单片机的定时器/计数器
MCS-51单片机内部有两个16位定时/计数器 T0和T1,简称定时器0和定时器1
在特殊功能寄存器TMOD和TCON的控制下, 它们既可以设定成定时器使用,也可以设定 成计数器使用
定时/计数器有4种工作方式,具有中断功能, 可以完成定时、计数、脉冲输出等任务

单片机中的中断与定时器的原理与应用

单片机中的中断与定时器的原理与应用

单片机中的中断与定时器的原理与应用在单片机(Microcontroller)中,中断(Interrupt)和定时器(Timer)是重要的功能模块,广泛应用于各种嵌入式系统和电子设备中。

本文将介绍中断和定时器的基本原理,并探讨它们在单片机中的应用。

一、中断的原理与应用中断是指在程序执行过程中,当发生某个特定事件时,暂停当前任务的执行,转而执行与该事件相关的任务。

这样可以提高系统的响应能力和实时性。

单片机中的中断通常有外部中断和定时中断两种类型。

1. 外部中断外部中断是通过外部触发器(如按钮、传感器等)来触发的中断事件。

当外部触发器发生状态变化时,单片机会响应中断请求,并执行相应的中断服务程序。

外部中断通常用于处理实时性要求较高的事件,如按键检测、紧急报警等。

2. 定时中断定时中断是通过定时器来触发的中断事件。

定时器是一种特殊的计时设备,可以按照设定的时间周期产生中断信号。

当定时器倒计时完成时,单片机会响应中断请求,并执行相应的中断服务程序。

定时中断常用于处理需要精确计时和时序控制的任务,如脉冲计数、PWM波形生成等。

中断的应用具体取决于具体的工程需求,例如在电梯控制系统中,可以使用外部中断来响应紧急停车按钮;在家电控制系统中,可以利用定时中断来实现定时开关机功能。

二、定时器的原理与应用定时器是单片机中的一个重要模块,可以用于计时、延时、频率测量等多种应用。

下面将介绍定时器的工作原理和几种常见的应用场景。

1. 定时器的工作原理定时器是通过内部时钟源来进行计时的。

它通常由一个计数器和若干个控制寄存器组成。

计数器可以递增或递减,当计数值达到设定值时,会产生中断信号或触发其他相关操作。

2. 延时应用延时是定时器最常见的应用之一。

通过设定一个合适的计时器参数,实现程序的精确延时。

例如,在蜂鸣器控制中,可以使用定时器来生成特定频率和持续时间的方波信号,从而产生不同的声音效果。

3. 频率测量应用定时器还可以用于频率测量。

C51单片机的几种常用延时程序设计2024

C51单片机的几种常用延时程序设计2024

引言概述:C51单片机是一种广泛应用于嵌入式系统中的微控制器,它具有高度集成化、易于编程和灵活性强等特点。

在C51单片机的软件开发过程中,延时程序设计是非常重要的一部分。

本文将介绍C51单片机中几种常用的延时程序设计方法,包括循环延时、定时器延时、外部中断延时等。

这些方法不仅可以满足在实际应用中对延时的需求,而且可以提高程序的稳定性和可靠性。

正文内容:一、循环延时1. 使用循环控制语句实现延时功能,例如使用for循环、while循环等。

2. 根据需要设置延时的时间,通过循环次数来控制延时的时长。

3. 循环延时的精度受到指令执行时间的影响,可能存在一定的误差。

4. 循环延时的优点是简单易用,适用于较短的延时时间。

5. 注意在循环延时时要考虑其他任务的处理,避免长时间的等待造成程序卡死或响应延迟。

二、定时器延时1. 使用C51单片机内置的定时器模块来实现延时。

2. 配置定时器的工作模式,如工作方式、定时器精度等。

3. 设置定时器的初值和重装值,控制定时器中断的触发时间。

4. 在定时器中断服务函数中进行延时计数和延时结束标志的设置。

5. 定时器延时的优点是精确可控,适用于需要较高精度的延时要求。

三、外部中断延时1. 在C51单片机上配置一个外部中断引脚。

2. 设置外部中断中断触发条件,如上升沿触发、下降沿触发等。

3. 在外部中断中断服务函数中进行延时计数和延时结束标志的设置。

4. 外部中断延时的优点是能够快速响应外部信号,适用于实时性要求较高的场景。

5. 注意在外部中断延时时要处理好外部中断的抖动问题,确保延时的准确性。

四、内部计时器延时1. 使用C51单片机内部的计时器模块来实现延时。

2. 配置计时器的工作模式,如工作方式、计时器精度等。

3. 设置计时器的初值和重装值,使计时器按照一定的频率进行计数。

4. 根据计时器的计数值进行延时的判断和计数。

5. 内部计时器延时的优点是能够利用单片机内部的硬件资源,提高延时的准确性和稳定性。

中断及定时器实验报告

中断及定时器实验报告

一、实验目的1. 理解中断和定时器的基本概念及工作原理。

2. 掌握51单片机中断系统和定时器的配置方法。

3. 学会使用中断和定时器实现特定功能,如延时、计数等。

