离散数学实验

合集下载

离散数学 实验报告

离散数学 实验报告

离散数学实验报告离散数学实验报告引言:离散数学是一门研究离散结构的数学学科,它对于计算机科学、信息技术等领域具有重要的应用价值。

本实验报告旨在通过实际案例,探讨离散数学在现实生活中的应用。

一、图论在社交网络中的应用社交网络已成为人们日常生活中不可或缺的一部分。

图论作为离散数学的重要分支,对于分析和研究社交网络具有重要意义。

以微信为例,我们可以通过图论的方法,分析微信中的好友关系、群组关系等。

通过构建好友关系图,我们可以计算某个人在社交网络中的影响力,进而预测他的行为模式。

二、布尔代数在电路设计中的应用布尔代数是离散数学中的重要内容,它在电路设计中扮演着重要的角色。

通过布尔代数的运算规则和定理,我们可以简化复杂的逻辑电路,提高电路的可靠性和效率。

例如,我们可以使用布尔代数中的与、或、非等逻辑运算符,设计出满足特定功能需求的逻辑电路。

三、排列组合在密码学中的应用密码学是离散数学的一个重要应用领域。

排列组合是密码学中常用的数学工具之一。

通过排列组合的方法,我们可以设计出强大的密码算法,保障信息的安全性。

例如,RSA加密算法中的大素数的选择,就涉及了排列组合的知识。

四、概率论在数据分析中的应用概率论是离散数学中的一门重要学科,它在数据分析中具有广泛的应用。

通过概率论的方法,我们可以对数据进行统计和分析,从而得出一些有意义的结论。

例如,在市场调研中,我们可以通过抽样调查的方法,利用概率论的知识,对整个市场的情况进行推断。

五、图论在物流规划中的应用物流规划是现代物流管理中的一个重要环节。

图论作为离散数学的重要分支,可以帮助我们解决物流规划中的一些问题。

例如,我们可以通过构建物流网络图,分析货物的流动路径,优化物流的运输效率,降低物流成本。

结论:离散数学作为一门重要的数学学科,在现实生活中具有广泛的应用。

通过对离散数学的学习和应用,我们可以解决实际问题,提高工作效率,推动社会的发展。

希望通过本实验报告的介绍,能够增加对离散数学的兴趣,进一步挖掘离散数学在实际生活中的潜力。

离散数学实验报告

离散数学实验报告

“离散数学”实验报告目录一、实验目的 (3)二、实验内容 (3)三、实验环境 (3)四、实验原理和实现过程(算法描述) (3)1、实验原理........................................................................................................2、实验过程.......................................................................................................五、实验数据及结果分析 (13)六、源程序清单 (24)源代码 (24)七、其他收获及体会 (45)一、实验目的实验一:熟悉掌握命题逻辑中的联接词、真值表、主范式等,进一步能用它们来解决实际问题。

实验二:掌握关系的概念与性质,基本的关系运算,关系的各种闭包的求法。

理解等价类的概念,掌握等价类的求解方法。

实验三:理解图论的基本概念,图的矩阵表示,图的连通性,图的遍历,以及求图的连通支方法。

二、实验内容实验一:1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、条件和双条件的真值。

(A)2. 求任意一个命题公式的真值表(B,并根据真值表求主范式(C))实验二:1.求有限集上给定关系的自反、对称和传递闭包。

(有两种求解方法,只做一种为A,两种都做为B)2. 求有限集上等价关系的数目。

(有两种求解方法,只做一种为A,两种都做为B)3. 求解商集,输入集合和等价关系,求相应的商集。

(C)实验三:以偶对的形式输入一个无向简单图的边,建立该图的邻接矩阵,判断图是否连通(A)。

并计算任意两个结点间的距离(B)。

对不连通的图输出其各个连通支(C)。

三、实验环境C或C++语言编程环境实现。

四、实验原理和实现过程(算法描述)实验一:1.实验原理(1)合取:二元命题联结词。

离散数学上机实验报告

离散数学上机实验报告

离散数学上机实验报告《离散数学》实验报告姓名:学号:班级:实验一连结词逻辑运算一.实验目的实现二元合取、析取、蕴涵和等价表达式的计算。

熟悉连接词逻辑运算规则,利用程序语言实现逻辑这几种逻辑运算。

二.实验内容从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、蕴涵和等价四种运算的真值。

要求对输入内容进行分析,如果不符合0、1条件需要重新输入,程序有良好的输入输出界面。

三.实验环境使用Microsoft Visual C++6.0为编程软件,采用称C/C++语言为编程语言实现。

四.实验过程1.算法分析:合取:p,q都为1的时候为1,其他为0析取:p,q都为0的时候为0,其他为1蕴含:p为1,q为0时为0,其他为1等价:p,q同真同假2.程序代码:#include<stdio.h>int main()int P,Q,a,b,c,d,p,q;printf(" P的值");for(P=0;P<2;P++){for(Q=0;Q<2;Q++)printf("\t%d",P);}printf("\n Q的值");for(P=0;P<2;P++){for(Q=0;Q<2;Q++)printf("\t%d",Q);}printf("\n 非P的值");for(P=0;P<2;P++){for(Q=0;Q<2;Q++){if(P==0)/*判断非P的值*/ p=1;elseprintf("\t%d",p);}}printf("\n 非Q的值");for(P=0;P<2;P++){for(Q=0;Q<2;Q++){if(Q==1)/*判断非Q的值*/q=0;elseq=1;printf("\t%d",q);}}printf("\n P与Q的值");for(P=0;P<2;P++){for(Q=0;Q<2;Q++){if(Q==0||P==0)/*判断P与Q的值*/elsea=1;printf("\t%d",a);}}printf("\n P或Q的值");for(P=0;P<2;P++){for(Q=0;Q<2;Q++){if(Q==1||P==1)/*判断P或Q的值*/ b=1;elseb=0;printf("\t%d",b);}}printf("\nP蕴含Q的值");for(P=0;P<2;P++){for(Q=0;Q<2;Q++){if(P==1&&Q==0)/*判断P蕴含Q的值*/ c=0;elsec=1;printf("\t%d",c);}}printf("\nP等价Q的值");for(P=0;P<2;P++){for(Q=0;Q<2;Q++){if(P==Q)/*判断P等价Q的值*/d=1;elsed=0;printf("\t%d",d);}}printf("\n");return 0;3.实验数据及结果分析:实验二关系的复合运算及逆运算一.实验目的熟悉关系的复合运算和逆运算,编程实现关系复合运算和逆运算算法。

