(完整)高中数学_集合知识讲解
(word完整版)高中数学必修一集合知识点总结大全,推荐文档
高中数学 必修1知识点集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合.(2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.N N *N +Z Q R (3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.a M a M ∈a M ∉(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.x x x ④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().∅【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图子集BA ⊆(或)AB ⊇A 中的任一元素都属于B (1)A A ⊆(2)A ∅⊆(3)若且,则B A ⊆B C ⊆A C ⊆(4)若且,则B A ⊆B A ⊆A B=A(B)或B A真子集A B ≠⊂(或B A )≠⊃,且B 中B A ⊆至少有一元素不属于A (1)(A 为非空子集)A ≠∅⊂(2)若且,则A B ≠⊂B C ≠⊂A C ≠⊂B A集合相等A B=A 中的任一元素都属于B ,B 中的任一元素都属于A (1)A B ⊆(2)B A⊆A(B)(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非A (1)n n ≥2n 21n -21n -22n-空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:)()()();()()(C A B A C B A C A B A C B A ==0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A == 求补律:A∩ A∪=U反演律:(A∩B)=(A)∪(B) (A∪B)=(A)∩(B)一、选择题:本大题共12小题,每小题5分,共60分。
高-数学知识点(大全)讲解(大全)
高中数学知识点汇总(高一)高中数学知识点汇总(高一) (1)一、集合和命题 (2)二、不等式 (4)三、函数的基本性质 (6)四、幂函数、指数函数和对数函数 (12)(一)幂函数 (12)(二)指数&指数函数 (13)(三)反函数的概念及其性质 (14)(四)对数&对数函数 (15)五、三角比 (17)六、三角函数 (24)一、集合和命题一、集合:(1)集合的元素的性质:确定性、互异性和无序性; (2)元素与集合的关系:①a A ∈↔a 属于集合A ; ②a A ∉↔a 不属于集合A . (3)常用的数集:N ↔自然数集;↔*N 正整数集;Z ↔整数集; Q ↔有理数集;R ↔实数集;Φ↔空集;C ↔复数集;⎪⎩⎪⎨⎧↔↔-+负整数集正整数集Z Z ;⎪⎩⎪⎨⎧↔↔-+负有理数集正有理数集Q Q ;⎪⎩⎪⎨⎧↔↔-+负实数集正实数集R R .(4)集合的表示方法:集合⎩⎨⎧↔↔描述法无限集列举法有限集;例如:①列举法:{,,,,}z h a n g ;②描述法:{1}x x >. (5)集合之间的关系:①B A ⊆↔集合A 是集合B 的子集;特别地,A A ⊆;A BA CBC ⊆⎧⇒⊆⎨⊆⎩.②B A =或A BA B ⊆⎧⎨⊇⎩↔集合A 与集合B 相等; ③A B ⊂≠↔集合A 是集合B 的真子集.例:N Z Q R ⊆⊆⊆C ⊆;N Z Q R C ⊂⊂⊂⊂≠≠≠≠. ④空集是任何集合的子集,是任何非空集合的真子集. (6)集合的运算:①交集:}{B x A x x B A ∈∈=且 ↔集合A 与集合B 的交集; ②并集:}{B x A x x B A ∈∈=或 ↔集合A 与集合B 的并集;③补集:设U 为全集,集合A 是U 的子集,则由U 中所有不属于A 的元素组成的集合,叫做集合A 在全集U 中的补集,记作A C U .④得摩根定律:()U U U C A B C A C B =;()U U U C A B C A C B =(7)集合的子集个数:若集合A 有*()n n N ∈个元素,那么该集合有2n 个子集;21n -个真子集;21n -个非空子集;22n -个非空真子集.二、四种命题的形式:(1)命题:能判断真假的语句.(2)四种命题:如果用α和β分别表示原命题的条件和结论,用α和β分别表示α和β的否定,①若βα⇒,那么α叫做β的充分条件,β叫做α的必要条件;②若βα⇒且αβ⇒,即βα⇔,那么α既是β的充分条件,又是β的必要条件,也就是说,α是β的充分必要条件,简称充要条件.③欲证明条件α是结论β的充分必要条件,可分两步来证: 第一步:证明充分性:条件⇒α结论β; 第二步:证明必要性:结论⇒β条件α. (4)子集与推出关系:设A 、B 是非空集合,}{α具有性质x x A =,}{β具有性质y y B =, 则B A ⊆与βα⇒等价.结论:小范围⇒大范围;例如:小明是上海人⇒小明是中国人. 小范围是大范围的充分非必要条件; 大范围是小范围的必要非充分条件.二、不等式2(,)x +∞)2x 2[,)x +∞],21x四、含有绝对值不等式的性质:(1)b a b a b a -≥±≥+; (2)n n a a a a a a +++≥+++ 2121. 五、分式不等式:(1)0))((0>++⇔>++d cx b ax d cx b ax ; (2)0))((0<++⇔<++d cx b ax dcx bax .(1))()()1()()(x x f a a a x x f ϕϕ>⇔>>; (2))()()10()()(x x f a a a x x f ϕϕ<⇔<<>. 八、对数不等式:(1)⎩⎨⎧>>⇔>>)()(0)()1)((log )(log x x f x a x x f a a ϕϕϕ;(2)⎩⎨⎧<>⇔<<>)()(0)()10)((log )(log x x f x f a x x f a a ϕϕ.九、不等式的证明:(1)常用的基本不等式:①R b a ab b a ∈≥+、(222,当且仅当b a =时取“=”号); ②+∈≥+R b a ab ba 、(2,当且仅当b a =时取“=”号); 211a b+. ③+∈≥++R c b a abc c b a 、、(3333,当且仅当c b a ==时取“=”号);④+∈≥++R c b a abc c b a 、、(33,当且仅当c b a ==时取“=”号); ⑤n a a a na a a nn n (2121≥+++为大于1的自然数,+∈R a a a n ,,,21 ,当且仅当 n a a a === 21时取“=”号); (2)证明不等式的常用方法:①比较法; ②分析法; ③综合法.三、函数的基本性质一、函数的概念:(1)若自变量−−−→−fx 对应法则因变量y ,则y 就是x 的函数,记作D x x f y ∈=),(; x 的取值范围D ↔函数的定义域;y 的取值范围↔函数的值域. 求定义域一般需要注意: ①1()y f x =,()0f x ≠;②y ()0f x ≥; ③0(())y f x =,()0f x ≠; ④log ()a y f x =,()0f x >; ⑤()log f x y N =,()0f x >且()1f x ≠.(2)判断是否函数图像的方法:任取平行于y 轴的直线,与图像最多只有一个公共点; (3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同. 二、函数的基本性质:注意:定义域包括0的奇函数必过原点(0,0)O . (注意:②如果函数)(x f y =在某个区间I 上是增(减)函数,那么函数)(x f y =在区间I 上是单调函数,区间I 叫做函数)(x f y =的单调区间.(3)零点:若D x x f y ∈=),(,D c ∈且0)(=c f ,则c x =叫做函数)(x f y =的零点.零点定理:⎩⎨⎧<⋅∈=0)()(],[),(b f a f b a x x f y ⇒00(,)()0x a b f x ∈⎧⎨=⎩存在;特别地,当(),[,]y f x x a b =∈是单调函数, 且()()0f a f b ⋅<,则该函数在区间[,]a b 上有且仅有一个零点,即存在唯一0(,)x a b ∈,使得0()0f x =. (4 (5注意:()()f a x f b x +=-⇒()f x 关于2a bx +=对称; ()()f a x f a x +=-⇒()f x 关于x a =对称;()()f x f x =-⇒()f x 关于0x =对称,即()f x 是偶函数.注意:()()f a x f b x c ++-=⇒()f x 关于点(,)22b c+对称; ()()0f a x f b x ++-=⇒()f x 关于点(,0)2a b+对称;()()2f a x f a x b ++-=⇒()f x 关于点(,)a b 对称;()()0f x f x +-=⇒()f x 关于点(0,0)对称,即()f x 是奇函数. (6)凹凸性:设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫< ⎪⎝⎭,则称函数()y f x =在D 上是凹函数;例如:2y x =. 