4. 培养动手实践能力和问题解决能力。

二、实验原理中断是计算机系统中的一种机制,允许CPU在执行程序过程中,暂停当前程序,转去执行另一个具有更高优先级的程序。

51单片机具有5个中断源,包括两个外部中断(INT0、INT1)、两个定时器中断(定时器0、定时器1)和一个串行口中断。

定时器是51单片机内部的一种计数器,可以用于产生定时中断或实现定时功能。

51单片机有两个定时器,即定时器0和定时器1。

定时器可以工作在模式0、模式1、模式2和模式3。

三、实验内容及步骤1. 实验内容一:外部中断实验(1)实验目的:掌握外部中断的使用方法,实现按键控制LED灯的亮灭。

(2)实验步骤:- 使用Keil for 8051编译器创建项目。

- 根据电路原理图连接电路。

- 编写程序,配置外部中断,实现按键控制LED灯的亮灭。

2. 实验内容二:定时器中断实验(1)实验目的:掌握定时器中断的使用方法,实现LED灯闪烁。

(2)实验步骤:- 使用Keil for 8051编译器创建项目。

- 根据电路原理图连接电路。

- 编写程序,配置定时器中断,实现LED灯闪烁。

3. 实验内容三:定时器与外部中断结合实验(1)实验目的:掌握定时器与外部中断结合使用的方法,实现按键控制LED灯闪烁频率。

(2)实验步骤:- 使用Keil for 8051编译器创建项目。

- 根据电路原理图连接电路。

- 编写程序,配置定时器中断和外部中断,实现按键控制LED灯闪烁频率。

四、实验结果与分析1. 外部中断实验:成功实现了按键控制LED灯的亮灭。

当按下按键时,LED灯亮;松开按键时,LED灯灭。

2. 定时器中断实验:成功实现了LED灯闪烁。

LED灯每隔一定时间闪烁一次,闪烁频率可调。

3. 定时器与外部中断结合实验:成功实现了按键控制LED灯闪烁频率。

51单片机的功能单元(中断定时器等)

51单片机的功能单元(中断定时器等)
P30
1 1
D C Q Q
D0
1
端口锁存器应为“ 。 端口锁存器应为“1”。 3、替代功能 、
P3.0 TXD RXD INT0 INT1 P3.4 P3.5 P3.6 P3.7 T0 T1 WR RD P3.1 P3.2 P3.3
P3W P3R2
பைடு நூலகம்
变异输入 图3、P3口内部结构
10
5.1.5 P0~P3端口功能总结 P0~P3端口功能总结 使用中应注意的问题: 使用中应注意的问题: P0 ~ P3 口都是并行 I/O 口 , 但 P0 口和 P2 口 还可用来构建数 口都是并行I/O I/O口 口和P 电路中有一个MUX 据总线和地址总线,所以电路中有一个MUX,进行转换。 据总线和地址总线,所以电路中有一个MUX,进行转换。 而P1口和P3口无构建系统的数据总线和地址总线的功能, 口和P 无构建系统的数据总线和地址总线的功能, 因此,无需转接开关MUX MUX。 因此,无需转接开关MUX。 只有P 只有P0口是一个真正的双向口,P1~P3口都是准双向口。 是一个真正的双向口 双向口, 都是准双向口 准双向口。 原因: 口作数据总线使用时, 为保证数据正确传送, 原因 :P0 口作数据总线使用时 , 为保证数据正确传送 , 需 解决芯片内外的隔离问题, 解决芯片内外的隔离问题 , 即只有在数据传送时芯片内外 才接通; 否则应处于隔离状态。 为此, 才接通 ; 否则应处于隔离状态 。 为此 , P0 口的输出缓冲器 应为三态门。 应为三态门。 P3 口具有第二功能 。 因此在 P3 口电路增加了第二功能控制 口具有第二功能。因此在P 逻辑。这是P 口与其它各口的不同之处。 逻辑。这是P3口与其它各口的不同之处。
18
5.1.6

51单片机的定时器中断

51单片机的定时器中断

51单⽚机的定时器中断⼀、中断的概念CPU在处理某⼀事件A时,发⽣了另⼀事件B请求CPU迅速去处理(中断产⽣);CPU暂时中断当前的⼯作,转去处理事件B(中断响应和中断服务);待CPU将事件B处理完毕后,再回到原来事件A中断的地⽅继续处理事件A(中断返回),这⼀过程称为中断。

⼆、中断的优先级51单⽚机⾥⼀共有5个中断源,分别是外部中断0,定时器0,外部中断1,定时器1,串⼝中断,中断优先级从⼤到⼩分别是0,1,2,3,4。

三、中断的优点1.分时操作。

CPU可以分时为多个I/O设备服务,提⾼了计算机的利⽤率;2.实时响应。

CPU能够及时处理应⽤系统的随机事件,系统的实时性⼤⼤增强;3.可靠性⾼。

CPU具有处理设备故障及掉电等突发性事件能⼒,从⽽使系统可靠性⾼。

四、定时器中断⼯作⽅式寄存器TMOD:GATE:门控位。

GATE=0时,只要⽤软件使TCON中的TR0或TR1为1,就可以启动定时/计数器⼯作;GATA=1时,要⽤软件使TR0或TR1为1,同时外部中断引脚或也为⾼电平时,才能启动定时/计数器⼯作。

