高中数学集合知识点总结教学提纲

合集下载

高中数学集合知识点总结

高中数学集合知识点总结

高中数学集合知识点总结
高中数学集合知识点总结:
1. 集合的定义:集合是由一些确定的、互不相同的对象组成的整体。

2. 集合的表示方法:
- 列举法:将集合中的元素一个一个地列出来,用大括号{}把它们括起来,元素之间用逗号隔开。

- 描述法:用文字描述集合中的元素的性质,用符号“∈”表示。

3. 集合的关系:
- 子集关系:若集合A中的任意一个元素都属于集合B,则称集合A是集合B的子集,记作A B。

- 真子集关系:如果集合A是集合B的子集,但是集合A和集合B不相等,则称集合A是集合B的真子集,记作A B。

- 并集:由所有属于集合A或者属于集合B的元素所组成的集合,记作A ∪ B。

- 交集:由同时属于集合A和集合B的元素所组成的集合,记作A ∩ B。

- 补集:除了集合A中的元素外,在全集U中还有哪些元素没有被包含在A中,这些元素构成的集合称为集合A的补集,记作A"。

4. 集合的运算:
- 并集、交集、补集
- 差集:由属于集合A而不属于集合B的元素所组成的集合,记作A-B。

- 对称差:由所有属于集合A或者属于集合B但不同时属于它们二者的元素所组成的集合,记作A △ B。

5. 集合的基本性质:
- 空集是任何集合的子集。

- 一个集合和它自己相等。

- 子集关系具有传递性。

- 并集和交集满足交换律、结合律和分配律。

- 补集具有互补律和双重否定律。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

高中数学必修一第一章集合与函数概念课时一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们到这些东 西,并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集称为集。

3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例: 世界上最高的山、中国古代四大美女、⋯⋯ (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{⋯}如:{我校},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A ={我校},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来{a,b,c ⋯⋯} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{xR|x-3>2},{x|x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②V e :画出一条封闭的曲线,曲线里面表示集合。

4、集合: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:aA 注意:常用数集及其记法:(&&&&&) 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R课时二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集。

高中数学知识点提纲(5篇)

高中数学知识点提纲(5篇)

高中数学知识点提纲(5篇)第一篇:高中数学知识点提纲学数学要对整个数学知识点的脉络有清晰的掌握,就是心中要有一个发展的数学框架。

把每单元前的单元介绍看看,注意后几行,一般都是重点。

以下是小编给大家整理的高中数学知识点提纲,希望对大家有所帮助,欢迎阅读!高中数学知识点提纲1一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数x的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