进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫<⎪⎝⎭,则称函数()y f x =在D 上是凹函数;该不等式也称琴生不等式或詹森不等式;设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭,则称函数()y f x =在D 上是凸函数.例如:lg y x =. 进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫>⎪⎝⎭,则称函数()y f x =在D 上是凸函数;该不等式也称琴生不等式或詹森不等式.若R x x f y ∈=),(,0≠∃T ,x R ∈任取,恒有)()(x f T x f =+,则称T 为这个函数的周期. 注意:若T 是)(x f y =的周期,那么)0,(≠∈k Z k kT 也是这个函数的周期; 周期函数的周期有无穷多个,但不一定有最小正周期.①()()f x a f x b +=+,a b ≠⇒()f x 是周期函数,且其中一个周期T a b =-; (阴影部分下略)②()()f x f x p =-+,0p ≠⇒2T p =; ③()()f x a f x b +=-+,a b ≠⇒2T a b =-; ④1()()f x f x p =+或1()()f x f x p =-+,0p ≠⇒2T p =;⑤1()()1()f x p f x f x p -+=++或()1()()1f x p f x f x p ++=+-,0p ≠⇒2T p =;⑥1()()1()f x p f x f x p ++=-+或()1()()1f x p f x f x p +-=++,0p ≠⇒4T p =;⑦()f x 关于直线x a =,x b =,a b ≠都对称⇒2T a b =-; ⑧()f x 关于两点(,)a c ,(,)b c ,a b ≠都成中心对称⇒2T a b =-;⑨()f x 关于点(,)a c ,0a ≠成中心对称,且关于直线x b =,a b ≠对称⇒4T a b =-; ⑩若()()(2)()f x f x a f x a f x na m +++++++=(m 为常数,*n N ∈),则()f x 是以(1)n a +为周期的周期函数;若()()(2)()f x f x a f x a f x na m -+++-++=(m 为常数,n 为正偶数),则()f x 是以2(1)n a +为周期的周期函数.(0,)+∞[2,a +∞ 在平面上,11(,)M x y ,22(,)N x y ,则称1212d x x y y =-+-为MN 的曼哈顿距离. 六、某类带有绝对值的函数:1、对于函数y x m =-,在x m =时取最小值;2、对于函数y x m x n =-+-,m n <,在[,]x m n ∈时取最小值;3、对于函数y x m x n x p =-+-+-,m n p <<,在x n =时取最小值;4、对于函数y x m x n x p x q =-+-+-+-,m n p q <<<,在[,]x n p ∈时取最小值;5、推广到122n y x x x x x x =-+-++-,122n x x x <<<,在1[,]n n x x x +∈时取最小值; 1221n y x x x x x x +=-+-++-,1221n x x x +<<<,在n x x ∈时取最小值.思考:对于函数1232y x x x =-+++,在x _________时取最小值.四、幂函数、指数函数和对数函数(一)幂函数(1)幂函数的定义:形如)(R a x y a ∈=的函数称作幂函数,定义域因a 而异.(2)当1,0≠a 时,幂函数)(R a x y a ∈=在区间),0[+∞上的图像分三类,如图所示.(3)作幂函数)1,0(≠=a x y a 的草图,可分两步:①根据a 的大小,作出该函数在区间),0[+∞上的图像;②根据该函数的定义域及其奇偶性,补全该函数在]0,(-∞上的图像. (4)判断幂函数)(R a x y a ∈=的a 的大小比较:方法一:)(R a x y a ∈=与直线(1)x m m =>的交点越靠上,a 越大; 方法二:)(R a x y a ∈=与直线(01)x m m =<<的交点越靠下,a 越大(5)关于形如()ax by c cx d+=≠+0的变形幂函数的作图: ①作渐近线(用虚线):d x c=-、ay c =;②选取特殊点:任取该函数图像上一点,建议取(0,)bd;③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).(二)指数&指数函数1、指数运算法则: ①yx yxaa a +=⋅;②xyyxa a =)(;③xxxb a b a ⋅=⋅)(;④()xx x a a b b=,其中),0,(R y x b a ∈>、.23、判断指数函数x y a =中参数a 的大小:方法一:x y a =与直线(0)x m m =>的交点越靠上,a 越大; 方法二:x y a =与直线(0)x m m =<的交点越靠下,a 越大.(三)反函数的概念及其性质1、反函数的概念:对于函数()y f x =,设它的定义域为D ,值域为A ,如果对于A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足()y f x =,这样得到的x 关于y 的函数叫做()y f x =的反函数,记作1()x f y -=.在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为1()()y f x x A -=∈.2、求反函数的步骤:(“解”→“换”→“求”) ①将()y f x =看作方程,解出()x f y =; ②将x 、y 互换,得到1()y f x -=; ③标出反函数的定义域(原函数的值域).3、反函数的条件:定义域与值域中的元素一一对应. 4、反函数的性质:①原函数)(x f y =过点),(n m ,则反函数)(1x f y -=过点),(m n ;②原函数)(x f y =与反函数)(1x fy -=关于x y =对称,且单调性相同;③奇函数的反函数必为奇函数. 5(四)对数&对数函数12 ①01log =a ,1log =a a ,N a N a =log ;②常用对数N N 10log lg =,自然对数N N e log ln =; ③N M MN a a a log log )(log +=,N M NMa a a log log log -=,M n M a n a log log =; ④bN N a a b log log log =,a b b a log 1log =,b n mb a m a n log log =,b b ac a c log log =,log log N N b a a b =.34、判断对数函数log ,0a y x x =>中参数a 的大小:方法一:log ,0a y x x =>与直线(0)y m m =>的交点越靠右,a 越大; 方法二:log ,0a y x x =>与直线(0)y m m =<的交点越靠左,a 越大.五、三角比1、角的定义:(1)终边相同的角:①α与2,k k Z πα+∈表示终边相同的角度;②终边相同的角不一定相等,但相等的角终边一定相同; ③α与,k k Z πα+∈表示终边共线的角(同向或反向). (2(3)弧度制与角度制互化: ①180rad π=︒; ②1801rad =︒; ③1rad π︒=.(4)扇形有关公式:①rl=α;②弧长公式:r l α=;③扇形面积公式:21122S lr r α==(想象三角形面积公式).(5)集合中常见角的合并:22222222,244542424324424x k x k x k k x x k x k x k k x k Z x k x k x k k x x k x k x k ππππππππππππππππππππππππππ⎫⎫=⎫⎫=⎪⎪⎬⎪=+⎭⎪⎪⎪⎪⎪⎪⎫=⎬⎬⎪=+⎪⎪⎪⎪⎪=+⎬⎪⎪⎪⎪=-⎪⎪⎪⎪⎭⎭⎭⎪⎪⎫⎫⎫=∈⎬=+⎪⎪⎪⎪⎪⎪=+⎪⎬⎪⎪⎪⎪⎪=+⎪⎪⎪⎭⎪⎪⎪=+⎬⎬⎪⎫⎪⎪⎪=+⎪⎪⎪⎪⎪=-⎬⎪⎪⎪⎪⎪⎪=-⎪⎪⎪⎭⎪⎭⎭⎭(6)三角比公式及其在各象限的正负情况:以角α的顶点为坐标原点,始边为x 轴的正半轴建立直角坐标系,在α的终边上任取一个异 于原点的点(,)P x y ,点P 到原点的距离记为r ,则(7(8)一些重要的结论:(注意,如果没有特别指明,k 的取值范围是k Z ∈) ①角α和角β的终边:②α的终边与2的终边的关系. α的终边在第一象限⇔(2,2)2k k παππ∈+⇔(,)24k k απππ∈+;α的终边在第二象限⇔(2,2)2k k παπππ∈++⇔(,)242k k αππππ∈++;α的终边在第三象限⇔3(2,2)2k k παπππ∈++⇔3(,)224k k αππππ∈++;α的终边在第四象限⇔3(2,22)2k k παπππ∈++⇔3(,)24k k αππππ∈++. ③sin θ与cos θ的大小关系:sin cos θθ<⇔3(2,2)44k k ππθππ∈-+⇔θ的终边在直线y x =右边(0x y ->); sin cos θθ>⇔5(2,2)44k k ππθππ∈++⇔θ的终边在直线y x =左边(0x y -<);sin cos θθ=⇔5{22}k k ππθππ∈++,⇔θ的终边在直线y x =上(0x y -=).