离散数学实验报告

离散数学实验报告

“离散数学”实验报告目录一、实验目的 (3)二、实验内容 (3)三、实验环境 (3)四、实验原理和实现过程(算法描述) (3)1、实验原理........................................................................................................2、实验过程.......................................................................................................五、实验数据及结果分析 (13)六、源程序清单 (24)源代码 (24)七、其他收获及体会 (45)一、实验目的实验一:熟悉掌握命题逻辑中的联接词、真值表、主范式等,进一步能用它们来解决实际问题。

实验二:掌握关系的概念与性质,基本的关系运算,关系的各种闭包的求法。

理解等价类的概念,掌握等价类的求解方法。

实验三:理解图论的基本概念,图的矩阵表示,图的连通性,图的遍历,以及求图的连通支方法。

二、实验内容实验一:1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、条件和双条件的真值。

(A)2. 求任意一个命题公式的真值表(B,并根据真值表求主范式(C))实验二:1.求有限集上给定关系的自反、对称和传递闭包。

(有两种求解方法,只做一种为A,两种都做为B)2. 求有限集上等价关系的数目。

(有两种求解方法,只做一种为A,两种都做为B)3. 求解商集,输入集合和等价关系,求相应的商集。

(C)实验三:以偶对的形式输入一个无向简单图的边,建立该图的邻接矩阵,判断图是否连通(A)。

并计算任意两个结点间的距离(B)。

对不连通的图输出其各个连通支(C)。

三、实验环境C或C++语言编程环境实现。

四、实验原理和实现过程(算法描述)实验一:1.实验原理(1)合取:二元命题联结词。

离散数学实验报告(两篇)

离散数学实验报告(两篇)

引言:离散数学是一门基础性的数学学科,广泛应用于计算机科学、电子信息等领域。

本文是《离散数学实验报告(二)》,通过对离散数学实验的深入研究和实践,总结了相关的理论知识和应用技巧,希望能够对读者对离散数学有更加深入的理解。

概述:本实验主要涉及离散数学中的集合、关系、图论等基本概念及其应用。

通过对离散数学的实验学习,深入掌握了这些概念和应用,对于在实际问题中的应用和拓展具有重要的意义。

正文内容:一、集合相关概念及应用1.定义:集合是由元素组成的无序的整体。

介绍了集合的基本概念、集合的表示法以及集合的运算。

2.集合的应用:介绍了集合在数学、计算机科学中的应用,如数据库的查询、关系代数等。

二、关系相关概念及应用1.定义:关系是一个元素与另一个元素之间的对应关系。

介绍了关系的基本概念、关系的表示方法及其运算。

2.关系的应用:介绍了关系在图像处理、社交网络分析等领域的应用,如图像中的像素点之间的关系、社交网络中用户之间的关系等。

三、图论基础知识及应用1.定义:图是由顶点和边组成的抽象的数学模型。

介绍了图的基本概念、图的表示方法和图的运算。

2.图论的应用:介绍了图论在路由算法、电子商务等领域的应用,如路由器的路由选择、电子商务中的商品推荐等。

四、布尔代数的概念及应用1.定义:布尔代数是一种基于集合论和逻辑学的代数系统。

介绍了布尔代数的基本概念、布尔表达式及其化简方法。

2.布尔代数的应用:介绍了布尔代数在电路设计、开关控制等方面的应用,如逻辑门电路的设计、开关控制系统的建模等。

五、递归的概念及应用1.定义:递归是一种通过调用自身来解决问题的方法。

介绍了递归的基本原理、递归的应用技巧。

2.递归的应用:介绍了递归在算法设计、树的遍历等方面的应用,如快速排序算法、树结构的遍历等。

总结:通过本次离散数学的实验学习,我深入掌握了集合、关系、图论等基本概念与应用。

集合的应用在数据库查询、关系代数等方面起到了重要的作用。

关系的应用在图像处理、社交网络分析等领域有广泛的应用。

离散数学实验报告

离散数学实验报告

离散数学实验报告一、实验目的离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、人工智能等领域有着广泛的应用。

本次离散数学实验的目的在于通过实际操作和编程实现,深入理解离散数学中的基本概念、原理和算法,提高解决实际问题的能力,培养逻辑思维和创新能力。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

同时,还使用了一些相关的数学库和工具,如 sympy 库用于符号计算。

三、实验内容1、集合运算集合是离散数学中的基本概念之一。

在实验中,我们首先定义了两个集合 A 和 B,然后进行了并集、交集、差集等运算。

通过编程实现这些运算,加深了对集合运算定义和性质的理解。

```pythonA ={1, 2, 3, 4, 5}B ={4, 5, 6, 7, 8}并集union_set = Aunion(B)print("并集:", union_set)交集intersection_set = Aintersection(B)print("交集:", intersection_set)差集difference_set = Adifference(B)print("A 与 B 的差集:", difference_set)```2、关系的表示与性质判断关系是离散数学中的另一个重要概念。

我们使用矩阵来表示关系,并通过编程判断关系的自反性、对称性和传递性。