即此时定时器的启动多了⼀个条件。

(默认情况下等于0不要设置)。

C/T:定时/计数模式选择位。

=0为定时模式;=1为计数模式。

M1M0:⼯作⽅式设置位。

定时/计数器有四种⼯作⽅式,由M1M0进⾏设置。

(正常情况旋⽅式1,即M1M0=01)。

中断寄存器:EA是总中断,ET0是定时器0中断,EX0是外部中断0,ET1是定时器1中断,EX1是外部中断1。

【参考资料】51单⽚机第⼆讲(定时器中断)。

51单片机定时器工作原理

51单片机定时器工作原理

51单片机定时器工作原理51单片机是一款广泛使用的微控制器,它的定时器功能可以用于实现定时操作、计时、脉冲计数等功能。

本文将介绍51单片机定时器的工作原理。

01、51单片机的定时器51单片机的定时器包括两个独立的定时器,即定时器0和定时器1。

每个定时器都由一个8位计数器和一组控制寄存器组成。

这些寄存器被映射到特定的内存地址,并且可以通过读写这些地址来控制定时器的工作方式。

02、定时器的计数器定时器的计数器是一个8位的寄存器,它通过每次递增来实现计时操作。

当计数器的值达到最大值255时,它会自动重置为0,从而形成一个循环计时器。

通过改变计数器的初值可以改变定时器的定时时长。

在51单片机中,计数器的初值可以通过内部RAM、外部RAM或IO 口进行设置。

03、定时器的工作模式51单片机的定时器可以工作在4种不同的模式下,分别是方式0、方式1、方式2和方式3。

每种模式下,定时器的工作方式都不同,可以实现不同的定时器操作,如定时操作、计时操作、脉冲计数等。

在每种模式下,定时器的一些控制寄存器的设置也是不同的。

04、定时器的中断控制定时器在计时过程中可以触发中断信号,用于提示系统完成定时操作。

在51单片机中,可以通过设置中断允许位来开启定时器中断功能。

当定时器计时满足中断触发条件时,会自动发出中断信号,通知系统进行相应的中断处理。

05、注意事项在使用51单片机定时器时需要注意以下问题:1) 在每次使用定时器之前,必须先进行相应的初始化设置。

2) 定时器操作时需要注意定时器的中断允许位的设置,以便及时处理定时器计时的中断。

3) 在使用定时器时不要过度依赖计时精度,因为51单片机的晶振精度和定时器的延时误差可能会导致计时误差。

4) 在设计系统时应合理规划定时器的使用,以充分利用定时器的功能,同时避免出现冲突或资源浪费现象。

以上就是51单片机定时器的工作原理和注意事项,仅供参考。

通过对单片机定时器的深入学习和了解,可以更好地控制单片机系统的定时操作,实现更高效、可靠的工作。

51单片机定时器实验内容

51单片机定时器实验内容

51单片机定时器实验内容
51单片机定时器实验的内容可以根据不同的需求和目的进行调整,以下是
一些可能的实验内容:
1. 定时器初始化实验:实验目标是了解如何初始化51单片机的定时器,包括设置定时器的工作模式、计数值、初始值等。

实验中可以编写代码,让定时器在初始化后自动开始计时,并在达到指定时间后产生中断或输出信号。

2. 定时器中断实验:实验目标是了解如何使用51单片机的定时器中断功能,实现定时器在达到指定时间后自动触发中断,并在中断服务程序中执行特定的操作。

实验中可以编写代码,让定时器在达到指定时间后自动进入中断服务程序,并在其中执行特定的操作,如点亮LED灯等。

3. 定时器PWM输出实验:实验目标是了解如何使用51单片机的定时器PWM输出功能,实现定时器输出PWM波形。

实验中可以编写代码,让定时器输出不同占空比的PWM波形,并通过调整占空比来控制LED灯的亮
度等。

4. 定时器与外部事件同步实验:实验目标是了解如何使用51单片机的定时器与外部事件同步,实现定时器在外部事件发生时自动开始计时或停止计时。

实验中可以编写代码,让定时器在外部事件发生时自动开始计时或停止计时,并在达到指定时间后执行特定的操作。

以上是一些常见的51单片机定时器实验内容,通过这些实验可以深入了解51单片机的定时器工作原理和用法,并提高编程技能和硬件控制能力。

51单片机中断系统详解

51单片机中断系统详解

51单片机中断系统详解51 单片机中断系统详解(定时器、计数器)51 单片机中断级别中断源INT0---外部中断0/P3.2 T0---定时器/计数器0 中断/P3.4 INT1---外部中断1/P3.3 T1----定时器/计数器1 中断/P3.5 TX/RX---串行口中断T2---定时器/计数器 2 中断第5 最低4 5 默认中断级别最高第2 第3 第4 序号(C 语言用) 0 1 2 3 intrrupt 0中断允许寄存器IE位序号符号位EA/0 ------ET2/1 ES ET1 EX1 ET0 EX0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 EA---全局中允许位。

EA=1,打开全局中断控制,在此条件下,由各个中断控制位确定相应中断的打开或关闭。

EA=0,关闭全部中断。

-------,无效位。

ET2---定时器/计数器2 中断允许位。

ET2=1, 打开T2 中断。

ET2=0,关闭T2 中断。

关,。

ES---串行口中断允许位。

关,。

ES=1,打开串行口中断。

关,。

ES=0,关闭串行口中断。

关,。

ET1---定时器/计数器1 中断允许位。

关,。

ET1=1,打开T1 中断。

ET1=0,关闭T1 中断。

EX1---外部中断1 中断允许位。

EX1=1,打开外部中断1 中断。

EX1=0,关闭外部中断1 中断。

ET0---定时器/计数器0 中断允许位。

ET0=1,打开T0 中断。

EA 总中断开关,置1 为开;EX0 为外部中断0 (INT0) 开关,。

ET0 为定时器/计数器0(T0)开EX1 为外部中断1(INT1)开ET1 为定时器/计数器1(T1)开ES 为串行口(TX/RX)中断开ET2 为定时器/计数器2(T2)开ET0=0,关闭T0 中断。