④sin θ与cos θ的大小关系: sin cos θθ<⇔(,)44k k ππθππ∈-+⇔θ的终边在00x y x y +>⎧⎨->⎩或00x y x y +<⎧⎨-<⎩; sin cos θθ>⇔3(,)44k k ππθππ∈++⇔θ的终边在00x y x y +>⎧⎨-<⎩或00x y x y +>⎧⎨-<⎩;sin cos θθ=⇔3{}44k k ππθππ∈++,,k Z ∈⇔θ的终边在y x =±.2、三角比公式: (1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限)第一组诱导公式: 第二组诱导公式: 第三组诱导公式: (周期性) (奇偶性) (中心对称性)⎪⎪⎩⎪⎪⎨⎧=+=+=+=+ααπααπααπααπcot )2cot(tan )2tan(cos )2cos(sin )2sin(k k k k ⎪⎪⎩⎪⎪⎨⎧-=--=-=--=-ααααααααcot )cot(tan )tan(cos )cos(sin )sin( ⎪⎪⎩⎪⎪⎨⎧=+=+-=+-=+ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin(第四组诱导公式: 第五组诱导公式: 第六组诱导公式:(轴对称) (互余性)⎪⎪⎩⎪⎪⎨⎧-=--=--=-=-ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin( ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin( ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+-=+-=+=+ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin((2)同角三角比的关系:倒数关系: 商数关系: 平方关系:⎪⎩⎪⎨⎧=⋅=⋅=⋅1cot tan 1sec cos 1csc sin αααααα ⎪⎪⎩⎪⎪⎨⎧≠=≠=)0(sin sin cos cot )0(cos cos sin tan αααααααα ⎪⎩⎪⎨⎧=+=+=+αααααα222222csc cot 1sec tan 11cos sin(3)两角和差的正弦公式:βαβαβαsin cos cos sin )sin(±=±;两角和差的余弦公式:βαβαβαsin sin cos cos )cos( =±; 两角和差的正切公式:βαβαβαtan tan 1tan tan )tan( ±=±.(4)二倍角的正弦公式:αααcos sin 22sin =;二倍角的余弦公式:1cos 2sin 21sin cos 2cos 2222-=-=-=ααααα;二倍角的正切公式:ααα2tan 1tan 22tan -=; 降次公式: 万能置换公式:22222221cos 2sin 21cos 2sin 21cos 2cos 21cos 2cos 21sin sin cos 221cos 2tan 1cos 21sin sin cos22ααααααααααααααααα⎧-=⎪-⎧⎪=⎪⎪+=⎪⎪+⎪⎪=⇒⎨⎨⎛⎫⎪⎪-=- ⎪-⎪⎪⎝⎭=⎪⎪+⎩⎛⎫⎪+=+ ⎪⎪⎝⎭⎩; ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-=+=ααααααααα2222tan 1tan 22tan tan 1tan 12cos tan 1tan 22sin 半角公式:αααααsin cos 1cos 1sin 2tan -=+=; (5)辅助角公式: ①版本一:)sin(cos sin 22ϕααα++=+b a b a ,其中⎪⎪⎩⎪⎪⎨⎧+=+=<≤2222cos sin ,20b a a b a b ϕϕπϕ.②版本二:sin cos )a b θθθϕ±=±,其中,0,0,tan 2ba b aπϕϕ><<=.3、正余弦函数的五点法作图:以sin()y x ωϕ=+为例,令x ωϕ+依次为30,,,,222ππππ,求出对应的x 与y 值,描点(,)x y 作图.4、正弦定理和余弦定理:(1)正弦定理:R R CcB b A a (2sin sin sin ===为外接圆半径);其中常见的结论有:①A R a sin 2=,B R b sin 2=,C R c sin 2=;②R a A 2sin =,R b B 2sin =,RcC 2sin =;③c b a C B A ::sin :sin :sin =; ④22sin sin sin ABC S R A B C =△;sin sin sin sin sin sin ABCaR B CS bR A C cR A B⎧⎪=⎨⎪⎩△;4ABC abc S R =△.(2)余弦定理:版本一:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222;版本二:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab c a b C ac b c a B bc a c b A 2cos 2cos 2cos 222222222;(3)任意三角形射影定理(第一余弦定理):cos cos cos cos cos cos a b C c Bb c A a C c a B b A =+⎧⎪=+⎨⎪=+⎩.5、与三角形有关的三角比: (1)三角形的面积:①12ABC S dh =△;②111sin sin sin 222ABC S ab C bc A ac B ===△;③ABC S =△l 为ABC △的周长. (2)在ABC △中,①sin sin cos cos cot cot a b A B A B A B A B >⇔>⇔>⇔<⇔<; ②若ABC △是锐角三角形,则sin cos A B >;③sin()sin sin()sin sin()sin A B C B C A A C B +=⎧⎪+=⎨⎪+=⎩;cos()cos cos()cos cos()cos A B C B C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;tan()tan tan()tan tan()tan A B C B C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;④sin cos 22sin cos 22sin cos 22A B C BA C CA B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;tan cot 22tan cot 22tan cot 22A B C B A C C A B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;⑤sin cos 22sin cos 22A B A C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos 22sin cos 22B A B C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos22sin cos 22C AC B ⎧<⎪⎪⎨⎪<⎪⎩; ⇒sin sin cos cos 2222sin sin cos cos 2222sin sin cos cos 2222A B A B AC A C BC B C ⎧<⎪⎪⎪<⎨⎪⎪<⎪⎩⇒sin sin sin cos cos cos 222222A B C A B C <;⑥sin sin sin 4cos cos cos 222cos cos cos 14sin sin sin 222sin sin sin 4sin sin cos 222A B C A B C A B C A B C A B C A B C ⎧++=⎪⎪⎪++=+⎨⎪⎪+-=⎪⎩;sin 2sin 2sin 24sin sin sin cos 2cos 2cos 24cos cos cos 1A B C A B CA B C A B C ++=⎧⎨++=--⎩;⑦sin sin sin (0,]23cos cos cos (1,]2A B C A B C ⎧++∈⎪⎪⎨⎪++∈⎪⎩;sin sin sin (0,8sin sin sin cos cos cos 1cos cos cos (1,]8A B C A B C A B C A B C ⎧∈⎪⎪⎪>⎨⎪⎪∈-⎪⎩. 其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明. (3)在ABC △中,角A 、B 、C 成等差数列⇔3B π=.(4)ABC △的内切圆半径为2Sr a b c=++.6、仰角、俯角、方位角: 略7、和差化积与积化和差公式(理科):(1)积化和差公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ⎧=++-⎪⎪⎪=+--⎪⎨⎪=-++⎪⎪⎪=--+⎩; (2)和差化积公式:sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos22cos cos 2sin sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-⎧+=⎪⎪+-⎪-=⎪⎨-+⎪+=⎪⎪-+⎪-=-⎩.