```pythonimport numpy as np定义关系矩阵relation_matrix = nparray(1, 0, 1, 0, 1, 0, 1, 0, 1)判断自反性is_reflexive = all(relation_matrixii == 1 for i inrange(len(relation_matrix)))print("自反性:", is_reflexive)判断对称性is_symmetric = all(relation_matrixij == relation_matrixji for i in range(len(relation_matrix)) for j in range(len(relation_matrix)))print("对称性:", is_symmetric)判断传递性is_transitive = Truefor i in range(len(relation_matrix)):for j in range(len(relation_matrix)):for k in range(len(relation_matrix)):if relation_matrixij == 1 and relation_matrixjk == 1 and relation_matrixik == 0:is_transitive = Falsebreakprint("传递性:", is_transitive)```3、图的遍历图是离散数学中的重要结构。

离散数学实验

离散数学实验

离散数学实验报告(实验一)专业:自动化班级:学号:姓名:日期2010.10.28一实验内容(二选一)1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、条件和双条件的真值(A)2. 求任意一个命题公式的真值表(B),并根据真值表求主范式(C)。

二实验目的熟悉掌握命题逻辑中的联接词、真值表、主范式等,进一步能用它们来解决实际问题。

三实验环境进入Visual C++ 环境后,选择菜单“File | New”,在弹出的对话框中单击上方的选项卡“Projects”,选择“Win32 Console Application”工程类型,在“Project name”一栏中填写工程名例如MyFirst,在“Location”一栏中填写工程路径(目录). 选择菜单“Project | Add to Project | New”,为工程添加新的C++源文件。

选择菜单为工程添加新源文件在“File Name”栏填入新添加的源文件名,如MyFirst.cpp,“Location”一栏指定文件路径,按按钮“OK”完成C++源程序的系统新建操作。

编译源程序:选择Build | Build菜单(F7为快捷键),系统将会在Output窗口给出所有的错误信息和警告信息。

当所有错误修正之后,系统将会生成扩展名为.exe的可执行文件。

对于Output窗口给出的错误信息,双击可以使输入焦点跳转到引起错误的源代码处以进行修改。

执行程序:选择Build | Execute菜单项(Ctrl + F5为快捷键),执行程序,将会出现一个DOS窗口,按照程序输入要求正确输入数据后,程序即正确执行。

四实验原理和实现过程(算法描述)1.程序主界面本程序界面主要有两个操作,1:求真值。

2:求任何公式的真值。

操作1完成A 类题要求,操作2完成A,B类题要求。

如果出输入的操作项不是0,1,2,则会提示出错,再次选择。

其界面如图所示:2.算法描述和实现过程在做A类题时,算法实现,首先判断输入格式是否正确,在把蕴含(→),等值(←→),通过变换,化成只有非,合取和析取的等价公式,在利用C语言中的运算符非(!),与(&&)和或(||)算出任何两元变量的真值。

离散实验报告一

离散实验报告一

离散数学实验报告(一)一、实验目的求命题公式的真值表及其主析取范式和主合取范式二、问题分析本程序最终的目的应是求命题公式的主析取范式和主合取范式,而在有命题真值表的情况下,主析取范式和主合取范式的求解将变得十分简单。

所以,该程序的关键问题应该是求解命题公式的真值表,此后在真值表的基础上完成主析取范式和主合取范式的求解。

(一)前期分析与部分变量准备规定前提,真值表中的T/F在该程序中用布尔类型的1/0来表达。

如此,可以方便程序的编写与运算。

首先,我们要确定各个联结词的符号表达,为了方便讨论,不妨在此先令各联结词表达如下:合取(*)、析取(/)、否定(-)、单条件(%)、双条件(@)。

接着,我们就需要明确各联结词所对应符号在程序中的功能。

具体来看,合取与析取可以分别使用c++自带的&&(且)和||(或)进行布尔运算,取否定也可以直接使用!(取非)运算;而对于单条件、双条件这两个联结词来看,在c++中并无已有的运算定义,所以我们要利用函数定义的方式重新明确其含义。

而后,定义char类型数组a[]用于存储命题公式,为了方便程序的实现,我们将命题变元与联结词分开存储于char类型数组b[]和c[]中。

(二)真值表输出算法以下,我们便进入了程序的核心部分——完成真值表的计算与输出。

碍于本人c++编程知识的局限,暂时只能实现输入三个变元、无否定情况下的命题公式的真值表输出。

为了完成真值表的输出,要解决以下几个问题1. 真值表的格式与指派控制对此,我们使用三层for语句嵌套完成真值表的每一行输出。

在循环的同时,我们还需要提前定义一个布尔数组p[],以根据每一行的输出完成三个变元的指派,并将其存储于数组p[]中。

2.真值表每一行结尾的结果计算首先,我们需要定义一个布尔类型的过程存储数组x[],利用switch语句的嵌套分别判断两个联结词,使用相应的运算符(&&、||、!)和已定义的两个布尔类型函数(imp、equ),一次计算,并且将每一次的计算结果存储至x[]中,运算直至最后一步完成结果的输出。

离散数学计算机实验报告

离散数学计算机实验报告

《离散数学》实验一、实验目的《离散数学》是现代数学的一个重要分支,是计算机科学与技术专业的基础理论课,也是该专业的核心课程和主干课程。

“离散数学”是计算机专业一门重要的专业技术基础课程,是计算机专业的一门核心的关键性课程。

该课程一方面为后继课程如数据结构、编绎原理、操作系统、数据库原理、人工智能和形式语言与自动机等提供必要的理论基础;同时,更为重要的是培养学生的抽象思维能力和逻辑推理能力,为今后的学习和工作打好基础。

无论从计算机学科发展的过去、现在和未来看,《离散数学》都是计算机科学与技术专业不可缺少的重要组成部分。

这门课程有着其它课程不可替代的地位和作用,是一门承前启后的课程。

根据《离散数学》课程本身的理论性较强的特性,为了帮助学生更好地学习本课程,理解和掌握所学基本概念和方法,为整个专业学习打好基础,要求运用所学知识,上机解决一些典型问题,设置实践环节十分重要。

通过实验实践内容的训练,突出逻辑性思维训练的特征, 目的是学习离散数学中的基本算法和方法,掌握数理逻辑、关系和图论中的基本算法,提高学生学习的兴趣及实际动手的能力。