高中数学集合知识点归纳

高中数学集合知识点归纳

高中数学集合知识点归纳一、集合的基本概念1. 集合的定义:集合是由一些明确的、互不相同的元素所构成的整体,用大写字母如A, B, C等表示。

2. 元素:集合中的每一个成员被称为元素,用小写字母如a, b, c等表示。

3. 空集:不包含任何元素的集合称为空集,记作∅。

4. 集合的表示:集合通常可以通过列举法或描述法来表示。

例如,集合A = {1, 2, 3} 或 A = {x | x 是一个正整数}。

二、集合间的关系1. 子集:如果集合B的所有元素都是集合A的元素,则称B是A的子集,记作B ⊆ A。

2. 真子集:如果集合B是A的子集,并且B不等于A,则称B是A的真子集,记作B ⊂ A。

3. 补集:对于集合A,其在全集U中的补集是包含U中所有不属于A的元素的集合,记作A' 或 C_U(A)。

4. 交集:两个集合A和B的交集是包含同时属于A和B的所有元素的集合,记作A ∩ B。

5. 并集:两个集合A和B的并集是包含属于A或属于B的所有元素的集合,记作A ∪ B。

三、集合运算1. 德摩根定律:对于任意集合A和B,(A ∪ B)' = A' ∩ B' 和 (A ∩ B)' = A' ∪ B'。

2. 集合的幂集:一个集合的所有子集构成的集合称为该集合的幂集。

3. 笛卡尔积:两个集合A和B的笛卡尔积是所有可能的有序对(a, b)的集合,其中a属于A,b属于B,记作A × B。

四、特殊集合1. 有限集:包含有限个元素的集合称为有限集。

2. 无限集:包含无限个元素的集合称为无限集。

3. 有界集:如果集合中的所有元素都小于或等于某个实数,那么这个集合是有上界的;类似地,如果所有元素都大于或等于某个实数,则集合有下界。

4. 区间:实数线上的一段,包括开区间、闭区间和半开半闭区间。

五、集合的应用1. 函数的定义域和值域:函数的定义域是函数中所有允许输入的x值的集合;值域是函数输出的所有y值的集合。

高中数学知识点大纲

高中数学知识点大纲

高中数学知识点大纲一、集合与常用逻辑用语1. 集合的概念、表示方法及集合间的关系集合的定义:具有某种特定性质的对象的总体。

表示方法:列举法、描述法、图示法(Venn 图)。

集合间的关系:包含(子集、真子集)、相等。

2. 集合的运算交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A ∩ B。

并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作A ∪ B。

补集:设 U 为全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合,记作∁UA 。

3. 常用逻辑用语命题:能够判断真假的陈述句。

四种命题:原命题、逆命题、否命题、逆否命题,它们之间的真假关系。

充分条件与必要条件:若 p ⇒ q,则 p 是 q 的充分条件,q 是 p 的必要条件。

逻辑连接词:“且”“或”“非”。

全称量词与存在量词:全称命题与特称命题的否定。

二、函数1. 函数的概念定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。

函数的三要素:定义域、值域、对应法则。

2. 函数的性质单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 x2 时,都有f(x1) f(x2)(或 f(x1) > f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

奇偶性:设函数 f(x)的定义域为 D,如果对于定义域 D 内的任意一个 x,都有 f(−x) = −f(x),那么函数 f(x)就叫做奇函数;如果对于定义域 D 内的任意一个 x,都有 f(−x) = f(x),那么函数f(x)就叫做偶函数。

3. 常见函数一次函数:y = kx + b(k ≠ 0)。

二次函数:y = ax² + bx + c(a ≠ 0),其图象是抛物线,对称轴为 x = b / (2a) ,顶点坐标为(b / (2a), (4ac b²) / (4a)) 。

高中数学集合的知识点总结归纳

高中数学集合的知识点总结归纳

高中数学集合的知识点总结归纳高中集合知识点总结一、知识归纳:1、集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N_2、子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则A B(或A B);2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且)3)交集:A∩B={x| x∈A且x∈B}4)并集:A∪B={x| x∈A或x∈B}5)补集:CUA={x| x A但x∈U}注意:①? A,若A≠?,则? A ;②若,,则;③若且,则A=B(等集)3、弄清集合与元素、集合与集合的关系,掌握有关的.术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。

4、有关子集的几个等价关系①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;④A∩CuB = 空集CuA B;⑤CuA∪B=I A B。

5、交、并集运算的性质①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B ∪A;③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;6、有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二、例题讲解:【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系A) M=N P B) M N=P C) M N P D) N P M分析一:从判断元素的共性与区别入手。

高中数学集合知识点总结_高中数学备课工作总结

高中数学集合知识点总结_高中数学备课工作总结

高中数学集合知识点总结_高中数学备课工作总结一、集合的定义和基本概念1. 集合的概念:集合就是由一些确定的对象组成的整体2. 元素:构成集合的对象3. 集合的表示方法:列举法、描述法、符号法4. 空集、全集、子集、真子集5. 交集、并集、差集、补集6. 集合的运算:交、并、差、补二、集合的性质1. 互补律:A∪A'=U, A∩A'=Φ2. 结合律、交换律、分配律3. De Morgan定律:(A∪B)'=A'∩B', (A∩B)'=A'∪B'4. 绝对补分配律:A-B=A∩B', A∩B=A-B'三、集合的应用1. 集合的应用范围:概率统计、逻辑推理、数理逻辑等2. 集合表示法在实际问题中的应用3. 利用集合运算解决实际问题:排列组合、概率计算等4. 集合在数学证明中的应用一、备课的基本要求1. 充分了解教材:深入研读教材,了解每个知识点的主要内容和重点难点2. 理清教学内容:明确每节课的教学目标、重点和难点3. 教学内容组织:合理安排教学内容的结构,确保教学过程的连贯性和完整性4. 教学方法选择:根据教学内容和学生特点选择合适的教学方法和手段5. 教学资源准备:准备好所需的教学资源,如教学课件、实验材料等6. 教学案例准备:准备生动、形象的教学案例,以便更好地让学生理解和掌握知识点7. 评价方式确定:确定合适的评价方式,帮助学生检验学习效果和巩固所学知识二、备课过程中的注意事项1. 教材内容整合:将教材内容与学生实际生活和知识体系结合,形成完整的教学内容2. 合理控制教学进度:根据学生情况和课程安排,合理控制教学进度,确保教学质量3. 巧用多媒体技术:充分利用多媒体教学技术,丰富课堂教学手段4. 教学案例准备:准备充分的教学案例,以体现知识点的应用和解决问题的能力5. 知识点辅导:关注学生对知识点的理解和反应,针对性进行知识点的辅导和讲解6. 课堂练习安排:合理设计课堂练习和作业,巩固学生所学知识7. 学生反馈及调整:及时了解学生对教学内容的反应,根据反馈信息对教学内容和方式进行调整和改进三、备课效果的评价1. 教学目标达成情况:通过考试成绩和学生实际表现等途径,评价教学目标的达成情况2. 学生学习情况评价:了解学生对知识点理解和掌握情况,评价备课效果3. 教学方法评价:根据学生和教师的反馈,评价所选教学方法的效果4. 教学资源评价:评价备课中准备的教学资源和教学案例的使用效果5. 教学调整:针对评价结果,对备课和教学内容进行调整和改进,提高备课效果和教学质量高中数学的集合知识点是非常重要的基础知识,在备课工作中需要充分理解和掌握这些知识点,合理组织教学内容,选择合适的教学方法和手段,确保备课效果和教学质量。

