九年级下学期数学期中考试试卷第17套真题
最新整理人教版2017届九年级下期中检测数学试题及答案
最新整理2017学年第二学期期中检测九年级数学问卷本试卷共5页,25小题,满分150分.考试时间120分钟.可以使用计算器,用2B 铅笔画图,所有答案都要写在答卷上,答在问卷上的答案无效.一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.-3的绝对值是( * ). A. 3B .-3C .31D . 31-2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( * ).A . B. C . D .3.某小组7位学生的中考体育测试成绩(满分60分)依次为57,60,59,57,60,58,60,则这组数据的众数与中位数分别是( * ).A .60,59B .60,57C .59,60D .60,58 4.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法错误..的是( * ). A .90ABC ∠=︒ B .AC BD = C .OA AD = D .OA OB =(第4题图) (第6题图)5.下列命题中,属于假命题的是( * ).A .半圆(或直径)所对的圆周角是直角.B .对顶角相等.C .四条边相等的四边形是菱形.D .对角线相等的四边形是平行四边形. 6.如图,在△ABC 中,DE ∥BC ,AD =6,BD =3,AE =4,则EC 的长为( * ).A.1 B .2 C.3 D. 4 7.如图,△ABC 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( * ).A. 2.6B. 2.5C. 2.4D. 2.38.由若干个边长为1cm 的正方体堆积成的一个几何体,它的三视图如图,则这个几何体 的表面积是( * ).A .15cm 2B .18cm 2C .21cm 2D .24cm 29.如图,正方形ABCD 的边长AB=4,分别以点A ,B 为圆心,AB 长为半径画弧,两弧交于点E ,则弧CE 的长是( * ).A.π32 B. π C. π34 D. π3810.等腰三角形三边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2-6x +n -1=0的两根,则n 的值为( * ).A. 9B. 10C. 9或10D. 8或10(第7题图) ( 第8题图 ) (第9题图) 二、填空题(本大题共6小题,每小题3分,满分18分.) 11.若代数式1-x 有意义,则实数x 的取值范围是 * . 12.如图,已知∠1=75°,如果CD ∥BE ,那么∠ 13.分解因式:mb ma 63-14.如图,了若干名学生(每名学生分别选了一项球类运动),并根据 (第12题图) 调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 * 名.15. 如图,△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =5,BC =6,则sin C = * .16.已知正六边形ABCDEF 在直角坐标系内的位置如图所示,A (-2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B 的坐标是___*__.(第14题图 ) (第15题图) ( 第16题图)A E20%10%30%40%其他乒乓球篮球羽毛球三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分9分)解方程:0982=--x x .18.(本小题满分9分)已知:如图,在平行四边形ABCD 中,O 为对角线BD过点O 的直线EF 分别交AD ,BC 于E ,F 求证:OE=OF.19.(本小题满分10分)解一元一次不等式组⎪⎩⎪⎨⎧≤-->+131221x x ,并在数轴上表示出其解集.20.(本小题满分10分)小强的钱包内有10元钱、20元钱和50元钱的纸币各1张,(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率. 21.(本小题满分12分)广州火车南站广场计划在广场内种植A ,B 两种花木共 6600棵,若A 花木数量是B 花木数量的2倍少600 棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40 棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务? 22.(本小题满分12分)如图,一次函数y=kx+b(k ≠0)与反比例函数xmy =(0≠m )的图象有公共点A (1,a )、 D (-2,-1).直线l 与x 轴垂直于点N (3,0), 与一次函数和反比例函数的图象分别交于点B 、C. (1)求一次函数与反比例函数的解析式;(2)根据图象回答,x 在什么范围内,一次函数的值 大于反比例函数的值; (3)求△ABC 的面积.( 第22题图) 23.(本小题满分12分)如图,等腰三角形ABC 中,AC=BC=10,AB=12, (1)动手操作:利用尺规作以BC 为直径的⊙O ,⊙O 交AB 于点D ,⊙O 交AC 于点E ,并且过点D 作DF ⊥AC 交AC 于点F. (2)求证:直线DF 是⊙O 的切线;(3),连接DE ,记△ADE 的面积为1S ,四边形DECB 的面积为2S求21S S 的值。
建阳区16-17下九年级数学期中试卷
建阳 区2017届初中毕业班第一次质量检查考试九年级数学试卷(总分:150分 完成试卷:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分.)1.在数1,0,-1,-2中,最小的数是A.1B.0C.-1D.-2 2.下列计算正确的是A .a 3+ a 4=a 7B .a 3·a 4=a 7C .a 6÷a 3=a 2D .(a 3)4=a 7 3.将一直角三角板与两边平行的纸条如图所示放置,已知∠1=30°,则∠2的度数为A. 30°B. 45°C. 50°D. 60°4.方程组⎩⎨⎧=-=+521y x y x 的解为A. ⎩⎨⎧-==12y x B.⎩⎨⎧=-=32y x C. ⎩⎨⎧=-=21y x D. ⎩⎨⎧==12y x 5.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红色的概率是 A.61 B. 51 C. 52 D. 53 6.一次函数y = -2x +1的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限7.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是 A .15π B .20π C .24π D .30π 8.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,如果设上半年每月平均用电x 度,则所列方程正确的是A. 6x +6(x -2000)=150000B. 6x +6(x +2000)=150000C. 6x +6(x -2000)=15D. 6x +6(x +2000)=15 9.如图,将ΔABC 沿BC 方向平移2cm 得到ΔDEF ,若ΔABC 的周长为16cm ,则四边形ABFD 的周长为 A. 16cm B. 18cm C. 20cm D. 22cm10.已知ΔABC 的三条边长分别为3,4,6,在ΔABC 所在平面内画一条直线,将ΔABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画 A .6条 B .7条 C .8条 D .9条21第3题图EFB C A D 第9题图二、填空题(本大题共6小题,每小题4分,满分24分.)11.若根式5-x 有意义,则实数x 的取值范围是_______.12.分解因式:2a a -=__________.13.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是__________.14.如图,在ΔABC 中,DE //BC ,32=BC DE ,ΔADE 的面积是8,则ΔABC 的面积为______. 15.一个正多边形的一个外角等于30°,则这个多边形的 边数为__________.16.如图所示,在Rt ΔABC 中,∠C =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =5,OC =62,则另一直角边BC 的长为_______.三、解答题(本大题共9小题,满分86分,解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:20140(1)6(50)π---+-.18.(8分)解不等式组∶211841x x x x ->+⎧⎨+>-⎩,并把解集在下面数轴上表示出来.19.(8分)在平行四边形ABCD 中,对角线AC 、BD交于点O ,过点O 作直线EF 分别交边AD 、BC 于点E 、F . 求证:DE =BF .20.(8分)如图,在Rt ΔABC 中,∠B =90°,分别以A 、C 为圆心,大于12AC 长为半径 画弧,两弧相交于点M 、N ,连结MN ,与 AC 、BC 分别交于点D 、E ,连结AE .则: (1)∠ADE = °; (2)AE EC ;(填“=”,“ >”或“<”) (3)当AB = 3,AC = 5时,求出ΔABE 的周长.EB CA D 第14题图ODECBA第16题图第20题图21.(8分)考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试. 某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校将减压方式分为五类,同学们可根据自己的情况必选且只选其中一类,学校收集整理数据后,绘制了图1和图2两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)这次抽样调查中,一共抽查了 名学生; (2)请补全条形统计图;(3)扇形统计图中“享受美食”所对应扇形的圆心角的度数为 °;(4)根据调查结果,请计算该校九年级500名学生中采用“听音乐”的减压方式的人数.22.(10分)甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3小时完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50吨,甲、乙两队在此路段的清雪总量y (吨)与清雪时间x (时)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为吨.(2)求此次任务的清雪总量m .(3)求乙队调离后y 与x 之间的函数关系式.第21题图(1) 第21题图(2)第22题图A 第23题图24.(12分)在四边形ABCD 中,对角线AC 平分∠DAB .(1)如图①,当∠DAB =120°,∠B =∠D =90°时,求证:AB +AD =AC . (2)如图②,当∠DAB =120°,∠B 与∠D 互补时,线段AB 、AD 、AC 有怎样的数量关 系?写出你的猜想,并给予证明. (3)如图③,当∠DAB =90°,∠B 与∠D 互补时,请直接写出线段AB 、AD 、AC 有怎样的数量关系?25.(14分)ΔABC 中,∠A =∠B =30°,AB =32.把ΔABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),ΔABC 可以绕点O 作任意角度的旋转. (1)当点B 在第一象限,纵坐标是26时,求点B 的横坐标; (2)如果抛物线y =ax 2+bx +c (a ≠0)的对称轴经过点C ,请你探究:① 当a =45,b =-21,c =-553时,A 、B 两点是否都在这条抛物线上?并说明理由;② 设b =-2am ,是否存在这样的m 的值,使A 、B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.第25题图BA C D第24题图②B A D C 第24题图③B DC 第24题图①。
九年级数学下学期期中试题 17
青阳片2021届九年级下学期期中考试数学试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题〔本大题一一共10小题,每一小题3分,一共计30分.在每一小题所给出的四个选项里面,恰有一项是哪一项符合题目要求的,请需要用2B 铅笔把答题..卷.上相应之答案......涂黑.〕 1.假如a 与-3互为相反数,那么a 等于 〔 〕A .31B .3C .-31D .-32.以下运算中,正确的选项是 〔 〕A .222()a b a b +=+B .2(3)3-=C .3412a a a ⋅=D .2236()(0)a a a =≠ 3.以下调查方式中适宜的是( )A .要理解一批节能灯的使用寿命,采用普查方式B .调查你所在班级同学的身高,采用抽样调查方式C .环保部门调查太湖某段水域的水质情况,采用抽样调查方式D .调查全初三学生每天的就寝时间是,采用普查方式4.图中所示几何体的俯视图是 〔 〕5.如图,AB ∥CD ,那么根据图中标注的角,以下关系中成立的是〔 〕A .∠1=∠3B .∠2+∠3=180°C .∠2+∠4<180°D .∠3+∠5=180° 6.关于抛物线y =(x -1)2+2,以下结论中不正确是( )A .对称轴为直线x =1B .当x <1时,y 随x 的增大而减小C .与x 轴没有交点D .与y 轴交于点(0,2)7.以下图形中,是轴对称图形但不是中心对称图形的是 〔 〕A .等边三角形B .平行四边形C .矩形D .圆8.晓明家到的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10〔含8∶10〕至8∶20〔含8∶20〕之间到达。