通过分析、设计、编码、调试等各环节的训练,使学生深刻理解、牢固掌握所学知识,培养分析、解决实际问题的能力。

二、实验要求掌握真值表技术,熟悉联结词合取、析取、条件和双条件的概念。

熟悉Warshall算法,掌握求关系的自反闭包、对称闭包和传递闭包的方法。

熟悉邻接矩阵和两结点间长度为m 的路的数目的关系。

熟悉最优树的构造算法,掌握最优树的构造过程。

实验前作好准备,分析问题并确定算法,设计代码。

做实验过程中认真分析和调试程序,记录并分析实验结果。

实验后完成实验报告,实验报告包括实验目的、实验内容、源程序、运行结果及分析。

可以使用C、VC或MATLAB完成实验。

实验题目包括真值计算、关系闭包计算、计算两结点间长度为m的路的数目、最优树的构造四个实验,每个实验要求2个学时完成。

三、实验设备及环境PC机一台,软件C、VC或MATLAB四、实验内容实验一真值计算1、实验目的熟悉五个常用联结词合取、析取、条件和双条件的概念,掌握真值表技术。

离散数学实验报告

离散数学实验报告

实验一一实验内容(选作AB类)1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、条件和双条件的真值。

(A)2. 求任意一个命题公式的真值表(B,并根据真值表求主范式(C))二实验目的熟悉掌握命题逻辑中的联接词、真值表、主范式等,进一步能用它们来解决实际问题。

三实验环境C语言编程环境实现。

四 1、实现A类算法原理根据析取、合取的定义可用简单的算术运算求出结果,并将结果转换成逻辑值。

同样根据等价关系可将条件式及双条件式转换成析取和合取的运算。

此题较简单2、实现BC类算法原理算法逻辑如下:(1)将二进制加法模拟器赋初值0(2)计算模拟器中所对应的一组真值指派下合式公式的真值。

(3)输出真值表中对应于模拟器所给出的一组真值指派及这组真值指派所对应的一行真值。

(4)产生下一个二进制数值,若该数值等于2n-1,则结束,否则转(2)。

(5)在进行表达式求值的时候,可先将带括号的中缀表达式利用栈结构转换为不带括号的后缀表达式(逆波兰式),然后进行计算。

具体方法请参考数据结构中有关“栈”的知识。

五实验数据及结果分析1(A类)2(B类)从实验结果可以看到:当输入的数据不是逻辑值时须重新输入,当输入符合逻辑值才能继续下去。

从结果来看完全正确,由于界面有限没有把所有结果都贴上,根据运行情况来看没有错误六源程序清单1(A类)#include<stdio.h>//#include<string.h>main(){while(1) //输入符合逻辑值的命题变元P值{int a,b,c,d,e,f,g;while(1){printf("\ninput the logic value of the minti P(0 or 1):");scanf("%d",&a);if((a!=0)&&(a!=1)){printf("you have input the wrong value,please reinput");}else break;}while(1) //输入符合逻辑值的命题变元Q值{printf("\ninput the logic value of the minti Q(0 or 1):");scanf("%d",&b);if(b!=0&&b!=1)printf("you have input the wrong value,please reinput");else break;}c=a*b; //合取d=a+b; //析取e=(!a)+b; //条件式f=a*b+(!a)*(!b); //双条件式if(c==0) //化为逻辑值c=0;elsec=1;if(d==0)d=0;elsed=1;if(e=0)e=0;elsee=1;if(f==0)f=0;elsef=1;printf("\nthe logic value of hequ:%d\nthe logic value of xiqu:%d\nthe logic value of tiaojian:%d\nthe logic value of shuangtiaojian:%d\n",c,d,e,f);printf("do you want to continue?input 'y' continue");g=getch();{if(g=='y');else break;}}}2(B类)#include<stdio.h>#include<stdlib.h>#include<string.h>#include<malloc.h>typedef struct Node //二叉树节点结构体{char data; //存节点字符struct Node *leftchild;//左孩子指针struct Node *rightchild;//右孩子指针int temp;//判断该节点前是否有特别的字符类型}BeTreeNode;/*typedef struct{char stack[30];int top;}SeqStack;//账的结构体*/void print_char(BeTreeNode *root);void prints(BeTreeNode *p);char str[30]; //输入的字符串char S[16]; //仅存是字母的字符串int w,length,x=1; //分辨取哪一种真值赋值//SeqStack mystack;//定义一个栈BeTreeNode *pt[30];//定义指针数组int **S_num; //二维数组存真值的多种赋值情况int L=0;/*void StackInitiate(SeqStack *S) //初始化{S->top=0;}int StackNotEmpty(SeqStack S) //非空否{if(S.top<=0)return 0;else return 1;}int StackPush(SeqStack *S,char x)//入栈{if(S->top>=16){printf("堆栈已满无法插入!\n");return 0;}else{S->stack[S->top]=x;S->top++;return 1;}}*/BeTreeNode *MakeTree(int a,int b) //建立二叉树{int i,j=0,k=0,a1[10],b1[10];int L=0;BeTreeNode *p[10];BeTreeNode *pp,*sign=NULL;for(i=a;i<=b;i++)//若有括号的先渐入括号的最内层{if(str[i]=='('){//if(mystack.top==0)if(L==0)a1[j]=i;L++;}if(str[i]==')'){L--;if(L==0){b1[j]=i;p[j]=MakeTree(a1[j]+1,b1[j]-1);j++;} }}j=0;for(i=a;i<=b;i++,k++)//用指针来存储二叉树的每个节点{if(str[i]=='!'){if(str[i+1]=='('){ pt[k]=p[j];pt[k]->temp=2;i=b1[j];j=j+1;}else{pt[k]=(BeTreeNode *)malloc(sizeof(BeTreeNode)); pt[k]->data=str[i+1];pt[k]->leftchild=NULL;pt[k]->rightchild=NULL;pt[k]->temp=-1;i=i+1;}}else if(str[i]=='('){pt[k]=p[j];pt[k]->temp=1;i=b1[j];j=j+1;}else{ pt[k]=(BeTreeNode *)malloc(sizeof(BeTreeNode)); pt[k]->data=str[i];pt[k]->leftchild=NULL;pt[k]->rightchild=NULL;pt[k]->temp=0;}}pp=pt[0];for(i=1;i<k;i=i+2)//把各个二叉树的节点连接起来{if(pt[i]->data=='|'){pt[i]->leftchild=pp;pt[i]->rightchild=pt[i+1];pp=pt[i];}else{if(sign!