集合讲解
示范教案(集合的基本运算并集、交集)
示范教案(集合的基本运算-并集、交集)第一章:集合的基本概念1.1 集合的定义与表示方法引入集合的概念,讲解集合的定义介绍集合的表示方法,如列举法、描述法等举例说明集合的表示方法及其应用1.2 集合的基本运算介绍集合的基本运算,包括并集、交集、补集等讲解并集的定义及其运算规则讲解交集的定义及其运算规则第二章:集合的并集运算2.1 并集的定义与性质讲解并集的定义及其表示方法介绍并集的性质,如交换律、结合律等举例说明并集的性质及其应用2.2 并集的运算规则讲解并集的运算规则,如两个集合的并集等于它们的交集的补集等举例说明并集的运算规则及其应用2.3 并集的计算方法介绍并集的计算方法,如列举法、Venn图法等讲解并集计算方法的步骤及其应用第三章:集合的交集运算3.1 交集的定义与性质讲解交集的定义及其表示方法介绍交集的性质,如交换律、结合律等举例说明交集的性质及其应用3.2 交集的运算规则讲解交集的运算规则,如两个集合的交集等于它们的并集的补集等举例说明交集的运算规则及其应用3.3 交集的计算方法介绍交集的计算方法,如列举法、Venn图法等讲解交集计算方法的步骤及其应用第四章:集合的混合运算4.1 混合运算的定义与性质讲解混合运算的定义及其表示方法介绍混合运算的性质,如分配律等举例说明混合运算的性质及其应用4.2 混合运算的运算规则讲解混合运算的运算规则,如并集与交集的运算规则等举例说明混合运算的运算规则及其应用4.3 混合运算的计算方法介绍混合运算的计算方法,如列举法、Venn图法等讲解混合运算计算方法的步骤及其应用第五章:集合的应用举例5.1 集合在实际问题中的应用举例说明集合在实际问题中的应用,如统计数据处理、网络管理等讲解集合运算在实际问题中的重要性5.2 集合运算的综合应用举例说明集合运算在实际问题中的综合应用,如数据挖掘、图论等讲解集合运算的综合应用的方法及其步骤5.3 集合运算的拓展与应用介绍集合运算的拓展与应用,如模糊集合、多集等讲解集合运算的拓展与应用的方法及其步骤第六章:集合运算的练习题与解答6.1 集合运算的基础练习提供一些基础的集合运算练习题,如并集、交集的计算等引导学生通过列举法、Venn图法等方法解答练习题6.2 集合运算的进阶练习提供一些进阶的集合运算练习题,如混合运算、集合的应用等引导学生通过列举法、Venn图法等方法解答练习题6.3 集合运算练习题的解答与解析对练习题进行解答,解释解题思路和方法分析练习题的难度和考察点,帮助学生掌握集合运算的知识点第七章:集合运算的常见错误与注意事项7.1 集合运算的常见错误分析学生在集合运算中常见的错误,如概念混淆、运算规则错误等举例说明这些错误的产生原因和解题方法7.2 集合运算的注意事项提醒学生在进行集合运算时需要注意的事项,如符号使用、运算顺序等讲解注意事项的重要性及其在解题中的应用7.3 集合运算的解题技巧与策略介绍学生在解题时可以采用的集合运算技巧与策略,如化简、分解等讲解技巧与策略的运用方法和适用场景第八章:集合运算在实际问题中的应用案例分析8.1 集合运算在图论中的应用介绍集合运算在图论中的应用,如图的连通性、网络流等分析实际案例,讲解集合运算在图论问题中的作用和意义8.2 集合运算在数据挖掘中的应用介绍集合运算在数据挖掘中的应用,如数据预处理、特征选择等分析实际案例,讲解集合运算在数据挖掘问题中的作用和意义8.3 集合运算在其他领域的应用介绍集合运算在其他领域的应用,如计算机科学、经济学等分析实际案例,讲解集合运算在其他问题中的作用和意义第九章:集合运算的拓展与研究动态9.1 集合运算的拓展介绍集合运算的拓展方向,如模糊集合、多集、粗糙集等讲解拓展领域的研究动态和应用前景9.2 集合运算的研究方法与技术介绍集合运算的研究方法,如逻辑推理、数学建模等讲解研究技术在集合运算中的应用方法和实例9.3 集合运算的学术交流与资源共享介绍集合运算领域的学术交流与资源共享平台,如学术会议、期刊等鼓励学生积极参与学术交流,分享研究成果和经验第十章:总结与展望10.1 集合运算的教学总结总结本课程的教学内容和目标,强调集合运算的重要性和应用价值回顾学生在学习过程中的收获和不足,提出改进教学方法的建议10.2 集合运算的学习展望鼓励学生继续深入学习集合运算及相关领域知识,提高解决问题的能力展望集合运算在未来的发展趋势和应用前景,激发学生的学习兴趣和动力重点和难点解析1. 第一章至第五章的章节内容,主要涉及集合的基本概念、基本运算以及应用举例。
第一章 集合 课程讲义
1.1 集合的含义及其表示一、知识梳理1.集合的定义2.元素与集合的关系3.集合中元素的特性:确定性、互异性、无序性4.常用数集及其记法:5.集合的表示方法:二、例题讲解例1:集合M中的元素为1,x,x2-x,求x的范围?例2:三个元素的集合1,a,ba,也可表示为0,a2,a+b,求a2005+ b2006的值.例3:集合A中的元素由(a∈Z,b∈Z)组成,判断下列元素与集合A的关系?(1)0 (2(3例4.用描述法表示下列集合:(1)所有被3整除的整数的集合;(2)使yx=有意义的x的集合;(3)方程x2+x+1=0所有实数解的集合;(4)抛物线y=-x2+3x-6上所有点的集合;例5.已知A={a|6,3N a Za∈∈-},试用列举法表示集合A.例6.已知集合P={-1,a,b},Q={-1,a2,b2},且Q=P,求1+a2+b2的值.三、巩固练习1、用∈或∉填空________N________R0_______N* π________R 227_______Q cos300_______Z2、由实数-x,|x|x,组成的集合最多含有元素的个数是_________________个.3、用列举法表示下列集合:(1) {x|x为不大于10的正偶数}(2){(x,y)|0≤x ≤2,0≤y<2,x ,y ∈Z}4、用描述法表示下列集合:(1)不等式2x-3>5的解集;(2)直角坐标平面内属于第四象限的点的集合;5、集合A={x|y=x 2+1},B={t|p=t 2+1},,这三个集合的关系? 6、已知A={x|12,6N x N x∈∈-},试用列举法表示集合A .1.2 子集、全集、补集一、知识梳理1.子集的概念及记法:2.子集的性质:① A ⊆ A② A ∅⊆3.真子集的概念及记法:4.真子集的性质:①∅是任何非空集合的真子集5.全集的概念:6. 补集的概念:二、例题讲解例1:以下各组是什么关系,用适当的符号表示出来.(1)a 与{a} 0 与 ∅(2)∅与{20,35,∅} (3)S={-2,-1,1,2},A={-1,1},B={-2,2};(4)S=R ,A={x|x ≤0,x ∈R},B={x|x>0 ,x ∈R };例2:设集合A={x|x 2+4x=0,x ∈R},B={x|x 2+2(a+1)x+a 2-1=0,x ∈R},若B ⊆A ,求实数a 的取值范围.例3:①方程组210360x x +>⎧⎨-≤⎩的解集为A ,U=R ,试求A 及u C A . ②设全集U=R ,A={x|x>1},B={x|x+a<0},B 是R C A 的真子集,求实数a 的取值范围.三、巩固练习1.指出下列各组中集合A 与B 之间的关系.(1) A={-1,1},B=Z ;(2)A={1,3,5,15},B={x|x 是15的正约数};(3) A = N*,B=N(4) A ={x|x=1+a 2,a ∈N*},B={x|x=a 2-4a+5,a ∈N*}2.(1)已知{1,2 }⊆M ⊆{1,2,3,4,5},则这样的集合M 有多少个?(2)已知M={1,2,3,4,5,6, 7,8,9},集合P 满足:P ⊆M ,且若P α∈,则10-α∈P ,则这样的集合P 有多少个?3.若U=Z ,A={x|x=2k ,k ∈Z},B={x|x=2k+1, k ∈Z},则U C A ___________ U C B ___________:4.设全集是数集U={2,3,a 2+2a-3},已知A={b ,2},U C A ={5},求实数a ,b 的值.5.已知集合A={x|x 2-1=0 },B={x|x 2-2ax+b=0},B ⊆ A ,求a ,b 的取值范围.1.3 交集、并集一、知识梳理1.交集的定义:注意: 当集合A 与B 没有公共元素时,不能说A 与B 没有交集,而是A ∩B=∅.2.交集的常用性质:(1)(A ∩B)∩C =A ∩(B ∩C);(2) A ∩B ⊆A , A ∩B ⊆B3.区间的表示法:4.并集的定义:注意:并集(A ∪B )实质上是A 与B 的所有元素所组成的集合,但是公共元素在同一个集合中要注意元素的互异性.5.并集的常用性质:(1)(A ∪B)∪C =A ∪(B ∪C);(2) A ⊆A ∪B , B ⊆A ∪B二、例题讲解例1. (1)设A={-1,0,1},B={0,1,2,3},求A ∩B ;(2)设A={x|x>0},B={x|x≤1},求A∩B;(3)设A={x|x=3k,k∈Z},B={y|y=3k+1 k∈Z },C={z|z=3k+2,k∈Z},D={x|x=6k+1,k∈Z},求A∩B;A∩C;C∩B;D∩B;例2:已知数集 A={a2,a+1,-3},数集B={a-3,a-2,a2+1},若A∩B={-3},求a的值.例3:(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∩B;(2)设集合A={(x,y)|y=x+1,x∈R},B={(x,y)|y=-x2+2x+34,x∈R},求A∪B;例4:已知集合A={x|x2-1=0 },B={x|x2-2ax+b=0},A∪B=A,求a,b的值或a,b所满足的例5:若A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},(1)若A∪B=A∩B,求a的值;(2)∅ A∩B,A∩C=∅,求a的值.例6:已知集合A={2,5},B={x|x2+px+q=0,x∈R}(1)若B={5},求p,q的值.(2)若A∩B= B ,求实数p,q满足的条件.例10、已知集合A={x|-2<x<-1,或x>0},B={x|a≤x≤b},满足A∩B={x|0<x≤2},A∪B={x|x>-2},求a、b的值。
高考文科数学集合专题讲解与高考真题精选(含答案)
集合、简易逻辑(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集,N 或N 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a与集合M 的关系是a M ,或者a M ,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x| x 具有的性质} ,其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集( ).【1.1.2 】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图A B(1)A A子集B (或A)A中的任一元素都属于B(2) A(3)若A B且B C ,则A C(4)若A B且B A,则A BA(B)B A或真子集A B(或B A ) A B,且 B 中至少有一元素不属于 AA(1) A(为非空子集)(2)若A B且B C ,则A CB A集合相等A BA中的任一元素都属于B,B 中的任一元素都属于 A(1)A B(2)B AA(B)n(7)已知集合A有n(n 1) 个元素,则它有2个子集,它有2n 1个真子集,它有2n 1个非空子集,它有2n 2非空真子集.集合的基本运算1. 集合运算:交、并、补.交:A I B { x | x A,且x B}并:A U B{ x | x A或x B}补:C 且A { x U , x A} U2. 主要性质和运算律(1)包含关系:A A, A,A U , C A U ,UA B,BC A C; A I B A, A I B B; A U B A, A U B B.(2)等价关系: A B A I B A A U B B C U A U B U(3)集合的运算律:交换律: A B B A; A B B A.结合律: ( A B) C A (B C); (A B) C A (B C)分配律:. A (B C) (A B) ( A C); A (B C) ( A B) (A C)0-1 律:I A , U A A,U I A A,U U A U等幂律: A A A, A A A.求补律:A∩C U A=φ A ∪C U A=U C U U=φC Uφ=U反演律:C U(A∩B)= (C U A)∪( C U B) C U(A∪B)= (C U A)∩( C U B)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高一数学《集合》完整版课件