假如设晓明步行的速度为x 米/分,那么晓明步行的速度范围是〔 〕A .70≤x ≤87.5B .x ≤70或者x ≥87.5C . x ≤70D .. x ≥主视方向 A . B . C . D .9.如图,菱形OABC的顶点O〔0,0〕,B〔-2,-2〕,假设菱形绕点O逆时针旋转,每秒旋转45°,那么第60秒时,菱形的对角线交点D的坐标为〔〕A.〔1,﹣1〕B.〔﹣1,﹣1〕C.〔1,1〕D.〔﹣1,1〕10.当m,n是实数且满足m﹣n=mn时,就称点Q〔m,〕为“奇异点〞,点A、点B是“奇异点〞且都在反比例函数y=的图象上,点O是平面直角坐标系原点,那么△OAB的面积为〔〕A.1 B.C.2 D.二、填空题〔本大题一一共8小题,每一小题2分,一共16分.不需要写出解答过程,只需把答案直接填写上在答题卡相应的位置........〕11.分解因式:a2﹣4a+4= .12.据媒体报道,我国因环境污染造成的宏大经济损失,每年高达680000000元,这个数用科学记数法表示为元.13.假设一个多边形的内角和比外角和大360°,那么这个多边形的边数为.14.一组数据1,2,x,4,5的平均数是3,那么这组数据的方差是.15.有一个正六面体,六个面上分别写有1---6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或者3的倍数的概率是 .16.如图,△ABC中,DE∥FG∥BC,AD:DF:FB=2:3:4,假设EG=4,那么AC= .17.如图,△ABC的三个顶点的坐标分别为A〔﹣3,5〕,B〔﹣3,0〕,C〔2,0〕,将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y =的图象上,那么k的值是.18.如图,在平面直角坐标系中,点A 〔0,1〕、点B〔0,1+t〕、C〔0,1﹣t〕〔t >0〕,点P在以D〔3,3〕为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,那么t的最小值是.三、解答题〔本大题一一共10小题,一共84分。
山东省菏泽市郓城县2017—2018学年度第二学期期中教学质量检测九年级数学试题(扫描版 含答案)
2017—2018学年度第二学期期中教学质量检测九年级数学试题参考答案一、选择题答题栏(每小题选对得3分,共24分)二、填空题:(每小题选对得3分,共18分)9.2(2)a a - 10.-1 11.5或6 12.12πcm 2 13.3 14.1n -三、解答题:本大题共10小题,共78分.解答要写出必要的文字说明、证明过程或演算步骤15.(6分)解:原式………………………………………………3分5分 =5…………………………………………………………………………………………………6分16.(6分)解:222442342a a a a a a-+-÷--+ =2(2)(2)3(2)(2)2a a a a a a -+⋅--+- ……………………………………………………3分 =a-3…………………………………………………………………………………4分代入a=72求值得, 原式=12.………………………………………………………………6分 17、(6分)证明:∵AB ∥DC ,∴∠1=∠F ,∠B=∠2,………………………………………………………………………2分 ∵E 是BC 的中点,∴BE=CE ,……………………………………………………………………………………3分在△AEB 和△FEC 中,∴△AEB ≌△FEC ,……………………………………………………………………………5分 ∴AB=FC .……………………………………………………………………………………6分 18.(6分)解:设每层楼高为x 米, 由题意得:MC ′=MC ﹣CC ′=2.5﹣1.5=1米,在Rt △DC ′A ′中,∠DA ′C ′=60°,∴C ′A ′==3(5x+1),…………………………………………………………3分 在Rt △EC ′B ′中,∠EB ′C ′=30°,∴C ′B ′=4x+1),…………………………………………………………4分∵A ′B ′=C ′B ′﹣C ′A ′=AB ,4x+1)﹣3(5x+1)=14, 解得:x ≈3.17,………………………………………………………………………………5分 则居民楼高为5×3.17+2.5≈18.4米.………………………………………………………6分 19.解:(1)设每千克核桃应降价x 元,根据题意,得(60-x-40)100202x ⎛⎫+⨯ ⎪⎝⎭=2240.………………………………………………………2分 化简,得x 2-10x +24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.………………………………………………………4分 (2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元. 此时,售价为60-6=54(元),5460×100%=90%. 答:该店应按原售价的九折出售.…………………………………………………………7分 20.(1)将x=1代入y=3x ,得:y=3,∴点A 的坐标为(1,3),……………………………………………………………………1分将A (1,3)代入ky x=,得:k=3,∴反比例函数的解析式为3y x=;………………………3分(2)在3y x=中y=1时,x=3,∴点B (3,1),……………………………………………4分 如图,S △AOB =S 矩形OCED ﹣S △AOC ﹣S △BOD ﹣S △ABE =3×3﹣12×1×3﹣12×1×3﹣12×2×2 =4.………………………………………………………………………………………………7分 21.解:(1)该校班级个数为4÷20%=20(个),条形统计图补充完整如下:……………………………………………………………………3分该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);……………………………………5分 (2)由(1)得只有2名外来务工子女的班级有2个,共4名学生, 设A 1,A 2来自一个班,B 1,B 2来自一个班, 画树状图如图所示;……………………………8分由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为:412 =13.…………………………10分 22.证明:(1)连接OC …………………………………………………………………………1分 ∵AB 为O 的直径∴∠ACB=∠DCB=90°…………………………………………………………………………2分 ∵E 为BD 的中点 ∴BE=CE∴∠EBC=∠ECB ……………………………………………3分 ∵OC=OB ∴∠OCB=∠OBC∴∠ECB+∠OCB=∠EBC+∠OBC ……………………………4分 ∵BD ⊥AB∴∠OCE=∠OBE=90°∴CE 是O 的切线.……………………………………………………………………6分 (2)设CD=m,则AC=3m ∵△ACB ≌△BCD ∴CDBCCB AC = ∴CD AC BC ⋅=2∴33tan =∠A ∴∠A=30°……………………………………………………………………………………10分 23.解:(1)①∵四边形ABCD 为正方形, ∴△ABD 为等腰直角三角形, ∴BF=错误!未找到引用源。
2017届湖北省鄂州市九年级下学期期中考试数学试卷(带解析)
试卷第1页,共9页绝密★启用前2017届湖北省鄂州市九年级下学期期中考试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:76分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、若方程组的解x 、y 满足0<x+y <1,则k 的取值范围是( )A .0<k <8B .﹣1<k <0C .﹣4<k <0D .k >﹣42、如图,P 为⊙O 内的一个定点,A 为⊙O 上的一个动点,射线AP 、AO 分别与⊙O 交于B 、C 两点.若⊙O 的半径长为3,OP=,则弦BC 的最大值为( )A. 2B. 3C.D. 3试卷第2页,共9页3、如图,AB 是圆O 的直径,BD 、CD 分别是过圆O 上点B 、C 的切线,且∠BDC =100°,连接AC ,则∠A 的度数为( )A .15°B .30°C .45°D .40°4、如图所示,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数在第一象限的图象经过顶点A (m ,m +3)和CD 上的点E ,且OB -CE =1。
直线l 过O 、E 两点,则tan ∠EOC 的值为( )A .B .5C .D .35、如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=6,则DF 的长是( )A. 3B. 2C.D. 46、下列运算正确的是( )A .a 3•a 4=a 12B .3a 2•2a 3=6a 6C .(﹣2x 2y )3=﹣8x 6y 3D .(﹣3a 2b 3)2=6a 4b 67、|﹣8|的相反数是( )试卷第3页,共9页A .﹣8B .8C .D .二、选择题(题型注释)8、如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(,y 2)是抛物线上两点,则y 1>y 2. 其中说法正确的是( )A .①②B .②③C .①②④D .②③④9、小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( ) A . B . C .1 D .10、下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )A .B .C .D .试卷第4页,共9页试卷第5页,共9页第II 卷(非选择题)三、填空题(题型注释)11、如图①,在正方形中,点沿边从点开始向点以的速度移动;同时,点沿折线从点开始向点以的速度移动.当点移动到点时,、同时停止移动.设点出发秒时,的面积为,与的函数图象如图②,则线段所在的直线对应的函数关系式为_________.12、如图,在正方形ABCD 内有一折线段,其中AE 丄EF ,EF 丄FC ,并且AE =3,EF =4,FC =5,则正方形ABCD 的外接圆的半径是_______________.13、将的纸片按如图所示的方式折叠,使点B 落在边AC 上,记为点,折叠痕为EF ,已知AB=AC=8,BC=10,若以点、F 、C 为顶点的三角形与相似,那么BF 的长度是______________ .14、在中,,AB =6,sin=,则BC =________ .试卷第6页,共9页15、若一元二次方程ax 2=b (ab >0)的两个根分别是与,则=________.16、分解因式:(a 2+1)2﹣4a 2=_______.四、解答题(题型注释)17、某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y (万件)与产品售价x (元)之间的关系如图所示.(1)求y 与x 之间的函数关系式,并写出x 的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价; (3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.18、如图,已知斜坡AB 长为80米,坡角(即∠BAC )为30°,BC ⊥AC ,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡角为45°,求平台DE 的长;(结果保留根号)(2)一座建筑物GH 距离A 处36米远(即AG 为36米),小明在D 处测得建筑物顶部H 的仰角(即∠HDM )为30°.点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G试卷第7页,共9页在同一条直线上,且HG ⊥CG ,求建筑物GH 的高度.(结果保留根号)19、如图,已知Rt △ABC ,∠ABC =90º,以直角边AB 为直径作⊙O ,交斜边AC 于点D ,连结BD .(1)若AD =3,BD =4,求边BC 的长;(2)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切.20、已知:如图一,抛物线y=ax 2+bx+c 与x 轴正半轴交于A 、B 两点,与y 轴交于点C ,直线y=x-2经过A 、C 两点,且AB=2. (1)求抛物线的解析式;(2)若直线DE 平行于x 轴并从C 点开始以每秒1个单位的速度沿y 轴正方向平移,且分别交y 轴、线段BC 于点E ,D ,同时动点P 从点B 出发,沿BO 方向以每秒2个单位速度运动,(如图2);当点P 运动到原点O 时,直线DE 与点P 都停止运动,连DP ,若点P 运动时间为t 秒;设s=,当t 为何值时,s 有最小值,并求出最小值.(3)在(2)的条件下,是否存在t 的值,使以P 、B 、D 为顶点的三角形与△ABC 相试卷第8页,共9页似;若存在,求t 的值;若不存在,请说明理由.21、如下图,已知在△AB C 中,AD 平分∠BAC ,EM 是AD 的中垂线,交BC 延长线于E .(1)连接AE ,证明:∠EAC =∠B . (2)求证:DE 2=BE ·CE .22、已知关于x 的一元二次方程x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2. (1)求实数k 的取值范围;(2)是否存在实数k ,使得x 1·x 2-x 12-x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.23、先化简,再求值:,其中x 满足方程x 2﹣x ﹣6=0.24、在四张编号为A ,B ,C ,D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.试卷第9页,共9页(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A ,B ,C ,D 表示);(2)我们知道,满足a 2+b 2=c 2的三个正整数a ,b ,c 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.参考答案1、C2、A3、D4、C5、A6、C7、A8、C9、A10、B11、y=-3x+1812、13、,514、15、916、(a+1)2(a﹣1)217、(1)x的取值范围是80≤x≤160;(2)第一年公司是亏损,且当亏损最小时的产品售价为150元/件;(3)第二年售价是140元/件或160/件.18、(1);(2).19、(1)(2)通过连接OD,证明,则可得到ED与⊙O相切.20、(1)y="-1/4" x2+3/2 x-2(2)1(3)当t="2" /3 或t="10/" 7 时,以P、B、D为顶点的三角形与△ABC相似,证明见解析21、(1)证明见解析(2)22、(1)(2)不存在k使。