EX0---外部中断0 中断允许位。

EX0=1,打开外部中断0 中断。

EX0=0,关闭外部中断0 中断。

中断优先级寄存器IP位序号位地址------PS/0 PT1/0 PX1/0 PT0/0 PX0/0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 -------,无效位。

51单片机中的中断优先级总结

51单片机中的中断优先级总结

51单片机中的中断优先级总结这段时间编写51的控制板程序,两个大牛技术指导对51中断嵌套问题的看法不一样,后来亲自验证了一下,得到了一下的一些结论,发上来大家参考,表达不清的地方还望理解,呵呵。

51单片机的中断可嵌套,但至多支持二级嵌套。

51单片机的默认(此时的IP寄存器不做设置)中断优先级为:外部中断0 > 定时/计数器0 > 外部中断1 > 定时/计数器1 > 串行中断;但这种优先级只是逻辑上的优先级,当同时有几种中断到达时,高优先级中断会先得到服务。

这种优先级实际上是中断同时到达的情况下,谁先得到服务的优先级,而不是可提供中断嵌套能力的优先级。

这种优先级被称为逻辑优先级。

例如:当计数器0中断和外部中断1(优先级计数器0中断>外部中断1)同时到达时,会进入计时器0的中断服务函数;但是在外部中断1的中断服务函数正在服务的情况下,这时候任何中断都是打断不了它的,包括逻辑优先级比它高的外部中断0计数器0中断。

要实现真正的嵌套形式的优先级,也即高优先级中断服务可以打断低优先级中断服务的情况,必须通过设置中断优先级寄存器IP来实现;这种优先级被称为物理优先级。

例如:设置IP = 0x10,即设置串口中断为最高优先级,则串口中断可以打断任何其他的中断服务函数实现嵌套,且只有串口中断能打断其他中断的服务函数。

若串口中断没有触发,则其他几个中断之间还是保持逻辑优先级,相互之间无法嵌套。

回复于:2009-10-26 16:09:35只要硬件堆栈足够.嵌套没有级数限制。

#4楼得分:0回复于:2009-10-28 10:57:5851只有两个优先级所以只能有两级嵌套!SEI是AVR单片机的,他没有分优先级,所以支持这种嵌套!C51中interrupt和using的用法void INT0()interrupt 0 using 1{.........}interrupt 0 指明是外部中断0;interrupt 1 指明是定时器中断0;interrupt 2 指明是外部中断1;interrupt 3 指明是定时器中断1;interrupt 4 指明是串行口中断;using 0 是第0组寄存器;using 1 是第1组寄存器;using 2 是第2组寄存器;using 3 是第3组寄存器;51单片机内的寄存器是R0--R7(不是R0-R3)R0-R7在数据存储器里的实际地址是由特殊功能寄存器PSW里的RS1、RS0位决定的。

c51单片机定时器中断的执行过程

c51单片机定时器中断的执行过程

c51单片机定时器中断的执行过程
C51单片机定时器中断的执行过程可以分为以下几个步骤:
1. 初始化定时器:首先需要对定时器进行初始化,设置定时器的计数模式、计数值、溢出方式等参数。