六、三角函数; ].;.)1-=; 1min -=y ;解析:周期22T ππ==,由函数x y sin =的递增区间[2,2]22k k ππππ-+,可得 222232k x k πππππ-≤+≤+,即51212k x k ππππ-≤≤+, 于是,函数5sin(2)73y x π=++的递增区间为5[,]1212k k ππππ-+. 同理可得函数5sin(2)73y x π=++递减区间为7[,]1212k k ππππ++.当2232x k πππ+=+,即12x k ππ=+时,函数5sin(2)3y x π=+取最大值5;当2232x k πππ+=-,即512x k ππ=-时,函数5sin(2)3y x π=+取最大值5-. 例2:求函数5sin(2)7,[0,]32y x x ππ=++∈的单调区间和最值.解析:由[0,]2x π∈,可得42[,]333x πππ+∈.然后画出23x π+的终边图,然后就可以得出当2[,]332x πππ+∈,即[0,]12x π∈时,函数5sin(2)73y x π=++单调递增; 当42[,]323x πππ+∈,即[,]122x ππ∈时,函数5sin(2)73y x π=++单调递减.同时,当232x ππ+=,即12x π=时,函数5sin(2)73y x π=++取最大值12;当4233x ππ+=,即2x π=时,函数5sin(2)73y x π=++取最小值72-;注意:当x 的系数为负数时,单调性的分析正好相反.2、函数sin()y A x h ωϕ=++&cos()y A x h ωϕ=++&tan()y A x h ωϕ=++,其中0,0A ϕ>≠: ((2)函数sin()y A x h ωϕ=++与函数sin y x =的图像的关系如下: ①相位变换:当0ϕ>时,sin sin()y x y x ϕϕ=−−−−−−→=+向左平移个单位; 当0ϕ<时,sin sin()y x y x ϕϕ=−−−−−−→=+向右平移个单位; ②周期变换:当1ω>时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标缩短到原来的倍(纵坐标不变); 当01ω<<时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标伸长到原来的倍(纵坐标不变); ③振幅变换:当1A >时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标伸长到原来的倍(横坐标不变); 当01A <<时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标缩短到原来的倍(横坐标不变); ④最值变换:当0h >时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向上平行移动个单位; 当0h <时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向下平行移动个单位; 注意:函数cos()y A x h ωϕ=++和函数tan()y A x h ωϕ=++的变换情况同上.3、三角函数的值域: (1)sin y a x b =+型:设sin t x =,化为一次函数y at b =+在闭区间[1,1]-上求最值. (2)sin cos y a x b x c =±+,,0a b >型:引入辅助角,tan baϕϕ=,化为)y x c ϕ=±+. (3)2sin sin y a x b x c =++型:设sin [1,1]t x =∈-,化为二次函数2y at bt c =++求解. (4)sin cos (sin cos )y a x x b x x c =+±+型:设sin cos [t x x =±∈,则212sin cos t x x =±,化为二次函数2(1)2a t y bt c -=±++在闭区间[t ∈上求最值.(5)tan cot y a x b x =+型:设tan t x =,化为by at t=+,用“Nike 函数”或“差函数”求解.(6)sin sin a x by c x d+=+型:方法一:常数分离、分层求解;方法二:利用有界性,化为1sin 1x -≤≤求解.(7)sin cos a x by c x d +=+型:化为sin cos a x yc x b dy -=-)x b dy ϕ+=-,利用有界性,sin()[1,1]x ϕ+=-求解.(8)22sin cos sin cos a x x b x c x ++,(0,,a b c≠不全为0)型:利用降次公式,可得22sin cos sin cos sin 2cos 2222a cb bc a x x b x c x x x -+++=++,然后利用辅 助角公式即可.4备注:①x y sin =和x y cos =的对称中心在其函数图像上;②x y tan =和x y cot =的对称中心不一定在其函数图像上.(有可能在渐近线上) 例3:求函数5sin(2)73y x π=++的对称轴方程和对称中心.解析:由函数sin y x =的对称轴方程2ππ+=k x ,Z k ∈,可得232x k πππ+=+,Z k ∈解得122k x ππ=+,Z k ∈. 所以,函数5sin(2)73y x π=++的对称轴方程为122k x ππ=+,Z k ∈.由函数sin y x =的中心对称点)0,(πk ,Z k ∈,可得23x k ππ+=,Z k ∈解得62k x ππ=-+,Z k ∈. 所以,函数5sin(2)73y x π=++的对称中心为(,7)62k ππ-+,Z k ∈.①[1,1]sin(arcsin )cos(arccos )a a a a ∈-⇒==; ②tan(arctan )a R a a ∈⇒=. (2)先三角函数后反三角函数: ①[,]22ππθ∈-⇒arcsin(sin )θθ=; ②[0,]θπ∈⇒arccos(cos )θθ=;③(,)22ππθ∈-⇒arctan(tan )θθ=. (3)反三角函数对称中心特征方程式:①[1,1]a ∈-⇒arcsin()arcsin a a -=-; ②[1,1]a ∈-⇒arccos()arccos a a π-=-; ③(,)a ∈-∞+∞⇒arctan()arctan a a -=-. 6、解三角方程公式:sin ,1(1)arcsin ,cos ,12arccos ,tan ,arctan ,k x a a x k a k Z x a a x k a k Z x a a R x k a k Z πππ⎧=≤=+-∈⎪=≤=±∈⎨⎪=∈=+∈⎩.。
第1章 高中数学必修1--集合与函数基础知识讲解
§1.1集合¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.(一)集合的有关概念⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等。
练:A={2,4,8,16},则一、集合的表示方法⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。
高一集合的概念知识点讲解
高一集合的概念知识点讲解集合是数学中的一个基本概念,它是由一些特定的对象组成的整体。
在高中数学中,高一阶段学生开始接触并学习集合的相关概念和性质。
本文将对高一集合的概念知识点进行讲解,包括集合的定义、表示方法、基本运算以及常见的特殊集合等内容。
一、集合的定义在数学中,集合是由一些具有确定性质的对象组成的整体。
这些对象可以是数字、字母、图形或者任何其他数学对象。
具体而言,集合由元素组成,写作“A={a1, a2, a3, …}”表示集合A中包含了元素a1、a2、a3等。
二、集合的表示方法在集合中,常用的表示方法有三种:列举法、描述法和集合间关系表示法。
1. 列举法:直接将集合中的元素一一列举出来。
例如,集合A={1, 2, 3, 4}表示A是一个包含了数字1、2、3和4的集合。
2. 描述法:通过描述元素的性质来表示集合。
例如,集合B={x | x是正整数且小于10}表示B是一个由小于10的正整数组成的集合。
3. 集合间关系表示法:利用集合间的关系来表示一个集合。
例如,若A={1, 2, 3, 4},B={3, 4, 5},则可以用运算符号表示A与B 的关系,如A∩B表示A与B的交集。
三、基本运算集合的基本运算包括并集、交集、差集、补集和笛卡尔积。
1. 并集:记作A∪B,表示由属于集合A或集合B的所有元素组成的新集合。
例如,若A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。
2. 交集:记作A∩B,表示同时属于集合A和集合B的元素组成的新集合。
例如,若A={1, 2, 3},B={3, 4, 5},则A∩B={3}。
3. 差集:记作A-B,表示属于集合A但不属于集合B的元素组成的新集合。
例如,若A={1, 2, 3},B={3, 4, 5},则A-B={1, 2}。