盐城市东台市2017届九年级下期中数学试卷含答案解析
2016-2017学年江苏省盐城市东台市九年级(下)期中数学试卷一、选择题1、下列各选项的图形中,中心对称图形是()A、B、C、D、2、一个物体的三视图如下图所示,则该物体是()A、圆锥B、球C、圆柱D、长方体3、下列运算正确的是()A、x•x2=x2B、(xy)2=xy2C、(x2)3=x6D、x2+x2=x44、如果点P(m+3,m+1)在x轴上,则点P的坐标为()A、(0,2)B、(2,0)C、(4,0)D、(0,﹣4)5、如果100个乒乓球中有20个红色的,那么在随机抽出的20个乒乓球中()A、刚好有4个红球B、红球的数目多于4个C、红球的数目少于4个D、以上都有可能6、一项工程甲单独做需要x天完成,乙单独做需要y天完成,两人合做这项工程需要的天数为:A、B、+C、D、二、填空题7、用科学记数法表示2030000,应记作________.8、的相反数是________.9、一组数据:2,2,3,3,2,4,2,5,1,1,它们的众数为________.10、化简分式﹣的结果是________.11、已知点A(3,4)先向左平移5个单位,再向下平移2个单位得到点B,则点B的坐标为________.12、如图,甲、乙两名同学分别站在C、D的位置时,乙的影子与甲的影子的末端恰好在同一点,已知甲、乙两同学相距1m,甲身高1.8m,乙身高1.5m,则甲的影子是________m.13、在同一坐标系中,正比例函y=﹣2x与反比例函数y= 的图象有________个交点.14、如图,FD∥BE,则∠1+∠2﹣∠A=________.15、若a+b=5,ab=6,则a2+b2=________.16、如图,在矩形ABCD中,BC=5,AB=3,分别经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是________.三、解答题17、计算题(1)计算:()2÷(﹣2)﹣3(2)解方程:= .18、先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19、一家公司招考员工,每位考生要在A,B,C,D,E这5道试题中谁家抽出2道题回答,规定答对其中1题即为合格.(1)请用树状图表示出所有可能的出题情形;(2)已知某位考生只会答A,B两题,试求这位考生合格的概率.20、如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.21、图a.图b均为边长等于1的正方形组成的网格.(1)在图a空白的方格中,画出阴影部分的图形沿虚线AB翻折后的图形,并算出原来阴影部分的面积.(直接写出答案)(2)在图b空白的方格中,画出阴影部分的图形向右平移2个单位,再向上平移1个单位后的图形,并判断原来阴影部分的图形是什么三角形?(直接写出答案)22、某旅游团上午6时从旅馆出发,乘汽车到距离210km的某著名旅游景点游玩,该汽车离旅馆的距离S (km)与时间t(h)的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:(1)求该团去景点时的平均速度是多少?(2)该团在旅游景点游玩了多少小时?(3)求返回到宾馆的时刻是几时几分?23、本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B 之间的距离与A,C之间的距离相等,并测得BC长为120米,A到BC的距离为4米,如图所示.(1)请你帮他们求出该湖的半径;(2)如果在圆周上再另取一点P,建造一座连接B,C,P三点的三角形艺术桥,且△BCP为直角三角形,问:这样的P点可以有几处?如何找到?24、在一次期中考试中,(1)一个班级有甲、乙、丙三名学生,分别得到70分、80分、90分.这三名同学的平均得分是多少?(2)一个班级共有40名学生,其中5人得到70分,20人得到80分,15人得到90分.求班级的平均得分.(3)一个班级中,20%的学生得到70分,50%的学生得到80分,30%的学生得到90分.求班级的平均得分.(4)中考的各学科的分值依次为:数学150分,语文150分,物理100分,政治50分,历史50分,合计总分为500分.在这次期中考试中,各门学科的总分都设置为100分,现已知甲、乙两名学生的得分如下表:你认为哪名同学的成绩更理想,写出你的理由.25、某制造企业有一座对生产设备进行水循环冷却的冷却塔,冷却塔的顶部有一个进水口,3小时恰好可以注满这座空塔,底部有一个出水口,7小时恰好可以放完满塔的水.为了保证安全,塔内剩余水量不得少于全塔水量的,出水口一直打开,保证水的循环,进水口根据水位情况定时对冷却塔进行补水.假设每次恰好在剩余水量为满水量的m倍时开始补水,补满后关闭进水口.(1)当m= 时,请问:两次补水之间相隔多长时间?每次补水需要多长时间?(2)能否找到适当的m值,使得两次补水的间隔时间和每次的补水时间一样长?如果能,请求出m值;如果不能,请你分析两次补水的间隔时间和每次的补水时间之间的数量关系,并表示出来.26、自学:如图1,△ABC中,D是BC边上一点,则△ABD与△ADC有一个相同的高,它们的面积之比等于相应的底之比,记为= .(△ABD,△ADC的面积分别用记号S△ABD,S△ADC表示)(1)心得:如图1,若BD= DC,则S△ABD:S△ADC=________(2)成长:如图2,△ABC中,M,N分别是AB,AC边上一点,且有AM:MB=2:1,AN:NC=1:1,则△AMN 与△ABC的面积比为________.(3)巅峰:如图3,△ABC中,P,Q,R分别是BC,CA,AB边上的点,且AP,BQ,CR相交于点O,现已知△BPO,△PCO,△COQ,△AOR的面积依次为40,30,35,84,求△ABC的面积.27、如图1,正方形ABCD的顶点A在原点O处,点B在x轴上,点C的坐标为(6,6),点D在y轴上,动点P,Q各从点A,D同时出发,分别沿AD,DC方向运动,且速度均为每秒1个单位长度.(1)探索AQ与BP有什么样的关系?并说明理由;(2)如图2,当点P运动到线段AD的中点处时,AQ与BP交于点E,求线段CE的长.(3)如图3,设运动t秒后,点P仍在线段AD上,AQ交BD于F,且△BPQ的面积为S,试求S的最小值,及当S取最小值时∠DPF的正切值.答案解析部分一、<b >选择题</b>1、【答案】B【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.2、【答案】C【考点】由三视图判断几何体【解析】【解答】解:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选C.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3、【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、x•x2=x3同底数幂的乘法,底数不变指数相加,故本选项错误;B、(xy)2=x2y2,幂的乘方,底数不变指数相乘,故本选项错误;C、(x2)3=x6,幂的乘方,底数不变指数相乘,故本选项正确;D、x2+x2=2x2,故本选项错误.故选C.【分析】根据同底数幂的除法,底数不变指数相减,合并同类项,系数相加字母和字母的指数不变,同底数幂的乘法,底数不变指数相加,幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.4、【答案】B【考点】点的坐标【解析】【解答】解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.5、【答案】D【考点】概率的意义【解析】【解答】解:100个乒乓球中有20个红色的,红球出现的概率,随机抽出的20个乒乓球中,红球出现的个数可能为20× =4个,但实际操作中,可以是:刚好有4个红球,红球的数目多于4个,红球的数目少于4个,故A、B、C都有可能.故选:D.【分析】属于随机事件,红球有几个,只要不超过20个都有可能发生.6、【答案】D【考点】由实际问题抽象出分式方程【解析】【解答】解:甲、乙一天的工效分别为、,则合作的工效为,∴两人合做这项工程需要的天数为1÷()= .故选D.【分析】工作时间=工作总量÷工作效率.甲、乙一天的工效分别为、,则合作的工效,根据等量关系可直接列代数式得出结果.二、<b >填空题</b>7、【答案】2.03×106【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:2030000=2.03×106.故答案为:2.03×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.8、【答案】﹣【考点】相反数【解析】【解答】解:的相反数是﹣,故答案为:﹣.【分析】根据相反数的定义,只有符号不同的两个数互为相反数解答.9、【答案】2【考点】中位数、众数【解析】【解答】解:2,2,3,3,2,4,2,5,1,1中2出现的次数最多,故众数是2,故答案为:2.【分析】一组数据中出现次数最多的数据叫做众数,据此填空.10、【答案】x+1【考点】约分【解析】【解答】解:原式= .【分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.11、【答案】(﹣2,2)【考点】坐标与图形变化-平移【解析】【解答】解:点B的横坐标为3﹣5=﹣2,纵坐标为4﹣2=2,所以点B的坐标是(﹣2,2),故答案为(﹣2,2).【分析】让点A的横坐标减5,纵坐标减2即可得到平移后点的坐标.12、【答案】6【考点】相似三角形的应用【解析】【解答】解:设甲的影长是x米,∵BC⊥AC,ED⊥AC,∴△ADE∽△ACB,∴= ,∵CD=1m,BC=1.8m,DE=1.5m,∴= ,解得:x=6.所以甲的影长是6米.故答案为:6.【分析】根据甲的身高与影长构成的三角形与乙的身高和影长构成的三角形相似,列出比例式解答.13、【答案】0【考点】反比例函数与一次函数的交点问题【解析】【解答】解:∵函数y=﹣2x的图象经过第二、四象限,反比例函数y= 的图象在第一、三象限,∴两函数的图象没有交点,故答案为:0.【分析】根据正比例函数和反比例函数的性质得出函数y=﹣2x的图象经过第二、四象限,反比例函数y= 的图象在第一、三象限,即可得出答案.14、【答案】180°【考点】平行线的性质【解析】【解答】解:∵FD∥BE,∴∠2=∠A+(180°﹣∠1),∠1=∠A+(180°﹣∠2),∴∠1+∠2=2∠A+(180°﹣∠1)+(180°﹣∠2),∴∠1+∠2﹣∠A=180°.故答案为:180°.【分析】本题利用平行线的性质以及三角形内角和外角的关系解答15、【答案】13【考点】完全平方公式【解析】【解答】解:a2+b2=(a+b)2﹣2ab=13.【分析】先把a+b=5两边平方得(a+b)2=25,展开为a2+2ab+b2=25,再整体代入计算即可.16、【答案】【考点】矩形的性质,切线的性质【解析】【解答】解:如图,设GH的中点为O,过O点作OM⊥AC,过B点作BN⊥AC,垂足分别为M、N,在Rt△ABC中,BC=5,AB=3,∴AC= = ,由面积法可知,BN•AC=AB•BC,解得BN= ,∵∠B=90°,∴GH为⊙O的直径,点O为过B点的圆的圆心,∵⊙O与AC相切,∴OM为⊙O的半径,∴BO+OM为直径,又∵BO+OM≥BN,∴当BN为直径时,直径的值最小,此时,直径GH=BN= ,同理可得:EF的最小值为,∴EF+GH的最小值是= .故答案为:.【分析】如图,设GH的中点为O,过O点作OM⊥AC,过B点作BN⊥AC,垂足分别为M、N,根据∠B=90°可知,点O为过B点的圆的圆心,OM为⊙O的半径,BO+OM为直径,可知BO+OM≥BN,故当BN为直径时,直径的值最小,即直径GH也最小,同理可得EF的最小值.三、<b >解答题</b>17、【答案】(1)解:原式= ÷(﹣)= ×(﹣8)=﹣2(2)解:方程的两边都乘以(x﹣1)(x+3),得5(x+3)=x﹣1,解得x=﹣4,经检验:x=﹣4是原分式方程的根【考点】负整数指数幂,解分式方程【解析】【分析】(1)根据有理数的运算,可得答案.(2)根据等式的性质,可化成整式方程,根据解整式方程,可得答案.18、【答案】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式= =﹣3﹣5=﹣8【考点】多项式乘多项式【解析】【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.19、【答案】(1)解:列表得:(2)解:由表格可知共有20种可能的情况,其中合格的结果有14个,所以P(这位考生合格)=【考点】列表法与树状图法【解析】【分析】(1)首先根据题意列出表格或画树状图即可得出所有可能的出题情形;(2)然后由表格求得所有等可能的结果与某位考生只会答A,B两题的情况,再利用概率公式即可求得答案.20、【答案】(1)解:四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又在矩形ABCD中,OC=OD,∴四边形OCED是菱形(2)解:连接OE.