cz生长原理及工艺

合集下载

硫化促进剂CZ生产新工艺介绍

硫化促进剂CZ生产新工艺介绍
价值 。
关键 词 : 硫 化 促进 剂 : N 一 环 己基 一 2 一 苯 并噻唑 次磺 酰胺 : 橡胶 硫 化促 进 剂 C z新 工 艺
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 8 - 1 2 6 7 . 2 0 1 4 . 0 5 . 0 1 0
( 天 津一 化 化 工有 限 公 司 , 天津 3 0 0 7 0 1 )
摘要: 本文介 绍 了橡胶 硫 化促进 剂 C Z新 工 艺的 开发原 理及 应 用 , 并通过 对原 普遍 x - . 艺生产 过程 、 产 品 质量 、 产 品 消耗 、 社 会 效益 、 环境 各 方面 对 比 , 突 出 了新 工 艺的科 学性 在 实际运 用 中所 带来 的综合
中 图分 类 号 : T Q 3 3 0 . 3 8 + 5
文献 标 志码 : C
文章 编号 : 1 0 0 8 — 1 2 6 7 ( 2 0 1 4 ) 0 5 — 0 0 2 9 — 0 2 进入下 次 的生 产过 程 中投料 使用 。原 材料 消耗 如表
1 所示 , 其流 程表 达如 下 。
1 . 2 氧化合 成 C Z 定 条 件 下 , 一 定 时 间 里生 成 M 环 己胺 盐 , 然后
在冷却 条件下加 次氯酸钠 氧化 3 ~ 4 h生成促进剂 C Z , 之后降温至 2 0 ℃, 出料 。
1 . 3 水 洗脱 水和 蒸馏
1 . 1 制备 次氯 酸钠
橡胶硫化促进剂 C Z , 学名 N 一 环己基一 2 一 苯并噻 唑次磺酰胺 , 外观为灰 白色或淡黄色的粉末, 无毒。比 重 1 . 2 7 — 1 . 3 O , 熔点 9 0 - 1 0 8  ̄ C , 溶 于苯 、 二 氯 甲烷 、 四氯化 碳、 醋 酸 乙酯 、 丙酮、 微溶 于乙醇和汽油 , 不溶 于水 , 贮 存稳定期半年 , 易结团, 但不影响使用 , 长时间受热易 逐渐分解 , 在6 0 %以上 或真空 隋况下 分解现象 尤为 明 显 。橡胶硫化促进剂 C Z , 是一种常用 的后效 J 生 促 进剂, 兼有抗焦烧 I 生 优 良和硫化速度 陕两大优点,它与促进 剂T M T D ( Z, 硫化 四基秋 兰姆) 等及 M( 2 - -  ̄醇基 苯并噻 唑) 、 D M ( Z J j f  ̄ 化二苯并噻幽 并用时特别适合于合成胶, 可提高硫 化胶 的定伸强度及 抗张强度 。促进 剂 C Z性 能优 良属 于伯胺类促进 剂, 不存在亚 硝胺 致癌 问题 , 因 此它是 目前 国 内外 次磺 酰胺 类促 进剂 的主要 品种 , 广 泛用于轮胎、 胶鞋 、 胶管、 胶带 、 电缆等工业制品, 一般 用量为 0 . 5 ~ 2 份不等。C Z 通常由促进剂 M、 M钠盐和 环己胺溶液混合后, 加氧化剂氧化缩合而得, 其合成工 艺有 次氯 酸钠 氧化法 、 氧 气催 化氧 化法 、 双氧 水 氧化 法等。氧气氧化法是 目 前较为先进的合成 C Z的工艺, 但该工艺还不是很成 熟,而且 由于安全 问题束 缚 了其 工业化 应用 。次氯 酸钠氧化 法具有原 料成本低 、 工艺 控制稳 定 、 设备 简单 、 易于操作 等优 点, 但存在 的最 大 弊端就是所 需辅助原 料较多 , 在生产 中产生 大量废水 , 处理十分 困难, 环境污染严重 。 双 氧水 氧化法克服 了以 上两种方法的弊端, 具有更大的发展潜力。