这些参数可以通过编程实现,也可以通过硬件电路进行调整。

2. 启动定时器:初始化完成后,需要启动定时器。

启动定时器后,定时器开始按照预设的参数进行计数。

当计数值达到预设的溢出值时,定时器会产生一个溢出信号。

3. 设置中断服务程序:为了在定时器溢出时执行特定的操作,需要设置一个中断服务程序 ISR)。

中断服务程序是一段特殊的代码,它会在定时器溢出时被自动调用。

4. 开启中断:在中断服务程序设置完成后,需要开启相应的中断。

开启中断后,当定时器溢出时,CPU会自动跳转到中断服务程序执行。

5. 执行中断服务程序:当定时器溢出时,CPU会暂停当前任务,跳转到中断服务程序执行。

在中断服务程序中,可以执行一些特定的操作,如更新显示、读取传感器数据等。

6. 返回主程序:中断服务程序执行完成后,CPU会自动返回到主程序继续执行。

这样,通过定时器中断,可以实现对单片机的周期性控制和数据采集等功能。

51单片机内部定时器和中断系统以及编写第一个简单的定时器实验程序

51单片机内部定时器和中断系统以及编写第一个简单的定时器实验程序

51单片机内部定时器和中断系统以及编写第一个简单的定时器实验程序上讲通过讲述用单片机控制一个外部的LED闪烁实验来向读者介绍了单片机的工作原理与开发流程。

这一讲将介绍单片机内部非常重要的两个资源——定时/ 计数器和中断系统。

通过该讲,读者可以掌握定时器的工作原理和单片机的中断系统。

从而设计定时器计数程序和中断服务程序。

一、原理简介首先让我们举闹钟为例,将它定时在一分钟后闹铃,这就需要秒针走一圈(60 次)。

即一分钟时间转化为秒针走的次数,也就是计数的次数,计数到了60 次然后闹铃,而每一次计数的时间是1 秒。

单片机内部的定时/ 计数器跟闹钟类似,可以通过编程来设定要定时的时间、定时时间到了进行相应的操作。

那么在单片机内部计数一次的时间是多少呢,51 单片机输入的时钟脉冲是由晶体振荡器的输出经12 分频后得到的,所以定时器也可看作是对计算机机器周期的计数器。

因为每个机器周期包含12 个振荡周期,故每一个机器周期定时器加1,可以把输入的时钟脉冲看成机器周期信号。

故其频率为晶振频率的1/12。

如果晶振频率为12MHz,则定时器每接收一个输入脉冲的时间刚好为1μs。

在本实验套件中采用的是11.0592M 的晶振,故每接收一个输入脉冲的时间约为1.085μs。

实现精确定时在实际项目应用中非常重要,因为往往需要用到精确定时一段时间,然后定时时间到的时刻做相应的任务。

那如何编程实现定时时间呢?首先先简单介绍下本实验板上单片机(STC89C52)内的定时器资源。

STC89C52 内有三个定时/ 计数器,分别为T0、T1 和T2。

其中T0、T1 工作方式一样,一并介绍。

T2 的工作方式稍有区别,这里不做介绍,实验套件光盘中有实际应用程序。

同时,单片机中的定时器和计数器是复用的,计数器是记录外部脉冲的个数,而定时器则是由单片机内部时钟提供的一个非常稳定的计数源。

本讲中,以T0、T1 作为定时器来进行实例介绍使用。

51单片机串口中断的两种写法

51单片机串口中断的两种写法

单片机串口通信在嵌入式系统中具有非常重要的作用,而其中串口中断的编写方式更是至关重要。

今天我们来讨论一下51单片机串口中断的两种写法。

1. 外部中断写法在51单片机中,串口通信一般使用串口中断来实现。

外部中断写法是一种常见的串口中断编写方式。

其具体步骤如下:1)需要设置串口工作参数,包括波特率、数据位、停止位和校验位等。

2)在主程序中使能串口中断,并设置中断优先级。

3)在中断服务函数中进行接收数据的处理,可以通过接收缓冲区、中断标志位等来判断接收数据的情况,并进行相应的处理。

2. 定时器中断写法除了外部中断写法,定时器中断也是一种常见的串口中断编写方式。

其具体步骤如下:1)同样需要设置串口工作参数,包括波特率、数据位、停止位和校验位等。

2)在主程序中初始化定时器,并使能定时器中断。

3)在定时器中断服务函数中进行接收数据的处理,同样可以通过接收缓冲区、中断标志位等来判断接收数据的情况,并进行相应的处理。

总结无论是外部中断写法还是定时器中断写法,都是实现51单片机串口通信的常见方式。

在选择具体的编写方式时,需要根据具体的应用场景和需求来进行选择。

在实际应用中,可以根据具体情况来灵活选择合适的串口中断编写方式,以便更好地满足系统的需求。

在实际编写中断服务函数时,需要注意以下几点:1)处理数据时需要考虑数据的完整性和准确性,可以通过校验位等手段来验证数据的正确性。

2)在中断服务函数中应尽量减少对全局变量的访问,以避免出现数据冲突和竞争的情况。

3)合理设置中断优先级,避免产生中断嵌套和冲突。

通过合理的中断编写方式和注意事项,可以更好地实现串口通信功能,提高系统的稳定性和可靠性,为嵌入式系统的应用提供良好的技术支持。

对于外部中断写法和定时器中断写法,两者各有优缺点。

外部中断写法在串口数据到达时能够即刻响应中断、处理数据。

但是,如果数据传输速率较快或需要高精度的数据处理,外部中断写法可能无法满足要求。

在这种情况下,定时器中断写法显得更加合适。

51单片机中断代码解释

51单片机中断代码解释

51单片机中断代码解释一、引言51单片机是一种广泛使用的微控制器,具有丰富的中断功能。

中断是单片机在执行程序过程中,由于某种原因需要暂停当前的任务,转而处理更为紧急的事件。

处理完该事件后,再返回到之前被中断的程序继续执行。

本文将对51单片机的中断代码进行详细解释,包括中断概念、中断源、中断寄存器和寄存器功能与赋值说明等方面。

二、中断概念中断是一种计算机系统中处理优先级更高任务的方式。

当某个事件发生时,CPU会暂时停止当前任务的执行,转而处理该事件。

处理完该事件后,CPU会返回到之前被中断的程序继续执行。

三、中断源51单片机有多种中断源,包括外部中断0、外部中断1、定时器0、定时器1等。

每个中断源都可以独立地开启或关闭,并且可以设置优先级。

四、中断寄存器51单片机与中断相关的寄存器主要有:1.ICON(中断允许控制寄存器):用于控制中断的开启和关闭。

可以通过设置ICON寄存器的相关位来启用或禁用某个中断。

2.INT0/INT1(外部中断0/1控制寄存器):用于控制外部中断0和外部中断1的触发方式、触发边沿和触发方式等。

3.TMOD(定时器模式控制寄存器):用于设置定时器的模式和工作方式。

4.TH0/TH1(定时器0/1计数器高8位寄存器):用于存储定时器的计数值。

5.TL0/TL1(定时器0/1计数器低8位寄存器):用于存储定时器的计数值。

五、寄存器功能与赋值说明1.ICON寄存器:o EA:全局中断允许位,设置为1时允许所有中断,设置为0时禁止所有中断。

o ET0:定时器0中断允许位,设置为1时允许定时器0中断,设置为0时禁止定时器0中断。

o ET1:定时器1中断允许位,设置为1时允许定时器1中断,设置为0时禁止定时器1中断。

o EX0:外部中断0允许位,设置为1时允许外部中断0,设置为0时禁止外部中断0。

o EX1:外部中断1允许位,设置为1时允许外部中断1,设置为0时禁止外部中断1。

2.INT0/INT1寄存器:o IT0/IT1:外部中断0/1触发方式选择位,设置为0时选择下降沿触发,设置为1时选择低电平触发。

C51单片机教程——中断的应用

C51单片机教程——中断的应用

C51单片机教程——中断的应用中断是单片机中重要的功能之一,它可以在需要时打断当前程序的执行,转而去执行其他的相关程序,完成以不阻塞常规程序流程的方式处理一些特殊事件。