由菱形OCED得:CD⊥OE,又∵BC⊥CD,∴OE∥BC(在同一平面内,垂直于同一条直线的两直线平行),又∵CE∥BD,∴四边形BCEO是平行四边形;∴OE=BC=8(7分)∴S四边形OCED= OE•CD= ×8×6=24.【考点】平行四边形的判定,菱形的判定,矩形的性质【解析】【分析】(1)首先可根据DE∥AC、CE∥BD判定四边形ODEC是平行四边形,然后根据矩形的性质:矩形的对角线相等且互相平分,可得OC=OD,由此可判定四边形OCED是菱形.(2)连接OE,通过证四边形BOEC是平行四边形,得OE=BC;根据菱形的面积是对角线乘积的一半,可求得四边形ODEC的面积.21、【答案】(1)解:如图a所示:阴影部分的面积为:2×3﹣×2×2﹣×1×3﹣×1×1=2;(2)解:如图b所示:阴影部分是等腰直角三角形【考点】勾股定理,勾股定理的逆定理【解析】【分析】(1)直接利用轴对称图形的性质得出答案,再利用三角形所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用平移的性质得出答案,再利用勾股定理逆定理可得出答案.22、【答案】(1)解:210÷(9﹣6)=70(千米/时)答:该团去景点时的平均速度是70千米/时(2)解:由横坐标得出9时到达景点,13是离开景点,13﹣9=4小时,答:该团在旅游景点游玩了4小时(3)解:设返回途中函数关系式是S=kt+b,由题意,得,解得,返回途中函数关系式是S=﹣50t+860,当s=0时,t=17.2,返回到宾馆的时刻是17.2时【考点】函数的图象【解析】【分析】(1)根据路程除以时间等于速度,可得答案;(2)根据路程不变,可得相应的自变量的范围;(3)根据待定系数法,可得函数关系式,根据自变量与函数值得对应关系,可得答案.23、【答案】(1)解:设圆心为点O,连接OB,OA,OA交线段BC于点D,∵AB=AC,∴= ,∴OA⊥BC,∴BD=DC= BC=60∵DA=4米,在Rt△BDO中,OB2=OD2+BD2,设OB=x米,则x2=(x﹣4)2+602,解得x=452.∴人工湖的半径为452米(2)解:这样的P点可以有2处,过点B或点C作BC的垂线交圆于一点,此点即为P点.【考点】勾股定理的应用,垂径定理的应用【解析】【分析】(1)设圆心为点O,连接OB,OA,AB=AC,得出= ,再根据等弦对等弧,得出点A是弧BC的中点.结合垂径定理的推论,知OA垂直平分弦,设圆的半径,结合垂径定理和勾股定理列出关于半径的方程,即可求得圆的半径;(2)根据垂直的定义即可得到结论.24、【答案】(1)解:这三名同学的平均得分是(70+80+90)÷3=80(分)(2)解:班级的平均得分是(5×70+20×80+15×90)=82.5(分)(3)解:班级的平均得分是70×20%+80×50%+90×30%=81(分)(4)解:考虑各学科在中考中所占“权”.甲的均分为80×30%+90×30%+80×20%+80×10%+70×10%=82(分),乙的均分为80×30%+80×30%+70×20%+80×10%+95×10%=79.5(分),因为甲的均分比乙的均分高,所以甲的成绩更为理想【考点】算术平均数,加权平均数【解析】【分析】(1)(2)(3)都是根据平均数的计算公式分别列出算式,再进行计算即可;(4)先根据各学科的分值求出各学科的权,再根据加权平均数的公式列式计算即可.25、【答案】(1)解:设两次补水之间相隔x小时,每次补水需要y小时,满塔水量记为1,进水速度为,出水速度为,根据题意,得x+ =1,解得x= .y﹣y+ =1,解得y= .答:两次补水之间相隔小时,每次补水需要小时(2)解:∵两次补水间隔时间t1=(1﹣m)÷ =7(1﹣m)小时,每次的补水时间为:t2=(1﹣m)÷(﹣)= (1﹣m)小时,∴t1≠t2,即不能找到适当的m值,使得两次补水的间隔时间和每次的补水时间一样长,∵= ,∴两次补水的间隔时间和每次的补水时间之比为4:3【考点】一元一次方程的应用【解析】【分析】(1)设两次补水之间相隔x小时,每次补水需要y小时,满塔水量记为1.由冷却塔的顶部有一个进水口,3小时恰好可以注满这座空塔可知进水速度为,由底部有一个出水口,7小时恰好可以放完满塔的水可得出水速度为,根据题意列出方程,求解即可;(2)先计算两次补水的间隔时间就是出水口放出一定的水量还余满水量的m倍时所用的时间,列式为:t1=(1﹣m)÷ ,再计算每次的补水时间为:t2=(1﹣m)÷(﹣),所以t1≠t2,相比后得= ,则3t1=4t2.26、【答案】(1)1:2(2)1:3(3)解:设△BRO和△AOQ的面积分别为x、y,∵△BPO,△PCO的面积分别为40,30,∴= ,∴= ,即= ,=2,∴OB=2OQ,∴=2,即=2,则,解得,,∴△ABC的面积为:40+30+35+84+60+72=321【考点】相似三角形的应用【解析】【解答】解:心得:∵BD= DC,∴= ,∴S△ABD:S△ADC=1:2,故答案为:1:2;成长:如图②.连接BN,∵AN:NC=1:1,∴S△ANB=S△CNB= S△ABC,∵AM:MB=2:1,∴S AMN= S△ANB,∴△AMN与△ABC的面积比为1:3,故答案为:1:3;巅峰:【分析】心得:根据两个三角形有一个相同的高,它们的面积之比等于相应的底之比进行计算即可;成长:连接BN,根据题意求出S△ANB=S△CNB= S△ABC,S AMN= S△ANB,计算即可;巅峰:设△BRO和△AOQ的面积分别为x、y,根据题意列出二元一次方程组,解方程组即可.27、【答案】(1)解:AQ⊥BP,AQ=BP,理由:当点P在线段AD上时,∵动点P,Q各从点A,D同时出发,分别沿AD,DC方向运动,且速度均为每秒1个单位长度,∴DQ=AP,∵四边形ABCD是正方形,∴AD=BA,∠ADQ=∠BAP=90°,在△ADQ和△BAP中,,∴△ADQ≌△BAP(SAS),∴AQ=BP,且∠DAQ=∠ABP,又∵∠DAQ+∠BAQ=90°,∴∠ABP+∠BAQ=90°,∴∠AEB=90°,即AQ⊥BP;当点P在AD的延长线上时,同理可得,AQ=BP,AQ⊥BP(2)解:如图2,延长AQ,BC交于点G,当点P运动到线段AD的中点处时,AP=DQ= CD,∴DQ=CQ,又∵∠ADQ=∠GCQ=90°,∠AQD=∠GQC,∴在△ADQ和△GCQ中,,∴△ADQ≌△GCQ(ASA),∴AD=CG=BC,即点C为BG的中点,∵∠BEG=90°,∴Rt△BEG中,EC= BG=BC=6(3)解:运动t秒后,AP=DQ=t,PD=CQ=6﹣t,∵△BPQ的面积S=正方形ABCD的面积﹣△ABP的面积﹣△PDQ的面积﹣△BCQ的面积=36﹣×6×t﹣×t(6﹣t)﹣×6×(6﹣t)= (t﹣3)2+ ,∴当t=3时,S取得最小值为,且此时点P在AD的中点处,∴DP=DQ=3,在△DPF和△DQF中,,∴△DPF≌△DQF(SAS),∴∠DPF=∠DQF,∵Rt△DQA中,tan∠DQA= =2,∴tan∠DPF=2【考点】二次函数的最值,全等三角形的判定与性质,正方形的性质,解直角三角形【解析】【分析】(1)根据DQ=AP,AD=BA,∠ADQ=∠BAP=90°,即可判定△ADQ≌△BAP(SAS),进而得出AQ=BP,且∠DAQ=∠ABP,再根据∠ABP+∠BAQ=90°,可得AQ⊥BP;(2)延长AQ,BC交于点G,先判定△ADQ≌△GCQ(ASA),得出AD=CG=BC,即点C为BG的中点,再根据Rt△BEG中,EC= BG=BC,可得EC=6;(3)运动t秒后,AP=DQ=t,PD=CQ=6﹣t,根据△BPQ的面积=正方形ABCD的面积﹣△ABP的面积﹣△PDQ的面积﹣△BCQ的面积,可得S= (t﹣3)2+ ,进而得出当t=3时,S取得最小值为,此时点P在AD的中点处,可判定△DPF≌△DQF(SAS),进而得到∠DPF=∠DQF,根据Rt△DQA中,tan∠DQA==2,即可得出tan∠DPF=2.。
贵阳市十七中初中数学九年级下期中复习题(含答案解析)
一、选择题1.(0分)[ID:11127]已知4A纸的宽度为21cm,如图对折后所得的两个矩形都和原来的矩形相似,则4A纸的高度约为()A.29.7cm B.26.7cm C.24.8cm D.无法确定2.(0分)[ID:11125]如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)3.(0分)[ID:11124]若反比例函数kyx(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-44.(0分)[ID:11123]如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A .(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)5.(0分)[ID:11121]如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.√33B.12C.√22D.√326.(0分)[ID:11096]如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.7.(0分)[ID:11086]如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=8.(0分)[ID:11080]如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C 的坐标分别为()A .(4,4)B .(3,3)C .(3,1)D .(4,1)9.(0分)[ID :11074]在同一直角坐标系中,函数ky x=和y=kx ﹣3的图象大致是( ) A . B . C .D .10.(0分)[ID :11061]如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A .15B .25C .215D .811.(0分)[ID :11041]在平面直角坐标系中,点E (﹣4,2),点F (﹣1,﹣1),以点O 为位似中心,按比例1:2把△EFO 缩小,则点E 的对应点E 的坐标为( ) A .(2,﹣1)或(﹣2,1) B .(8,﹣4)或(﹣8,4)C .(2,﹣1)D .(8,﹣4)12.(0分)[ID :11040]如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .1313.(0分)[ID :11081]如图,ABC △与ADE 相似,且ADE B ∠=∠,则下列比例式中正确的是( )A .AE ADBE DC= B .AE ABAB AC= C .AD ABAC AE= D .AE DEAC BC= 14.(0分)[ID :11075]如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则xy的值为( )A .512- B .512+ C .2D .212+ 15.(0分)[ID :11071]如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA二、填空题16.(0分)[ID :11199]已知反比例函数21k y x+=的图像经过点(2,1)-,那么k 的值是__.17.(0分)[ID :11173]如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.18.(0分)[ID :11162]如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.19.(0分)[ID:11159]如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=12x(x>0)交于C点,且AB=AC,则k的值为_____.20.(0分)[ID:11153]如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.21.(0分)[ID:11148]如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,23),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P的坐标为____22.(0分)[ID:11141]如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为__时,△ADP和△ABC相似.23.(0分)[ID :11136]如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .24.(0分)[ID :11188]小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .25.(0分)[ID :11134]如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)三、解答题26.(0分)[ID :11309]如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数2 1.41≈3 1.73≈)27.(0分)[ID :11284]如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.28.(0分)[ID :11252]如图,某市郊外景区内一条笔直的公路l 经过A 、B 两个景点,景区管委会又开发了风景优美的景点C .经测量,C 位于A 的北偏东60︒的方向上,B 的北偏东30的方向上,且10AB km =.