CZ硅晶生长理论

CZ硅晶生长理论

一. CZ法晶体生长设计CZ生长炉的组成元件可以分成4部分:(1)炉体:包括石英锅,石墨三瓣锅,加热器,绝热元件,炉壁。

(2)晶棒及坩锅拉升上抬旋转机械:包括籽晶卡头,钢吊绳,拉升上抬旋转元件。

(3)气体压力控制:包括气体流量控制,真空系统,压力控制阀。

(4)控制系统:包括侦测感应器,电脑控制。

但是按照我们通熟的讲法可以认为是:(1)炉体:包括控制晶体升降旋转的电机(限位,用于控制晶体升降的极限位置),副炉室(钢吊绳,重锤),隔离板,主炉室(倒流桶,大盖板,上保温罩,主保温罩,加热器,三瓣锅,托盘,托杆,六角外螺纹石墨螺丝,内螺纹石墨螺丝,石英罩,电极,底盘),传动机械(底盘下面的)。

(2)电柜(加热,真空,球阀,温控仪,计算机,计算机风扇,真空计开关,触摸屏,液压传动开关以及各种电器电子元件)。

(3)电控机(楼下的)单晶硅的密度固态密度 2.33克/cm3 液态密度 2.5克/cm3凝固结晶的驱动力在溶液长晶过程里,随着溶液温度的下降,将产生由液态转换成固态的相变化。

为什么温度下降,会导致相变化的产生?这个问题一般我们可以用热力学的观点来解释。

对于发生在等温等压的相变化,不同相之间的相对稳定性可由自由能(G)来决定。

G = H-T×SG:自由能H:焓T:绝对温度S:乱度一个平衡系统将具有最低自由能,假如一个系统的自由能△G高于最低值,它将设法降低△G以达到平衡状态。

因此,我们可以将△G视为结晶的驱动力在平衡的融化温度Tm时,液固二相的自由能是相等的,即△G=0,所以我们可以认为△G=△S△T其中△T=Tm-T,即所谓的过冷度,由于在凝固时,△S是个负值的常数,所以△T可被视为凝固结晶的唯一驱动力。

液固界面晶体生长时的液固界面的形状,和晶轴方向及温度梯度有关。

下图为三种可能出现的液固界面的形状,即凸形,平面形,凹形。

只有当液固界面的形状为平面形时,才能较易维持良好的晶棒品质。

但在实际的长晶里,由于热环境在不断的变化,很难能维持长时间的平面状的界面。

半导体制造工艺之晶体的生长概述

半导体制造工艺之晶体的生长概述

半导体制造工艺之晶体的生长概述半导体制造工艺中,晶体的生长是一个至关重要的环节。

晶体的质量和结构特征直接影响到半导体材料的性能和器件的性能。

本文将概述晶体的生长过程以及各种常用的晶体生长方法。

晶体的生长是将溶液中的原子、离子或分子有序排列形成完全晶体的过程。

晶体的生长大致分为以下几个步骤:核形成、生长、附着和重新结晶。

在晶体生长的过程中,各种参数的控制对最终晶体质量的影响至关重要,如溶液的浓度、温度、流速、搅拌速度等。

在半导体制造中,常用的晶体生长方法有几种,其中最常见的是气相传输法(CZ法)和液相传输法(FZ法)。

CZ法在高温下将半导体原料以气体形式转化为固体晶体,通过控制温度梯度、拉扯速度和气氛组成,实现晶体的生长。

CZ法的优点是生长速度快,晶体质量高,但由于困难控制,只能用于一些杂质浓度不太高的半导体材料。

FZ法通过在熔融区域内以特定条件下的电流通量和温度梯度来生长晶体,该方法能够更好地控制杂质的浓度和分布。

但是FZ法生长速度较慢,适用于单晶材料的生长。

为了改善半导体材料的质量和性能,还有一些其他的晶体生长方法,如熔体蒸发法、悬浮液法和分子束外延法等。

熔体蒸发法通过将原料加热到高温,使其蒸发后在低温表面上凝结形成晶体;悬浮液法是将融化的半导体材料悬浮在溶液中,并通过调节温度和浓度来控制晶体的生长;分子束外延法则是通过在表面上束缚脉冲电流产生原子、离子束来生长单晶膜。