高三数学集合知识点框架

高三数学集合知识点框架

高三数学集合知识点框架在高三数学中,集合是一个重要且常见的概念。

掌握集合的相关知识点对于理解和解决数学问题至关重要。

下面将给出高三数学集合知识点的框架。

一、集合的定义和表示方法1. 集合的定义:集合是由一些确定的对象组成的整体。

2. 集合的表示方法:列举法和描述法。

二、集合的运算与关系1. 交集:集合A和集合B的交集,记作A∩B,表示同时属于A和B的元素组成的集合。

2. 并集:集合A和集合B的并集,记作A∪B,表示属于A或B的元素组成的集合。

3. 差集:集合A和集合B的差集,记作A-B或A\B,表示属于A但不属于B的元素组成的集合。

4. 补集:集合A相对于全集U的补集,记作A',表示全集U 中不属于A的元素组成的集合。

5. 相等关系:若两个集合A和B的元素完全相同,则称集合A 和集合B相等,记作A=B。

三、集合的性质1. 子集关系:若集合A中的每个元素都是集合B的元素,则称A是B的子集,记作A⊆B。

2. 空集和全集:空集是不包含任何元素的集合,全集是所讨论的集合中的所有元素的总和。

3. 互斥集:若两个集合A和B没有公共元素,则称A和B互斥。

4. 互补集:若两个集合A和B的并集是全集U,且A和B互斥,则称A和B互为互补集。

四、集合的应用1. 隶属关系:根据给定条件,将对象分成两个集合,其中一个满足条件,另一个不满足条件。

2. 数学推理:利用集合的运算与关系,对数学问题进行推理和解决。

3. 概率统计:利用集合的概念,进行概率统计的相关计算和分析。

总结:通过掌握上述高三数学集合知识点,我们可以清晰地理解集合的定义、表示方法、运算与关系,以及集合的性质和应用。

在解决数学问题和进行数学推理时,能够灵活运用集合知识,提高解题能力和推理能力。

集合知识在数学学习中起到了桥梁和纽带的作用,帮助我们更好地理解和应用其他数学概念。

因此,在高三数学学习中,我们应该注重集合知识的学习和掌握,提高数学素养和解题能力。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

集合知识点总结知识点1:集合的含义1》元素的含义:我们把研究对象称为元素,把一些元素组成的总体叫做集合2》集合的表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C …表示,而元素用小写的拉丁字母a,b,c …表示。

列举法:A={a,b,c}3》集合相等:构成两个集合的元素完全一样。

知识点2:集合元素的特征以及集合与元素之间的关系1》集合的元素特征:①确定性:给定一个集合,一个元素在不在这个集合中就确定了。

②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}③无序性:即集合中的元素无顺序,可以任意排列、调换。

2》元素与集合的关系有“属于∈”及“不属于∉两种)①若a 是集合A 中的元素,则称a 属于集合A a ∈A ;②若a 不是集合A 的元素,则称a 不属于集合A ,记作a ∉A 。