(1)集合的定义:集合是由一些确定的对象组成的整体。
(2)集合的表示方法:列举法、描述法、图示法。
(3)集合的性质:无序性、互异性、确定性。
(4)集合间的关系:子集、超集、相等、不相交。
(5)集合的运算:并集、交集、补集。
3.例题讲解:
(1)判断以下说法是否正确:①空集是任何集合的子集;②任何集合都是自身的子集。
2.集合间的关系和运算。
3.例题解答步骤。
七、作业设计
1.作业题目:
(1)用列举法和描述法表示集合:{x|x是正整数}。
(2)判断以下集合间的关系:A={x|x是3的倍数},B={x|x是6的倍数}。
(3)求集合A={1, 2, 3, 4, 5}和集合B={4, 5, 6, 7, 8}的并集、交集和补集。
高一数学《集合》完整版课件
一、教学内容
本节课选自高一数学教材第一章《集合与函数的概念》第一节“集合的概念及其表示”,内容包括集合的定义、集合的表示方法、集合的性质、集合间的基本关系和运算。
二、教学目标
1.理解集合的概念,掌握集合的表示方法,能够正确书写集合。
2.掌握集合的性质,理解集合间的基本关系和运算,能够解决相关问=∅。
-集合的运算:
-并集:集合A和集合B中所有元素组成的集合,记作A∪B。
-交集:集合A和集合B共有的元素组成的集合,记作A∩B。
-补集:在全集U中,不属于集合A的元素组成的集合,记作A'。
在教学过程中,需重点关注以下几点:
-解释集合运算的实际意义,如并集表示两个集合中所有元素的汇总,交集表示两个集合共有的部分。
2.鼓励学生主动提问,及时解答疑惑,促进师生互动。
四、情景导入
集合综合讲解
集合章节复习一、基础知识记忆 1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类:有限集,无限集(3)集合的表示法:列举法,描述法,图示法 2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集,记作A B ≠⊂集合相等:若:A B B A ⊆⊆且,则A B =3、元素与集合的关系:属于 ∈ ;不属于:∉ ;空集:φ4、集合的运算:交集:定义:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B,A A A A A B B A A B A A B B A B A B A⋂=⋂∅=∅⋂=⋂⋂⊆⋂⊆⊆⇔⋂=性质:,,,,并集:定义:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A BA A A A A AB B A A B A A B B A B A B B⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=性质:,,,,,补集:定义:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A()()()()()()()()()U U U U U U U U U U C A A C A A U C C A A C A B C A C B C A B C A C B ⋂=∅⋃==⋂=⋃⋃=⋂性质:,,,,5.集合12{,,,}n a a a 的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 7、集合运算中常用结论: ①;A B A B A ⊆⇔= A B A B B⊆⇔= ②()()();U U U A B A B = 痧 ()()()U U U A B A B = 痧 ③()()card A B card A =+ ()()card B card A B -二、题型及例题讲解题型1 正确理解和运用集合概念理解集合的概念,正确应用集合的性质是解此类题目的关键.例1(1)集合A ={x|43x -∈Z ,x ∈N},则它的元素是 。
集合的概念讲解版
集合的概念一.基础知识点完美梳理,专治各种不解1.集合与元素2.集合与元素间的关系3.集合中元素的特征4.数集的种类5.列举法6.描述法7.集合的分类8.韦恩图9.区间(部分教材先出现,故在此涉及)二.决胜高考知识点提升,专治各种不服证明:1.证明:奇数间运算性质2.证明:偶数间运算性质3.证明:奇数,偶数间运算性质三.6本教材优秀习题升华与拓展:共7题四.基础题,中等题,稍难题集中训练:共20题五.难题高考达标(数学联赛,数学竞赛,强基计划,自主招生可参考部分例题):共13题一.基础知识点完美梳理,专治各种不解:1.集合与元素:(1)一般地,我们把研究的对象统称为元素,把一些能够确定的,不同的元素组成的总体叫做集合,简称集。
(2)我们通常用大写的拉丁字母I,L,O,V,E.....表示集合,用小写的拉丁字母y,o,u,.....表示元素。
2.集合与元素间的关系:(1)属于:如果元素a是集合A中的元素,就说元素a属于集合A,记作a∈A。
举例1:你∈{亲,爱,的,周,游,很,高,兴,认,识,你}。
(2)不属于:如果元素a不是集合A中的元素,就说元素a不属于集合A,记作a∉A。
有些资料上也记做∈。
举例1:我∉{亲,爱,的,周,游,很,高,兴,认,识,你}。
要开心哦!!!!!!!!!!!!3.集合中元素的特征:(1)确定性:给定的集合,它的元素的性质必须是明确的,不允许有模棱俩可,含混不清的情况,也就是说,给定一个集合,那么一个元素在或不在这个集合中就是确定了的,属于或不属于。
举例1:帅的小哥哥他们作为元素就不可以构成一个集合哦,因为帅没有一个评判的标准的哦!每个人都可以很帅,每个人都是这个宇宙中独一无二的存在!(2)互异性:对于给定的集合,集合中任意两个元素都是互不相同的,不存在重复出现的情况,相同的元素归入同一集合中只能算作集合的一个元素。
举例1:词语“憨憨”中的汉字作为元素构成的集合A={憨},不可以写成{憨,憨}哦!集合{sin450,sin300,cos600,1}的写法是错误的,正确写法:{sin450,sin300,1}或{sin450,cos600,1}。
(完整版)集合知识点归纳
集合的基础知识一、重点知识归纳及讲解1.集合的有关概念一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素⑴集合中的元素具有以下的特性①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素;而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的.②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}.③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合.(2)集合的元素某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ.(3)集合的分类:有限集与无限集.(4)集合的表示法:列举法、描述法和图示法.列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集.描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集.使用描述法时,应注意六点:①写清集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”;⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切.图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.如:A={1,2,3,4}例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.分析:欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况.解析:(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素也相同,舍去c=1,此时无解.(2)a+b= ac2且a+2b=ac,消去b得:2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但c=1时,B中的三个元素也相同,舍去c=1,∴.点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.(5)常用数集及专用记号(1)非负整数集(或自然数集)N={0,1,2,……}(2)正整数集N*(或N+)={1,2,3,……}(3)整数集Z={0,?1,?2,……}(4)有理数集Q={整数与分数}(5)实数集R={数轴上的点所对应的数}.强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.强调:排除0和负数的数集也可表示为R*、Z*、Q*或R+、Z+、Q+.2.基本运算1. 交集(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}(2)交集的图示上图阴影部分表示集合A与B的交集.(3)交集的运算律,,,2. 并集(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}(2)并集的图示以上阴影部分表示集合A与B的并集.(3)并集的运算律,,,3、补集(1)定义:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集).记作,即C S A=(2)补集的图示4、常用性质A A=A,AΦ=Φ,A B=B A,A B A,A B B.A A=A,AΦ=A,A B=B A,A B A,A B B.,,例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.分析:利用集合图示较为直观.解:由{4,5},则将4,5写在中,由{1,2,3},则将1,2,3写在集A中,由{6,7,8},则将6,7,8写在A、B之外,由与中均无9,10,则9,10在B中,故A={1,2,3,4,5},B={4,5,9,10}.5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)- card(A∩B).二、难点知识剖析1、要注意区分一些容易混淆的符号(1)与的区别:表示元素与集合之间的关系,例如1N,-1N等;表示集合与集合之间的关系,例如N R,等.(2)a与{a}的区别:一般在,a表示一个元素,{a}而表示只有一个元素a的集合.例如,0{0},{1}{1,2,3}等,不能写成0={0},{1}{1,2,3},1{1,2,3}.(3){0}与Φ的区别:是含有一个元素0的集合,Φ是不含任何元素的集合,因此Φ{0}但不能写成Φ={0},Φ{0}.例3、已知集合M={x|x≤3},集合P={x|x<2},设,则下列关系式中正确的一个是()A、P∈MB、a∈MC、P MD、{a-3}P解析:集合M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用“包含”,“不包含”来确定,而对a与集合M、P的关系只能用“属于”,“不属于”来确定,比较实数的大小,易判断C正确.小结:正确使用集合的符号是正确分析、解答问题的关键.2.理解集合所表示的意义(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围.如{y R|y=}表示的为函数y=中y的取值范围,故{y R|y=}={y R|y};而{x R|y=}表示y=的x的取值范围,故{x R|y=}=R.(2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式B A中,易漏掉B=Φ的情况.例4、设A=,B=(1)若A B=B,求的值;(2)若A B=B,求的值.分析:明确A B=B和A B=B的含义,根据问题的需要,将A B=B和A B=B转化为等价的关系式:和,是解决本题的关键.解析:首先化简集合A,得A={-4,0}(1)由于A B=B,则有可知集合B或为空集Φ,或只含有根0或-4.①若B=Φ,由得②若,代入得:,当时,B=,合题意.当时,B=,也符合题意.③若,代入得:,当时,②中已讨论,合题意当时,B=不合题意.由①、②、③得,.(2)因为A B=B,所以,又A={-4,0},而B至多只有两个根,因此应有A=B.由(1)知,【点评】:一般对于A B=B和A B=B这种类型的问题,都要注意转化为等价的关系式:和,且在包含关系中,注意不要漏掉B=的情况.并且当A、B中的元素的个数相同时,还存在或的情况时,只有A=B这一种情况.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
