高中数学概念知识板块结构关系图_理科_【概念图】【关系图】

合集下载

高中数学知识结构图 全部

高中数学知识结构图 全部

,
+∞
⎞ ⎠⎟
为减函数.
① 图像是双曲线;
当 k < 0 时,
② 定义域为{x x ∈ R, x ≠ 0} ,
值域为{y y ∈ R, y ≠ 0} ;
③ 奇函数. ④ 没有零点;
在 (−∞,0) 和 (0, +∞) 为增函数

值域为
⎡ ⎢ ⎣
4ac − 4a
b2
,
+∞
⎞ ⎟ ⎠


⎛ ⎜⎝
−∞,

顶点坐标是
⎛ ⎜ ⎝

b 2a
,
4ac − 4a
b2
⎞ ⎟ ⎠
④ 当 b = 0 时是偶函数;
⑤ 当 Δ > 0 ,有两个零点;当 Δ = 0 ,
有一个零点;当 Δ < 0 ,没有零点.

值域为
⎛ ⎜ ⎝
−∞,
4ac − 4a
b2
⎤ ⎥ ⎦


⎛ ⎜⎝
−∞,

b 2a
⎞ ⎟⎠
为增函数,

⎛ ⎜⎝

b 2a

2.若 p 的充分条件是 q ,则 q ⇒ p ;

若 p 的必要条件是 q ,则 p ⇒ q .

原命题 若 p ,则 q
互 否
互逆


否 否
逆命题 若 q ,则 p
互 否
四个命题 的关系
否命题 若 ¬p ,则 ¬q
互逆
逆否命题 若 ¬q ,则 ¬p
1.一个命题为真命题,它的逆命题和否命题不 一定是真命题,但逆否命题必然是真命题. 2.一个命题的逆命题和否命题也互为逆否命题.

高中数学知识框架思维导图

高中数学知识框架思维导图

i.
①(1 ± i)2 = ±2i;
②1+i = i;1−i = −i;
1−i
1+i
③������ + ������i = i(������ − ������i),
如3+4i = i(4−3i) = i;
4−3i 4−� = ������ + ������i、复平面内点 Z(������, ������)、向量���⃗⃗���⃗⃗���⃗��� = (������, ������)的一一对应关系; 复数模的几何意义:|������| = |������ + ������i| = √������2 + ������2 = |���⃗⃗���⃗⃗���⃗���|
2.对数的运算性质(������>0,且������ ≠1,������>0,������>0):①log������(������ ∙ ������) = log������������ + log������������;
简易逻辑
命题
关系
原命题:若 p 则 q
互否
否命题:若p 则q
互逆
互为逆否 等价关系
互逆
逆命题:若 q 则 p
互否
逆命题:若q 则p
充分条件、必要条件、充要条件 若������ ⇒ ������,则������是������的充分条件,������是������的必要条件
复合命题 量词
或:p q 且:p q 非: p 全称量词 存在量词
2
映射
函数
函数图象 及其变换
第二部分 函数、导数及微积分
������: ������ → ������:一对一,或多对一

高中数学知识结构框图人教版

高中数学知识结构框图人教版
ax BB数子 ,| ==轴集 bp {{ ,( xx cx || ,) xx …} ∈∈ } AA
且或 xx ∈∈ BB }}
55
函数 66
概念 77
定对值 义应域 域关 系
88
表示 99
解图列 析象表 法法法
1010
性质 1111
单定图 调义 象 性特 征
1212
最值 1313
奇定图 偶义 象 性特 征 : 对 称 性
8080
log a (M N ) log a M log a N
log a
M N
log a M log a N
log a M n n log a M
aras ars (ar )s ars (ab)r arbr
8181
8282
8383
8484
8585
8686
8787
8888
2.“A 或者 B”类议论文模板:
126126
127127
幂函数 128128
定 义 :
y x
129129
具体的五 个幂函数
130130
特 征 : 过 点 ( 1 , 1 ) , 当
0
时 在
(0, )
上 递 增 ; 当
0
时 , 在
(0, )
上 递 减 。
131131
132132
133133
换 底 公 式 :
l o g
log a
M N
log a M log a N
log a M n n log a M
aras ars (ar )s ars (ab)r arbr
115115
116116
117117