注意:常见数集①非负整数集(或自然数集),记作N ;②正整数集,记作N *或N +;③整数集,记作Z ;④有理数集,记作Q ;⑤实数集,记作R ;典例分析题型1:判断是否形成集合例1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程x 2+1=0的解;(5)某校2011级新生;(6)血压很高的人;题型2:集合中元素的互异性的考察例1:由实数-a, a, a ,a 2, -5a 5为元素组成的集合中,最多有_______个元素,分别为__________。

题型3:集合与元素之间关系的考察例1:用“∈”或“∉”符号填空:(1)8 N ;(2)0 N ;(3)-3 Z ;(4;(5)设A 为所有亚洲国家组成的集合,则中国A ,美国A ,印度A ,英国A 。

题型4:根据元素互异性确定参数的值:例1:已知A={ 33,)1(,222+++-a a a a },若1∈A ,则实数a 的值为_________.知识点3:集合的表示方法【1】列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。

高中集合知识点总结

高中集合知识点总结

高中集合知识点总结一、集合及其基本概念1、定义:集合是由一些确定的、互不相同的对象组成的整体。

2、基本概念(1)元素:构成集合的对象称为集合的元素。

(2)集合的表示法:集合可以用描述法、列举法和扩展法表示。

(3)相等集合:集合中的元素相同,则两个集合相等。

(4)互斥集合:两个集合没有共同元素。

(5)空集:一个不包含任何元素的集合称为空集。

二、集合的运算1、交集:两个集合A和B的交集是由所有同时属于A和B的元素组成的集合,记作A∩B。

2、并集:两个集合A和B的并集是由所有属于A或属于B的元素组成的集合,记作A∪B。

3、差集:两个集合A和B的差集是由属于A而不属于B的元素组成的集合,记作A-B。

4、补集:集合A相对于集合E中所有不属于A的元素所构成的集合称为集合A的补集,记作A^c。

三、集合的性质1、交换律:集合的交集和并集都满足交换律。

2、结合律:集合的交集和并集都满足结合律。

3、分配律:集合的交集和并集满足分配律。

4、吸收律:集合的交集和并集都满足吸收律。

5、补集性质:集合的并集与补集、交集与补集的关系。

6、对偶律:交换律、结合律、分配律的对偶性质。

7、德摩根定律:集合的补集的交集与并集的关系。

四、集合的应用1、概率论中的集合应用2、集合的基本论证方法3、代数和数论中的集合应用五、集合的数学分析1、集合与代数结构2、集合的表示与运算的性质3、集合的数学证明方法4、集合的应用与拓展六、集合的应用与实践1、生活中的集合应用2、工程中的集合应用3、科学研究中的集合应用总结:集合作为数学的一项基础概念和重要工具,一直在数学的各个领域得到广泛应用。

通过对集合的定义、运算、性质、应用、数学分析和实践等方面的总结,有助于加深对集合概念的理解和提高其在数学中的应用能力。

希望本文可以对高中学生的集合知识学习和应用有所帮助。

高中数学集合知识点归纳

高中数学集合知识点归纳

高中数学集合知识点归纳一、集合的概念1. 集合:某些指定的对象集在一起就成为一个集合。

集合中的每个对象叫做这个集合的元素。

2. 元素的特性确定性:给定的集合,它的元素必须是确定的。

互异性:一个给定集合中的元素是互不相同的。

无序性:集合中的元素没有先后顺序之分。

二、集合的表示方法1. 列举法:把集合中的元素一一列举出来,写在大括号内。

2. 描述法:用确定的条件表示某些对象是否属于这个集合的方法。

3. 图示法:包括韦恩图(Venn 图)、数轴等。

三、集合的分类1. 有限集:含有有限个元素的集合。

2. 无限集:含有无限个元素的集合。

3. 空集:不含任何元素的集合,记为∅。

四、集合间的关系1. 子集:如果集合 A 的任意一个元素都是集合 B 的元素,那么集合 A 称为集合 B 的子集,记为 A⊆B。

2. 真子集:如果 A⊆B,且存在元素x∈B 但 x∉A,那么集合 A 称为集合 B 的真子集,记为 A⊂B。

3. 集合相等:如果两个集合所含的元素完全相同,则称这两个集合相等,记为 A = B。

五、集合的运算1. 交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记为A∩B。

A∩B = {x | x∈A 且x∈B}2. 并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记为A∪B。