集合难题讲解
集合难题讲解
集合难题是指一些涉及集合论的复杂问题,这些问题往往涉及到多个概念和技巧的运用,需要深入的思考和分析才能解决。
以下是一些常见的集合难题讲解:
1. 子集与超集问题:给定两个集合A和B,判断A是否是B的子集或超集。
如果是子集,则A中的所有元素也一定在B中,但B中的元素不一定在A 中;如果是超集,则A中的元素一定在B中,但B中的所有元素不一定在
A中。
这个问题的关键在于理解子集和超集的定义和性质,并能够正确地应用它们。
2. 集合的交、并、差运算问题:给定两个集合A和B,要求计算它们的交集、并集和差集。
交集是指同时属于A和B的元素组成的集合;并集是指属于
A或属于B(或两者都属于)的元素组成的集合;差集是指属于A但不属于B的元素组成的集合。
这个问题的关键在于理解交、并、差运算的定义和性质,并能够正确地应用它们。
3. 集合的等价关系问题:给定两个集合A和B,判断它们是否等价。
如果两个集合等价,则它们的元素完全相同,即A中的每个元素都属于B,且B中的每个元素都属于A。
这个问题的关键在于理解等价关系的定义和性质,并能够正确地应用它们。
4. 集合的基数问题:给定一个集合A,要求计算它的基数(即元素个数)。
这个问题的关键在于理解集合基数的定义和性质,并能够正确地应用它们。
5. 集合的证明问题:给定一个集合A和B,要求证明A中的所有元素都属
于B或者不属于B。
这个问题通常涉及到对集合的元素的性质进行深入分析,以及正确地应用集合的性质和定理。
以上是几个常见的集合难题讲解,对于这些问题的解决需要深入理解集合论的基本概念和性质,并且需要具备一定的逻辑思维和分析能力。
集合的概念详细讲解
集合的概念详细讲解集合是数学中的一个基本概念,它指的是由多个元素组成的一个整体。
集合中的元素可以是任何类型,例如整数、实数、字符串、对象等等。
集合的概念在数学中有着广泛的应用,例如在集合论、函数论、代数、拓扑学等学科中都有重要的应用。
一、集合的定义集合的定义通常是指在一个特定的范围内,由一个或多个元素组成的整体。
集合中的元素可以是任何类型,例如整数、实数、字符串、对象等等。
在数学中,我们通常用大写字母来表示集合,例如A、B、C等等。
二、集合的表示集合的表示通常有两种方式:列举法和描述法。
列举法是将集合中的所有元素一一列举出来,例如{1, 2, 3}表示一个包含三个整数的集合。
描述法是用一个数学表达式来描述集合中的元素,例如{x|x^2+1=0}表示一个包含所有满足方程x^2+1=0的实数的集合。
三、集合的性质集合具有以下性质:1.确定性:一个元素要么属于某个集合,要么不属于某个集合,不存在第三种情况。
2.互异性:集合中的元素互不相同,即集合中没有重复的元素。
3.无序性:集合中的元素没有固定的顺序,即任意两个元素可以交换位置而不改变集合本身。
4.封闭性:如果一个新元素与集合中的某个元素相等,则该新元素也属于该集合。
5.空集存在性:没有任何元素的集合称为空集,空集是任何非空集合的真子集。
6.反身性:任何非空集合是其本身的子集。
7.幂等律:若一集合有n个元素,则其幂集(所有子集的集合)的元素个数为2^n个。
8.互补律:若一集合有n个元素,则其补集(不属于该集合的元素组成的子集)的元素个数为(n-1)个。
9.子集基数量定律:任何一个集合都必须包含它自身作为子集,并且至多包含两个其他不同的子集(空集和全集)。
10.子集完全互补定律:任何一个集合都必须包含它的所有子集作为元素的并集,并且至多包含两个其他不同的子集(空集和全集)。
11.互补完全性定律:任何一个集合都必须包含它的所有补集作为元素的并集,并且至多包含两个其他不同的子集(空集和全集)。
数学集合零基础讲解
数学集合零基础讲解
一、集合的定义
集合是指一组对象或元素的组合,这些对象或元素称为集合的元素。
集合通常用符号“∪”表示,例如,集合 A={1,2,3}表示元素 1、
2、3 所在的集合。
二、集合的表示
集合的表示可以采用多种方式,其中最常见的方式是通过列举法表示。
例如,集合 A={1,2,3}可以用表示为 A={1,2,3}。
另外,集合还可以通过描述法表示,例如集合 B={x|x=2 或 x=3}可以用描述法表示为 B={x|x=2 或 x=3}。
三、集合的运算
集合可以进行一些基本的运算,例如集合的并集、交集、补集等。
其中,集合的并集表示为“∪”,集合的交集表示为“∪”,集合的补集表示为“-”,例如,集合 A={1,2,3},集合 B={2,3},则 A 的并集为 A∪B=A,A 的交集为 A∪B=B,A 的补集为 A-B=A。
四、集合的应用
集合在数学中有着广泛的应用,例如,在几何中,集合可以用来表示点、线、面等几何元素;在代数中,集合可以用来表示方程、不等式等代数问题;在概率论中,集合可以用来表示事件发生的可能性等。
本文从集合的定义、集合的表示、集合的运算以及集合的应用等方面对集合进行零基础讲解,旨在帮助初学者更好地理解集合的概念
和意义。
高中数学-集合知识讲解
高中数学-集合知识讲解集合一、章节结构图123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩二、复习指导1.新课标知识点梳理在高中数学中,集合的初步知识与常用逻辑用语知识,与其它内容有着密切联系,它们是学习、掌握和使用数学语言的基础,准确表述数学内容,更好交流的基础.集合知识点及其要求如下:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系.(2)能选择自然语言、图形语言、集合语言(列举法或描(C)方程y =3x +1所对应的直线上的所有点(D)x 轴附近的所有点(2)设集合62},23|{=≥=x x x A ,则下列关系中正确的是( )(A)x A (B)x ∉A (C){x }∈A (D){x }A(3)设集合},214|{},,412|{Z Z ∈+==∈+==k k x x N k kx x M ,则( ) (A)M =N(B)M N (C)M N (D)M ∩N =例2.已知集合}68{N N ∈-∈=xx A ,试求集合A 的所有子集.例3.已知A ={x |-2<x <5},B ={x |m +1≤x ≤2m-1},B ≠,且B ⊆A ,求m 的取值范围.例4*.已知集合A ={x |-1≤x ≤a },B ={y |y =3x -2,x ∈A },C ={z |z =x 2,x ∈A },若C ⊆B ,求实数a 的取值范围.1.2集合的概念及其运算(二)(一)复习指导(1)补集:如果A⊆S,那么A在S中的补集s A={x|x∈S,且x≠A}.(2)交集:A∩B={x|x∈A,且x∈B}(3)并集:A∪B={x|x∈A,或x∈B}这里“或”包含三种情形:①x∈A,且x∈B;②x∈A,但x∉B;③x∈B,但x∉A;这三部分元素构成了A∪B(4)交、并、补有如下运算法则全集通常用U表示.(A∩B)=(U A)∪(U B);A∩(B∪C)=(A∩B)∪(A∩C)U(A∪B)=(U A)∩(U B);A∪(B∩C)=(A∪B)∩(A∪C)U(5)集合间元素的个数:card(A∪B)=card(A)+card(B)-card(A∩B)集合关系运算常与函数的定义域、方程与不等式解集,解析几何中曲线间的相交问题等结合,体现出集合语言、集合思想在其他数学问题中的运用,因此集合关系运算也是高考常考知识点之一.(二)解题方法指导例1.(1)设全集U={a,b,c,d,e}.集合M={a,b,c},集合N={b,d,e},那么(U M)∩(U N)是( )(A)(B){d} (C){a,c} (D){b,e}(2)全集U={a,b,c,d,e},集合M={c,d,e},N={a,b,e},则集合{a,b}可表示为( )(A)M∩N(B)(U M)∩N(C)M∩(U N)(D)(U M)∩(U N)例2.如图,U是全集,M、P、S为U的3个子集,则下图中阴影部分所表示的集合为( )(A)(M∩P)∩S(B)(M∩P)∪S(C)(M∩P)∩(U S) (D)(M∩P)∪(U S)例3.(1)设A={x|x2-2x-3=0},B={x|ax=1},若A∪B=A,则实数a的取值集合为____;(2)已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=M,则实数a的取值集合为____.例4.定义集合A-B={x|x∈A,且x B}.(1)若M={1,2,3,4,5},N={2,3,6}则N-M等于( )(A)M(B)N(C){1,4,5 } (D){6}(2)设M、P为两个非空集合,则M-(M-P)等于( )(A)P(B)M∩P(C)M∪P(D)M例5.全集S={1,3,x3+3x2+2x},A={1,|2x-1|}.如果sA={0},则这样的实数x是否存在?若存在,求出x;若不存在,请说明理由.例 题 解 析1.1 集合的概念及其运算(1)例1分析:(1)集合中的元素是确定的、互异的,又是无序的;(2)注意“∈”与“⊆”以及x 与{x }的区别;(3)可利用特殊值法,或者对元素表示方法进行转换.解:(1)选D .“附近”不具有确定性.(2)选D .(3)选B . 方法一:N M ∉∉21,21故排除(A)、(C),又N ∉∉43,43M ,故排除(D).方法二:集合M 的元素.),12(41412Z ∈+=+=k k kx 集合N 的元素=+=214k xZ ∈+k k ),2(41.而2k +1为奇数,k +2为全体整数,因此M N . 小结:解答集合问题,集合有关概念要准确,如集合中元素的三性;使用符号要正确;表示方法会灵活转化.例2分析:本题是用{x |x ∈P }形式给出的集合,注意本题中竖线前面的代表元素x ∈N .解:由题意可知(6-x )是8的正约数,所以(6-x )可以是1,2,4,8;可以的x 为2,4,5,即A ={2,4,5}.∴A 的所有子集为,{2},{4},{5},{2,4},{2,5},{4,5},{2,4,5}.小结:一方面,用{x |x ∈P }形式给出的集合,要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;另一方面,含n (n ∈N*)个元素的集合A 的所有子集的个数是:+++210n n n C C C n n n C 2=+ 个.例3分析:重视发挥图示法的作用,通过数轴直观地解决问题,注意端点处取值问题.解:由题设知⎪⎩⎪⎨⎧<-->+-≤+51221121m m m m ,解之得,2≤m <3.小结:(1)要善于利用数轴解集合问题.(2)此类题常见错误是:遗漏“等号”或多“等号”,可通过验证“等号”问题避免犯错.(3)若去掉条件“B ≠”,则不要漏掉⊆A 的情况. 