高中数学知识结构框图(人教版)

高中数学知识结构框图(人教版)

高中数学知识结构框图(必修1)第一章集合与函数概念第二章基本初等函数(Ⅰ)第三章函数的应用函数的应用函数与方程函数模型及其应用方程的根与函数零点的关系用二分法求方程的近似解几种不同增长的函数模型用已知函数模型解决问题建立实际问题的函数模型函数零点的存在性直线上升指数爆炸对数增长指数函数,对数函数,幂函数增长速度的比较。

见教材P98~100数学二第一章空间几何体的知识结构框架第二章点、直线、平面之间的位置关系的知识结构框架第三章直线与方程的知识结构框架第四章圆与方程的知识结构框架数学三数学四本章知识结构如下:本章知识结构如下:本章知识结构如下:英语(课程)书信的常见写作模板开头部分:How nice to hear from you again. Let me tell you something about the activity. I’m glad to have received your letter of Apr. 9th. I’m pleased to hear that you’re coming to China for a visit. I’m writing to thank you for your help during my stay in America.结尾部分:With best wishes. I’m looking forward to your reply. I’d appreciate it if you could reply earlier.口头通知常见写作模板开场白部分:Ladies and gentlemen, May I have your attention, please? I have an announcement to make.正文部分:All the teachers and students are required to attend it. Please take your notebooks and make notes. Please listen carefully and we’ll have a discussion in groups. Please come on time and don’t be late.结束语部分:Please come and join in it. Everybody is welcome to attend it. I hope you’ll have a nice time here. That’s all. Thank you.议论文模板1.正反观点式议论文模板:导入:第1段:Recently we’ve had a discussion about whether we should... (导入话题) Our opinions are divided on this topic.(观点有分歧) 正文:第2段:Most of the students are in favour of it.(正方观点) Here are the reasons. First... Second... Finally...(列出2~3个赞成的理由) 第3段:However, the others are strongly against it. (反方观点) Their reasons are as follows. In the firstplace... What’s more... In addition...(列出2~3个反对的理由) 结论:第4段:Personally speaking, the advantages overweigh the disadvantages, for it will do us more harm than good, so I support it.(个人观点)2.“A或者B”类议论文模板:导入:第1段:Some people hold the opinion that A is superior to B in many ways. Others, however, argue that B is much better. Personally, I would prefer A because I think A has more advantages. 正文:第2段:There are many reasons why I prefer A. The main reason is that ... Another reason is that...(赞同A的原因) 第3段: Of course, B also has advantages to some extent... (列出1~2个B的优势) 结论:第4段: But if all these factors are considered, A is much better than B. From what has been discussed above, we may finally draw the conclusion that ...(得出结论)3.观点论述类议论文模板:导入:第1段:提出一种现象或某个决定作为议论的话题As a student, I am strongly in favour of the decision. (亮明自己的观点是赞成还是反对) The reasons for this may be listed as follows. (过渡句,承上启下) 正文:第2段:First of all... Secondly... Besides...(列出2~3个赞成或反对的理由) 结论:第3段:In conclusion, I believe that... (照应第1段,构成"总—分—总"结构)4."How to"类议论文模板:导入:第1段:提出一种现象或某种困难作为议论的话题正文:第2段:Many ways can help to solve this serious problem, but the following may be most effective. First of all... Another way to solve the problem is ... Finally...(列出2~3个解决此类问题的办法) 结论:第3段:These are not the best but the only two/ three measures we can take. But it should be noted that we should take action to...(强调解决此类问题的根本方法)图表作文写作模板The chart gives us an overall picture of the 图表主题.The first thing we notice is that 图表最大特点 .This means that as 进一步说明.We can see from the statistics given that 图表细节图表细节一 . After 动词-ing :细节一中的第一个变化,the动词-ed+幅度+时间(紧跟着的变化) .The figures also tell us that图表细节二 .In the column, we can see that accounts for (进一步描述).Judging from these figures, we can draw the conclusion that (结论).The reason for this, as far as I am concerned is that (给出原因). b或是It is high time that we (发出倡议).图画类写作模板1.开头Look at this picture./The picture shows that.../From this picture, we can see.../As is shown in the picture.../As is seen in the picture...2.衔接句As we all know, .../As is known to all,.../It is well known that (I)my opinion,.../As far as I am concerned,.../This sight reminds me of something in my daily life.3.结尾句In conclusion.../In brief.../On the whole.../In short.../In a word.../Generally speaking.../As has been stated..一、有关语言修辞的题型描绘类提问方式:某句话中某个词换成另一个行吗?为什么?或:文章的某个句子说成另一个句子好不好?为什么?答题模式:不行。