4. 补集:对于给定的全集U,集合A相对于U的补集表示为A'或A^c,表示A中不属于U的元素组成的新集合。
(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档
§1.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若则),则称A a ∉B a ∈集合A 为集合B 的子集,记为A B 或B A ;如果A B ,并且A B ,这时集合A 称为集⊆⊇⊆≠合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A B 、B A ,则A=B.⊆⊇5.补集:设A S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,⊆记为 .A C s 6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作A B.⋂8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并集,记作A B.⋃9.空集:不含任何元素的集合称为空集,记作.Φ10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N +或N ,整数集记作Z ,有理*数集记作Q ,实数集记作R .二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和⊆⊇⊆“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间⊇∈∉的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B =易漏掉的情况.Φ5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n 个元素的集合的所有子集个数为:,所有真子集个数为:-1n 2n2三、经典例题导讲[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}错解:求M∩N 及解方程组 得 或 ∴选B⎩⎨⎧+=+=112x y x y ⎩⎨⎧==10y x ⎩⎨⎧==21y x 错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C .错解:由x 2-3x +2=0得x =1或2.当x =1时,a =2, 当x =2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A.当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或 ∴C={0,1,2}{}{}21或[例3]已知m A,n B, 且集合A=,B=,又∈∈{}Z a a x x ∈=,2|{}Z a a x x ∈+=,12|C=,则有: ( ){}Z a a x x ∈+=,14|A .m +n A B. m +n B C.m +n C D. m +n 不属于A ,B ,C 中任意一个∈∈∈错解:∵m A ,∴m =2a ,a ,同理n =2a +1,a Z, ∴m +n =4a +1,故选C∈Z ∈∈错因是上述解法缩小了m +n 的取值范围.正解:∵m A, ∴设m =2a 1,a 1Z , 又∵n ,∴n =2a 2+1,a 2 Z ,∈∈B ∈∈∴m +n =2(a 1+a 2)+1,而a 1+a 2 Z , ∴m +n B, 故选B.∈∈[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若BA ,求实数p 的取值范围.错解:由x 2-3x -10≤0得-2≤x≤5.欲使B A ,只须 3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p ∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-.21点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A 是实数集,满足若a∈A,则A ,且1∉A.a -11∈1≠a ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.a1⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒∈A ⇒ 2∈A 21∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即=012+-a a该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ ∈A ⇒ ∈A ⇒A ,即1-∈A a -11a --1111111---a a ∈a 1⑷由⑶知a∈A 时,∈A, 1-∈A .现在证明a,1-, 三数互不相等.a-11a 1a 1a -11①若a=,即a2-a+1=0 ,方程无解,∴a≠a -11a-11②若a=1-,即a 2-a+1=0,方程无解∴a≠1- a 1a1 ③若1- =,即a2-a+1=0,方程无解∴1-≠.a 1a -11a 1a -11综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7] 设集合A={|=,∈N +},集合B={|=,∈N +},试证:a a 12+n n b b 542+-k k k A B .证明:任设∈A,a 则==(+2)2-4(+2)+5 (∈N +),a 12+n n n n ∵ n∈N*,∴ n +2∈N*∴ a∈B 故 ①显然,1,而由{}*2,1|Nn n a a A ∈+==∈B={|=,∈N +}={|=,∈N +}知1∈B,于是A≠B b b 542+-k k k b b 1)2(2+-k k ②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x 2-3x -10≤0,x∈Z},B={x|2x 2-x -6>0, x∈ Z},则A∩B 的非空真子集的个数为( )A .16B .14C .15D .322.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,- }C .{±2,± }D .{,-}55553. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )A .PB .QC .D .不知道4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )A .P∩Q=B .P QC .P=QD .P Q5.若集合M ={},N ={|≤},则M N =( )11|<xx x 2x x A . B .}11|{<<-x x }10|{<<x x C . D .}01|{<<-x x ∅6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设,函数若的解集为A ,a R ∈2()22.f x ax x a =--()0f x >,求实数的取值范围。
高中数学知识网络(集合与函数)[整理版]【完整版】
高中数学知识网络(集合与函数)[整理版]【完整版】(文档可以直接使用,也可根据实际需要修订后使用,可编辑放心下载)一、集合§1.1集合与元素集合与元素的关系: 和 。
集合中元素的特征: 、 、 。
集合的分类:按集合中元素的个数多少分为: 、 、 。
集合的表示方法: 、 、 。
§1.2集合与集合关系子集:假设B x A x ∈⇒∈,那么 ,即A 是B 的子集。
真子集:假设B A ⊆且B A ≠〔即至少存在B x ∈0,但 〕,那么A 是B 的真子集。
①假设集合A 中有n 个元素,那么集合A 的子集个数为 ,真子集个数为 。
②任何一个集合是它本身的子集,即 。
③对于集合A ,B ,C ,如果B A ⊆,且C B ⊆,那么 。
④空集是任何集合的 ,是任何 集合的真子集。
集合相等:B A ⊆且 B A =⇔。
运算交集:定义:A ∩B |{x = 且 }性质:A ∩A = , A ∩Φ= , A ∩B A ,A ∩B B , ⇔⊆B A A ∩B = 。
并集:定义:A ∪B |{x = 或 }性质:A ∪A = , A ∪Φ= , A ∪B A ,A ∪B B , ⇔⊆B A A ∪B = 。
()()()(Card B Card A Card B A Card -+=⋃ )。
补集:定义:|{x A C U = 且 } 性质:)(A C U ∩A = , )(A C U ∪A = , =)(A C C U U ,=⋂)(B A C U ∪ ,=⋃)(B A C U ∩ 。
二、函数§2.1函数及其表示映射:设A ,B 是两个非空的集合,按照某种对应关系f ,使对于集合A 中的 元素x ,在集合B 中都有 的元素和它对应,那么就称B A f →:为从集合A 到集合B 的一个映射。
函数的三要素: 、 、 。
函数的主要表示方法: 、 、 。
函数的定义域:①分式的分母 。
集合的表示法-高中数学知识点讲解