A∪B = {x | x∈A 或x∈B}3. 补集:设 U 为全集,集合 A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为集合 A 在 U 中的补集,记为∁UA。

∁UA = {x | x∈U 但 x∉A}六、常用数集及其符号1. 自然数集:N2. 正整数集:N+ 或 N3. 整数集:Z4. 有理数集:Q5. 实数集:R。

高中数学知识点提纲(推荐6篇)

高中数学知识点提纲(推荐6篇)

高中数学知识点提纲〔推荐6篇〕篇1:人教版高中数学知识点提纲一.集合与函数1.进展集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进展求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的互相关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否认形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原那么.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,那么一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你纯熟地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比拟函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种根本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

假设原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的考前须知是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为根底,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a篇2:高中数学知识点 1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结一、集合相关概念1、集合中元素的特性⑴元素的确定性:组成集合的元素必须是确定的。

⑵元素的互异性:集合中不得有重复的元素。

⑶元素的无序性:集合中元素的排列不遵循某种顺序,是随意排列的。

2、集合的表示方法⑴列举法:将集合中元素一一列出。

⑵描述法:将集合中元素的公共属性用语言描述出来。

⑶解析法:用解析式的方式描述出集合元素的公共属性。

⑷图示法:用韦恩图直观的画出集合中的元素。

3、集中特殊数集的表示方法自然数集: N 正整数集:N+整数集:Z 有理数集:Q实数集:R 空集:Φ二、集合间的基本关系子集与真子集1、自反性任何一个集合都是它本身的子集:A?A。

2、如果A?B 且A≠B,则,A是B的真子集。

3、传递性:如果A?B,B?C,则A?C。

4、如果A?B且B?A,则A=B。

5、空集是任何集合的子集,空集是任何非空集合的真子集。

6、有n 个元素的集合,有 2n个子集,有2n-1 个真子集。

四、函数的相关概念1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。

★2、函数定义域的解题思路:⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数⑴ 表达式相同:与表示自变量和函数值的字母无关。

⑵ 定义域一致,对应法则一致。

高中数学集合知识点总结_高中数学备课工作总结

高中数学集合知识点总结_高中数学备课工作总结

高中数学集合知识点总结_高中数学备课工作总结一、集合的概念及表示方法:1. 集合的概念:集合是由一些确定的对象组成的整体。

2. 元素和集合的关系:元素是集合的组成部分,属于集合则表示为“∈”,不属于则表示为“∉”。

3. 集合的表示方法:列举法、描述法、等价类法等。

二、集合的运算:1. 并集运算:集合A和集合B的并集是由属于A或属于B的元素组成的新集合,表示为A∪B。

2. 交集运算:集合A和集合B的交集是由既属于A又属于B的元素组成的新集合,表示为A∩B。

3. 差集运算:集合A和集合B的差集是由属于A但不属于B的元素组成的新集合,表示为A-B。

4. 互斥:集合A和集合B没有共同的元素,即A∩B=∅,则称A和B互斥。

5. 补集运算:定义全集U,对于集合A来说,全集U减去集合A中的元素所得的集合称为A的补集,表示为A'。

四、常用的不等式与定理:1. 子集的关系:对于集合A、B和C来说,如果A⊂B且B⊂C,则A⊂C。

2. 并集的包含关系:对于集合A和B来说,A∪B包含A和B,即A⊆A∪B,B⊆A∪B。

3. 交集的包含关系:对于集合A和B来说,A∩B包含于A和B,即A∩B⊆A,A∩B⊆B。

4. 幂集的元素个数:如果集合A有n个元素,则A的幂集的元素个数是2^n。

5. De Morgan定理:对于集合A和B来说,(A∪B)'=A'∩B',(A∩B)'=A'∪B'。

五、应用:1. 解集:通过集合的交集、并集、差集等运算,可以求解各种问题的解集。

2. 区间:区间是数轴上两个数之间的连续段,可以用集合表示法来表示各类区间,如开区间、闭区间、无穷区间等。

3. 逻辑运算:集合运算与逻辑运算有着密切的关系,可以通过集合表示法将复杂的逻辑问题转换为简单的集合运算。

4. 排列与组合:在排列与组合的问题中,常常涉及到集合的运算,如求解集合的幂集等。

在备课工作中,我认真研究了高中数学集合知识点,并总结出以下经验和教学方法:一、深入理解概念:在教学中,我注重让学生深入理解集合的概念和表示方法,通过具体的例子和实际应用问题,帮助学生理解集合的含义和运算规则。