(1)求景点B 与C 的距离.(2)求景点A 与C 的距离.(结果保留根号)29.(0分)[ID :11243]已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度). (1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 .30.(0分)[ID :11326](1)计算:tan 609tan308sin 602cos 45︒︒︒︒+-+ (2)在ABC 中,90,2,6C AC BC ︒∠===A ∠的度数【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.A2.C3.C4.D5.B6.B7.D8.A9.A10.C11.A12.D13.D14.B15.B二、填空题16.【解析】【分析】将点的坐标代入可以得到-1=然后解方程便可以得到k的值【详解】∵反比例函数y=的图象经过点(2-1)∴-1=∴k=−;故答案为k=−【点睛】本题主要考查函数图像上的点满足其解析式可以17.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值18.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯19.k=【解析】试题分析:如图:作CD⊥x轴于D则OB∥CD∴△AOB∽△ADC∴∵AB=AC∴OB=CD由直线y=kx﹣3(k≠0)可知B(0﹣3)∴OB=3∴CD=3把y=3代入y=(x>0)解得x20.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b21.(1)【解析】【分析】先根据题意求得CD和PE的长再判定△EPC∽△PDB列出相关的比例式求得DP的长最后根据PEDP的长得到点P的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC是AB的中点∴22.4或9【解析】当△ADP∽△ACB时需有∴解得AP=9当△ADP∽△ABC时需有∴解得AP =4∴当AP的长为4或9时△ADP和△ABC相似23.45°【解析】【分析】首先求出线段ACAFAG的长度(用a表示)求出两个三角形对应边的比进而证明△ACF∽△GCA问题即可解决【详解】设正方形的边长为a则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△24.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x由题可得:17:085=x:11解得x=22则小刚举起的手臂超出头顶的高度为25.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】设A4纸的高度为xcm ,对折后的矩形高度为2xcm ,然后根据相似多边形的对应边成比例列方程求解. 【详解】设A4纸的高度为xcm ,则对折后的矩形高度为2xcm , ∵对折后所得的两个矩形都和原来的矩形相似, ∴21=212x x解得29.7=≈x 故选A. 【点睛】本题考查相似多边形的性质,熟记相似多边形对应边成比例,找到对应边列出方程是关键.2.C解析:C 【解析】 【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可. 【详解】A. △ABC ∽△A 1B 1C 1,故A 正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC 的周长为,由周长比等于位似比可得△A 1B 1C 1的周长为△ABC 周长的3倍,即6+B 正确;C. S △ABC =1111=22⨯⨯,由面积比等于位似比的平方,可得△A 1B 1C 1的面积为△ABC 周长的9倍,即19=4.52⨯,故C 错误; D. 在第一象限内作△A 1B 1C 1时,B 1点的横纵坐标均为B 的3倍,此时B 1的坐标为(6,6),故D 正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.3.C解析:C【解析】【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案.【详解】如图所示:由题意可知A (-2,2),B (-2,1),∴1-2⨯2<<-2⨯k ,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.4.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=k x(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.5.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=12.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.6.B解析:B【解析】当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx-1与y轴交于负半轴,∴D选项错误,B选项正确,故选B.7.D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;=,所以B选项不成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβC选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.8.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.9.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.10.C解析:C【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22=15OC OH∴15故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键11.A解析:A【解析】【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E 的对应点E′的坐标为(2,-1)或(-2,1).故选A .【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.12.D解析:D【解析】【分析】过C 点作CD ⊥AB ,垂足为D ,根据旋转性质可知,∠B′=∠B ,把求tanB′的问题,转化为在Rt △BCD 中求tanB .【详解】过C 点作CD ⊥AB ,垂足为D .根据旋转性质可知,∠B′=∠B .在Rt △BCD 中,tanB=13CD BD =, ∴tanB′=tanB=13. 故选D .【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法. 13.D解析:D【解析】【分析】利用相似三角形性质:对应角相等、对应边成比例,可得结论.【详解】由题意可得,A ABC DE ∽△△,所以AE DE AC BC=, 故选D .【点睛】在书写两个三角形相似时,注意顶点的位置要对应,即若ABC A B C '''∽△△,则说明点A 的对应点为点'A ,点B 的对应点B ',点C 的对应点为点C '. 14.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:x y y y x -=∴xy=2,故选B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.15.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=√2P A,AC=√5P A,AD=√10P A,BD=2P A,∴ABDB =√2PA2PA=√2BC2BA=√2PA=√2AC2DA=√5PA√10PA=√22,∴ABDB=BCBA=ACDC,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.二、填空题16.【解析】【分析】将点的坐标代入可以得到-1=然后解方程便可以得到k的值【详解】∵反比例函数y=的图象经过点(2-1)∴-1=∴k=−;故答案为k=−【点睛】本题主要考查函数图像上的点满足其解析式可以解析:32 k=-【解析】【分析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=21 2 k+∴k=− 32;故答案为k=−32.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答17.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值解析:5 13【解析】【详解】如图,过点P作PA⊥x轴于点A,∵P(5,12),∴OA=5,PA=12,由勾股定理得13=,∴5 cos13OAOPα==,故填:5 13.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值. 18.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴527+=,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.19.k=【解析】试题分析:如图:作CD⊥x轴于D则OB∥CD∴△AOB∽△ADC∴∵AB=AC∴OB=CD由直线y=kx﹣3(k≠0)可知B(0﹣3)∴OB=3∴CD=3把y=3代入y=(x>0)解得x解析:k=3 2【解析】试题分析:如图:作CD⊥x轴于D,则OB∥CD,∴△AOB∽△ADC,∴,∵AB=AC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案为.考点:反比例函数与一次函数的交点问题.20.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.21.(1)【解析】【分析】先根据题意求得CD和PE的长再判定△EPC∽△PDB 列出相关的比例式求得DP的长最后根据PEDP的长得到点P的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC是AB的中点∴解析:(1,3)【解析】【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【详解】由题意可知,OB=23,AO=8,∵CD⊥BO,C是AB的中点,∴BD=DO=12BO==PE,CD=12AO=4.设DP=a,则CP=4﹣a,当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴△EPC∽△PDB.DP DBPE PC∴=∴343aa=-,∴a1=1,a2=3(舍去).∴DP=1,∵PE=3,∴P(1,3).考点:1相似三角形性质与判定;2平面直角坐标系.22.4或9【解析】当△ADP∽△ACB时需有∴解得AP=9当△ADP∽△ABC时需有∴解得AP=4∴当AP的长为4或9时△ADP和△ABC相似解析:4或9.【解析】当△ADP∽△ACB时,需有AP ADAB AC=,∴6128AP=,解得AP=9.当△ADP∽△ABC时,需有AP ADAC AB=,∴6812AP=,解得AP=4.∴当AP的长为4或9时,△ADP和△ABC相似.23.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF ∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF ∴△ACF ∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.24.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x 由题可得:17:085=x :11解得x=22则小刚举起的手臂超出头顶的高度为解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.25.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三、解答题26.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=∠, ∴sin 6040sin 60203DO BO =⋅=⨯=,∴203539.6DE DO OE DO AB cm =+=+=≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=. ∴下降高度:20351021035DE DF -=-103102=3.2cm ≈.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.27.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7, ∴3437DB BD =++, ∴BD =9,BF =9+3=12, ∴1.5312AB =,解得AB =6.答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.28.(1)BC=10km ;(2)AC=103km. 【解析】 【分析】(1)由题意可求得∠C =30°,进一步根据等角对等边即可求得结果;(2)分别在Rt BCD ∆和Rt ACD ∆中利用锐角三角函数的知识解直角三角形即可求得结果.【详解】解:(1)过点C 作CD ⊥直线l ,垂足为D ,如图所示.根据题意,得:30CAD ∠=︒,60CBD ∠=︒,∴∠C =∠CBD -∠CAD =30°,∴∠CAD =∠C ,∴BC =AB =10km .(2) 在Rt BCD ∆中,sin CD CBD BC ∠=,∴sin 6053CD BC km ==, 在Rt ACD ∆中,1sin 2CD CAD AC ∠==,∴2103AC CD km ==.【点睛】本题考查了解直角三角形的应用,属于基本题型,熟练掌握锐角三角函数的知识是解题的关键.29.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC 向下平移4个单位长度得到的△A 1B 1C 1,如图所示,找出所求点坐标即可;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是(2,-2);(2)如图所示,以B 为位似中心,画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.30.(12;(2)∠A =60°【解析】【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)由锐角三角函数定义求出∠A 度数即可.【详解】(13323+93+33-43+2=2 (2)∵90,2,6C AC BC ︒∠=== ∴tanA =632BC AC ==, ∴∠A =60°【点睛】此题考查了实数的运算以及解直角三角形,熟练掌握运算法则是解本题的关键.。