本文将介绍C51单片机中断的应用。

首先,我们需要了解中断的基本概念。

中断是单片机处理器和外部世界之间的一种通信方式,它通过改变处理器的执行流程来响应外部事件。

单片机处理器在执行中断时会暂停当前任务,转而去执行中断服务程序,中断服务程序执行完毕后,再回到原来被打断的地方继续执行。

通过使用中断,可以提高单片机系统的实时性和响应能力。

在C51单片机中,中断是通过专门的中断向量表和中断控制寄存器实现的。

中断向量表存储了中断服务程序的入口地址,中断控制寄存器用于配置中断的相关参数,如中断源、中断优先级等。

C51单片机支持多个中断源,包括外部中断、定时器中断、串口中断等。

以下是一些中断的常见应用场景。

1.外部中断:外部中断通常用于处理外部触发事件,比如按键、开关等输入信号。

当外部触发事件发生时,单片机会自动跳转到相应的中断服务程序执行。

我们可以在中断服务程序中编写相应的代码来处理触发事件,比如改变状态、计数等。

2.定时器中断:定时器中断常用于定时任务的处理。

通过配置定时器的参数,可以使单片机在设定的时间间隔内产生定时中断。

在定时器中断服务程序中,我们可以编写相应的逻辑代码,比如实现定时器计数、LED闪烁、蜂鸣器发声等功能。

3.串口中断:串口中断用于处理串口通信时的数据传输。

当有数据接收或发送时,单片机会自动触发串口中断,并跳转到中断服务程序中处理数据。

在串口中断服务程序中,我们可以编写相应的代码来处理接收或发送的数据。

例如,我们可以接收串口数据并进行处理或者发送数据到外部设备。

4.ADC中断:ADC中断用于处理模拟信号的采集和转换。

当ADC转换完成后,单片机会自动触发ADC中断,并跳转到中断服务程序中。

在中断服务程序中,我们可以读取ADC的转换结果,进行进一步的处理。

51单片机(STC89C52)的中断和定时器

51单片机(STC89C52)的中断和定时器

51单⽚机(STC89C52)的中断和定时器STC89C51/STC89C52 Timer内部不带振荡源, 必须外接晶振采⽤11.0592MHz,或22.1184MHz,可⽅便得到串⼝通讯的标准时钟.STC89和STC90系列为12T, STC11/STC12系列为1T, 也就是⼀个指令⼀个机器周期, 这些都需要外置晶振; STC15系列有内置晶振.中断中断允许控制寄存器 IE字节地址A8H, CPU对中断系统所有中断以及某个中断源的开放和屏蔽是由中断允许寄存器IE控制的D7D6D5D4D3D2D1D0EA—ET2ES ET1EX1ET0EX0EA (IE.7): 整体中断允许位, 1:允许ET2(IE.5): T2中断允许位, 1:允许(for C52)ES (IE.4): 串⼝中断允许位, 1:允许ET1(IE.3): T1中断允许位, 1:允许EX1(IE.2): 外部中断INT1允许位, 1:允许ET0(IE.1): T0中断允许位, 1:允许EX0(IE.0): 外部中断INT0允许位, 1:允许52单⽚机⼀共有6个中断源, 它们的符号, 名称以及各产⽣的条件分别如下1. INT0 - 外部中断0, 由P3.2端⼝线引⼊, 低电平或下降沿引起2. INT1 - 外部中断1, 由P3.3端⼝线引⼊, 低电平或下降沿引起3. T0 - 定时器/计数器0中断, 由T0计数器计满回零引起4. T1 - 定时器/计数器1中断, 由T1计数器计满回零引起5. T2 - 定时器/计数器2中断, 由T2计数器计满回零引起 <--这个是52特有的6. TI/RI - 串⾏⼝中断, 串⾏端⼝完成⼀帧字符发送/接收后引起定时器中断51单⽚机内部共有两个16位可编程的定时器,即定时器T0和定时器T1, 52单⽚机内部多⼀个T2定时器. 它们既有定时功能,也有计数功能。

可通过设置与它们相关的特殊功能寄存器选择启⽤定时功能还是计数功能. 这个定时器系统是单⽚机内部⼀个独⽴的硬件部分,它与CPU和晶振通过内部某些控制线连接并相互作⽤,CPU⼀旦设置开启定时功能后,定时器便在晶振的作⽤下⾃动开始计时,但定时器的计数器计满后,会产⽣中断。