高中数学集合知识点总结_高中数学备课工作总结

高中数学集合知识点总结_高中数学备课工作总结

高中数学集合知识点总结_高中数学备课工作总结一、集合的概念及表示方法1. 集合的基本概念:集合是由一些确定的、互不相同的元素所组成的整体。

2. 集合的表示方法:常用的表示方法有三种,分别是列举法、描述法和区间法。

二、集合的运算1. 集合的并、交和差- 并集:集合A和集合B的并集是由属于集合A或者属于集合B的元素所组成的新集合。

- 交集:集合A和集合B的交集是既属于集合A又属于集合B的元素所组成的新集合。

- 差集:集合A和集合B的差集是属于集合A而不属于集合B的元素所组成的新集合。

2. 集合的互补、空集和全集- 互补集:集合A关于全集U的互补集是指全集U中不属于A的元素所组成的集合。

- 空集:不包含任何元素的集合称为空集,用符号∅表示。

- 全集:包含了所有可能的元素的集合称为全集。

三、集合的基本性质1. 交换律、结合律和分配律:集合的并、交、差等运算满足交换律、结合律和分配律。

2. 幂集:集合A的幂集是由A的所有子集所组成的集合。

若A={a, b},则A的幂集为{{}, {a}, {b}, {a, b}}。

四、集合的关系与映射1. 集合的关系:通常将两个元素之间的某种对应关系称为集合的关系,如等价关系、相等关系、包含关系、无关系等。

2. 映射:集合A到集合B的映射是一个法则,如果对于A中每一个元素x,都在B中唯一地确定一个元素y与之对应,那么称映射f为从A到B的映射,记为f: A→B。

五、集合的基本问题求解1. 集合的基本问题包括集合的交、并、差的求解、集合的互补、空集和全集的确定等。

2. 通过实际问题,引导学生掌握集合的运算方法和应用技巧。

六、集合的应用1. 集合在数学上的应用非常广泛,常见的应用包括在概率论、不等式、数列等数学领域的应用。

2. 集合的应用也涉及到实际生活中的问题,如调查数据的统计、商品市场的分析等。

一、教学目标本次备课旨在帮助学生全面掌握集合的基本概念、运算方法、性质和应用,培养学生分析和解决实际问题的能力。

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。

2、空集的含义:不含任何元素的集合叫做空集,记为Ø。

3、集合中元素的三个特性:确定性、互异性、无序性。

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。

集合中的元素互不相同。

例如:集合A={1,a},则a不能等于1。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。

例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。

4、元素与集合之间只能用“∈”或“∉”符号连接。

5、集合的分类:(1)有限集:含有有限个元素的集合。

(2)无限集:含有无限个元素的集合。

(3)空集:不含任何元素的集合。

6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。

在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。

二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。

高中数学全部知识点提纲整理

高中数学全部知识点提纲整理

高中数学全部知识点提纲整理高中数学全部知识点提纲整理一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.3.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.4.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.5.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.8.充要条件二、函数1.指数式、对数式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像( 中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。

(即复合有意义)4.对称性与周期性(以下结论要消化吸收,不可强记)(1)函数与函数的图像关于直线(轴)对称.推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称.推广二:函数,的图像关于直线对称.(2)函数与函数的图像关于直线(轴)对称.(3)函数与函数的图像关于坐标原点中心对称.三、数列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系2.等差数列中(1)等差数列公差的取值与等差数列的单调性.(2)也成等差数列.(3)两等差数列对应项和(差)组成的新数列仍成等差数列.(4) 仍成等差数列.(5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;(6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和-偶数项和”=此数列的中项.(7)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.(8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).3.等比数列中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.(2)两等比数列对应项积(商)组成的新数列仍成等比数列.(3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;(4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和.(5)并非任何两数总有等比中项.仅当实数同号时,实数存在等比中项.对同号两实数的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).4.等差数列与等比数列的联系(1)如果数列成等差数列,那么数列( 总有意义)必成等比数列.(2)如果数列成等比数列,那么数列必成等差数列.(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.5.数列求和的常用方法:(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和(6)通项转换法。