集合的表示法1.集合的表示法【知识点的认识】1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法.{1,2,3,…},注意元素之间用逗号分开.2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法.即:{x|P}(x 为该集合的元素的一般形式,P 为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}3.图示法(Venn 图):为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合.4.自然语言(不常用).【解题方法点拨】在掌握基本知识的基础上,(例如方程的解,不等式的解法等等),初步利用数形结合思想解答问题,例如数轴的应用,Venn 图的应用,通过转化思想解答.注意解题过程中注意元素的属性的不同,例如:{x|2x﹣1>0}表示实数x 的范围;{(x,y)|y﹣2x=0}表示方程的解或点的坐标.【命题方向】本考点是考试命题常考内容,多在选择题,填空题值出现,可以与集合的基本关系,不等式,简易逻辑,立体几何,线性规划,概率等知识相结合.2.交集及其运算【知识点的认识】由所有属于集合A 且属于集合B 的元素组成的集合叫做A 与B 的交集,记作A∩B.符号语言:A∩B={x|x∈A,且x∈B}.A∩B 实际理解为:x 是A 且是B 中的相同的所有元素.当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.运算形状:①A∩B=B∩A.②A∩∅=∅.③A∩A=A.④A∩B⊆A,A∩B⊆B.⑤A∩B=A⇔A⊆B.⑥A∩B=∅,两个集合没有相同元素.⑦A∩(∁U A)=∅.⑧∁U(A∩B)=(∁U A)∪(∁U B).【解题方法点拨】解答交集问题,需要注意交集中:“且”与“所有”的理解.不能把“或”与“且”混用;求交集的方法是:①有限集找相同;②无限集用数轴、韦恩图.【命题方向】掌握交集的表示法,会求两个集合的交集.命题通常以选择题、填空题为主,也可以与函数的定义域,值域,函数的单调性、复合函数的单调性等联合命题.。
集合的含义-高中数学知识点讲解
集合的含义1.集合的含义【知识点的认识】1、集合的含义:集合是一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元,是具有某种特定性质的事物的总体.2、集合的表示方法:列举法、描述法、图示法.(1)列举法就是把集合中的每一个元素全部写出来;描述法指的就是用词汇或者用数学语言描述出集合中的元素;区间表示法就是用区间的形式来表示集合中的元素;图示法(数轴表示法,韦恩图法)用图的形式来描述表示出集合的每一个元素.(2)有限集常用列举法表示,而无限集常用描述法或区间表示法表示,抽象集常用图示法表示.(有限集就是集合中的元素个数是能够确定的.无限集是集合的元素个数无法精确.抽象集合就是只给出集合元素满足的性质,探讨集合中的元素属性,要求有较高的抽象思维和逻辑推理能力.)用描述法表示集合时,集合中元素的意义取决于它的“代表”元素的特征.【典型例题分析】题型一:判断能否构成集合典例 1:下列研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于 5 的自然数;(2)某班所有个子高的同学;(3)不等式 2x+1>7 的整数解.分析:根据集合元素的确定性,互异性进行判断即可.解答:(1)小于 5 的自然数为 0,1,2,3,4,元素确定,所以能构成集合.为{0,1,2,3,4}.(2)个子高的标准不确定,所以集合元素无法确定,所以不能构成集合.(3)由 2x+1>7 得x>3,因为x 为整数,集合元素确定,但集合元素个数为无限个,所以用描述法表示为{x|x>3,且x∈Z}.点评:本题主要考查集合的含义和表示,利用元素的确定性,互异性是判断元素能否构成集合的条件,比较基础.1/ 3典例 2:下列集合中表示同一集合的是()A.M={(3,2)}N={3,2}B.M={(x,y)|x+y=1}N={y|x+y=1}C.M={(4,5)}N={(5,4)}D.M={2,1}N={1,2}分析:利用集合的三个性质及其定义,对A、B、C、D 四个选项进行一一判断.解答:A、M={(3,2)},M 集合的元素表示点的集合,N={3,2},N 表示数集,故不是同一集合,故A 错误;B、M={(x,y)|x+y=1},M 集合的元素表示点的集合,N={y|x+y=1},N 表示直线x+y=1 的纵坐标,是数集,故不是同一集合,故B 错误;C、M={(4,5)} 集合M 的元素是点(4,5),N={(5,4)},集合N 的元素是点(5,4),故C 错误;D、M={2,1},N={1,2}根据集合的无序性,集合M,N 表示同一集合,故D 正确;故选D.点评:此题主要考查集合的定义及其判断,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.题型二:集合表示的含义典例 3:下面三个集合:A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},请说说它们各自代表的含义.分析:根据集合的代表元素,确定集合元素的性质,A 为数集,B 为数集,C 为点集.解答:A 是数集,是以函数的定义域构成集合,且A=R;B 是数集,是由函数的值域构成,且B={y|y≥1};C 为点集,是由抛物线y=x2+1 上的点构成.点评:本题的考点用描正确理解用描述法表示集合的含义,要通过代表元素的特点正确理解集合元素的构成.【解题方法点拨】研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清楚其元素表示的意义是什么.2/ 32.函数的值【知识点的认识】函数不等同于方程,严格来说函数的值应该说成是函数的值域.函数的值域和定义域一样,都是常考点,也是易得分的点.其概念为在某一个定义域内因变量的取值范围.【解题方法点拨】求函数值域的方法比较多,常用的方法有一下几种:①基本不等式法:如当x>0 时,求 2x +8的最小值,有 2x +푥8푥≥ 2 2푥⋅8푥= 8;②转化法:如求|x﹣5|+|x﹣3|的最小值,那么可以看成是数轴上的点到x=5 和x=3 的距离之和,易知最小值为 2;③求导法:通过求导判断函数的单调性进而求出极值,再结合端点的值最后进行比较例题:求f(x)=lnx﹣x 在(0,+∞)的值域解:f′(x)=1푥― 1=1―푥푥∴易知函数在(0,1]单调递增,(1,+∞)单调递减∴最大值为:ln1﹣1=﹣1,无最小值;故值域为(﹣∞,﹣1)【命题方向】函数的值域如果是单独考的话,主要是在选择题填空题里面出现,这类题难度小,方法集中,希望同学们引起高度重视,而大题目前的趋势主要还是以恒成立的问题为主3/ 3。
(完整版)高中数学概念汇总
高中数学概念汇总一.集合的概念:1.集合的表示法:(1)列举法:如 {1,2,3,4,5}; (2)描述法:如{x|x ≤2};2.集合间的关系:(1)子集:A 中的任何一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集,记为A ⊆B;任何一个集合是它本身的子集,空集是任何一个集合的子集。
(2)真子集 :如果A 是B 的子集,并且B 中至少有一个元素不属于A,那么集合A 叫做集合B 的真子集,记为B A ≠⊂。
空集是任何一个非空集合的真子集。
(3)两个集合相等:对于两个集合A 与B,如果A ⊆B,同时A B ⊆,那么就说这两个集合相等,记作A=B. 3.集合的运算:(1)交集:=B A I {x|,A x ∈且B x ∈}; (2)并集:B A Y ={x|A x ∈或B x ∈};(3)补集:若全集为U,则集合A 的补集为A C U ={x|U x ∈但A x ∉}。
5.集合中元素的三大属性;(1)元素的确定性;(2)元素的无序性;(3)元素的互异性。
对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足元素的互异性。
6.常用数集的记号:自然数集N;整数集Z;有理数集Q;实数集R;复数集C.空集φ。
二.命题1.四种命题形式:如果一命题条件为A ,结论为B,那么该命题的原命题形式是:若A 成立,则B 成立(即A ⇒B);它的逆命题形式是:若B 成立,则A 成立(即B ⇒A);它的否命题形式是:若A 不成立,则B 不成立(即B A ⇒); 它的逆否命题形式是:若B 不成立,则A 不成立(即A B ⇒)。
等价命题:若甲,乙两命题满足:甲⇒乙,乙⇒甲,则称甲乙两命题是等价命题, 记为甲⇔乙;原命题与逆否命题是等价命题;逆命题与否命题是等价命题。
2.充分条件与必要条件:设条件A 和结论B,如果A B ⇒,那么A 是B 的充分条件,或说B 是A 的必要条件;如果A B ⇒,那么A 是B 的必要条件,或说B 是A 的充分条件;如果B A ⇔,那么A 是B 的充分必要条件,简称充要条件。
高中数学集合知识点
一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a∈A和a?A,二者必居其一)、互异性(若a∈A,b∈A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且)3)交集:A∩B={x| x∈A且x∈B}4)并集:A∪B={x| x∈A或x∈B}5)补集:CUA={x| x A但x∈U}注意:①? A,若A≠?,则? A ;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