=NULL){pt[i]->leftchild=sign;sign->rightchild=pp;pp=pt[i];sign=NULL;}else{pt[i]->leftchild=pp;pp=pt[i];}if(i+2<k){if(pt[i+2]->data=='|'){pp=pt[i+1];sign=pt[i];}else{pp->rightchild=pt[i+1];}}}}if(sign!=NULL){sign->rightchild=pp;pp=sign;}else pp->rightchild=pt[k-1];return pp;}void prints(BeTreeNode *p)//根据各个节点前的标记符的赋值确定应该要输出哪种字符{if(p->temp==2){printf("!(");print_char(p);printf(")");}else if(p->temp==1){printf("(");print_char(p);printf(")");}else if(p->temp==-1){printf("!");print_char(p);}elseprint_char(p);}void print_char(BeTreeNode *root)//输出某个节点下的树{if(root->leftchild==NULL&&root->rightchild==NULL){printf("%c",root->data);}else{prints(root->leftchild);printf("%c",root->data);prints(root->rightchild);}}void print(BeTreeNode *root)//利用二重循环来进行从最内层的子树开始输出,直到输出整棵树{if(root->leftchild->leftchild!=NULL)print(root->leftchild);if(root->rightchild->leftchild!=NULL)print(root->rightchild);if(root->leftchild->temp==-1)printf("!%c ",root->leftchild->data);if(root->rightchild->temp==-1)printf("!%c ",root->rightchild->data);print_char(root);if(root->temp==2){printf("");prints(root);}printf("");}int numre(char c)//输出叶节点{int i;for(i=0;i<length;i++){if(S[i]==c)return S_num[w][i];}}int Judge(int num1,char c,int num2)//判断最简单的表达式的返回值{if(c=='&'){if(num1==num2&&num1==1)return 1;else return 0;}if(c=='|'){if(num1==num2&&num1==0)return 0;else return 1;}}int print_num(BeTreeNode *root)//从最内层开始输出返回值{int num1,num2,num,i;char c;if(root->leftchild==NULL&&root->rightchild==NULL){num=numre(root->data);}else{num1=print_num(root->leftchild);c=root->data;num2=print_num(root->rightchild);if((root->leftchild->temp==2)||(root->leftchild->temp==-1)){ for(i=0;i<x;i++)printf("");printf(" %d",num1);}if((root->rightchild->temp==2)||(root->rightchild->temp==-1)){ for(i=0;i<x;i++)printf("");printf(" %d",num2);}num=Judge(num1,c,num2);for(i=0;i<x;i++)printf("");printf(" %d",num);x=x+3;}if((root->temp==2)||(root->temp==-1)){if(num==1)num=0;else num=1;}return num;}int fac(int t)//计算出2的n次方的结果{if(t==0)return 1;if(t==1)return 2;return 2*fac(t-1);}void S_numf(int n)//开辟一个二维数组存储真值表的各种赋值情况{int row,col,i,j,k,p;row=fac(n);col=n;S_num=(int *)malloc(sizeof(int)*row);for(i=0;i<row;i++){S_num[i]=(int *)malloc(sizeof(int)*col);}for(i=0;i<row;i++)for(j=0;j<col;j++)S_num[i][j]=0;for(i=0;i<col;i++)for(k=0,j=fac(i);k<fac(i);j++,k++){for(p=col-1;p>col-1-i;p--)S_num[j][p]=S_num[k][p];S_num[j][p]=1;}}main(){int i,j,LEN,t=0,temp=1;BeTreeNode *root;//定义根节点//StackInitiate(&mystack);printf("请输入一个符合命题公式(仅支持非'!',析取'|',合取'&',优先级:!,|,&)\n:");gets(str);LEN=strlen(str);for(i=0;i<LEN;i++){ for(j=0;j<t;j++)if(S[j]==str[i])temp=0;if((str[i]>='a'&&str[i]<='z'||str[i]>='A'&&str[i]<='Z')&&temp){S[j]=str[i];t++; }temp=1;}length=strlen(S);S_numf(length);root=MakeTree(0,LEN-1);printf("该复合命题公式的真值表是:\n");for(i=0;i<length;i++)printf("%c ",S[i]);print(root);printf("\n");for(w=0;w<fac(length);w++){for(i=0;i<length;i++)printf("%d ",S_num[w][i]);print_num(root);printf("\n");x=1;}}七收获与体会通过这次实验使我了解了一些数理逻辑问题可以通过用计算机编程的方法来解决,一些定理的证明同样也可以用计算机通过将命题符号化来编程解决。