山东省菏泽市定陶区2017届九年级下学期期中学业水平测试数学试题(扫描版)(附答案)
九年级数学参考答案(请阅卷老师阅卷前检查参考答案是否有误,错误的请给予改正!)一、1、D;2、A;3、D;4、C;5、B 6、D 7、D 8、D三、(注意事项:1.不写解题过程者不得分;2.不写解者每小题扣0.5分.3.证明题过程不唯一合理即可)15、过程略1 3 416、化简得:13(3)m m+,m的值为1;(2舍去),代入得11217、(1)因为AE∥BC,所以∠A=∠B.又因AD=BF所以AF=AD+DF=BF+FD=BD又因AE=BC所以△AEF≌△BCD;(2)平行四边形,证明略合理即可18、过程略,合理即可CD为(5)米19、解:(1)∵A(﹣2,1),∴将A坐标代入反比例函数解析式y2=中,得m=﹣2,∴反比例函数解析式为y=﹣;将B坐标代入y=﹣,得n=﹣2,∴B坐标(1,﹣2),将A与B坐标代入一次函数解析式中,得,解得a=﹣1,b=﹣1,∴一次函数解析式为y1=﹣x﹣1;(2)设直线AB与y轴交于点C,令x=0,得y=﹣1,∴点C坐标(0,﹣1),∵S△AOB=S△AOC+S△COB=×1×2+×2×1=2;(3)由图象可得,当y1<y2<0时,自变量x的取值范围x>1.20、解:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据题意得6000票的原定票价为400元;(2)设平均每次降价的百分率为y,根据题意得400(1-y)0x=4800x-80,解得x=400.经检验,x=400是原方程的根.答:每张门324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.21、方法不唯一,合理即可;(1)60, 90°;(2) 补全条形统计图如图所示:(3) 根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.(4) 列表法如图所示:则所有等可能的情况有20种,其中选中1个男生和1个女生的情况有12种,所以恰好抽到1个男生和1个女生的概率:22、方法不唯一,合理即可;解:(1)连接OP,BF,PF,∵⊙O与AD相切于点P,∴OP⊥AD,∵四边形ABCD的正方形,∴CD⊥AD,∴OP∥CD,∴∠PFD=∠OPF,∵OP=OF,∴∠OPF=∠OFP,∴∠OFP=∠PFD,∴PF平分∠BFD;(2)连接EF,∵∠C=90°,∴BF是⊙O的直径,∴∠BEF=90°,∴四边形BCFE是矩形,∴EF=BC,∵AB∥OP∥CD,BO=FO,∴OP=12AD=12CD,∵PD2=DF•CD,即(12CD)2=√5•CD,∴CD=4√5,∴EF=BC=4√523、①60;②AD=BE.(2)∠AEB=900;AE=2CM+BE.(注:若未给出本判断结果,但后续理由说明完全正确,不扣分)理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 900, ∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB, 即∠ACD= ∠BCE ∴△ACD≌△BCE.∴AD = BE, ∠BEC=∠ADC=1350.∴∠AEB=∠BEC-∠CED=1350-450=900.在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM= DM= ME,∴DE=2CM.∴AE=DE+AD=2CM+BE24、、解:(1)∵直线y=-x+3与x轴相交于点B,∴当y=0时,x=3,∴点B的坐标为(3,0),又∵抛物线过x轴上的A、B两点,且对称轴为x=2,根据抛物线的对称性,∴点A的坐标为(1,0);(2)∵y=-x+3过点C,易知C(0,3),∴c=3,又∵抛物线y=ax 2 +bx+c过点A(1,0),B(3,0),∴解得∴y=x 2 -4x+3;(2)S△PBC=3(3)连接PB,由y=x 2 -4x+3= (x-2) 2 -1,得P(2,-1),设抛物线的时称轴交x轴于点M,在Rt△PBM中,PM=MB=1,∴∠PBM=45°,PB=。
河南省新乡市辉县市2023-2024学年下学期九年级期中考试数学试卷(含答案)
九年级下期期中数学试卷2024.04一、选择题(每小题3分,共30分)1.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,这四个数中绝对值最大的是( )A .aB .bC .cD .d2.2023年10月,第三届“一带一路”国际合作高峰论坛在北京举行,本次高峰论坛达 成合作远超上届,预计未来5年,中国货物贸易进出口额有望累计超过32万亿美元.其 中“32万亿”用科学记数法表示为( )A .32×1012B .3.2×1014C .32×1013D .3.2×10133.如图,将一直角梯形纸片绕虚线旋转一周形成一个几何体,则该几何体的俯视图( )A BC D4.计算1x ―1―2x 2―1的结果等于( )A .-1B .x -1C .1x +1D .2x 2―15.一束光线射向两块平行玻璃板,在玻璃板表面会发生反射和折射,光路如图所示,已知AB //DE , 若∠ABC =80°, 则∠1的度数为( )A .40°B .50°C .60°D .70°6.四边形ABCD 是平行四边形,下列结论中错误的是( )A .当∠ABC =90°时,□ABCD 是矩形B .当AB =BC 时,□ABCD 是菱形C .当AC ⊥BD 时,□ABCD 是菱形D .当AC =BD 时,□ABCD 是正方形7.若点A (x 1,-2),B (x 2,1),C (x 3,2)都在反比例函数y =-2x 的图象上,则x 1,x 2,x 3的大小关系是( )A .x 3<x 2<x 1B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 2<x 3<x 18.如图,AB 是ʘO 的直径,∠BAC =50°,则∠D =( )A .40°B .20°C .80°D .50°9.对于实数a,b,定义运算“★”:a★b={a2―b(a≤b)b2―a(a>b),已知关于x的方程x★(x-2)=m恰好有两个不相等的实数根,则m的取值范围是( )A.m<-94B.m>-94C.m<74D.m>7410.如图(1),在△ABC中,BA=BC=5,AC=6.动点P从点A出发,先沿AC运动到点D,再从点D沿直线运动到点B.设点P运动的路程为x,△ABP的面积为y,图(2)是点P运动时y与x的函数关系图象,则m的值为( )图(1)图(2)A.2B.2.5C.3D.4二、填空题(每小题3分,共15分)11.列代数式 .12.已知关于x、y的方程组{2x+y=2a+1x+2y=a―1的解满足x-y=4,则a的值为.13.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点B、C在第一象限内,且∠ABC=60°,AB=4.若菱形OABC的顶点C在矩形ODBE的边OE上,则点E的坐标为.(第14题) (第15题)15.如图,在等边三角形ABC中,AB=2,AD为BC边上的高,以AD为边在AD右侧作△ADE,使AE=AD,当点E恰好落在△ABC的中位线所在的直线上时,DE的长为.三、解答题(本大题共8小题,满分75分)16.(10分)计算:(1)(―1)0+(―2)―1+cos60°(2)化简:(x+2y)(-x+2y)+(x―2y)217.(9分)国家大力提倡节能减排和环保,近年来纯电动汽车普及率越来越高,纯电动汽车的续航里程是人们购买时参考的重要指标,某汽车杂志为了解M,N两款纯电动汽车的实际续航里程,各随机抽取了10辆进行了续航里程实测,并将测试的结果(续航里程用x公里(1公里=1千米)表示,分成4组:A.300≤x<350;B.350≤x<400;C.400≤x<450;Dx≥450)进行整理、描述和分析,下面给出了部分信息:a.10辆M款纯电动汽车的实际续航里程:330 375 435 410 410 470 380 365 365 410b.10辆N款纯电动汽车的实际续航里程条形统计图(不完整):c.10辆N款纯电动汽车的实际续航里程在C组中的数据是:402,425,410,425,d 两款纯电动汽车的实际续航里程统计表:根据以上信息,解答下列问题.(1)表格中的a=,b=(2)根据上述数据,你认为M款和N款纯电动汽车中,哪款的实际续航里程更长? 请说明理由(写出一条即可).(3)小王看中了售价一样的甲、乙两款纯电动汽车,根据汽车杂志发布的数据对这两款车的四项性能进行了打分(百分制),如下表:续航里程、百公里加速、百公里能耗、智能化水平四项性能在小王心中所占比例是4:2:1:3,你认为小王选择哪款车更合适?请说明理由.18.(9分)如图,在正方形网格中,△ABC的顶点均在格点上,请仅用无刻度直尺完成下列作图(保留作图痕迹)(1)在图1中,作△ABC关于点O对称的图形△A1B1C.(2)在图2中,作出将△ABC绕点A逆时针旋转90°,再向左平移2个单位长度后的图形△A2B2C2.(3)在图3中,找一格点P,连接PB,使∠PBC=45°19.(9分)如图,小周通过定滑轮O拉动静止在水平地面上的高为0.5米的长方体重物,开始时与重物相连的绳子和水平面的夹角为37°,拉动一段距离后,绳子与水平面的夹角为53°,绳子的自由端(用手拉的一端)竖直向下移动了1.5米(绳子伸缩不计),求定滑轮O到地面的距离(结果精确到1米,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0,75)20. (9分)甲公司将员工的午餐外包给某家餐饮公司,该餐饮公司根据每天甲公司员工团购订餐的数量,给出以下优惠方案:(1)某天甲公司有40人团购订餐,且订A套餐的人数不少于25人.若按方案一结算的总费用恰为1060元,求这天订A套餐和B套餐的人数分别有多少人.(2)某天甲公司有60人团购订餐,其中订B套餐的人数大于订A套餐人数的2倍,设其中有x人订A套餐,按方案一结算的总费用为y1元,按方案二结算的总费用为y2元.①分别求y1,y2与x之间的函数关系式.②若按方案二结算较合算,则x的值为21. (9分)小明在玩一个直径为60cm的塑料圆环玩具,我们将其看成⨀O,在水平地面上有一个坡角为60°的斜坡AB.(1)如图(1),当塑料圆环⨀O与水平地面的接触点C距离斜坡AB的底端A点103cm时,塑料圆环与斜坡AB是否相切?为什么?(2)如图(2),小明将塑料圆环⊙O滚到了斜坡A B上,设⨀O与斜坡AB的接触点为D,当点D距离水平地面20cm ( 即DE=20cm)时,塑料圆环的最低点距离水平地面多高?22.(10分)在数学实践活动课上,小明在白纸上画了一条形状与抛物线y=-x²相同的抛物线L,并在一张透明胶片上画了一个平面直角坐标系,在坐标系中画了线段DE( 点D,E 的坐标分别为(2,4),(5,4)).小明将胶片覆盖在白纸上,使抛物线L的对称轴与直线x=2重合,抛物线L与y轴交于点C(0,-2),如图,(1)求此时抛物线L的表达式.(2)保持纸片不动,将胶片先向左平移1个单位长度,再向下平移m个单位长度.①平移后,抛物线L的顶点坐标为 (用含m代数式表示)②若平移后,抛物线L与线段DE有且只有一个交点,求m的取值范围.23.(10分)综合与实践综合与实践课上,数学兴趣小组对图形中两条互相垂直的线段间的数量关系进行了探究.(1)操作判断①如图(1),在正方形ABCD中,点E,F,G,H分别在边AB,CD,AD,BC上,且EF⊥GH,若EF=5,则GH的长为②如图(2),在矩形ABCD中 ,BC=2AB,点E,F,G,H分别在边AB,CD,AD, BC上,且EF ⊥GH,若EF=8,则GH的长为(2)迁移探究如图(3),在Rt△ABC中,∠BAC=90°,AB=AC,点D,E分别在边AC,BC上,且AE⊥BD,试证明ABAD =BEEC(3)拓展应用如图(4),在矩形ABCD中,AB=6,BC=10,BE平分∠ABC交AD于点E,点F为AE上一点,AG ⊥BF交BE于点H,交矩形ABCD的边于点G,当F为A E的三等分点时,请直接写出A G的长.九年级下期期中数学试卷参考答案2024.04一、选择题(每小题3分,共30分)1.A2.D3.B4.C5.B6.D7.D8.A9.B 10.C二、填空题(每小题3分,共15分)11.2m +3n 12.2 13.16 14.(3,33) 15.3或3三、解答题(本大题共8个小题,满分75分)16.(1)解:原式=1-12+12=1(2)解:原式=4y 2-x 2+x 2-4xy +4y 2=8y 2-4xy17.