4.有关子集的几个等价关系①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;④A∩CuB = 空集CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系A) M=N P B) M N=P C) M N P D) N P M分析一:从判断元素的共性与区别入手。
集合数学知识点高一讲解
集合数学知识点高一讲解集合是数学中的一个基本概念,而集合论是现代数学的一个重要分支。
在高中数学的学习中,集合论也是一个重要的内容。
本文将为你带来高一阶段集合数学知识点的详细讲解,希望能够对你的学习有所帮助。
一、集合的基本概念1. 集合的定义集合是由具有某种特定性质的元素组成的整体。
常用大写字母A、B、C等表示集合,元素用小写字母a、b、c等表示。
一个集合可以用大括号括起来,元素之间用逗号隔开。
例如,集合A={1,2,3,4}表示由元素1、2、3、4组成的集合A。
2. 集合的元素关系若一个元素x是集合A的一个元素,则可以表示为x∈A。
若一个元素y不是集合A的一个元素,则可以表示为y∉A。
3. 空集和全集没有任何元素的集合称为空集,记作∅。
包含所有可能元素的集合称为全集,常常用符号U表示。
二、集合的表示方法1. 列举法通过列举集合中的元素来表示集合。
例如,集合A={1,2,3,4}。
2. 描述法通过刻画集合中元素的特点来表示集合。
例如,集合B={x|x是奇数}表示所有奇数的集合。
三、集合的运算在集合论中,常常需要对集合进行一些运算,以求出集合之间的关系。
1. 并集集合A和集合B的并集,表示为A∪B,是包含了所有属于A 或属于B的元素的集合。
例如,集合A={1,2,3},集合B={3,4},则A∪B={1,2,3,4}。
2. 交集集合A和集合B的交集,表示为A∩B,是包含了既属于A又属于B的元素的集合。
例如,集合A={1,2,3},集合B={3,4},则A∩B={3}。
3. 差集集合A和集合B的差集,表示为A-B,是包含了属于A但不属于B的元素的集合。
例如,集合A={1,2,3},集合B={3,4},则A-B={1,2}。
4. 互斥集互斥集是指两个集合没有相同的元素,即它们的交集为空集。
如果A∩B=∅,则集合A和集合B互斥。
四、集合的性质在集合论中,有一些重要的性质需要掌握。
1. 交换律对于任意的集合A和B,A∪B=B∪A,A∩B=B∩A。
知识点整理-[高中数学]第一章 集合
第一章 集合1.1 集合与集合的表示方法1.集合的概念(1)定义集合是数学中最原始的不定义的概念,只能给出描述性说明:某些指定的且不同的对象集在一起就成为一个集合。
组成集合的对象叫元素。
集合常用大写字母A B C 、、、…来表示。
元素常用小写字母a b c 、、、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成一个集合。
对于集合我们一定要从整体的角度来看待它。
例如由“我们的同学”组成的一个集合A ,则它是一个整体,也就是一个班集体,也可以用我们班的序号来替代它。
构成集合的对象必须是“确定”的且“不同”的。
其中“确定”是指构成集合的对象具有非常明确的特征,这个特征不是模棱两可的;“不同”是指构成集合的各个对象互不相同。
(2)元素与集合的关系元素与集合的关系有属于与不属于两种:元素a 属于集合A ,记作a A ∈;元素a 不属于集合A ,记作a A a A ∉∈或。
a A ∈与a A ∉取决于a 是不是集合A 中的元素。
根据集合中元素的确定性,可知对任何a 与A ,在a A ∈与a A ∉这两种情况中必有一种且只有一种成立。
符号“∈”“∉”仅表示元素与集合之间的关系,不能用来表示集合与集合之间的关系。
(3)集合中元素的特性①确定性:设A 是一个给定的集合,x 是某一具体对象,则x 或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。
例如A ={0,1,3,4},可知0,6A A ∈∉。
②互异性:“集合中的元素,必须是互异的”,就是说“对于一个给定的集合,它的任必修一何两个元素都是不同的”。
如方程2(4)0x -=的解集记为{4},而不能记为{4,4}。
③无序性:集合与其中元素的排列次序无关,如集合{a ,b ,c}与{c ,b ,a}是同一个集合。
(4)集合的分类集合根据它含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。
如“方程3x+1=0的解组成的集合”,由“2,4,6,8组成的集合”,它们的元素个数是可数的,因此这两个集合是有限集。
(完整版)高中数学知识点宝典汇总
①定义法 步骤: a.设 x1, x2 A且 x1 x2 ; b.作差 f (x1 ) f ( x2 ) ; c.判断正负号。
②掌握函数 y ax b a b ac(b ac 0);y x a(a 0) 的图象和性质;
xc
xc
x
函
ax b
b ac
y
a
数
xc
xc
a y x (a 0 )
x
(b –ac≠ 0)
y
图
Y=a
X=-c
象
o X
y
o
x
当 b-ac>0 时 : 单
在 ( , a]和[ a , )
在 ( , c)和 (c, ) 上单调递减;
上单调递增;
调
当 b-ac<0 时 :
在 [ a, 0)和(0, a ] 上单
性
在 ( , c)和 (c, ) 上单调递增。
调递增。
2
③一些有用的结论: .在公共定义域内
五、求函数的值域的常用解题方法: ① 配方法。如函数 y x 4 x 2 1的值域,特点是可化为二次函数的形式;
②换元法:如 y= 1 2 x x ③单调性:如函数 y 2 x log 2 x x ∈ [1,2]
④判别式法(△法)如函数
x 2 2x 3
y=
x2 2x 3
3
⑤利用函数的图像:如函数 ⑦利用基本不等式:如函数
4.等差数列的前 n 项和: ① Sn
n(a1 a n ) 2
② Sn na1 n(n 1) d 2
对于公式②整理后是关于 n 的没有常数项的二次函数(充要条件 )。
5.等差中项 :如果 a , A , b 成等差数列,则有
高中数学必修一第一章集合知识点总结
高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。
2、空集的含义:不含任何元素的集合叫做空集,记为Ø。
3、集合中元素的三个特性:确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
集合中的元素互不相同。
例如:集合A={1,a},则a不能等于1。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。
4、元素与集合之间只能用“∈”或“∉”符号连接。
5、集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合。
6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。
在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。
二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合一、章节结构图123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩二、复习指导1.新课标知识点梳理在高中数学中,集合的初步知识与常用逻辑用语知识,与其它内容有着密切联系,它们是学习、掌握和使用数学语言的基础,准确表述数学内容,更好交流的基础.集合知识点及其要求如下:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系.(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.1 集合的概念及其运算(一)(一)复习指导本节主要内容:理解集合、子集、交集、并集、补集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,会用集合的有关术语和符号表示一些简单\的集合.高考中经常把集合的概念、表示和运算放在一起考查.因此,复习中要把重点放在准确理解集合概念、正确使用符号及准确进行集合的运算上.1.集合的基本概念(1)某些指定的对象集在一起就成为一个集合.集合中每个对象叫做这个集合的元素.集合中的元素是确定的、互异的,又是无序的.(2)不含任何元素的集合叫做空集,记作.(3)集合可分为有限集与无限集.(4)集合常用表示方法:列举法、描述法、大写字母法、图示法及区间法.(5)元素与集合间的关系运算;属于符号记作“∈”;不属于,符号记作“∉”.2.集合与集合的关系对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,就说集合B 包含集合A ,记作A ⊆B (读作A 包含于B ),这时也说集合A 是集合B 的子集.