高中数学知识网络结构图

高中数学知识网络结构图
高中数学知识网络结构图
集合与简易逻辑
三角函数
平面向量
不等式

实 数 的 性 质
等 式 的 性

均 值 不 等 式
不 等 式 的 解 法
比较法
综合法

分析法
等 式 的反Βιβλιοθήκη 法 换元法证放缩法

判别式法
一元一次不等式(组) 一元二次不等式 分式、高次不等式 绝对值不等式
不 等
函数的定义域

函数的值域

函数的单调性

方程根的分布

最值问题
应用题
取值范围问题
直线与圆
直线的倾斜角和斜率
直线
直线的方程 两直线的位置关系
五种形式 两直线垂直 两直线平行 两直线相交
应用
夹角及公式 交点
点到直线的距离公式
两平行直线的距离公式
圆的方程
圆的标准方程
圆与圆的位置关系

圆的一般方程
圆与直线的位置关系
相交弦
圆的切线
圆锥曲线
直线和方程
曲线上的点 对应 方程的实数解
曲线的交点
椭圆定义
标准方程
几何性质
作图
第二定义





线
双曲线定义
标准方程
几何性质
作图






第二定义
抛物线定义
标准方程
几何性质
直线与圆锥曲线的位置关系
作图
立体几何
直 线 平 面 简 单 几 何 体
平面 空间两 条直线
空间直线 与平面
三个公理三个推论 平行直线 相交直线 异面直线

高中数学知识框架思维导图(2019.3.21整理,14页)

高中数学知识框架思维导图(2019.3.21整理,14页)

两个原理
分类加法计算原理和分步乘法计算原理 排列数:������������ ������ = ������(������ − 1) ⋯ (������ − ������ + 1) = (������−������)!
������!
计算原理
排列与组合
������! m 组合数:C n = ������!(������−������)!
高考数学知识框架思维导图(2019.3.21 整理,14 页)
陈永清
第一部分
集合、算法语言、简易逻辑、复数、推理与证明、排列组合
概念 性质 集合的分类 集合 集合的表示 集合间的关系
Hale Waihona Puke 元素与集合之间的关系:∈,∉ 确定性、互异性、无序性 有限集、无限集、空集() 列举法、描述法、图示法
求解(两个)集合中的参数值,注意检验: 1.是否违反互异性;2.是否违反其他条件 含有������个元素的集合������的子集个数是2������ , 真子 ������ ������ 集个数是2 − 1,非空子集个数为2 − 1, 非空真子集的个数是2������ − 2.(������,)
性质
C n =C n
m
m
n-m
Cn+1=C n +C
m
m-1 n
应用
捆绑法、插空法、优先法、隔板法、间接法、建模法、分类法、树状图
0 ������ ������ + ������ 1 ������ ������−1 ������ + ⋯ + ������ ������ ������ ������−������ ������ ������ + ⋯ + ������ ������−1 ������1 ������ ������−1 + ������ ������ ������ ������ (������∈N*). (������ + ������)������ = ������������ ������ ������ ������ ������

高中数学知识结构框图(人教版)

高中数学知识结构框图(人教版)