例4*分析:要首先明确集合B 、C 的意义,并将其化简,再利用C ⊆B 建立关于a 的不等式.解:∵A =[-1,a ],∴B ={y |y =3x -2,x ∈A },B =[-5,3a -2]⎪⎩⎪⎨⎧≥<≤<≤-=∈==∴1],,0[10],1,0[01],1,[}.,|{222a a a a a C A x x z z C(1)当-1≤a <0时,由C ⊆B ,得a 2≤1≤3a -2无解;(2)当0≤a <1时,1≤3a -2,得a =1;(3)当a≥1时,a2≤3a-2得1≤a≤2综上所述,实数a的取值范围是[1,2].小结:准确理解集合B和C的含义(分别表示函数y=3x -2,y=x2的值域,其中定义域为A)是解本题的关键.分类讨论二次函数在运动区间的值域是又一难点.若结合图象分析,结果更易直观理解.1.2 集合的概念及其运算(2)例1分析:注意本题含有求补、求交两种运算.求补集要认准全集,多种运算可以考虑运算律.解:(1)方法一:∵U M={b,c},U N={a,c}∴(U M)∩(U N)=,答案选A方法二:(U M)∩(U N)= U(M∪N)=∴答案选A方法三:作出文氏图,将抽象的关系直观化.∴答案选A(2)同理可得答案选B小结:交、并、补有如下运算法则(A∩B)=(U A)∪(U B);A∩(B∪C)=(A∩B)∪(A∩C)U(A∪B)=(U A)∩(U B);A∪(B∩C)=(A∪B)∩(A∪C)U例2分析:此题为通过观察图形,利用图形语言进行符号语言的转化与集合运算的判断.解:∵阴影中任一元素x有x∈M,且x∈P,但x S,∴x∈U S.由交集、并集、补集的意义.∴x ∈(M ∩P )∩(U S )答案选D .小结:灵活进行图形语言、文字语言、符号语言的转化是学好数学的重要能力.例3解:(1)由已知,集合A ={-1,3}, ⎪⎩⎪⎨⎧=/=∅=0}1{0a a a B∵A ∪B =A 得B ⊆A∴分B =和}1{aB =两种情况. 当B =时,解得a =0;当}1{a B =时,解得a 的取值}31,1{- 综上可知a 的取值集合为⋅-}31,1,0{ (2)由已知,⎪⎩⎪⎨⎧=/=∅==0}1{0},{a a a N a M∵M ∩N =M ⇔M ⊆N当N =时,解得a =0;M ={0} 即M ∩N ≠M ∴a =0舍去当}1{a N =时,解得11±=⇔=a aa 综上可知a 的取值集合为{1,-1}.小结:(Ⅰ)要重视以下几个重要基本关系式在解题时发挥的作用:(A ∩B )⊆A ,(A ∩B )⊆B ;(A ∪B )⊇A ,(A ∪B )⊇B ;A ∩U A =,A ∪U A =U ;A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等.(Ⅱ)要注意是任何集合的子集.但使用时也要看清题目条件,不要盲目套用.例4解:(1)方法一:由已知,得N -M ={x |x ∈N ,且x M}={6},∴选D方法二:依已知画出图示∴选D.(2)方法一:M-P即为M中除去M∩P的元素组成的集合,故M-(M-P)则为M中除去不为M∩P的元素的集合,所以选B.方法二:由图示可知M=(M∩P)∪(M-P)选B.方法三:计算(1)中N-(N-M)={2,3},比较选项知选B.小结:此题目的检测学生的阅读理解水平及适应、探索能力,考查学生在新情境中分析问题解决问题的能力.事实证明,虽然这类问题内容新颖,又灵活多样,但其涉及的数学知识显得相对简单和基础,要勇于尝试解题.例5*解:假设这样的x存在,∵S A={0},∴0∈S,且|2x-1|∈S.易知x3+3x2+2x=0,且|2x-1|=3,解之得,x=-1.当x=-1时,S={1,3,0},A={1,3},符合题设条件.∴存在实数x=-1满足S A={0}.。
数学集合知识讲解
序号
知识点
讲解内容
1
集合的基本概念
把定性、互异性和无序性。
2
集合的表示方式
列举法:把集合中的所有元素一一列举出来,并用大括号“{}”括起来表示集合的方法。描述法:用文字、符号或式子等描述集合的方法,包括元素满足的条件以及元素的取值范围。图示法:用平面上封闭曲线的内部代表集合,常用韦恩图来表示集合间的关系。
3
集合的性质
子集:若对任意的x∈A,都有x∈B,则称A是B的子集。真子集:若A是B的子集,且至少有b∉A,b∈B,则称A是B的真子集。空集:不含任何元素的集合叫做空集,通常记作∅。空集是任何集合的子集,是任何非空集合的真子集。
4
集合的基本运算
交集:两个集合的公共元素构成的集合叫做交集,记作A∩B。并集:两个集合的所有元素构成的集合叫做并集,记作A∪B。补集:全集U中不属于某个集合A的全部元素构成的集合叫做集合A的补集,记作CuA。全集:给定的所有元素构成的集合叫做全集。
5
集合的运算律
交换律:A∩B=B∩A,A∪B=B∪A。结合律:A∩(B∩C)=(A∩B)∩C,A∪(B∪C)=(A∪B)∪C。分配律:A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。德·摩根定律:Cu(A∩B)=(CuA)∪(CuB),Cu(A∪B)=(CuA)∩(CuB)。
6
集合中子集的个数
由n个元素组成的集合A,其子集个数为2n-1个,非空子集个数为2n-2个。设集合A、B分别为含有n、m个元素的有限集,若B⊆C⊆A,则C的个数为2(n-m)-1个,以此类推)。
03【基础】集合的基本关系及运算知识讲解
集合的基本关系及运算【学习目标】1.理解集合之间包含与相等的含义,能识别一些给定集合的子集.在具体情境中,了解空集和全集的含义.2.理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.【要点梳理】要点一:集合之间的关系1.集合与集合之间的“包含”关系集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A;子集:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset).记作:A B(B A)⊆⊇或,当集合A 不包含于集合B 时,记作A B,用Venn 图表示两个集合间的“包含”关系:A B(B A)⊆⊇或要点诠释:(1)“A 是B 的子集”的含义是:A 的任何一个元素都是B 的元素,即由任意的x A ∈,能推出x B ∈.(2)当A 不是B 的子集时,我们记作“A ⊆B (或B ⊇A )”,读作:“A 不包含于B ”(或“B 不包含A ”).真子集:若集合A B ⊆,存在元素x ∈B 且x A ∉,则称集合A 是集合B 的真子集(proper subset).记作:A B(或B A)规定:空集是任何集合的子集,是任何非空集合的真子集.2.集合与集合之间的“相等”关系A B B A ⊆⊆且,则A 与B 中的元素是一样的,因此A=B要点诠释:任何一个集合是它本身的子集,记作A A ⊆.要点二:集合的运算1.并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A∪B 读作:“A 并B”,即:A∪B={x|x ∈A,或x ∈B}Venn 图表示:要点诠释:(1)“x ∈A,或x ∈B”包含三种情况:“,x A x B ∈∉但”;“,x B x A ∈∉但”;“,x A x B ∈∈且”.(2)两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只出现一次).2.交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集;记作:A∩B,读作:“A 交B”,即A∩B={x|x ∈A,且x ∈B};交集的Venn 图表示:要点诠释:(1)并不是任何两个集合都有公共元素,当集合A 与B 没有公共元素时,不能说A 与B 没有交集,而是A B =∅ .(2)概念中的“所有”两字的含义是,不仅“A∩B 中的任意元素都是A 与B 的公共元素”,同时“A 与B 的公共元素都属于A∩B”.(3)两个集合求交集,结果还是一个集合,是由集合A 与B 的所有公共元素组成的集合.3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.补集:对于全集U 的一个子集A,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set),简称为集合A 的补集,记作:U U A A={x|x U x A}∈∉;即且;痧补集的Venn 图表示:要点诠释:(1)理解补集概念时,应注意补集U A ð是对给定的集合A 和()U A U ⊆相对而言的一个概念,一个确定的集合A ,对于不同的集合U,补集不同.(2)全集是相对于研究的问题而言的,如我们只在整数范围内研究问题,则Z 为全集;而当问题扩展到实数集时,则R 为全集,这时Z 就不是全集.(3)U A ð表示U 为全集时A 的补集,如果全集换成其他集合(如R )时,则记号中“U”也必须换成相应的集合(即R A ð).4.集合基本运算的一些结论:A B A A B B A A=A A =A B=B A ⋂⊆⋂⊆⋂⋂∅∅⋂⋂,,,,A A B B A B A A=A A =A A B=B A ⊆⋃⊆⋃⋃⋃∅⋃⋃,,,,U U (A)A=U (A)A=⋃⋂∅,痧若A∩B=A,则A B ⊆,反之也成立若A∪B=B,则A B ⊆,反之也成立若x ∈(A∩B),则x ∈A 且x ∈B 若x ∈(A∪B),则x ∈A,或x ∈B求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法.【典型例题】类型一:集合间的关系例1.请判断①0{0};②{}R R ∈;③{}∅∈∅;④∅{}∅;⑤{}0∅=;⑥{}0∈∅;⑦{}0∅∈;⑧∅{}0,正确的有哪些?【答案】②③④⑧【解析】①错误,因为0是集合{}0中的元素,应是{}00∈;②③中都是元素与集合的关系,正确;④⑧正确,因为∅是任何集合的子集,是任何非空集合的真子集,而④中的{}∅为非空集合;⑤⑥⑦错误,∅是没有任何元素的集合.【总结升华】集合的符号语言十分简洁,因而被广泛用于现代数学之中,但往往容易混淆,其障碍在于这些符号与具体意义之间没有直接的联系,突破方法是熟练地掌握这些符号的具体含义.举一反三:【变式1】用适当的符号填空:(1){x||x|≤1}{x|x 2≤1};(2){y|y=2x 2}{y|y=3x 2-1};(3){x||x|>1}{x|x>1};(4){(x,y)|-2≤x≤2}{(x,y)|-1<x≤2}.【答案】(1)=(2)(3)(4)【总结升华】区分元素与集合间的关系,集合与集合间的关系.例2.(2015秋确山县期中)已知A ={x |x 2―4=0},B ={x |ax ―6=0},且B 是A 的子集.(1)求a 的取值集合M ;(2)写出集合M 的所有非空真子集.【思路点拨】对(1)根据A 集合中的元素,B A ⊆,分类讨论B 的可能情况,再注解a ,写出集合M .根据含有n 个元素的集合的真子集个数是2n -1,求解(2).【答案】(1)M ={0,3,-3};(2){0},{3},{-3},{0,3},{0,-3},{3,-3}【解析】(1)A ={2,-2}.∵B 是A 的子集,∴B =∅,{2},{-2},①B =∅时,方程ax -6=0无解,得a =0;②B ={2}时,方程ax -6=0的解为x =2,得2a -6=0,所以a =3;③B ={-2}时,方程ax -6=0的解为x =-2,得-2a -6=0,所以a =-3.所以a 的取值集合M ={0,3,-3}.(2)M ={0,3,-3}的非空真子集为{0},{3},{-3},{0,3},{0,-3},{3,-3}【总结升华】本题考查集合的子集问题,含有n 个元素的集合的子集个数是2n ,真子集个数是2n -1;非空真子集个数是2n -2.举一反三:【变式1】已知{},a b A ⊆{},,,,a b c d e ,则这样的集合A 有个.