解三角形知识点归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形知识点归纳
一 正弦定理
(一)知识与工具:
正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===。 在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角。 注明:正弦定理的作用是进行三角形中的边角互化,在变形中,注意三角形中其他条件的应用:
(1)三内角和为180°
(2)两边之和大于第三边,两边之差小于第三边
(3)面积公式:S=21absinC=R
abc 4=2R 2sinAsinBsinC (4)三角函数的恒等变形。 sin(A+B)=sinC ,cos(A+B)=-cosC ,sin
2B A +=cos 2C ,cos 2B A +=sin 2C (二)题型 使用正弦定理解三角形共有三种题型
题型1 利用正弦定理公式原型解三角形
题型2 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化。
题型3 三角形解的个数的讨论
方法一:画图看
方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数。
二 余弦定理
(一)知识与工具:
a 2=
b 2+
c 2﹣2bccosA cosA=bc
a 2c
b 2
22-+ b 2=a 2+c 2﹣2accosB cosB=ac
b c a 22
22-+ c 2=a 2+b 2﹣2abcosC
cosC=ab c b a 22
22-+ 注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。在变形中,注意三角形中其他条件的应用:
(1)三内角和为180°;
(2)两边之和大于第三边,两边之差小于第三边。
(3)面积公式:S=2
1absinC=R abc 4=2R 2sinAsinBsinC (4)三角函数的恒等变形。
(二)题型使用余弦定理解三角形共有三种现象的题型
题型1 利用余弦定理公式的原型解三角形
题型2 利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。
题型3 判断三角形的形状
结论:根据余弦定理,当a 2+b 2<c 2、b 2+c 2<a 2、c 2+a 2<b 2中有一个关系式成立时,该三角形为钝角三角形,而当a 2+b 2>c 2、b 2+c 2>a 2,c 2+a 2>b 2中有一种关系式成立时,并不能得出该三角形为锐角三角形的结论。
判断三角形形状的方法:
(1)将已知式所有的边和角转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状。
(2)将已知式所有的边和角转化为内角三角函数间的关系,通过三角恒等变形,得出内角的关系,从而判断出三角形的形状,这时要注意使用A+B+C=π这个结论。
在两种解法的等式变形中,一般两边不要约去公因式,应移项提取出公因式,以免漏解。
正余弦定理在实际中的应用
题型1 计算高度 题型2 计算距离
题型3 计算角度 题型4 测量方案的设计
实际应用题型的本质就是解三角形,无论是什么样的现象,都要首先画出三角形的模型,再通过正弦定理和余弦定理进行求解。
练习题
1、 在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322
=+-x x 的两个根,且()1cos 2=+B A 。求:(1)角C 的度数; (2)AB 的长度。
2、 在△ABC 中,证明:2222112cos 2cos b
a b B a A -=-。 3、 在△ABC 中,10=+b a ,cosC 是方程02322=--x x 的一个根,求△ABC 周长的
最小值。
4、 在△ABC 中,若c
C b B a A sin cos cos ==,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形
C .有一内角为30°的等腰三角形
D .等边三角形
5、 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( )
A .51< B .135< C .50< D .513< 6、若△ABC 的周长等于20,面积是310,A =60°,则BC 边的长是( ) A . 5 B .6 C .7 D .8 7、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形