第4章 MCS-51单片机中断、定时系统及串行数据通信

第4章 MCS-51单片机中断、定时系统及串行数据通信

表4-2 中断源入口地址表 中断源 外部中断0 中断服务程序入口地址 0003H
定时器/计数器T0 外部中断1 定时器/计数器T1 串行口中断
000BH 0013H 001BH 0023H
单片机的两个相邻中断源中断服务程序入口地址 相距只有8个单元,一般中断服务程序容纳不下,因此 在该中断的入口地址处放一条长跳转指令LJMP,这 样就可以转到64KB的任何可用区域了。在2KB范围内 转移可用短跳转AJMP指令。
表4-1 同级中断源优先级排列顺序
中断源
外部中断0(IE0) 定时器/计数器T0中断(TF0) 外部中断1(IE1) 定时器/计数器T1中断(TF1)
同级内的优先级
最低级
串行口中断(RI+TI)
最高级
当单片机系统复位后,IE中各位均被清0,所有 中断源禁止;IP中各位均被清0,5个中断源均为低优 先级。
SET SET
SET
ET0 ET1
EA
;定时器/计数器0允许中断 ;定时器/计数器1允许中断
;CPU开中断
用字节操作指令 MOV IE,#8AH 或 MOV A8H,#8AH
(2)中断优先级控制寄存器(IP) MCS-51单片机系统的中断源有两个优先级,每 个中断源均可由中断优先级寄存器IP来设置优先级别。 IP的字节地址为0B8H,位地址为0B8H~0BFH。与 中断有关的控制位如下: 位地址 0BFH 0BEH 0BDH 0BCH 0BBH 0BAH 0B9H 0B8H
TMOD是定时器的工作方式寄存器,TCON是控制 寄存器,用于对T0和T1的管理和控制。
2.定时器/计数器的结构的工作原理 16位定时器/计数器的核心是一个加1计数器,如图 4-4所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、方式1 方式
方式1结构 图6-5 T0 (或T1) 方式 结构 或
三、方式2 方式
TMOD 申请 TCON 中断 D7 TF1 TR1 TF0 TR0 T1引脚 溢出 TL1 重装初值控制 TH1 8位 &
≥1
0 1
M0 M1 C/T
D4
1
1 0
机器周期
GATE D7
1 INT1引脚
D0
方式2结构 图6-6 T0 (或T1) 方式 结构 或
图6-3 方波硬件设计和仿真波形
(2)源程序 ) //中断方式 中断方式 #include "reg51.h" #include "stdio.h" Uart_Init(); sbit P1_1=P1^1; void main() { TMOD=0X01; // T0工作在方式 工作在方式1 工作在方式 TL0=0xB0; //给TL0置初值 给 置初值 TH0=0x3c; //给TH0置初值 给 置初值 ET0=1; //开串行口中断 开串行口中断 EA=1; TF0=0; TR0=1; //启动 启动T0 启动 while(1) ; //设置断点处 设置断点处 } void Int_T0() interrupt 1 using 2 { TL0=0xB0; TH0=0x3c; //重赋初值 重赋初值 P1_1=!P1_1; //定时时间到 定时时间到P1_1取反 定时时间到 取反 printf("Timer1 overflow in Mode 1\n");/* 定时 溢出后, 器0溢出后,输出提示信息 */ 溢出后 }
计数器控制寄存器TCON 三、定时/计数器控制寄存器 定时 计数器控制寄存器
定时器控制字TCON的格式如下。 位地址 位符号 8FH TF1 8EH TR1 8DH TF0 8CH TR0 8BH IE1 8AH IT1 89H IE0 88H IT0
各位定义如下: ⑴ TF1-定时器T1溢出标志。当定时器T1计满溢出时,由硬件使TF1置“ 并且申请中断。进入中断服务程序后,由硬件自动清“0”,在查询方式下用软件 ⑵ TF0-定时器T0溢出标志。当定时器T0计满溢出时,由硬件使TF0置“ 并且申请中断。进入中断服务程序后,由硬件自动清“0”,在查询方式下用软件 ⑶ TR1 —— 定时 / 计数器T1运行控制位。软件置位,软件复位。 与GATE有关,分两种情况: 当GATE = 0 时,若TR1 = 1,开启T1计数工作; 若TR1 = 0,停止T1计数。 当GATE = 1 时,若TR1 = 1 且/INT1 = 1时,开启T1计数; 若TR1 = 1 但 /INT1 = 0,则不能开启T1计数。 若TR1 = 0, 停止T1计数。
四、定时/计数器的初始化 定时 计数器的初始化
1.定时器初始化的主要步骤 . 选择工作方式,即对TMOD 赋初值。 ⑴ 选择工作方式,即对 给定时器赋初值,即把初始常数装入TH0 TL0 或 TH1 TL1。 ⑵ 给定时器赋初值,即把初始常数装入 ⑶ 根据需要设置中断控制字 直接对中断允许寄存器IE 和 优先级寄存器 IP 设置。 启动定时/计数器 ⑷ 启动定时 计数器 ① 若已规定用软件启动(即GATE =0), 则可把TR0 或 TR1 置1 ② 若已规定由外中断端子电平启动(即GATE =1), 则需给外端子加启动电平。 2.定时器初值设定方法 . 根据定时长短,选择工作方式 设用M 选择工作方式, ⑴ 根据定时长短 选择工作方式,设用 表示最大计数值,则 各种方式计数最大值如下。 方式 0 M= 213=8192 方式 1 M= 216=65536 方式 2 M= 28=256 方式 3 M=28=256
=0,M1M0=00;T0不用可为任意方式,只要不使其进入方式 即可, , 不用可为任意方式, 即可, ; 不用可为任意方式 只要不使其进入方式3即可 一般取0即可 即可。 各位设置如下: 一般取 即可。TMOD各位设置如下: 各位设置如下
GATE 0 0 M1 0 M0 0 GATE 0 0 M1 0 M0 0
(3)Proteus仿真 ) 仿真 经Keil软件编译通过后,可利用Proteus软件进行仿真。 在Proteus ISIS编辑环境中绘制仿真电路图,或者打开配套光盘中的 “例程\第六章\例6-1 方波”文件夹内的“方波.DSN”仿真原理图文件。 将编译好的“方波.hex”文件加入AT89C51,启动仿真。 如图6-3所示,可以看到周期为100ms的方波。 (4)下载验证 ) 本实验可以通过SP-28 USB下载验证,可以观察到VD2不停的亮灭。
(3)M1、M0-工作方式选择位,其功能见表6-1。 表6-1 M1和M0 工作方式选择位 M1 0 0 1 1 M0 0 1 0 1 模式 0 1 2 3 说明 13位定时 计数器,高八位 (7~0)+ 低五位 位定时/计数器 高八位TH ~ ) 低五位TL 位定时 计数器,
(4 ~0) )
16位定时 计数器 TH(7 ~ 0)+ TL(7 ~ 0) 位定时/计数器 位定时 ) ) 8位计数初值自动重装 TL(7 ~ 0) TH(7~0) 位计数初值自动重装 ) ~ ) T0运行,而T1停止工作,8位定时 计数。 运行, 停止工作, 位定时 计数。 位定时/计数 运行 停止工作
定时/计数器 计数器4种工作方式 第二节 定时 计数器 种工作方式
一、方式0 方式
TMOD 申请 TCON 中断 D7 TF1 TR1 TF0 TR0 T1引脚 溢出 TH1 0 0 0 TL1 8位 5位 &
≥1
0 0
M0 M1 C/T
D4
1
1 0
机器周期
GATE D7
1 INT1引脚
D0
方式0结构 图6-4 T0(或T1)方式 结构 或 方式
(1)硬件设计 ) 硬件设计见图6-3所示。 硬件设计见图
图6-8 1ms方波
例6.3 用AT89S51单片机产生“嘀、嘀、…”报警声从P3.7端口输出, 产生频率为1KHz, 1KHZ方波从P3.7输出0.2秒,接着0.2秒从P3.7输出电平信号, 如此循环下去,就形成所需的报警声了。 解:生活中常常到各种各样的报警声,例如“嘀、嘀、…”就是常见的一种声音报警声, 但对于这种报警声,嘀0.2秒钟,然后断0.2秒钟,如此循环下去, 假设嘀声的频率为1KHz,则报警声时序图如图6-9所示。
C /T = 0
C /T =1
图6-2 定时/计数器的工作原理结构框图
二、定时/计数器工作方式控制寄存器 TMOD 定时 计数器工作方式控制寄存器 TMOD为T0、T1的工作方式控制寄存器,其格式如下。
C /T /T
定时器 T1
定时器T0
GATE
C/T
M1
M0
GATE
C/T
M1
M0
(1)GATE -门控位,控制定时器的两种启动方式, 当GATE = 0,只要TR0 或 TR1 置1, 定时器则可启动。GATE = 1,除TR0 或 TR1 置1 外,还必须等待外部脉冲输入端 P3.4 或P3.5 高电平到,定时器才能启动。若外部输入低电平,则 定时器关闭,这样可实现由外部控制定时器的启停,故称该位 为门控位。
一、定时/计数器的结构和工作原理 定时 计数器的结构和工作原理 1.定时/计数器的结构 .定时 计数器的结构
图6-1 TMOD、TCON与T0、T1的结构框图
2.定时/计数器工作原理 .定时 计数器工作原理 定时器工作前先装入初值,利用送数指令将初值装入TH0 和 TL0 或 TH1和TL1, 高位数装入TH0 和TH1,低位数装入 TL0 和 TL1。当发出启动命令后, 装初值寄存器开始计数,连续加1,每一个机器周期加1 一次,加到满值(各位全1)。 若再加1,则溢出,同时将初值寄存器清零。如果继续计数定时,则需要重新赋初值。