(1)410 406(2)N 款的实际续航里程更长.理由:∵N 款的平均数较大.∴N 款实际续航里程更长.(3)选择甲款车.理由:甲款车综合得分为82×410+90×210+85×110+100×310=89.3(分)乙款车综合得分为80×410+100×210+90×110+90×310=88(分)∵89.3>88 ∴选择甲款车更合适.18.解:(1)如图1所示,△A ₁B ₁C ₁即为所求.(2)如图2所示,△A ₂B ₂C ₂即为所求.(3)如图3所示,点P 即为所求.19.解:如图由题意得OA -OB =1.5m ,设OB =x 米,则OA =(x +1.5)米在Rt △AOC 中,∠ACO =90°,∠OAC =37°∴sin 37°=OC OA ∴OC =OA ·sin 37°≈0.6(x +1.5)=(0.6x +0.9)米在Rt △OBC 中,∠BCO=90°,∠OBC=53°∴∠BOC =90°-53°=37° ∴cos 37°=OC OB∴OC =OB ·cos 37°≈0.8x (米)∴0.6x +0.9=0.8x x =4.5∴OC=0.8×4.5=3.6(米)∴3.6+0.5≈4(米)答:定滑轮O到地面的距离约为4米.20.解:设这天订A套餐的人数有a人,订B套餐的人数有b人.∵a+b=40,a≥25,∴b≤15.根据题意,得{a+b=40,30×0.9a+25b=1060.解得{a=30,b=10.答:这天订A套餐和B套餐的人数分别有30人,10人.(2)①由题意可知,60-x>2x,解得x<20,则y1=30x+25×0.8(60-x)=10x+1200.若60人均订B套餐,则优惠前的总费用为1500元,超过1000元,从而可知y2=30x+25(60-x)-220=5x+1280.②17,18或19解法提示:由题意可知,y1>y2,∴10x+1200>5x+1280,解得x>16, ∴16<x<20,∴x的值为17,18或19.21.解:(1)相切.理由:如图(1),连接OC,过点O作AB的垂线,垂足为P,连接OA.∵⊙O与水平地面相切于点C,∴OC⊥CA,∵tan∠OAC=OCAC =30103=3,∴∠OAC=60°,∴∠OAP=180°-60°×2=60°=∠OAC.又OA=OA,∠OCA=∠OPA,∴△OCA≌△OPA,∴OP=OC,即OP是⊙O的半径,∴塑料圆环⊙O与斜坡AB相切.(2)如图(2),过点O向水平地面作垂线,垂足为点G.与⊙O交于点F,则FG即为所求.连接OD并延长,与水平地面交于点M.∵⊙O与斜坡AB相切于点D,∴OM⊥AB,∵∠BAM=60°,∠AMD=30°.又∵DE⊥AM,∴DM =2DE =40.∵DE⊥AM,OG⊥AM,∴DE//OG,∴△DEM∽△OGM,∴DEOG =DMOM,即20OG=4070,∴OG=35.22.解:(1)∵抛物线L的对称轴与直线x=2重合,∴抛物线L的顶点横坐标为2∵抛物线L与y=-x2的形状相同.∴设解析式为y=-(x-2)2+h,把C(0,-2)代入得,-2=-4+h,∴h=2∴y=-(x-2)2+2(2)①(3,2+m)②第一种情况:当抛物线L的顶点落在线段DE上时,如图(1)则2+m=4,解得m=2.第二种情况:当抛物线L经过点D时,如图(2),此时抛物线L与线段DE有两个点,将D(2,4)代入y=-(x-3)2+2+m,得4=-1+2+m,解得m=3.第三种情况:当抛物线L经过点E时,如图(3),此时抛物线L与线段DE只有一个交点,将E(5,4)代入y=-(x-3)2+2+m,得4=-4+2+m,解得m=6.分析可知,当m=2或3<m≤6时,抛物线L与线段DE有且只有一个交点.23.解:(1)①5 ②4(2)证明:如图(3),过点C作CF⊥AC交AE的延长线于点F.∵∠F+∠FAC=90°=∠ADB+∠FAC∴∠F=∠ADB又∵∠BAD=∠ACF=90°,BA=AC∴△ABD≌△CAF,∴AD=CF,易得AB∥CF,∴△ABE∽△FCE,∴ABCF =BEEC. 又∵CF=AD,∴ABAD=BEEC.(3)10103或313。
2023年甘肃省定西市岷县九年级(下)期中数学试卷+答案解析
2023年甘肃省定西市岷县九年级(下)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.2.的绝对值是()A. B. C. D.23.下列式子运算的结果,正确的是()A. B.C. D.4.若关于x的方程的一个根是2,则的值是()A. B.2 C. D.45.如图,在中,,以C为旋转中心,旋转一定角度后成,此时恰好落在斜边AB的中点上,则()A.B.C.D.6.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A. B. C. D.7.矩形纸片与含有角的直角三角板如图所示放置,若,则的度数为()A.B.C.D.8.若点在第二象限,则a的取值范围是()A. B. C. D.9.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作于点E,连接OE,若,,则OE的长为()A.2B.3C.D.410.如图1,在矩形MNPQ中,动点R从点N出发,沿方向运动至点M处停止.设点R 运动的路程为x,图中阴影部分的面积为y,如果y关于x的函数图象如图2所示,则矩形PQMN 的面积为()A.16B.20C.36D.45二、填空题:本题共8小题,每小题3分,共24分。
11.分解因式______.12.在式子中,x的取值范围是______.13.如图,已知,,则的度数是______.14.已知a,b,c是的三边长,a,b满足,c为奇数,则______.15.如图,已知,,要使≌,则应添加的一个条件为______答案不唯一,只需填一个16.如图,边长为的正方形ABCD内接于,则的长为______结果保留17.现定义运算“★”,对于任意实数a、b,都有,如:,若,则实数x的值是______.18.用同样大小的黑色棋子按如图所示的规律摆放,第n个图形有黑色棋子______枚.三、解答题:本题共10小题,共66分。
湖北省枝江市九校2017届九年级数学下学期期中联考试题20171101258
湖北省枝江市九校 2017届九年级数学下学期期中联考试题(考试形式:闭卷卷面分数:120分考试时限:120分钟)注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试 题卷上无效.考试结束,请将本试题卷和答题卡一并上交.一、选择题(每题 3分。
共计 45分) 1.4的平方根()A .2B .﹣2C .2D .±22.在下列各数中,属于无理数的是( )A .4B . 6C .22 3D . 3 273.甲骨文是我国古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路” 地区覆盖总人口约为 4400000000人,这个数用科学记数法表示为() A . 44108 B . 4.4109 C . 4.4108 D . 4.410105.下列运算正确的是()A .39 a2aB . a 2 a 4 a 8C .9 3 D . x 6 x 3 x 326.不等式组 的解集在数轴上表示为( ) A .B .C .D .7.已知一个正多边形的一个内角是 140°,则这个正多边形的边数是()A .6B .7C .8D .98.式子1x 1在实数范围内有意义,则 x 的取值范围是()A . x1 B . x 1 C . x 1 D . x 19.如图,在半径为 5的⊙O 中,弦 AB=8,OP ⊥AB ,垂足为点 P ,则 OP 的长为()A .4B.5C.3 D.210.关于□ABCD 的叙述,正确的是()A .若 AB⊥BC ,则□ABCD 是菱形;B .若 AC⊥BD ,则□ABCD 是正方形;C .若 AC=BD ,则□ABCD 是矩形;D .若 AB=AD ,则□ABCD 是正方形;11.如下左图,是由四个大小相同的小正方体拼成的几何体,则这个几何体的左视图是()从正面看A B C D12.下列命题是真命题的是()A .随机事件发生的概率等于 0.5;B .5名同学期末数学成绩是 92,95,95,98,110,则他们众数是 95;C .射击运动员甲、乙分别射击 10次且击中环数的方差分别是 0.5和 1.2,则乙较稳定;D .要了解一批日光灯的质量,可采用全面调查的办法。
甘肃省武威市第十七中学九年级数学下学期期中试题新人教版(2021年整理)
甘肃省武威市第十七中学2018届九年级数学下学期期中试题新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(甘肃省武威市第十七中学2018届九年级数学下学期期中试题新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为甘肃省武威市第十七中学2018届九年级数学下学期期中试题新人教版的全部内容。
甘肃省武威市第十七中学2018届九年级数学下学期期中试题一、单项选择题(每小题3分,共30分,请将符合题意的选项填在括号内) 1、在实数,,0,,,﹣1。
414,有理数有( )A . 1个B . 2个C . 3个D . 4个2、下列运算正确的是( ) A .a 3•a 2=a 5B .(a 2)3=a 5C .a 3+a 3=a6D . (a+b )2=a 2+b 23、下列四个图形中,既是轴对称图形又是中心对称图形的是( ). A .B .C .D .4、某工程队准备修建一条长1200m 的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m ,则根据题意可列方程为( ).A .120012002(120%)x x-=-B .120012002(120%)x x -=+C .120012002(120%)x x-=- D .120012002(120%)x x-=+ 5、要使式子有意义,则m 的取值范围是( ) A .m >﹣1B .m ≥﹣1C .m >﹣1且m ≠1D . m ≥﹣1且m ≠16、将不等式组841163x x x x+<-⎧⎨≤-⎩的解集在数轴上表示出来,正确的是( )A .B .C .D .7、在圆心角为120°的扇形AOB中,半径OA=6cm,则扇形OAB的面积是()A.6πcm2B.8πcm2C.12πcm2D.24πcm28、如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()(A)25°.(B)50°.(C)60°. (D)80°.9、如图,河堤横断面迎水坡AB的坡比是1:,堤高BC=10m,则坡面AB的长度是( )A.15m B.20m C.20m D.10m10、如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边A B上动点且不与A、B重合.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )A B C D二、填空题(共8小题,每小题3分,共24分。
人教部编版九年级下册数学期中测试卷 (17)
检测内容:期中检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(2015·台州)若反比例函数y =kx 的图象经过点(2,-1),则该反比例函数的图象在( D )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限2.已知函数y =mx的图象如图,以下结论:①m <0;②在每个分支上y 随x 的增大而增大;③若点A (-1,a )、点B (2,b )在图象上,则a <b ;④若点P (x ,y )在图象上,则点P 1(-x ,-y )也在图象上.其中正确的个数是( B ) A .4个 B .3个 C .2个 D .1个3.如图所示,在△ABC 中,AB =3AD ,DE ∥BC ,EF ∥AB ,若AB =9,DE =2,则线段FC 的长度是( C ) A .6 B .5 C .4 D .34.函数的自变量x 满足12≤x ≤2时,函数值y 满足14≤y ≤1,则这个函数可以是( A )A .y =12xB .y =2xC .y =18xD .y =8x5.下列条件中,不能判定△ABC 和△A ′B ′C ′相似的是( D ) A.AB B ′C ′=BC A ′C ′=AC A ′B ′B .∠A =∠A ′,∠B =∠C ′ C.AB A ′B ′=BC A ′C ′,且∠B =∠A ′ D.AB A ′B ′=AC A ′C ′,且∠B =∠C ′ 6.反比例函数y =kx与一次函数y =kx -k +2在同一直角坐标系中的图象可能是( D )7.△ABC 的三边之比为3∶4∶5,若△ABC ∽△A ′B ′C ′,且△A ′B ′C ′的最短边长为6,则△A ′B ′C ′的周长为( B ) A .36 B .24 C .17 D .128.如图, 已知四边形ABCD 是⊙O 的内接四边形,且AB =CD =5,AC =7,BE =3,下列命题错误的是( D ) A .△AED ∽△BEC B .∠AEB =90°C .∠BDA =45°D .图中全等的三角形共2对9.如图,过点O 作直线与双曲线y =kx (k ≠0)交于A ,B 两点,过点B 作BC ⊥x 轴于点C ,作BD ⊥y 轴于点D .在x 轴、y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE =AF .设图中矩形ODBC 的面积为S 1,△EOF 的面积为S 2,则S 1,S 2的数量关系是( B ) A .S 1=S 2 B .2S 1=S 2 C .3S 1=S 2 D .4S 1=S 2,第3题图) ,第8题图) ,第9题图) ,第10题图)10.如图,边长为2的正方形中,P 是CD 的中点,连接AP 并延长,交BC 的延长线于点F ,作△CPF 的外接圆⊙O ,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为( D ) A.32 B.53 C.355 D.455 二、填空题(每小题3分,共24分)11.