高中数学知识结构1)第一章 集合与函数概念 列举法 {a,b,c, , } 含义与表示 描述法 {x|p(x)} 图象法图 ; 数轴 包含关系 子集 ; 真子集集合 基本关系 相等关系交集 :A ∩ B={x|x ∈A 且 x ∈B} 基本运算并集 :A ∪ B={x|x ∈A 或 x ∈B}补集 :{ | } C Ax x U 且x AU定义域概念对应关系 值域 解析法函数表示图象法 列表法定义性最值 图象特征性质上 升 或 下降定义奇偶性图:对称性 映射映射的概念1第二章基本初等函数(Ⅰ)根式n am指数与指数指数n m分数指数幂( 0, , *, 1)a n a a m n N n无理数指数幂r s r sa a a运算性质r s rs(a ) a函r r r ( a b) a b数指x定义( 0, 1) y a a a基本数函图象: “一撇或一捺”,过点(0,1).见教材P56初等数性质: 位于x 轴上方,以x 轴为渐近线函数定义:x若则叫以为底的对数a N x a N(Ⅰ)对数l og (M N)log M log Na a a对数运算性质Mlog log M log Na a aN与对nlog M n l og Ma a数函数换底公式:log bclog b (a 0,a 1,c 0,c 1,b 0)alog ac对定义:log ( 0, 1)y x a aa数函图象:位于y 轴右侧,以y 轴为渐近线.见教材P71数性质:过点(1,0)图象见P77图2.3-1 yx定义:y x 2y x幂特征:过点(1,1),函具体的五3 y xy x1y x在(0, ) 上递减。

2第三章函数的应用方程f (x) 0有实数根方程的根与函数y f ( x)的图象与x轴有交点函数零点的关函数y f ( x)有零点函数与如果函数y f ( x)在区间[a,b]上的图方象是连续不断的一条曲线, 并且有程函数零点的存在性 f (a) f (b) 0,那么函数y f ( x)在区间内有零点, 即存在使得(a, b) c (a ,b), 函f (c) 0,这个c也就是方程 f (x) 0的根. 数的应用用二分法求方程的近似解直线上升函指数爆炸数几种不同增长的函数模型对数增长模型及用已知函数模型解决问题指数函数,对数函数,幂函数增长速度的比其较。

高中数学知识框架思维导图(整理版)

高中数学知识框架思维导图(整理版)
2 : 2 + 2 + 2 = 0.
点斜式:y-y0=k(x-x0)
注意:截距可正、
可负,也可为 0.
2 −1
注意各种形式的转化和运用范围.
x y
截距式: + =1
a b
两直线的交点
距离
一般式:Ax+By+C=0
两点间的距离公式|1 2 | = √(1 − 2 )2 + (1 − 2 )2 .
2.
3.
分组求和法
2
=
1

−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1ቤተ መጻሕፍቲ ባይዱ
2+1 −1
− (+2)2 )
= (−1) (
1
2−1
+
错位相加法: = ( + )−1 → = ( + ) −
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
与 的关系
1 ,
= 1,
= {
− −1 , ≥ 2.
构造等差数列
an+1 p an
= · +1 转为③
qn q qn-1
⑤an + 1=pan+qn

高中数学知识点总结图框架图

高中数学知识点总结图框架图

高中数学知识点总结图框架图一、代数1. 集合与函数概念- 集合的表示与运算- 函数的定义与性质- 常见函数(线性函数、二次函数、幂函数、指数函数、对数函数、三角函数)2. 代数式的运算- 整式的加减乘除- 因式分解- 分式的运算- 二次根式的运算3. 方程与不等式- 一元一次方程与不等式- 二元一次方程组- 一元二次方程- 不等式及其解集- 绝对值不等式4. 函数的应用- 函数的图像与性质- 函数的最值问题- 函数的单调性与周期性- 反函数与复合函数二、几何1. 平面几何- 点、线、面的基本性质- 三角形的性质与分类- 四边形的性质与计算- 圆的性质与方程- 相似与全等的判定与应用2. 空间几何- 空间图形的基本性质- 空间直线与平面的位置关系- 空间角的计算- 立体图形的表面积与体积3. 解析几何- 坐标系的建立与应用- 直线与圆的方程- 圆锥曲线(椭圆、双曲线、抛物线)的方程与性质三、概率与统计1. 概率论基础- 随机事件与概率的定义- 概率的计算与加法定理- 条件概率与乘法定理- 事件的独立性与贝叶斯定理2. 统计初步- 数据的收集与整理- 描述性统计(平均数、中位数、众数、方差、标准差) - 概率分布与正态分布- 抽样与估计四、数学思维与方法1. 逻辑推理- 演绎推理与归纳推理- 数学归纳法2. 数学证明- 直接证明与间接证明- 反证法3. 问题解决策略- 分类讨论- 转化与化归- 函数与方程思想以上框架图总结了高中数学的主要知识点,涵盖了代数、几何、概率与统计以及数学思维与方法四个方面。