【答案】7个【变式2】同时满足:①{}1,2,3,4,5M ⊆;②a M ∈,则6a M -∈的非空集合M 有()A.16个B.15个C.7个D.6个【答案】C【解析】3a =时,63a -=;1a =时,65a -=;2a =时,64a -=;4a =时,62a -=;5a =时,61a -=;∴非空集合M 可能是:{}{}{}{}{}{}3,1,5,2,4,1,3,5,2,3,4,1,2,4,5,{}1,2,3,4,5共7个.故选C.【变式3】已知集合A={1,3,a},B={a 2},并且B 是A 的真子集,求实数a 的取值.【答案】a=-1,a=3±或a=0【解析】∵,∴a 2∈A,则有:(1)a 2=1⇒a=±1,当a=1时与元素的互异性不符,∴a=-1;(2)a 2=3⇒a=3±(3)a 2=a ⇒a=0,a=1,舍去a=1,则a=0综上:a=-1,a=3±或a=0.注意:根据集合元素的互异性,需分类讨论.例3.设M={x|x=a 2+1,a ∈N +},N={x|x=b 2-4b+5,b ∈N +},则M 与N 满足()A.M=NB.M NC.N MD.M∩N=∅【答案】B【解析】当a ∈N +时,元素x=a 2+1,表示正整数的平方加1对应的整数,而当b ∈N +时,元素x=b 2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N 中元素是自然数的平方加1对应的整数,即M 中元素都在N 中,但N 中至少有一个元素x=1不在M 中,即M N,故选B.例4.已知},,,0{},,,{y x N y x xy x M =-=若M =N ,则+++2()(x y x )()1001002y x y +++ =.A .-200B .200C .-100D .0【思路点拨】解答本题应从集合元素的三大特征入手,本题应侧重考虑集合中元素的互异性.【答案】D【解析】由M=N,知M,N 所含元素相同.由0∈{0,|x|,y}可知0∈若x=0,则xy=0,即x 与xy 是相同元素,破坏了M 中元素互异性,所以x≠0.若x·y=0,则x=0或y=0,其中x=0以上讨论不成立,所以y=0,即N 中元素0,y 是相同元素,破坏了N 中元素的互异性,故xy≠00,则x=y,M,N 可写为M={x,x 2,0},N={0,|x|,x}由M=N 可知必有x 2=|x|,即|x|2=|x|∴|x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立若|x|=1即x=±1当x=1时,M 中元素|x|与x 相同,破坏了M 中元素互异性,故x≠1当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1∴+++2()(x y x )()1001002y x y +++ =-2+2-2+2+…+2=0【总结升华】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.举一反三:【变式1】设a,b ∈R ,集合b{1,a+b,a}={0,,b}a,则b-a=()【答案】2【解析】由元素的三要素及两集合相等的特征:b1{0,,b},0{1,a+b,a}a 0a b=0a∈∈≠∴+ ,又,∴当b=1时,a=-1,b{0,b}={0,-1,1}a∴,当b=1a时,∴b=a 且a+b=0,∴a=b=0(舍)∴综上:a=-1,b=1,∴b-a=2.类型二:集合的运算例5.(1)(2014湖北武汉期中)已知{}22A y y x ==-;{}22B y y x ==-+,则A ∩B =()A .()){}00,,,B .⎡⎣C .[-2,2]D .{(2)设集合M ={3,a },N ={x |x 2-2x <0,x ∈Z},M ∩N ={1},则M ∪N 为().A .{1,2,a }B .{1,2,3,a }C .{1,2,3}D .{1,3}【思路点拨】(1)先把集合A 、B 进行化简,再利用数轴进行相应的集合运算.(2)先把集合N 化简,然后再利用集合中元素的互异性解题.【答案】(1)C (2)D 【解析】(1)集合A 、B 均表示构成相关函数的因变量取值范围,故可知:A ={y |y ≥-2},B ={y |y ≤2},所以A ∩B ={y |-2≤y ≤2},选C .(2)由N ={x |x 2-2x <0,x ∈Z}可得:N ={x |0<x <2,x ∈Z}={1},又由M ∩N ={1},可知1∈M ,即a =1,故选D .举一反三:【变式1】设A、B 分别是一元二次方程2x 2+px+q=0与6x 2+(2-p)x+5+q=0的解集,且A∩B={21},求A ∪B.【答案】{21,31,-4}【解析】∵A∩B={21},∴21是方程2x 2+px+q=0的解,则有:0q p 2121(22=++(1),同理有:6(21)2+(2-p)·21+5+q=0(2)联立方程(1)(2)得到:⎩⎨⎧-==.4q ,7p ∴方程(1)为2x 2+7x-4=0,∴方程的解为:x 1=21,x 2=-4,∴}4,21{A -=,由方程(2)6x 2-5x+1=0,解得:x 3=21,x 4=31,∴B={21,31},则A∪B={21,31,-4}.【变式2】设集合A={2,a 2-2a,6},B={2,2a 2,3a-6},若A∩B={2,3},求A∪B.【答案】{2,3,6,18}【解析】由A∩B={2,3},知元素2,3是A,B 两个集合中所有的公共元素,所以3∈{2,a 2-2a,6},则必有a 2-2a=3,解方程a 2-2a-3=0得a=3或a=-1当a=3时,A={2,3,6},B={2,18,3}∴A∪B={2,3,6}∪{2,18,3}={2,3,6,18}当a=-1时,A={2,3,6},B={2,2,-9}这既不满足条件A∩B={2,3},也不满足B 中元素具有互异性,故a=-1不合题意,应舍去.综上A∪B={2,3,6,18}.例6.设全集U={x ∈N +|x≤8},若A∩(C u B)={1,8},(C u A)∩B={2,6},(C u A)∩(C u B)={4,7},求集合A,B.【答案】A={1,3,5,8},B={2,3,5,6}【解析】全集U={1,2,3,4,5,6,7,8}由A∩(C u B)={1,8}知,在A 中且不在B 中的元素有1,8;由(C u A)∩B={2,6},知不在A 中且在B 中的元素有2,6;由(C u A)∩(C u B)={4,7},知不在A 中且不在B 中的元素有4,7,则元素3,5必在A∩B 中.由集合的图示可得A={1,3,5,8},B={2,3,5,6}.类型三:集合运算综合应用例7.(2014北京西城学探诊)已知集合A ={x |-4≤x <2},B ={x |-1≤x <3},C ={x |x ≥a ,a ∈R}.(1)若(A ∪B )∩C =∅,求实数a 的取值范围;(2)若(A ∪B )ÜC ,求实数a 的取值范围.【思路点拨】(1)画数轴;(2)注意是否包含端点.【答案】(1)a ≥3(2)a ≤-4【解析】(1)∵A ={x |-4≤x <2},B ={x |-1≤x <3},又(A ∪B )∩C =∅,如图,a ≥3;(2)画数轴同理可得:a ≤-4.【总结升华】此问题从表面上看是集合的运算,但其本质是一个定区间,和一个动区间的问题.思路是,使动区间沿定区间滑动,数形结合解决问题.举一反三:【变式1】已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是()A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)【答案】C【解析】P ={x ︱11x -≤≤}又 P M P = ,∴M P ⊆,∴11a -≤≤故选C .例8.设集合{}{}222|40,|2(1)10,A x x x B x x a x a a R =+==+++-=∈.(1)若A B B = ,求a 的值;(2)若A B B = ,求a 的值.【思路点拨】明确A B 、A B 的含义,根据的需要,将其转化为等价的关系式B A ⊆和A B ⊆,是解决本题的关键.同时,在包含关系式B A ⊆中,不要漏掉B =∅的情况.【答案】(1)1a =或1a ≤-;(2)1a =.【解析】首先化简集合A ,得{}4,0A =-.(1)由A B B = ,则有B A ⊆,可知集合B 为∅,或为{}0、{}4-,或为{}0,4-.①若B =∅时,224(1)4(1)0a a ∆=+--<,解得1a <-.②若0B ∈,代入得21011a a a -=⇒==-或.当1a =时,{}{}2|400,4,B x x x A =+==-=符合题意;当1a =-时,{}{}2|00,B x x A ===⊆也符合题意.③若4B -∈,代入得2870a a -+=,解得7a =或1a =.当1a =时,已讨论,符合题意;当7a =时,{}{}2|1648012,4B x x x =++==--,不符合题意.由①②③,得1a =或1a ≤-.(2),A B B A B =∴⊆ .又{}4,0A =-,而B 至多只有两个根,因此应有A B =,由(1)知1a =.【总结升华】两个等价转化:,A B B A B A B B B A =⇔⊆=⇔⊆ 非常重要,注意应用.另外,在解决有条件A B ⊆的集合问题时,不要忽视A ≠∅的情况.举一反三:【变式1】(2015源汇区一模)设A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},其中x ∈R ,如果A ∩B =B ,求实数a 的取值范围.【答案】a =1或a ≤-1【解析】A ={x |x 2+4x =0}={0,-4},∵A ∩B =B 知,B A ⊆,∴B ={0}或B ={-4}或B ={0,-4}或B =∅,若B ={0}时,x 2+2(a +1)x +a 2-1=0有两个相等的根0,则2002(1)001a a +=-+⎧⎨⨯=-⎩,∴a =-1,若B ={-4}时,x 2+2(a +1)x +a 2-1=0有两个相等的根-4,则24(4)2(1)4(4)1a a -+-=-+⎧⎨-⨯-=-⎩,∴a 无解,若B ={0,-4}时,x 2+2(a +1)x +a 2-1=0有两个不相等的根0和-4,则2402(1)401a a -+=-+⎧⎨-⨯=-⎩,∴a =1,当B =∅时,x 2+2(a +1)x +a 2-1=0无实数根,Δ=[2(a +1)]2-4(a 2-1)=8a +8<0,得a <-1,综上,a =1或a ≤-1.。
集合 知识讲解