若点P 1(-1,m ),P 2(-2,n )在反比例函数y =kx(k >0)的图象上,则m __<__n (填“>”“<”或“=”号).12.如图,锐角三角形ABC 的边AB ,AC 上的高线CE 和BF 相交于点D ,请写出图中的两对相似三角形:__△BDE ∽△CDF ,△ABF ∽△ACE __(用相似符号连接).13.已知一次函数y =ax +b 与反比例函数y =kx的图象相交于A (4,2),B (-2,m )两点,则一次函数的表达式为__y =x -2__.14.如图,直立在点B 处的标杆AB =2.5 m ,立在点F 处的观测者从点E 看到标杆顶A ,树顶C 在同一直线上(点F ,B ,D 也在同一直线上).已知BD =10 m ,FB =3 m ,人高EF =1.7 m ,则树高DC 是__5.2_m __.(精确到0.1 m)15.如图,已知A (3,0),B (2,3),将△OAB 以点O 为位似中心,相似比为2∶1,放大得到△OA ′B ′,则顶点B 的对应点B ′的坐标为__(4,6)或(-4,-6)__.,第12题图) ,第14题图) ,第15题图) ,第17题图)16.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且1y 2=1y 1+12,则这个反比例函数的表达式为__y =4x __.17.如图,在矩形ABCD 中,E ,F 分别是边AD ,BC 的中点,点G ,H 在DC 边上,且GH =12DC ,若AB =10,BC =12,则图中阴影部分的面积为__35__.18.如图,点E ,F 在函数y =kx (x >0)的图象上,直线EF 分别与x 轴、y 轴交于点A ,B ,且BE ∶BF =1∶m .过点E 作EP ⊥y 轴于点P ,已知△OEP的面积为1,则k 的值是__2__,△OEF 的面积是__m 2-1m__.(用含m 的式子表示)三、解答题(共66分)19.(8分)如图,在一个3×5的正方形网格中,△ABC 的顶点A ,B ,C 在单位正方形顶点上,请你在图中画一个△A 1B 1C 1,使点A 1,B 1,C 1都在单位正方形的顶点上,且使△A 1B 1C 1∽△ABC .解:由图可知∠ABC =135°,不妨设单位正方形的边长为1个单位,则AB ∶BC =1∶2,由此推断,所画三角形必有一角为135°,且该夹角的两边之比为1∶2,也可以把这一比值看作2∶2,2∶22等,以此为突破口,在图中连出2和2,2和22等线段,即得△EDF ∽△GDH ∽△FMN ∽△ABC ,如图所示,即图中的△EDF ,△GDH ,△FMN 均可视为△A 1B 1C 1,且使△A 1B 1C 1∽△ABC.20.(8分)在平面直角坐标系中,已知反比例函数y =kx的图象经过点A (1,3).(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由. 解:(1)把A (1,3)代入y =k x ,得k =1×3=3,∴反比例函数的解析式为y =3x(2)过点A 作x 轴的垂线交x 轴于点C.在Rt △AOC 中,OC =1,AC = 3.由勾股定理,得OA =OC 2+AC 2=2,∠AOC =60°.过点B 作x 轴的垂线交x 轴于点D.由题意,∠AOB =30°,OB =OA =2,∴∠BOD =30°,在Rt △BOD 中,得BD =1,OD =3,∴B 点坐标为(3,1).将x =3代入y =3x中,得y =1,∴点B (3,1)在反比例函数y =3x的图象上 21.(8分)如图,正比例函数y 1=x 的图象与反比例函数y 2=kx (k ≠0)的图象相交于A ,B 两点,点A 的纵坐标为2.(1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当y 1>y 2时,自变量x 的取值范围.解:(1)设A 点的坐标为(m ,2),代入y 1=x 得:m =2,所以点A 的坐标为(2,2),∴k =2×2=4,∴反比例函数的解析式为:y 2=4x(2)当y 1=y 2时,x =4x .解得x =±2,∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2).由图象可知,当y 1>y 2时,自变量x 的取值范围是:-2<x <0或x >222.(10分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值.解:(1)∵AC 平分∠DAB ,∴∠DAC =∠CAB.又∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB.∴AD AC =ACAB ,即AC 2=AB·AD (2)∵∠ACB =90°,E 为AB 的中点,∴CE =12AB =AE.∴∠EAC =∠ECA.又∵∠CAD =∠CAB ,∴∠DAC =∠ECA ,∴CE ∥AD (3)∵CE ∥AD ,∴△AFD∽△CFE ,∴AD CE =AF CF ,∵CE =12AB =12×6=3,AD =4,∴43=AF CF ,∴AF AC =47,即AC AF =7423.(10分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力指标数y 随时间x (分钟)的变化规律如下图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分): (1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?解:(1)设线段AB 所在的直线的解析式为y 1=k 1x +20,把B (10,40)代入得,k 1=2,∴y 1=2x +20.设C ,D 所在双曲线的解析式为y 2=k 2x ,把C (25,40)代入得,k 2=1 000,∴y 2=1 000x ,当x 1=5时,y 1=2×5+20=30,当x 1=30时,y 2=1 00030=1003,∴y 1<y 2,∴第30分钟注意力更集中 (2)令y 1=36,∴36=2x +20,∴x 1=8,令y 2=36,∴36=1 000x ,∴x 2=1 00036≈27.8,∵27.8-8=19.8>19,∴老师能在学生注意力达到所需的状态下完成这道题目24.(10分)如图,双曲线y =kx(x >0)经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(2,3).(1)确定k 的值;(2)若点D (3,m )在双曲线上,求直线AD 的解析式; (3)计算△OAB 的面积.解:(1)将点A (2,3)代入解析式y =k x ,得:k =6 (2)将D (3,m )代入反比例解析式y =6x ,得:m =63=2,∴点D 坐标为(3,2),设直线AD 解析式为y =kx +b ,将A (2,3)与D (3,2)代入得:⎩⎨⎧2k +b =33k +b =2,解得:k =-1,b =5,则直线AD 解析式为y =-x +5 (3)过点C 作CN ⊥y 轴,垂足为N ,延长BA ,交y 轴于点M ,∵AB ∥x 轴,∴BM ⊥y 轴,∴MB ∥CN ,∴△OCN ∽△OBM ,∵C 为OB 的中点,即OC OB =12,∴S △OCN S △OBM =(12)2,∵A ,C 都在双曲线y =6x 上,∴S △OCN =S △AOM =3,由33+S △AOB =14,得到S △AOB =9,则△AOB 面积为925.(12分)如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.解:(1)∵该抛物线过点C (0,-2),∴可设该抛物线的解析式为y =ax 2+bx -2.将A (4,0),B (1,0)代入,得⎩⎨⎧16a +4b -2=0a +b -2=0,解得⎩⎨⎧a =-12b =52,∴此抛物线的解析式为y =-12x 2+52x -2 (2)存在,设P 点的横坐标为m ,则P 点的纵坐标为-12m 2+52m -2,当1<m <4时,AM =4-m ,PM=-12m 2+52m -2.又∵∠COA =∠PMA =90°,∴①当AM PM =AO OC =21时,△APM ∽△ACO ,即4-m =2(-12m 2+52m -2).解得m 1=2,m 2=4(舍去),∴P (2,1). ②当AM PM =OC OA =12时,△APM ∽△CAO ,即2(4-m )=-12m 2+52m -2.解得m 1=4,m 2=5(均不合题意,舍去),∴当1<m <4时,P (2,1).类似地可求出当m >4时,P (5,-2).当m <1时,P (-3,-14)或P (0,-2),综上所述,符合条件的点P 为(2,1)或(5,-2)或(-3,-14)或(0,-2)专项训练二 概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a 有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下学期数学期中考试试卷
一、单选题
1. ﹣的相反数是()
A . ﹣5
B . 5
C . ﹣
D .
2. 太阳中心的温度是19200000℃,用科学计数法可将数据19200000表示为()
A .
B .
C .
D .
3. 下列图形中,是轴对称图形,但不是中心对称图形的是
A .
B .
C .
D .
4. 下列计算正确的是()
A .
B .
C .
D .
5. 如图所示,直线,三角尺的一个顶点在上,若
,则∠2=()
A .
B .
C .
D .
6. 2018年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:这些运动员跳高成绩的中位数和众数分别是()
A . 1.70 ,1.65
B . 1.70 ,1.70
C .
1.65 ,1.60 D . 3 ,4
7. 抛物线y=-2-5的顶点坐标是
A .
B .
C .
D .
8. 已知点在第二象限,则n的取值范围是()
A . n<2
B . n>2
C . n<
D . 2<n<
9. 如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为()
A . 6
B . 5
C . 4
D . 3
10. 如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF②S△CDF=4S△CEF;③S△ADF=2S△CEF;
④S△ADF=2S△CDF,其中正确的是()
A . ①③
B . ②③
C . ①④
D . ②④
二、填空题
11. 分解因式:a3-9a=________.
12. 点P(-3,4)关于y轴的对称点P′的坐标是________
13. 一个n边形的内角和是720°,则n=________.
14. 如图,将ABC 沿直线AB向右平移后到达BDE的位置,若CAB=50°,ABC=100°,则CBE的度数为________.
15. 在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是________.
16. 如图,△ABC的面积是4,点D、E、F分别是BC、AD、BE的中点,则△C EF 的面积是________.
三、解答题
17. 计算:
18. 解不等式组:,并在所给的数轴上表示解集.
19. 光明市在道路改造过程中,需要铺设一条污水管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同. 求甲、乙工程队每天各铺设多
少米?
20. 如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.
(1)求作∠ABC的平分线,分别交AD,AC于P,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)
(2)证明AP=AQ.
21. 如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.
(1)求证:四边形ABCD是平行四边形;
(2)若AC⊥BD,求▱ABCD的面积.
22. 我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:
(1)该校对多少名学生进行了抽样调查?
(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?
(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?
23. 如图1,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,点P为抛物线的顶点.
图1 图2
(1)求该抛物线的解析式;
(2)求∠PAB的正弦值;
(3)如图2,四边形MCDN为矩形,顶点C、D在x轴上,M、N在x轴上方
的抛物线上,若MC=8,求线段MN的长度.
24. 如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DE⊥AC,垂足为E,交AB的延长线于点F .
(1)求证:EF是⊙O的切线;
(2)若∠C=60°,AC=12,求的长.
(3)若tanC=2,AE=8,求BF的长.
25. 如图1,在Rt△ABC中,∠ACB=90°,tanB= ,BC=12cm,点N从点C出发沿CB方向以1cm/s的速度运动,点N到达点B时停止运动,以CN为边在BC的上方作正方形CNGH,正方形CNGH的边NG所在直线与线段AB交于点Q,设运动时间为t(s).
图1
备用图
(1)当t为何值时,QN的长为6cm?
(2)连结CQ,当t为何值时,△CQB是等腰三角形?
(3)设正方形CNGH与Rt△ABC重叠部分的图形的面积为S .求出S关于t
的函数关系式并写出自变量t的取值范围.。