每个部分都细分为若干小节,详细列出了各知识点及其内在联系。

通过这样的框架图,学生可以系统地复习和掌握高中数学的核心内容,为进一步的数学学习打下坚实的基础。

高中数学知识点脉络图

高中数学知识点脉络图

1.导数是平均变化率的极限,导数的几何意义 ;


2.极大值、极小值、最大值、最小值的概念;
3.函数在一点处的导数的定义和导数的几何意义;
1.多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值;

2.函数 的导数公式,多项式函数的导数;

3.两个函数和、差、积、商的求导法则。
十三 复数、推理与证明
1.两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理;
掌 握
2.分析法、综合法、比较法证明简单的不等式;
3.二次不等式,简单的绝对值不等式和简单的分式不等式的解法。
六 数列


1.数列通项公式的意义 ;


2.递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项;
1.数列的概念;
1. 双曲线的定义、标准方程、渐近线,几何性质;
解 2.圆锥曲线的第二定义;
1.数形结合的思想 ;
理 解
2.抛物线的定义、标准方程和抛物线的简单几何性质;

1.椭圆的定义、标准方程和椭圆的简单几何性质 ;

2.直线与椭圆的应用。
九 直线、平面、简单几何体
1.棱柱 、 棱锥、 棱台、 球的概念,棱柱的性质,会画直棱柱的直观图 ;
高中数学知识点脉络图
高中数学
必修
代数集合函数Fra bibliotek不等式
三角 函数
平面向量
数列
几何
直线. 平面. 简单几何体
直线与圆
圆锥曲线 概率 .排列组合与二项式定理
选修 导数与极限
统计 复数. 推理与证明 .算法
一.集合、简易逻辑
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 1 n
r
Cn+Cn+Cn…=Cn+Cn+Cn…=2n-1
0
2
4
1
3
5
推理
推理与证明
证明
间接证明 数学归纳法 关系
反证法
互逆 互为逆否 等价关系
原命题:若 p 则 q
互否
逆命题:若 q 则 p
互否
命题 条件 简易逻辑 复合命题 全称量词与 存在量词 算法的特征 或:p q 且:p q 非: p
长对正 高平齐 宽相等
平行关系的 相互转化
线线 平行
线面 平行
面面 平行
空间直角坐标系
垂直关系的 相互转化
线线 垂直
线面 垂直
面面 垂直
空间向量
异面直线所成的角 空间的角 直线与平面所成的角 二面角 点到面的距离 空间的距离 直线与平面的距离 平行平面之间的距离
范围:(0,90] 范围:[0,90] 范围:[0,180]
公式的变形、逆用、 “1”的替换 化简、求值、证明(恒等变形) 图象
定义域 正弦函数 y=sin x 余弦函数 y=cos x 正切函数 y=tan x y=Asin(x+)+b 奇偶性 单调性 周期性 对称性 最值
值域
三角函数 的 图 象
对称轴(正切函数除外) 经过函数图象的最高(或 低)点且垂直 x 轴的直线, 对称中心是正余弦函数图 象的零点,正切函数的对 k 称中心为( 2 ,0)(k∈Z).
否命题:若p 则q
互逆
逆命题:若q 则p
充分非必要条件、必要非充分条件、充要条件 一真便真 一假则假
概括性、逻辑性、有穷性、不唯一性、普遍性 顺序结构
算法语言
程序框图
条件结构 循环结构
基本算法语言
算法案例 概念 复 数 运算 几何意义
辗转相除法、更相减损术、秦九韶算法、进位制 虚数、纯虚数、实部、虚部、实轴、虚轴、模、共轭复数 加、减、乘、除、乘方 复数与复平面内点(向量)的对应关系、复数模的几何意义
运算:交、并、补 性质
确定性、互异性、无序性 表示 定义域