集合及集合的表示【学习目标】1.了解集合的含义,会使用符号“∈”“∉”表示元素与集合之间的关系.2.能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3.理解集合的特征性质,会用集合的特征性质描述一些集合,如常用数集、解集和一些基本图形的集合等. 【要点梳理】集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.要点一、集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集. 3.关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则x 或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:集合中的元素的次序无先后之分.如:由1,2,3组成的集合,也可以写成由1,3,2组成一个集合,它们都表示同一个集合.4.元素与集合的关系:(1)如果a 是集合A 的元素,就说a 属于(belong to)A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于(not belong to)A ,记作a A ∉ 5.集合的分类(1)空集:不含有任何元素的集合称为空集(empty set),记作:∅. (2)有限集:含有有限个元素的集合叫做有限集. (3)无限集:含有无限个元素的集合叫做无限集. 6.常用数集及其表示非负整数集(或自然数集),记作N正整数集,记作N *或N + 整数集,记作Z 有理数集,记作Q 实数集,记作R要点二、集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.1. 自然语言法:用文字叙述的形式描述集合的方法.如:大于等于2且小于等于8的偶数构成的集合.2. 列举法:把集合中的元素一一列举出来,写在大括号内.如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…;3.描述法:把集合中的元素的公共属性描述出来,写在大括号{ }内.具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.4.图示法:图示法主要包括Venn 图、数轴上的区间等.为了形象直观,我们常常画一条封闭的曲线,用它的内部来表示一个集合,这种表示集合的方法称为韦恩(Venn )图法. 如下图,就表示集合{}1,2,3,4.【典型例题】类型一:集合的概念及元素的性质例1.下列各组对象哪些能构成一个集合?(1)著名的数学家;(2)比较小的正整数的全体;(3)某校2011年在校的所有高个子同学;(4)不超过20的非负数;(5)方程290x -=在实数范围内的解;(6)2的近似值的全体. 1,2,3,4答案:(4)、(5)解析:从集合元素的“确定”、“互异”、“无序”三种特性判断. “著名的数学家”、“比较小的正整数”、“高个子同学”对象不确定,所以(1)、(2)、(3)不是集合,同理(6)也不是集合.(4)、(5)可构成集合,故答案是(4)、(5).点评:(1)判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.(2)“有限集”和“无限集”是通过集合里面元素的个数来定义的,集合里面元素的个数很多,但不一定是无限集.举一反三:【变式1】判断下列语句能否确定一个集合?如果能表示一个集合,指出它是有限集还是无限集.(1)你所在的班,体重超过75kg 的学生的全体;(2)举办2008年奥运会的城市;(3)高一数学课本中的所有难题;(4)在2011年3月11日日本地震海啸中遇难的人的全体;(5)大于0且小于1的所有的实数.答案:集合:(1)、(2)、(4)、(5);有限集:(1)、(2)、(4)。
第01讲 集合的概念 2024-2025年新高一暑假自学课(学生版)
第01讲集合的概念1.通过实例了解集合的定义,体会元素与集合间的属于关系;2.能通过自然语言、图形语言、集合语言描述不同的具体问题,感受集合的意义和作用.元素与集合的概念一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员).集合的元素特征①确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了.②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.③无序性:集合中的元素无顺序,可以任意排列、调换.元素与集合的关系若是集合的元素,则称属于集合,记作∈;若不是集合的元素,则称不属于集合,记作∉.常用数集自然数集(或非负整数集),记作;正整数集,记作∗或+;整数集,记作;有理数集,记作;实数集,记作.集合的分类有限集,无限集,空集∅.集合的表示方法①列举法把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法.②描述法用集合所含元素的共同特征表示集合的方法,称为描述法.方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.一般格式:{∈Uop}.【题型一】集合的概念相关知识点讲解1元素与集合的概念(1)元素:一般地,把研究对象统称为元素,常用小写的拉丁字母s s m表示;(2)s s…表示.比如:四十个学生组成的高一(1)班中,班级就是个集合,每个学生就是其中的元素.2集合的元素特征①确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了.Eg:街上叫声帅哥,是男的都回个头,帅哥没有明确的标准,故“帅哥”不能组成集合.②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.Eg:两个学生名字都是“熊涛”,老师也要给他们起小名"熊大""熊二",以视区别.若集合={1,2,V,就意味≠1且≠2.③无序性:集合中的元素无顺序,可以任意排列、调换.Eg:高一(1)班每月都换座位也改变不了它是(1)班的事实,1,2,3={2,3,1}.【典题1】(多选)下列说法正确的是()A.我校爱好足球的同学组成一个集合B.{1,2,3}是不大于3的正整数组成的集合C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合D.数1,0,5,12,32,64,7个元素变式练习1.下列对象中不能构成一个集合的是()A.某校比较出名的教师B.方程−2=0的根C.不小于3的自然数D.所有锐角三角形2.(23-24高一上·天津南开·期中)下列给出的对象能构成集合的有()①某校2023年入学的全体高一年级新生;②2的所有近似值;③某个班级中学习成绩较好的所有学生;④不等式3−10<0的所有正整数解A.1个B.2个C.3个D.4个3.若a,b,c,d为集合A的四个元素,则以a,b,c,d为边长构成的四边形可能是()A.矩形B.平行四边形C.菱形D.梯形4.(23-24高一上·安徽蚌埠·阶段练习)下列各组对象能构成集合的是()A.充分接近5的所有实数B.所有的正方形C.著名的数学家D.1,2,3,3,4,4,4,4【题型二】元素与集合间的关系相关知识点讲解1常用数集自然数集(或非负整数集),记作;正整数集,记作∗或+;整数集,记作;有理数集,记作;实数集,记作.2元素与集合的关系若是集合的元素,则称属于集合,记作∈;若不是集合的元素,则称不属于集合,记作∉.Eg:菱形∈{平行四边形},0∈,0∉{1,2,3,4}.【典题1】(多选)(23-24高一上·湖北咸宁·阶段练习)已知s s为非零实数,成的集合A,下列判断正确的是()A.−2∈B.0∉C.−4∈D.4∈【典题2】(23-24高一下·安徽安庆·开学考试)已知实数集满足条件:若∈,则1+1−∈,则集合中所有元素的乘积为()A.1B.−1C.±1D.与的取值有关变式练习1.(2022高一上·全国·专题练习)下列关系中,正确的个数为()①5∈R;②13∈Q;③0=∅;④0∉N;⑤π∈Q;⑥−3∈Z.A.6B.5C.4D.32.(2023·河南驻马店·一模)已知集合=+1=0,那么下列结论正确的是()A.0∈B.1∈C.−1∉D.0∉3.已知集合=4,s2,=−2,2,1−,若=,则实数x的取值集合为()A.{−1,0,2}B.{−2,2}C.−1,0,2D.{−2,1,2}4.(多选)(2024·全国·模拟预测)非空集合A具有如下性质:①若s∈,则∈;②若s∈,则+∈下列判断中,正确的有()A.−1∉B.20222023∈C.若s∈,则B∈D.若s∈,则−∈5.设关于的不等式B2−2+≤0的解集为,若0∈且−1∉,则的取值范围是.【题型三】集合互异性的应用相关知识点讲解互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.Eg:若集合={1,2,V,就意味≠1且≠2.【典题1】(多选)已知集合=−2,22+5,1+2,−3∈,则a的值为().A.−1B.−32C.1D.−2变式练习1.(23-24高三下·山东青岛·开学考试)已知∈1,2,2,则的取值为()A.1B.1或2C.0或2D.0或1或22.(23-24高一上·江西萍乡·期末)已知集合=−1,2−2+1,−4,若4∈,则a的值可能为()A.−1,3B.−1C.−1,3,8D.−1,83.(2024高三·全国·专题练习)已知集合=0,s2−3+2,且2∈,则实数为()A.2B.3C.0或3D.0,2,3【题型四】集合的表示方法角度1列举法相关知识点讲解把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法.Eg:11以内偶数的集合为{2,4,6,8,10};一次函数=2与=+1的图象的交点组成的集合为{(1,2)}.【典题1】用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=2x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合;(4)由所有正整数构成的集合.变式练习1.用列举法表示下列集合:(1)一年中有31天的月份的全体;(2)大于−3.5小于12.8的整数的全体;(3)方程2−1+2+1=0的解集;(4)方程−1−2=0的解集;角度2描述法相关知识点讲解用集合所含元素的共同特征表示集合的方法,称为描述法.方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.一般格式:{∈Uop}.用符号描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么)是数还是点、还是集合、还是其他形式?(2)元素具有怎么的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.(3)Eg集合元素化简结果{U2−−2=0}方程2−−2=0的解{−1,2}{U2−−2<0}不等式2−−2<0的解集{U−1<<2}{U=2−−2}函数=2−−2中取值范围(定义域){U=2−−2}函数=2−−2中取值范围(值域){U>−94}{(s p|=2−−2}函数=2−−2的图像上的点----看集合先看元素类型.【典题1】(多选)已知集合=∈∈s−9≤≤9,则满足A中有8个元素的m的值可能为() A.6B.−6C.9D.−9【典题2】(多选)已知集合==3−1,∈,==3+1,∈,==3s∈,且∈,∈,∈,则()A.2∈B.2∈C.+∈D.+∈变式练习1.设集合={−1,1,2},集合={U∈且2−∉V,则=()A.{1}B.{2}C.{−1,2}D.{1,2}2.若集合=−2,1,4,8,=−2∣∈s∈,则中元素的最大值为()A.4B.5C.7D.103.(22-23高一下·江苏苏州·开学考试)集合s+≤6,s∈N∗中的元素个数为()A.1B.3C.4D.64.(2024高一上·全国·专题练习)已知集合=UB2−3+2=0,∈,若集合A中至多有一个元素,则实数a应满足()A.=0B.≥98C.=0或≥98D.不确定5.(多选)已知集合==2−1,∈,==2s∈,且1,2∈,3∈,则下列判断正确的是()A.12∈B.23∈C.1+2∈D.1+2+3∈6.(多选)对于集合==2−2,∈s∈.给出如下结论,其中正确的结论是() A.如果1∈,2∈,那么12∈B.如果1∈,2∈,那么1+2∈C.如果==2+1,∈.那么⊆D.若==2s∈.对于∀∈,则有∈【A组---基础题】1.下列说法正确的是()A.0与0的意义相同B.某市文明市民可以组成一个集合C.集合=s+=2,∈N是无限集D.方程2+2+1=0的解集有二个元素2.由2,2−s4组成一个集合,中含有3个元素,则实数的取值不可以是()A.−1B.2C.3D.63.(23-24高一上·上海·期末)数集={U=2−1,∈V,={U=2s∈V,={U=4−1,∈Z},若∈,∈,则+∈()A.B.C.D.A,,都有可能4.集合=63−∈Z∈N*,用列举法可以表示为5.已知集合={0,1,2},={(,p|∈,∈,−∈V,则集合B中有个元素.6.设数集由实数构成,且满足:若∈o≠1且≠0),则11−∈.(1)若2∈,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为143,且中有一个元素的平方等于所有元素的积,求集合.7.已知n元有限集=1,2,3,⋯,(≥2,∈Z),若1+2+3+⋯+=1×2×3×⋯×,则称集合A为“n元和谐集”.(1)写出一个“二元和谐集”(无需写计算过程);(2)若正数集=1,2是“二元和谐集”,试证明:元素1,2中至少有一个大于2;(3)是否存在集合中元素均为正整数的“三元和谐集”?如果有,有几个?请说明理由.【B组---提高题】1.若=b=2+s∈s∈,则下列结论中正确结论的个数为()∈;②若1,2∈,则1+2∈;③若1,2∈且2≠0,则12∈;④存在∈且∉,满足−2022∈.A.2B.3C.4D.52.(2024·辽宁丹东·一模)若2−80为完全平方数,则正整数x的取值组成的集合为.3.已知非空集合⊆.用表示集合中元素的个数.设==+s∈s∈且≠,= =−s∈s∈且>.(1)若=1,2,3,直接写出s以及,,的值.(2)若=4,求+的取值范围.4.已知集合A是由元素x组成的,其中=+2,m,∈.(1)设1=2=9−42,3=1−322,试判断1,2,3与A之间的关系;(2)任取1,2∈,试判断1+2,12与A之间的关系.11。