离散数学 实验法

离散数学 实验法

离散数学实验法
离散数学是数学中的一个分支,涵盖了离散对象的数学结构、算法和应用。

离散数学的主要研究内容包括集合论、图论、组合数学、逻辑学等。

它在计算机科学、信息技术、通信工程、运筹学等领域有广泛的应用。

实验法是离散数学中的一种重要方法。

它的基本思想是通过实验来验证某个结论是否成立。

在实验法中,我们通常会通过计算机程序来模拟某些离散数学问题的求解过程,以验证我们的猜想是否正确。

例如,在图论中,我们可以使用实验法来验证某个图是否为哈密顿图。

具体步骤是,通过编写一个计算机程序,对该图进行随机遍历,如果程序能够找到该图的哈密顿回路,则说明该图是哈密顿图。

反之,如果程序无法找到哈密顿回路,则说明该图不是哈密顿图。

在实验法中,需要注意的是,验证某个结论成立只能说明该结论在一定范围内是正确的,而不能保证它对于所有情况都成立。

因此,在使用实验法时,需要结合理论分析来进行判断,以确保我们所得到的结论是正确的。

同时,需要注意实验设计的合理性,避免因为实验设计不合理而得出错误的结论。

总之,实验法是离散数学中的一种重要方法,通过实验来验证某个结论是否成立。

在使用实验法时,需要注意实验设计的合理性和结合理论分析来进行判断,以确
保所得到的结论是正确的。

离散数学实验报告

离散数学实验报告

实验一命题逻辑推理1.实验用例根据下面的命题,试用逻辑推理方法确定谁是作案者,写出推理过程。

(1)营业员A或B偷了手表;(2)若A作案,则作案不在营业时间;(3)若B提供的证据正确,则货柜末上锁;(4)若B提供的证据不正确,则作案发生在营业时间;(5)货柜上了锁。

2.实验目的加深对命题逻辑推理方法的理解。

3.实验内容用命题逻辑推理的方法解决逻辑推理问题。

4.实验原理和方法(1)符号化上面的命题,将它们作为条件,营业员A偷了手表作为结论,得一个复合命题。

(2)将复合命题中要用到的联结词定义成C语言中的函数,用变量表示相应的命题变元。

将复合命题写成一个函数表达式。

(3)函数表达式中的变量赋初值1。

如果函数表达式的值为1,则结论有效,A偷了手表,否则是B偷了手表。

用命题题变元表示:A:营业员A偷了手表B:营业员B偷了手表C:作案不在营业时间D:B提供的证据正确E:货柜末上锁则上面的命题符号化为 (A||B) && (!A||C) && (!D||E) && (D||!C) && !E 要求找到满足上面式子的变元A,B的指派便是结果。

5.实验代码6.实验结果B偷了手表实验二关系的运用1.实验原理和方法在三种闭包中自反和对称闭包的求解很容易,对矩阵表示的关系,其自反闭包只要将矩阵的主对角线全部置为1就可;对称闭包则加上关系的转置矩阵(逻辑加法)2.实验代码5.实验结果1.自反闭包2.传递闭包3.对称闭包实验三图论1.实验用例如下图所示的赋权图表示某七个城市及预先算出它们之间的一些直接通信成路造价(单位:万元),试给出一个设计方案,使得各城市之间既能够通信又使总造价最小并计算其最小值.2实验原理和方法为了求解最小代价,使花费的总代价最小,这是数学中经典的求解最小耗费生成树的算法。

其核心思想是寻找每一步的最优解继而求得全局最优解。

为了求得最小耗费生成树,我们运用数学中经典的Krusal算法,此算法的核心思想是:1、假设该图G是不连通的,对该图的边以非降序权重新排列2、对于排序表中的每条边,如果现在把它放入T不会形成回路的话,则把它加入到生成树T中;否则丢弃3、输出最小生成树的结果,得到我们想要的答案因而最后求得的最小耗费是:此时的最小耗费是:23+1+4+9+3+17=57(万元)实验四最优二叉树在通信编码中的应用1.实验内容输入一组通信符号的使用频率,求各通信符号对应的前缀码。

离散数学实验

离散数学实验

实验一:逻辑真值计算
一、实验目的 熟悉联结词合取、析取、条件和双条件的概念, 编程计算其真值。 二、实验内容 从键盘输入两个命题P和Q的真值,求它们的合取、 析取、条件和双条件的真值。用C语言实现。 三、实验报告和要求 列出实验目的、实验原理、实验内容、实验步骤、 实验结果与分握求关系的自反闭包、对称闭包、传递闭包的 求法,熟悉两种求传递闭包的算法。 二、实验内容 从键盘输入一个关系的关系矩阵,计算它的自发闭 包、对称闭包和传递闭包。用C语言实现。 三、实验报告和要求 列出实验目的、实验原理、实验内容、实验步骤、 实验结果与分析,实验结论,源程序。

离散实验报告

离散实验报告

离散实验报告离散实验报告概述:离散实验是一种基于离散数学原理的实验方法,旨在通过实际操作与观察,验证离散数学理论的正确性与应用性。

本报告将围绕离散实验的目的、方法、结果与分析展开,以期为读者提供一份全面的实验报告。

实验目的:离散实验的目的在于通过实际操作,验证离散数学理论在现实世界中的应用。

具体来说,本次实验旨在验证集合论、图论以及逻辑推理等离散数学的基本概念与原理在实际问题中的有效性。

实验方法:本次实验采用了多种实验方法,包括实地观察、数据收集与分析、计算机模拟等。

首先,我们选择了几个实际问题,如社交网络中的好友关系、物流网络中的最短路径问题等,以验证图论在解决网络问题中的可行性。

然后,我们进行了一系列数据收集,包括好友关系的网络拓扑结构、物流网络中各节点之间的距离等。

最后,我们利用计算机模拟工具,如Python编程语言,实现了离散数学中的算法,如Dijkstra算法、最小生成树算法等,来解决实际问题。

实验结果与分析:通过本次实验,我们得出了一系列实验结果,并对其进行了深入的分析。

首先,在社交网络中的好友关系实验中,我们发现图论中的邻接矩阵与邻接表等数据结构能够很好地表示好友关系,并且通过深度优先搜索与广度优先搜索等算法,能够高效地找到两个人之间的联系路径。

其次,在物流网络中的最短路径实验中,我们发现Dijkstra算法能够快速地找到两个节点之间的最短路径,并且通过最小生成树算法,能够有效地规划物流网络的布局,降低总体成本。