映射
定义
图象法
三要素
对应关系 值域 单调性 奇偶性
性质 函数
周期性 对称性 最值
平移变换
周期为 T 的奇函数→f (T)=f (2)=f (0)=0 二次函数、基本不等式、双钩(耐克)函 数、三角函数有界性、数形结合、导数. 一次、二次函数、反比例函数 幂函数 指数函数 对数函数 图象、性质 和应用
cos=—— → →
| a |·| b | → → |a·n|
→ → |a·b|
sin=—— → →
| a |·| n | → → n ·n
1 2 cos=—— → →
| n1 |·| n2 |
相互之间的转化
d=—— →
|n|
→ → |a·n|
第六部分 统计与概率
抽签法 随机数表法 随机抽样 系统抽样 分层抽样 频率分布表和频率分布直方图 样本频率分布 估计总体 统计 用样本估计总体 样本数字特征 估计总体 变量间的相关关系 正态分布 列联表(2×2)独立性分析 两个变量的 线性相关 总体密度曲线 茎叶图 众数、中位数、平均数 方差、标准差 散点图 回归直线 共同特点:抽样 过程中每个个体 被抽到的可能性 (概率)相等
n! 性质 C n =C n
m m n-m m m-1 n
n!
Cn+1=C n +C
通项公式 二项式定理 二项式系数性质
Tr+1=Cnan-rbr 首末两端“等距离”两项的二项式系数相等 Cn+Cn+…+Cn=2n 归纳 合情推理 猜想 类比 演绎推理 三段论 综合法 直接证明 分析法 执果索因 大前提、小前提、结论 由因导果
点(x1,y1)与点(x2,y2)关于 直线 Ax+By+C=0 对称 特殊对称轴 x±y+C=0
x2 y1+y2 A·x1+ 2 +B· 2 +C=0 y2-y1 A x2-x1·(-B)=-1
直接代入法
第五部分 立体几何
棱柱 柱体 圆柱 棱台 空间几何体 台体 圆台 棱锥 锥体 球 点在直线上 点与线 点在直线外 点在面内 点与面 点在面外 相交 共面直线 线与线 异面直线 平行 空间点、 线、面的 位置关系 直线在平面外 线与面 直线在平面内 平行 面与面 相交 相交 有公共点 平行 没有公共点 没有公共点 只有一个公共点 圆锥 三棱锥、四面体、正四面体 直观图 侧面积、表面积 体积 正棱柱、长方体、正方体 三视图
a·b 设→ a 与→ b 夹角,则 cos=—— → → | a |·| b | → →
(2k+1)-2 k- 2 ;⑤对称轴 x= ,对称中心为( ,b)(k∈Z). || 2 模 加、减、数乘 几何意义 → a·b b 在→ a 方向上的投影为|→ b |cos=—— → 投影
|a| → →
|→ a |= (x2-x1)2+(y2-y1)2
第三部分 数列与不等式
解析法:an=f (n) 概念 通项公式 递推公式 数列 等差数列 等比数列 an≠0,q≠0 1 na1,q= n Sn=a1(1-q ) ,q≠1 1-q 常见递推类型及方法 表示 图象法 列表法 等差数列与等比数列的类比 an=a1+(n-1)d an+am=ap+ar 前 n 项和 n(a1+an) Sn= 2 an=a1qn-1 anam=apar 前 n 项积(an>0) Tn= (a1an)n 逐差累加法 逐商累积法 构造等比数列{an+ q } p-1 数列是特殊的函数
简单随机抽样
概率的基本性质 古典概型 几何概型 用随机模拟法求概率 概率 条件概率 事件的独立性
互斥事件 P(A+B)=P(A)+P(B)
对立事件
P(A)=1-P(A)
P (A B ) P (B | A )= P (A ) P(A B)=P(A)·P(B) n 次独立重复试验恰好 发生 k 次的概率为 k Pn(k)=Cn pk(1-p)n-k X~B(1,p) 两点分布 E(X)=p,D(X)=p(1-p) X~B(n,p) 二项分布 E(X)=np,D(X)=np(1-p) X~H(N,M,n) 超几何分布