高一数学《集合》完整版课件
高一数学《集合》完整版课件教学内容:本节课的教学内容是高一数学《集合》章节。
集合是数学中的基础概念,主要包括集合的定义、集合的表示方法、集合的基本运算和集合的性质等。
我们将深入学习集合的元素、集合的子集、集合的并集、交集、补集等概念,并掌握相关的运算规则。
教学目标:1. 理解集合的定义和表示方法,能够正确地表示给定的集合。
2. 掌握集合的基本运算,包括并集、交集、补集等,能够熟练地进行相关运算。
3. 理解集合的性质,能够运用集合的知识解决实际问题。
教学难点与重点:重点:集合的定义和表示方法,集合的基本运算和性质。
难点:集合的交集、并集、补集等运算的运用和理解。
教具与学具准备:教具:黑板、粉笔、多媒体课件。
学具:笔记本、笔、练习本。
教学过程:一、实践情景引入:通过举例说明集合的概念,如班级里的学生、教室里的椅子等,引导学生理解集合的元素和集合的表示方法。
二、教材内容讲解:1. 集合的定义和表示方法:介绍集合的元素、集合的表示方法(列举法、描述法)等。
2. 集合的基本运算:讲解并集、交集、补集等运算的定义和规则。
3. 集合的性质:介绍集合的互异性、无序性、确定性等性质。
三、例题讲解:1. 举例讲解集合的表示方法,如集合{1, 2, 3}表示包含元素1、2、3的集合。
2. 举例讲解集合的基本运算,如集合A={1, 2, 3},集合B={2, 3, 4},则A∪B={1, 2, 3, 4},A∩B={2, 3}。
四、随堂练习:1. 请学生写出给定集合的表示方法。
2. 请学生计算给定集合的并集、交集、补集等运算。
五、板书设计:集合的定义和表示方法集合的元素列举法:{1, 2, 3}描述法:{x | x是班级里的学生}集合的基本运算并集:A∪B={所有属于A或属于B的元素}交集:A∩B={同时属于A和B的元素}补集:A'={所有不属于A的元素}集合的性质互异性:集合中的元素不重复无序性:集合中的元素没有顺序确定性:集合中的元素是确定的六、作业设计:(1) 班上的女同学(2) 所有的偶数(1) 集合A={1, 2, 3},集合B={2, 3, 4}(2) 集合C={x | x是正整数},集合D={x | x是偶数}课后反思及拓展延伸:本节课通过举例和练习,让学生掌握了集合的定义、表示方法、基本运算和性质。
(完整版)集合知识点归纳
集合的基础知识一、重点知识归纳及讲解1.集合的有关概念一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素⑴集合中的元素具有以下的特性①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素;而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的.②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}.③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合.(2)集合的元素某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ.(3)集合的分类:有限集与无限集.(4)集合的表示法:列举法、描述法和图示法.列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集.描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集.使用描述法时,应注意六点:①写清集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”;⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切.图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.如:A={1,2,3,4}例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.分析:欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况.解析:(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素也相同,舍去c=1,此时无解.(2)a+b= ac2且a+2b=ac,消去b得:2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但c=1时,B中的三个元素也相同,舍去c=1,∴.点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.(5)常用数集及专用记号(1)非负整数集(或自然数集)N={0,1,2,……}(2)正整数集N*(或N+)={1,2,3,……}(3)整数集Z={0,¡1,¡2,……}(4)有理数集Q={整数与分数}(5)实数集R={数轴上的点所对应的数}.强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.强调:排除0和负数的数集也可表示为R*、Z*、Q*或R+、Z+、Q+.2.基本运算1. 交集(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}(2)交集的图示上图阴影部分表示集合A与B的交集.(3)交集的运算律,,,2. 并集(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}(2)并集的图示以上阴影部分表示集合A与B的并集.(3)并集的运算律,,,3、补集(1)定义:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集).记作,即C S A=(2)补集的图示4、常用性质A A=A,AΦ=Φ,A B=B A,A B A,A B B.A A=A,AΦ=A,A B=B A,A B A,A B B.,,例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.分析:利用集合图示较为直观.解:由{4,5},则将4,5写在中,由{1,2,3},则将1,2,3写在集A中,由{6,7,8},则将6,7,8写在A、B之外,由与中均无9,10,则9,10在B中,故A={1,2,3,4,5},B={4,5,9,10}.5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)- card(A∩B).二、难点知识剖析1、要注意区分一些容易混淆的符号(1)与的区别:表示元素与集合之间的关系,例如1N,-1N等;表示集合与集合之间的关系,例如N R,等.(2)a与{a}的区别:一般在,a表示一个元素,{a}而表示只有一个元素a的集合.例如,0{0},{1}{1,2,3}等,不能写成0={0},{1}{1,2,3},1{1,2,3}.(3){0}与Φ的区别:是含有一个元素0的集合,Φ是不含任何元素的集合,因此Φ{0}但不能写成Φ={0},Φ{0}.例3、已知集合M={x|x≤3},集合P={x|x<2},设,则下列关系式中正确的一个是()A、P∈MB、a∈MC、P MD、{a-3}P解析:集合M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用“包含”,“不包含”来确定,而对a与集合M、P的关系只能用“属于”,“不属于”来确定,比较实数的大小,易判断C正确.小结:正确使用集合的符号是正确分析、解答问题的关键.2.理解集合所表示的意义(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围.如{y R|y=}表示的为函数y=中y的取值范围,故{y R|y=}={y R|y};而{x R|y=}表示y=的x的取值范围,故{x R|y=}=R.(2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式B A中,易漏掉B=Φ的情况.例4、设A=,B=(1)若A B=B,求的值;(2)若A B=B,求的值.分析:明确A B=B和A B=B的含义,根据问题的需要,将A B=B和A B=B转化为等价的关系式:和,是解决本题的关键.解析:首先化简集合A,得A={-4,0}(1)由于A B=B,则有可知集合B或为空集Φ,或只含有根0或-4.①若B=Φ,由得②若,代入得:,当时,B=,合题意.当时,B=,也符合题意.③若,代入得:,当时,②中已讨论,合题意当时,B=不合题意.由①、②、③得,.(2)因为A B=B,所以,又A={-4,0},而B至多只有两个根,因此应有A=B.由(1)知,【点评】:一般对于A B=B和A B=B这种类型的问题,都要注意转化为等价的关系式:和,且在包含关系中,注意不要漏掉B=的情况.并且当A、B中的元素的个数相同时,还存在或的情况时,只有A=B这一种情况.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 集合第一节 集合与元素目标1)理解集合的概念,知道常用数集的概念及记法;2)了解“属于”关系的意义;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;3)了解有限集、无限集、空集的意义;掌握集合的表示方法、常用数集及其记法、集合元素的3个特征。
新课 1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合. (2)元素:集合中每个对象叫做这个集合的元素. 2、常用数集及记法(1)自然数集:全体非负整数的集合.记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集.记作N *或N + ,{} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合.记作Q , Q {}=整数与分数(5)实数集:全体实数的集合.记作R ,{}数数轴上所有点所对应的=R 注:实数内数的框架结构(可用图示讲解)⎧⎧⎧⎧→⎪⎪⎨⎪⎨⎪⎪⎩⎨⎪⎪⎨⎩⎪⎪⎪⎩⎪⎪⎩正整数非负整数自然数整数零有理数实数负整数分数无理数 3、元素与集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ 4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可. (2)互异性:集合中的元素没有重复.(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、(1)集合 通常用大写的拉丁字母表示,如A 、B、C 、P 、Q…元素 通常用小写的拉丁字母表示,如a 、b 、c 、p 、q… (2)注意“∈”的开口方向,不能把a ∈A 颠倒过来写. 练习1、说出下面集合中的元素 (1){大于3小于11的偶数}(2){平方等于1的数}(3){15的约数}2、下列各组对象能确定一个集合吗?(1)所有很大的实数.(2)好心的人. (3)1,2,2,3,4,5. 3、用“∈”与“∉”填空: 1 N 0 N -3 N 0.5 N 2 N 1 Z 0 Z -3 Z 0.5 Z 2 Z 1 Q 0 Q -3 Q 0.5 Q 2 Q 1 R 0 R -3 R 0.5 R 2 R4、设a ,b 是非零实数,那么bb aa +可能取的值组成集合的元素是___5、由实数x,-x,|x |,332,x x -所组成的集合,最多含( )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素6、已知集合P 的元素为21,,33m m m --, 若3∈P 且-1∉P ,求实数m 的值。