也可以记作B ⊇A (读作B 包含A )①子集有传递性,若A ⊆B ,B ⊆C ,则有A ⊆C .②空集是任何集合的子集,即⊆A③真子集:若A ⊆B ,且至少有一个元素b ∈B ,而b ∉A ,称A 是B 的真子集.记作A B (或B ∉A ). ④若A ⊆B 且B ⊆A ,那么A =B⑤含n (n ∈N*)个元素的集合A 的所有子集的个数是:2的n 次方个.(二)解题方法指导例1.选择题:(1)不能形成集合的是( )(A)大于2的全体实数(B)不等式3x -5<6的所有解(C)方程y =3x +1所对应的直线上的所有点(D)x 轴附近的所有点(2)设集合62},23|{=≥=x x x A ,则下列关系中正确的是( )(A)x A(B)x ∉A (C){x }∈A (D){x }A (3)设集合},214|{},,412|{Z Z ∈+==∈+==k k x x N k k x x M ,则( ) (A)M =N(B)M N (C)M N (D)M ∩N =例2.已知集合}68{N N ∈-∈=xx A ,试求集合A 的所有子集.例3.已知A ={x |-2<x <5},B ={x |m +1≤x ≤2m -1},B ≠,且B ⊆A ,求m 的取值范围.例4*.已知集合A ={x |-1≤x ≤a },B ={y |y =3x -2,x ∈A },C ={z |z =x 2,x ∈A },若C ⊆B ,求实数a 的取值范围.1.2集合的概念及其运算(二)(一)复习指导(1)补集:如果A ⊆S ,那么A 在S 中的补集s A ={x |x ∈S ,且x ≠A }.(2)交集:A ∩B ={x |x ∈A ,且x ∈B }(3)并集:A∪B={x|x∈A,或x∈B}这里“或”包含三种情形:①x∈A,且x∈B;②x∈A,但x∉B;③x∈B,但x∉A;这三部分元素构成了A∪B(4)交、并、补有如下运算法则全集通常用U表示.(A∩B)=(U A)∪(U B);A∩(B∪C)=(A∩B)∪(A∩C)U(A∪B)=(U A)∩(U B);A∪(B∩C)=(A∪B)∩(A∪C)U(5)集合间元素的个数:card(A∪B)=card(A)+card(B)-card(A∩B)集合关系运算常与函数的定义域、方程与不等式解集,解析几何中曲线间的相交问题等结合,体现出集合语言、集合思想在其他数学问题中的运用,因此集合关系运算也是高考常考知识点之一.(二)解题方法指导例1.(1)设全集U={a,b,c,d,e}.集合M={a,b,c},集合N={b,d,e},那么(U M)∩(U N)是( )(A)(B){d} (C){a,c} (D){b,e}(2)全集U={a,b,c,d,e},集合M={c,d,e},N={a,b,e},则集合{a,b}可表示为( )(A)M∩N(B)(U M)∩N(C)M∩(U N) (D)(U M)∩(U N)例2.如图,U是全集,M、P、S为U的3个子集,则下图中阴影部分所表示的集合为( )(A)(M∩P)∩S(B)(M∩P)∪S(C)(M∩P)∩(U S) (D)(M∩P)∪(U S)例3.(1)设A={x|x2-2x-3=0},B={x|ax=1},若A∪B=A,则实数a的取值集合为____;(2)已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=M,则实数a的取值集合为____.例4.定义集合A-B={x|x∈A,且x∉B}.(1)若M={1,2,3,4,5},N={2,3,6}则N-M等于( )(A)M(B)N(C){1,4,5 } (D){6}(2)设M、P为两个非空集合,则M-(M-P)等于( )(A)P(B)M∩P(C)M∪P(D)M例5.全集S={1,3,x3+3x2+2x},A={1,|2x-1|}.如果sA={0},则这样的实数x是否存在?若存在,求出x;若不存在,请说明理由.例题解析1.1 集合的概念及其运算(1)例1分析:(1)集合中的元素是确定的、互异的,又是无序的;(2)注意“∈”与“⊆”以及x与{x}的区别;(3)可利用特殊值法,或者对元素表示方法进行转换.解:(1)选D .“附近”不具有确定性.(2)选D .(3)选B . 方法一:N M ∉∉21,21故排除(A)、(C),又N ∉∉43,43M ,故排除(D). 方法二:集合M 的元素.),12(41412Z ∈+=+=k k k x 集合N 的元素=+=214k x Z ∈+k k ),2(41.而2k +1为奇数,k +2为全体整数,因此M N . 小结:解答集合问题,集合有关概念要准确,如集合中元素的三性;使用符号要正确;表示方法会灵活转化.例2分析:本题是用{x |x ∈P }形式给出的集合,注意本题中竖线前面的代表元素x ∈N .解:由题意可知(6-x )是8的正约数,所以(6-x )可以是1,2,4,8;可以的x 为2,4,5,即A ={2,4,5}.∴A 的所有子集为,{2},{4},{5},{2,4},{2,5},{4,5},{2,4,5}.小结:一方面,用{x |x ∈P }形式给出的集合,要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;另一方面,含n (n ∈N*)个元素的集合A 的所有子集的个数是:+++210n n n C C C n n n C 2=+Λ个.例3分析:重视发挥图示法的作用,通过数轴直观地解决问题,注意端点处取值问题.解:由题设知⎪⎩⎪⎨⎧<-->+-≤+51221121m m m m ,解之得,2≤m <3.小结:(1)要善于利用数轴解集合问题.(2)此类题常见错误是:遗漏“等号”或多“等号”,可通过验证“等号”问题避免犯错.(3)若去掉条件“B ≠”,则不要漏掉⊆A 的情况.例4*分析:要首先明确集合B 、C 的意义,并将其化简,再利用C ⊆B 建立关于a 的不等式.解:∵A =[-1,a ],∴B ={y |y =3x -2,x ∈A },B =[-5,3a -2]⎪⎩⎪⎨⎧≥<≤<≤-=∈==∴1],,0[10],1,0[01],1,[}.,|{222a a a a a C A x x z z C(1)当-1≤a <0时,由C ⊆B ,得a 2≤1≤3a -2无解;(2)当0≤a <1时,1≤3a -2,得a =1;(3)当a ≥1时,a 2≤3a -2得1≤a ≤2综上所述,实数a 的取值范围是[1,2].小结:准确理解集合B 和C 的含义(分别表示函数y =3x -2,y =x 2的值域,其中定义域为A )是解本题的关键.分类讨论二次函数在运动区间的值域是又一难点.若结合图象分析,结果更易直观理解.1.2 集合的概念及其运算(2)例1分析:注意本题含有求补、求交两种运算.求补集要认准全集,多种运算可以考虑运算律.解:(1)方法一:∵U M ={b ,c },U N ={a ,c }∴(U M )∩(U N )=,答案选A方法二:(U M )∩(U N )= U (M ∪N )=∴答案选A方法三:作出文氏图,将抽象的关系直观化.∴答案选A(2)同理可得答案选B小结:交、并、补有如下运算法则U (A ∪B )=(U A )∩(U B );A ∪(B ∩C )=(A ∪B )∩(A ∪C ) 例2分析:此题为通过观察图形,利用图形语言进行符号语言的转化与集合运算的判断.解:∵阴影中任一元素x 有x ∈M ,且x ∈P ,但x ∉S ,∴x ∈U S .由交集、并集、补集的意义.∴x ∈(M ∩P )∩(U S )答案选D .小结:灵活进行图形语言、文字语言、符号语言的转化是学好数学的重要能力.例3解:(1)由已知,集合A ={-1,3}, ⎪⎩⎪⎨⎧=/=∅=0}1{0a aa B ∵A ∪B =A 得B ⊆A∴分B =和}1{aB =两种情况. 当B =时,解得a =0;当}1{a B =时,解得a 的取值}31,1{- 综上可知a 的取值集合为⋅-}31,1,0{ (2)由已知,⎪⎩⎪⎨⎧=/=∅==0}1{0},{a aa N a M ∵M ∩N =M⇔M ⊆N当N =时,解得a =0;M ={0} 即M ∩N ≠M ∴a =0舍去当}1{a N =时,解得11±=⇔=a aa 综上可知a 的取值集合为{1,-1}.小结:(Ⅰ)要重视以下几个重要基本关系式在解题时发挥的作用:(A ∩B )⊆A ,(A ∩B )⊆B ;(A ∪B )⊇A ,(A ∪B )⊇B ;A ∩U A =,A ∪U A =U ;A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等.(Ⅱ)要注意是任何集合的子集.但使用时也要看清题目条件,不要盲目套用.例4解:(1)方法一:由已知,得N -M ={x |x ∈N ,且x ∉M }={6},∴选D方法二:依已知画出图示∴选D .(2)方法一:M -P 即为M 中除去M ∩P 的元素组成的集合,故M -(M -P )则为M 中除去不为M ∩P 的元素的集合,所以选B .方法二:由图示可知M =(M ∩P )∪(M -P )选B .方法三:计算(1)中N -(N -M )={2,3},比较选项知选B .小结:此题目的检测学生的阅读理解水平及适应、探索能力,考查学生在新情境中分析问题解决问题的能力.事实证明,虽然这类问题内容新颖,又灵活多样,但其涉及的数学知识显得相对简单和基础,要勇于尝试解题.易知x3+3x2+2x=0,且|2x-1|=3,解之得,x=-1.当x=-1时,S={1,3,0},A={1,3},符合题设条件.∴存在实数x=-1满足S A={0}.。