高中数学集合知识点总结_高中数学备课工作总结

高中数学集合知识点总结_高中数学备课工作总结

高中数学集合知识点总结_高中数学备课工作总结高中数学中的集合是一个重要的知识点,也是基础中的基础。

在备课和教学中,教师需要深入理解和掌握集合的基本概念、运算及其性质,以及集合之间的关系等内容。

本文将对高中数学集合知识点进行总结,以供备课和教学参考。

一、基本概念1. 集合的定义和表示:集合是指把某些对象组成一个整体的概念。

通常用大括号{}表示,里面元素之间用逗号隔开,例如:{1, 2, 3}。

2. 集合的元素:元素是指集合中的具体事物。

集合中不同元素之间是没有顺序和重复的,例如集合{1, 2, 3}中的元素是1、2和3。

3. 空集:不包含任何元素的集合称为空集,用符号∅表示。

4. 子集:如果集合A中任意一个元素都是集合B中的元素,那么A就是B的一个子集,用符号A⊆B表示。

二、集合运算1. 交集:集合A与集合B的交集是指既属于A又属于B的元素所组成的集合,用符号A∩B表示。

三、集合的性质1. 交换律:对于任意集合A和B,有A∩B=B∩A,A∪B=B∪A。

四、集合之间的关系1. 包含关系:若A包含B,则B是A的子集或A是B的父集,即A包含B,用符号A⊇B 表示。

3. 不相交关系:如果A∩B=∅,则称A和B不相交。

五、常见问题解析1. 两个集合相等的条件是什么?两个集合相等的条件是:它们互相包含,即它们的元素完全相同。

2. 求集合的交集和并集有什么方法?对于已知的集合A和B,求它们的交集和并集的方法如下:交集:将A和B的元素逐一比较,找出属于A和B的元素即可。

3. 集合的补集怎么求?一个集合A相对于全集U的补集表示为A',即全集U中不属于A的所有元素组成的集合。

求A'的方法如下:将A中的元素从全集U中剔除,得到的结果就是A',即A'=U-A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空集不含任何元素的集合
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0} B={-1,1}“元素相同则两集合相等”
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作,即
CSA=
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
利用定义判断函数奇偶性的步骤:
○1首先确定函数的定义域,并判断其是否关于原点对称;
○2确定f(-x)与f(x)的关系;
○3作出相应结论:若f(-x) = f(x)或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x)或f(-x)+f(x) = 0,则f(x)是奇函数.
指数函数的图象和性质
a>10<a<1
定义域R定义域R
值域y>0值域y>0
在R上单调递增在R上单调递减
非奇非偶函数非奇非偶函数
函数图象都过定点(0,1)函数图象都过定点(0,1)
2、对数函数的性质:
a>10<a<1
定义域x>0定义域x>0
值域为R值域为R
在R上递增在R上递减
相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)
2.函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),
注意:函数的单调性是函数的局部性质;
(2).函数单调区间与单调性的判定方法
(A)定义法:
○1任取x1,x2∈D,且x1<x2;
○2作差f(x1)-f(x2);
○3变形(通常是因式分解和配方);
○4定号(即判断差f(x1)-f(x2)的正负);
○5下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
A(即:①任何一个集合是它本身的子集。A
B那就说集合A是集合B的真子集,记作A B(或B A)(B,且A(②真子集:如果A
C(C ,那么A(B, B(③如果A
B(④如果A A那么A=B(同时B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(3)指数、对数式的底必须大于零且不等于1.
(4)指数为零底数不可以等于零,
(5)实际问题中的函数的定义域还要保证实际问题有意义.
(2)画法
描点法:
图象变换法
1平移变换
2伸缩变换
3对称变换
3、映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”
对于映射f:A→B来说,则应满足:




质A A=A
A Φ=Φ
A B=B A
A B A
A B B
A A=A
A Φ=A
A B=B A
A B A
A B B
(CuA) (CuB)
= Cu (A B)
(CuA) (CuB)
= Cu(A B)
A (CuA)=U
A (CuA)=Φ.
6、集合的分类:
有限集含有有限个元素的集合
无限集含有无限个元素的集合
二.函数的性质
1.函数的单调性
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.
(2)减函数
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.
(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中对应的象可以是同一个;
(3)不要求集合B中的每一个元素在集合A中都有原象。
3.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
高中数学集合知识点总结
一:集合
1、分类非负整数集(即自然数集)记作:N
正整数集N*或N+整数集Z有理数集Q实数集R
2、列举法:{a,b,c……}
R| x-3(3、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x>2} ,{x| x-3>2}
4、语言描述法:
5、Venn图:

8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
相关文档
最新文档