D0
INT0引脚
方式3下的逻辑结构 图6-7 T0方式 下的逻辑结构 方式 2.T0工作方式 下的定时器 计数器 . 工作方式 下的定时器/计数器 工作方式3下的定时器 计数器T1 如果定时器/计数器T0已工作在工作方式3,则定时器/计数器T1只能工作在方式0、 方式1或方式2下,因为它的运行拉制位TR1及计数溢出标志位 TF1已被定时器/计数器T0借用,如图6-7所示。
故TMOD = 00H。系统复位后TMOD为0,所以不必对TMOD置初值。 下面计算500µs定时T1的初值: 机器周期 T机=12/fosc=12/(6×106)=2µs 设初值为X则:(213-X)×2×10-6 s =500×10-6 s X = 7942D=1111100000110B=1F06H 因为在作13位计数器用时,TL1高3位未用,应写0,X的低5位装入TL1的低5位, 所以TL1=06H;X的高8位应装入TH1,所以TH1=F8H。
定时器/计数器的应用举例 第三节 定时器 计数器的应用举例
一、方式0、方式 的应用 方式 、方式1的应用
/T /T 选择T1方式0用于定时, P3.7引脚输出周期为1ms的方波 晶振fosc= 6MHz。 T1方式 引脚输出周期为1ms的方波, 例C6.2 选择T1方式0用于定时,在P3.7引脚输出周期为1ms的方波,晶振fosc= 6MHz。 根据题意,只要使P3.7每隔500 取反一次即可得到1ms方波, P3.7每隔500µs 1ms方波 解:根据题意,只要使P3.7每隔500 s取反一次即可得到1ms方波, C / T T1的定时时间为500µs 因而T1的定时时间为500 设为定时方式0: 因而T1的定时时间为500 s。将T1设为定时方式 :GATE=0, 设为定时方式 ,
定时初值计算,设初值为X,最大计数值为M。 ⑵ 定时初值计算,设初值为 初值X与机器周期I机及定时时间T的关系为: (M-X)T机 = T (6-1) 其中: 其中:T机 =12个时钟周期 =12 /fOSC X = M - T/ T机 (6-2)
相关文档
最新文档