结论:通过本次离散实验,我们验证了离散数学理论在实际问题中的应用性与有效性。

图论、集合论以及逻辑推理等离散数学的基本概念与原理,为解决实际问题提供了有力的工具与方法。

通过实地观察、数据收集与分析、计算机模拟等实验方法,我们得出了一系列实验结果,并对其进行了深入的分析。

我们相信,离散实验的结果将为离散数学的研究与应用提供有力的支持与参考。

展望:离散实验作为一种验证离散数学理论的有效方法,具有广阔的发展前景。

离散数学 实验报告

离散数学 实验报告

离散数学实验报告离散数学实验报告一、引言离散数学是一门研究离散结构及其运算规则的数学学科,它在计算机科学、信息科学、通信工程等领域具有重要的应用价值。

本实验旨在通过实际案例,探索离散数学在现实生活中的应用。

二、实验目的本实验的目的是通过离散数学的理论知识,解决一个实际问题。

我们选择了图论中的最短路径问题作为案例,以展示离散数学在网络路由、物流规划等领域的应用。

三、实验过程1.问题描述我们的实验场景是一个城市的交通网络,其中各个交叉路口被看作是图的节点,而道路则是图的边。

我们需要找到两个给定节点之间的最短路径,以便规划出行路线。

2.建模为了解决这个问题,我们需要将实际情况抽象成数学模型。

我们将交通网络表示为一个有向图,每个节点代表一个交叉路口,每条边代表一条道路。

每条边上还需要标注距离或时间等权重。

3.算法选择在离散数学中,有多种算法可以解决最短路径问题,如迪杰斯特拉算法、弗洛伊德算法等。

根据实际情况和需求,我们选择了迪杰斯特拉算法。

4.算法实现我们使用编程语言实现了迪杰斯特拉算法,并将其应用于我们的交通网络模型。

算法的核心思想是通过不断更新节点之间的最短距离,逐步找到最短路径。

5.实验结果经过实验,我们成功找到了两个给定节点之间的最短路径,并计算出了最短距离。

这对于规划出行路线具有重要意义,可以帮助人们节省时间和资源。

四、实验总结通过这个实验,我们深入理解了离散数学在实际问题中的应用。

离散数学的概念和算法不仅仅是理论上的抽象,它们可以帮助我们解决现实生活中的复杂问题。

离散数学的应用远不止于此,它还可以用于密码学、数据压缩、人工智能等领域。

通过学习离散数学,我们能够培养出良好的抽象思维和问题解决能力,为未来的科学研究和工程实践打下坚实的基础。

总之,离散数学是一门具有广泛应用前景的学科,通过实验,我们对其应用领域有了更深入的了解。

希望未来能有更多的人关注和研究离散数学,为推动科学技术的发展做出贡献。

中南大学离散数学实验报告(实验2ac)

中南大学离散数学实验报告(实验2ac)

“离散数学”实验报告(实验2AC)专业班级学号姓名日期:目录一、实验目的 (3)二、实验内容 (3)三、实验环境 (3)四、实验原理和实现进程(算法描述) (3)A题型 (3)C题型 (4)五、实验数据及结果分析 (7)A题型 (7)B题型 (9)六、源程序清单 (11)A题型 (11)B题型 (12)七、其他收成及体会 (18)一、实验目的把握关系的概念与性质,大体的关系运算,关系的各类闭包的求法。

明白得等价类的概念,把握等价类的求解方式。

二、实验内容1. 求有限集上给定关系的自反、对称和传递闭包。

(有两种求解方式,只做一种为A,两种都做为B)2. 求有限集上等价关系的数量。

(有两种求解方式,只做一种为A,两种都做为B)3. 求解商集,输入集合和等价关系,求相应的商集。

(C)三、实验环境C或C++语言编程环境实现。

四、实验原理和实现进程(算法描述)A题型求有限集上等价关系的数量。

集合上的等价关系与该集合的划分之间存在一一对应关系。

一个等价关系对应一个划分,一个划分也对应一个等价关系。

咱们把n个元素的集合划分成k 块的方式数叫第二类Stirling数,表示为S(n,k)。

给定S(n,n) = S(n,1) = 1,有递归关系:S(n,k) = S(n − 1,k − 1) + kS(n − 1,k)集合上所有等价类的个数即为k从1到n,所有S(n,k)之和。

那个问题的算法比较简单,仅需两步就可完成,第一依照上式,概念一个递归函数S(n,k),然后对k从1到n,求取sum=∑S(n,k),sum的值确实是给定n元集合上的等价关系数量,最后将其输出即可。

A题型的流程图如下所示:C题型求解商集,输入集合和等价关系,求相应的商集商集即等价类组成的集合,要求商集,第一需要判定输入的关系是不是为等价关系,不然没有商集。

判定输入的关系是不是为等价关系的算法如下:(1)将输入的关系转换为关系矩阵,那个地址概念了一个函数translate(),转换的方式为:依次查找输入的关系中的二元组的两个元素在集合中的位置,例如<a,b>,假设a在集合A中的位置为i,b在集合A中的位置为j,就令寄存关系矩阵的二维数组M[i][j]=1,如此就将输入的关系R转换为关系矩阵的形式。

(完整版)离散数学实验指导书及其答案

(完整版)离散数学实验指导书及其答案

实验一命题逻辑公式化简【实验目的】加深对五个基本联结词(否定、合取、析取、条件、双条件)的理解、掌握利用基本等价公式化简公式的方法。

【实验内容】用化简命题逻辑公式的方法设计一个表决开关电路。

实验用例:用化简命题逻辑公式的方法设计一个5人表决开关电路,要求3人以上(含3人)同意则表决通过(表决开关亮)。

【实验原理和方法】(1)写出5人表决开关电路真值表,从真值表得出5人表决开关电路的主合取公式(或主析取公式),将公式化简成尽可能含五个基本联结词最少的等价公式。

(2)上面公式中的每一个联结词是一个开关元件,将它们定义成C语言中的函数。

(3)输入5人表决值(0或1),调用上面定义的函数,将5人表决开关电路真值表的等价公式写成一个函数表达式。

(4)输出函数表达式的结果,如果是1,则表明表决通过,否则表决不通过。

参考代码:#include<stdio.h>int vote(int a,int b,int c,int d,int e){//五人中任取三人的不同的取法有10种。

i f( a&&b&&c || a&&b&&d || a&&b&&e || a&&c&&d || a&&c&&e || a&&d&&e || b&&c&&d || b&&c&&e || b&&d&&e || c&&d&&e)return 1;e lsereturn 0;}void main(){i nt a,b,c,d,e;p rintf("请输入第五个人的表决值(0或1,空格分开):");s canf("%d%d%d%d%d",&a,&b,&c,&d,&e);i f(vote(a,b,c,d,e))printf("很好,表决通过!\n");e lseprintf("遗憾,表决没有通过!\n");}//注:联结词不定义成函数,否则太繁实验二命题逻辑推理【实验目的】加深对命题逻辑推理方法的理解。