几何意义: z 是直线 ax+by -z=0 在 x 轴截 距的 a 倍, y 轴上 截距的 b 倍.
错位相加法 借助二次函数的图象 三个二次的关系
z= (x-a)2+(y-b)2:构造距离 和定值,积最大;积定值,和最小 应用时注意:一正二定三相等 a+b 2ab ≤ ab≤ 2 ≤ a+b a2+b2 2
随机变量
常用的分布及 期望、方差
若 Y=aX+b,则 E(Y)=aE(X)+b D(Y)=a2D(X)
M E(X)=n N M N-n nM D(X)= N 1- N N-1
第七部分 其他部分内容
两个原理 计算原理 排列与组合
分类加法计算原理和分步乘法计算原理 排列数:Am n =(n-m)! 组合数:Cm n =m!(n-m)!
通项公式 求和公式 性质 判断
①an+1-an=f (n) an + 1 ② a =f (n) n ③an+1=pan+q ④pan+1an=an-an+1 ⑤an + 1=pan+qn
构造等差数列 an+1 p an 化为 qn =q·n-1+1 转为③ q
公式法:应用等差、等比数列的前 n 项和公式 倒序相加法 常见求和方法 分组求和法 裂项求和法 不等式的性质 一元二次不等式 可行域 不等式 简单的线性规划 目标函数 应用题 一次函数:z=ax+by z= y-b :构造斜率 x-a
直线方程的形式
x y 截距式:a+b=1 两直线的交点 一般式:Ax+By+C=0 | Ax0+By0+C | A +B
2 2
距离
点到线的距离:d=
,平行线间距离:d=
| C1-C2 | A2+B2
圆的标准方程 圆的一般方程 圆的方程 直线与圆的位置关系 两圆的位置关系 曲线与方程 椭圆 圆锥曲线 双曲线 抛物线 性质 离心率 相离 相切 相交 <0,或 d>r =0,或 d=r >0,或 d<r
T
图象及其变换
对称变换 翻折变换 伸缩变换
基本初等函数 分段函数 复合函数 抽象函数 函数与方程 函数的应用 导数的概念 零点 三角函数 复合函数的单调性:同增异减 赋值法、典型的函数
二分法、图象法、二次及三次方程根的分布 建立函数模型
几何意义(切线问题) 、物理意义
基本初等函数的导数 导数 导数的运算法则
三次函数的性质、图象与应用
单调性 导数的应用 极值 定积分与微积分 定积分与图形的计算
导数的正负与单调性的关系 最值 生活中的优化问题
第二部分 三角函数与平面向量
角的概念 弧度制 弧长公式、扇形面积公式 三角函数线
任意角的三角函数的定义 同角三角函数的关系 三角函数 诱导公式 和角、差角公式 二倍角公式
第一部分 集合、映射、函数、导数及微积分
概念 集合 表示方法 元素、集合之间的关系 数轴、Venn 图、函数图象 解析法 列表法 使解析式有意义 换元法求解析式 注意应用函数的单调性求值域
1、函数在某个区间递增(或减)与单调区间是某个区间的含义不同; 2、证明单调性:作差(商) 、导数法;3、复合函数的单调性 定义域关于原点对称,在 x=0 处有定义的奇函数→f (0)=0
①图象可由正弦曲线经过平移、 伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同; ②图象也可以用五点作图法;③用整体代换求单调区间(注意的符号) ; ④最小正周期 T= 概念 线性运算 基本定理 平面向量 坐标表示 几何意义 数量积 夹角公式 共线(平行) 共线与垂直 垂直 正弦定理 解三角形 余弦定理 面积 实际应用 a+b+c 1 1 S△=2ah=2absinC= p(p-a)(p-b)(p-c)(其中 p= 2 ) 解的个数的讨论 → a ∥→ b → b = → a x1y2-x2y1=0 → a ⊥→ b → b ·→ a =0 x1x2+y1y2=0
相关文档
最新文档