1)进一步理解集合的有关概念,熟记常用数集的概念及记法; 2)初步了解有限集、无限集、空集的意义; 3)会运用集合的两种常用表示方法.新课1、集合的表示方法 (一).集合的表示方法我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
1)列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…;说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
2.各个元素之间要用逗号隔开; 3.元素不能重复;4.集合中的元素可以数,点,代数式等;5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为{}1,2,3,4,5,......2)描述法:把集合中的元素的公共属性描述出来,写在花括号“{}”内。
一般格式:{}()x Ap x ∈具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x 2+1},{x ︳直角三角形},…; 说明:描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}是不同的两个集合, 辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。
下列写法{实数集},{R}也是错误的。
3)文氏图法:(维恩图) 思考:1、每种方法的优缺点;2、数集与点集的区别.2、集合的分类:有限集 无限集 空集练习1. 用列举法表示下列集合①{x ∈N|x 是15的约数} ②{(x ,y )|x ∈{1,2},y ∈{1,2}}③⎩⎨⎧=-=+}422|),{(y x y x y x ④},)1(|{N n x x n ∈-= ⑤},,1623|),{(N y N x y x y x ∈∈=+ ⑥{(,)|,4}x y x y 分别是的正约数2、用描述法表示下列集合①{1,4,7,10,13}②{-2,-4,-6,-8,-10}3、关于x 的方程a x +b=0,当a ,b 满足条件______________时,解集是有限集;当a ,b 满足条件_____________时,解集是无限集.4、用描述法表示下列集合:(1){1,5,25,125,625}= ; (2){0,±21,±52,±103,±174, …}= .1)了解集合的包含、相等关系的意义; 2)理解子集、真子集(,)⊂⊃≠≠的概念;3)理解补集的概念;了解全集的意义.新课问题:观察下列两组集合,说出集合A 与集合B 的关系.(1)A ={1,2,3},B={1,2,3,4,5}(2)A =N ,B=Q (3)A ={-2,4},}082|{2=--=x x x B 1、子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A. 记作:A B B A ⊇⊆或 ,读作:A 包含于B 或B 包含A 若任意x ∈A ⇒x ∈B,则A ⊆B当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/AB A ⊆有两种可能:A 是B 的一部分; A 与B 是同一集合.2、集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任.何.一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B. 3、真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B ⊂≠或B A ⊃≠读作A 真包含于B 或B 真包含A.4、子集与真子集符号的方向.不同与同义;与如B A B A A B B A ⊇⊆⊇⊆5、空集定义:不含有任何元素的集合称为空集(empty set ),记作:∅。
说明:注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;在分析有关集合问题时,要注意空集的地位。
注:空集是任何集合的子集.∅⊆A空集是任何非空集合的真子集.A ∅⊂≠, 若A≠∅,则A ∅⊂≠任何一个集合是它本身的子集.A A ⊆对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆。
用适当的符号填空:∅ {}0; 0 ∅; ∅ {}∅; {}0 {}∅ 6、易混符号①“∈”与“⊆”:(元素与集合之间是属于..关系;集合与集合之间是包含..关系.) 如,,1,1R N N N ⊆∉-∈ ∅⊆R ,{1}⊆{1,2,3}②{0}与∅:{0}是含有一个元素0的集合,∅是不含任何元素的集合. 如 ∅⊆{0}.不能写成∅={0},∅∈{0}7、含n 个元素的集合{}n a a a ,,21 的所有子集的个数是n2,所有真子集(非空子集)的个数是n 2-1,非空真子集数为22-n. 例1(1) 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示.(2) 判断下列写法是否正确①A ∅⊆ ②A ∅⊂≠ A ③A A ⊆ ④A A ⊂≠例2(1)若A={x ∈R|x 2-3x -4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗? (2)集合{a ,b}的子集有那些? 例4 判断下列集合间的关系:(1){|32}A x x =->与{|250}B x x =-≥;(2)设集合A ={0,1},集合{|}B x x A =⊆,则A 与B 的关系如何?(3)若集合{|}A x x a =>,{|250}B x x =-≥,且满足A B ⊆,求实数a 的取值范围.BA目标1)结合集合的图形表示,理解交集与并集的概念;理解补集的概念;了解全集的意义 2)熟练掌握交集和并集的表示法,会求两个集合的交集和并集; 3)掌握集合的交、并的性质;4)掌握有关集合的术语和符号,并会用它们表示一些简单的集合..新课观察下面两个图的阴影部分,它们同集合A 、集合B 有什么关系?AB图1AB图21、交集的定义一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集. 记作A B (读作“A 交B”),即A B={x |x ∈A ,且x ∈B }. 交集的运算律2、并集的定义一般地,由所有属于A 或属于B 的元素所组成的集合,叫做A,B 的并集. 记作:A B (读作“A 并B”),即A B ={x |x ∈A ,或x ∈B}.并集的运算律 3、全集的定义: 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集(universe set ),记作U ,是相对于所研究问题而言的一个相对概念。
4、补集的定义:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合,叫作集合A 相对于全集U 的补集(complementary set ),记作:U C A ,读作:“A 在U 中的补集”,即{},U C A x x U x A =∈∉且 用Venn 图表示:(阴影部分即为A 在全集U 中的补集)补集的运算律:,,()U U U U A C A A C A U C C A A ⋂=∅⋃== ,U U C U C U =∅∅=练习1、若S={1,2,3,4,5,6},A ={1,3,5},求ðS A2、已知全集U =R ,集合A ={x |1≤2x +1<9},求ðU A3、已知S ={x |-1≤x +2<8},A ={x |-2<1-x≤1},B ={x |5<2x -1<11},讨论A 与ðS B 的关系4、若全集U={x|0≤x <6,x ∈Z},A ={1,3,5},B={1,4},那么U A =ð U B =ð5、已知全集U ={x |-1<x <9},A ={x |1<x <a },若A≠∅,则a 的取值范围是( )(A )a <9 (B )a ≤9 (C )a ≥9 (D )1<a ≤96、已知6的正约数的集合为A={1,2,3,6},10的正约数为B={1,2,5,10},那么6与10的正公约数的集合为C= .7、已知全集U ={2,4,1-a },A ={2,a 2-a +2}如果ðU A ={-1},那么a 的值为 8、已知全集U ,A 是U 的子集,∅是空集,B =ðU A ,求ðU B ,ðU ∅,ðU U 9、已知U=R ,A ={x|3x+2<0}, 求ðU A. 10、集合U={(x ,y)|x ∈{1,2},y ∈{1,2}},A={(x ,y)|x ∈N*,y ∈N*,x+y=3},求ðU A. 11、设全集U (U ≠∅),已知集合M ,N ,P ,且M=ðU N ,N=ðU P ,则M 与P 的关系是( )(A )M=ðU P (B )M=P (C )M ⊇P (D )M ⊆P 12、设全集U={2,3,322-+a a },A ={b,2},U A ð={b,2},求实数a 和b 的值.13、(选讲)设集合A={-4,2m -1,m 2},B={9,m -5,1-m},又A B={9},求实数m 的值. 14、设A={x|x 2+ax+b =0},B={x|x 2+cx +15=0},又A B={3,5},A∩B={3},求实数a,b,c 的值. 15、已知集合A={y|y=x 2-4x+5},B={x|y=x -5}求A∩B,A ∪B . 16、已知A={x|x+2≤4},B={x|x >a },若A∩B=∅,求实数a 的取值范围 17、集合M={(x,y)||xy|=1,x >0},N={(x,y)|xy=-1},求M ∪N 18、集合P=(){},0x y x y +=,Q=(){},2x y x y -=,则P∩Q=19、已知U={},8,7,6,5,4,3,2,1()U A B ⋂ð{},8,1=()U A B ⋂ð{}6,2=()(){}4,7,U UA B ⋂=痧则集合A=第五节集合复习目标巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系复习1、基本概念集合的分类:有限集、无限集;2、元素与集合的关系:属于,不属于;集合元素的性质:确定性,互异性,无序性;集合的表示方法:列举法、描述法、文氏图;子集、空集、真子集、相等的定义、数学符号表示以及相关性质.全集的意义及符号运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作”A交B”),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作”A并B”),即A B={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作SAð,即ðS A=},|{AxSxx∉∈且文氏图A B图1A B图2图3性质A A=AA ∅=∅A B=B AA B⊆AA B⊆BA A=AA ∅=AA B=B AA B⊇AA B⊇B(ðu A) (ðu B)=ðu (A B)(ðu A) (ðu B)= ðu(A B)A (ðu A)=AA (ðu A)=∅容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)-card(A∩B).C u AA。