中南大学离散数学实验报告(实验3ABC)

中南大学离散数学实验报告(实验3ABC)

“离散数学”实验报告(实验3ABC)专业班级学号姓名日期: 2011.12.19目录一、实验目的 (3)二、实验内容 (3)三、实验环境 (3)四、实验原理和实现过程(算法描述) (3)1实验原理 (3)2实验过程 (5)五、实验数据及结果分析 (6)六、源程序清单 (10)七、其他收获及体会 (16)一、实验目的理解图论的基本概念, 图的矩阵表示, 图的连通性, 图的遍历, 以及求图的连通支方法。

二、实验内容以偶对的形式输入一个无向简单图的边, 建立该图的邻接矩阵, 判断图是否连通(A)。

并计算任意两个结点间的距离(B)。

对不连通的图输出其各个连通支(C)。

三、实验环境C或C++语言编程环境实现。

四、实验原理和实现过程(算法描述)1.实验原理(1)建立图的邻接矩阵, 判断图是否连通根据图的矩阵表示法建立邻接矩阵A, 并利用矩阵的乘法和加法求出可达矩阵, 从而判断图的连通性。

连通图的定义: 在一个无向图G 中, 若从顶点vi到顶点vj有路径相连(当然从vj到vi也一定有路径), 则称vi和vj是连通的。

如果G 是有向图, 那么连接vi 和vj的路径中所有的边都必须同向。

如果图中任意两点都是连通的, 那么图被称作连通图。

判断连通图的实现:在图中, 从任意点出发在剩余的点中, 找到所有相邻点循环, 直到没有点可以加入为止, 如果有剩余的点就是不连通的, 否则就是连通的。

或者也可用WallShell算法, 由图的邻接矩阵判断图是否连通。

(2)计算任意两个结点间的距离图中两点i, j间的距离通过检验Al中使得aij为1的最小的l值求出。

路径P中所含边的条数称为路径P的长度。

在图G<V,E>中, 从结点Vi到Vj最短路径的长度叫从Vi到Vj的距离, 记为d<Vi, Vj>。

设图的邻接矩阵是A, 则所对应的aij的值表示, 点Vi到点Vj距离为n的路径有aij条。

若aij(1), aij(2), …, aij(n-1), 中至少有一个不为0, 则可断定Vi与Vj可达, 使aij(l)≠0的最小的l即为d(Vi, Vj)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学实践内容
●内容:
从下列题目中任意选择1个,完成相应写作或编程,并制作一个技术报告,包括书面报告和口头报告两部分。

●目的:
• 选择一个自己感兴趣的主题作较深入的学习和研究。

• 培养阅读和查找技术文献的能力。

• 作技术报告的能力(口头和书面)
●报告的具体要求:
a. 书面报告: word文档文字5页左右(不包括图表),一般包括以下部分:
i. 摘要–对所选题目做一个简短、完整的描述。

ii. 目的–介绍选题目的,为什么这个题目有趣/有用。

iii. 背景–介绍相关定义、术语,或其它背景知识。

iv. 主体部分–介绍具体内容,从所选题目中学到什么新的知识?前人的观点,和你的观点?通过对比、引用、论证等方法来陈述。

v. 结论–总结新知识点及其用途。

vi. 引用的文献。

b. 口头: 制作ppt,并作一个15分钟左右的口头报告,用通俗易懂的方式把
你所获得的知识和大家分享。

口头报告时间是在第6周到第16周《离散数学应用实践课程》中,按照选课学生的学号顺序进行演讲。

●选题内容
1.讨论逻辑悖论,例如:说谎者悖论,纸牌悖论,理发师悖论等,说明如何解决它们。

2.讨论模糊逻辑怎样用于实际应用。

3.介绍Prolog逻辑程序设计语言(一个用自然语言进行人机对话的软件工具),解释Prolog
是如何使用消解的。

4. “自动定理证明”(ATP)是使用计算机来完成机械地证明定理的任务。

讨论自动定理证明
的目标和应用,以及在开发自动定理证明器上取得的进步。

5. 讨论函数概念的发展历史及其应用。

6. 鸽巢原理又名抽屉原理或狄利克雷原理,它由德国数学家狄利克雷
(Divichlet,1805-1855)首先发现。

鸽巢原理在组合学中占据着非常重要的地位,它常被用来证明一些关于存在性的数学问题,并且在数论和密码学中也有着广泛的应用。

讨论它的历史和应用。

7. 描述关系数据库的基本原理。

关系数据库与其它类型的数据库相比,使用面有多
广?
8. 讨论项目计划评审技术PERT(Project Evaluation and Review Technique)在安
排一个大的复杂项目的任务中的应用。

PERT的使用面有多广?
9. 描述图论的起源和发展,讨论一下图论在生态系统研究中的应用。

10. 讨论图论在社会学和心理学中的应用。

11. 讨论如何用欧拉道路来帮助确定DNA序列。

12. 解释凯莱如何用树来枚举特定类型的碳水化合物的个数。

13. 讨论在Web上不同搜索引擎的网络爬虫和网络蜘蛛所用的搜索技术。

14. 讨论一下构造最小生成树的算法的历史和起源。

15. (自选题目)。

相关文档
最新文档