在晶体生长过程中,温度、压力、化学组成等参数的精确控制是至关重要的。

此外,还需注意确保生长环境的纯净度,防止杂质的残留。

总结起来,晶体的生长是半导体制造过程中至关重要的环节。

各种晶体生长方法都有各自的优缺点,在具体应用中要根据具体要求来选择合适的方法。

随着技术的不断发展,晶体生长方法也在不断改进和创新,以满足日益提高的半导体材料性能需求。

晶体的生长是半导体制造工艺中的关键环节之一,其质量和结构特征直接影响到半导体材料的性能和器件的性能。

集成电路工艺名词解释

集成电路工艺名词解释

1、CZ单晶生长法定义:Czochralski(CZ)-查克洛斯基法生长单晶硅,把熔化了的半导体级硅液体变为有正确晶向并且被掺杂成n型或p型的固体硅锭。

85%以上的单晶硅是采用CZ法生长出来的。

CZ法特点:a. 低功率IC的主要原料。

b. 占有~80%的市场。

c. 制备成本较低。

d. 硅片含氧量高。

2、描述氧化物的生长速率,影响这种速率的参数是什么?氧化物生长速率用于描述氧化物在硅片上生长的快慢。

影响他的参数有温度、压力、氧化方式(干氧或湿氧)、硅的晶向和掺杂水平。

3、短沟道效应(Short Channel Effect):短沟道效应主要是指阈值电压与沟道相关到非常严重的程度。

源-漏两极的p-n结将参与对位于栅极下的硅的耗尽作用,同栅极争夺对该区电荷的控制。

栅长Lg越短,被源-漏两极控制的这部分电荷所占的份额比越大,直接造成域值电压Vt 随栅长的变化。

4、方块电阻(薄层电阻):方块电阻的大小直接反映了扩散入硅内部的净杂质总量。

Q: 从表面到结边界这一方块薄层中单位面积上杂质总量。

5、体电阻与方块电阻的关系:方块时,l=w,R=RS。

所以,只要知道了某个掺杂区域的方块电阻,就知道了整个掺杂区域的电阻值。

6、固溶度(solubility):在平衡条件下,杂质能溶解在硅中而不发生反应形成分凝相的最大浓度。

7、扩散定义:材料中元素分布的不均勻会导致扩散行为的进行,使得元素由浓度高处向浓度低处移动,从而产生的一种使浓度或温度趋于均匀的定向移动。

8、扩散的微观机制都有哪些?给出相关扩散方式的定义及扩散杂质的种类。

①间隙式扩散:杂质进入晶体后,仅占据晶格间隙,在浓度梯度作用下,从一个原子间隙到另一个相邻的原子间隙逐次跳跃前进。

每前进一个晶格间距,均必须克服一定的势垒能量。

势垒高度E i约为0.6~1.2 eV;间隙式扩散杂质包括Au, Ag, Cu, Fe, Ni, Zn, Mg, O等,这些杂质均属于快扩散杂质。

cz生长原理及工艺.doc

cz生长原理及工艺.doc

CZ生长原理及工艺流程New Roman "> CZ法的基本原理,多晶体硅料经加热熔化,待温度合适后,经过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶锭的拉制。

炉内的传热、传质、流体力学、化学反应等过程都直接影响到单晶的生长与生长成的单晶的质量,拉晶过程中可直接控制的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转与升降速率,炉内保护气体的种类、流向、流速、压力等。

CZ法生长的具体工艺过程包括装料与熔料、熔接、细颈、放肩、转肩、等径生长和收尾这样几个阶段。

1.装料、熔料装料、熔料阶段是CZ生长过程的第一个阶段,这一阶段看起来似乎很简单,但是这一阶段操作正确与否往往关系到生长过程的成败。

大多数造成重大损失的事故(如坩埚破裂)都发生在或起源于这一·阶段。

2.籽晶与熔硅的熔接当硅料全部熔化后,调整加热功率以控制熔体的温度。

一般情况下,有两个传感器分别监测熔体表面和加热器保温罩石墨圆筒的温度,在热场和拉晶工艺改变不大的情况下,上一炉的温度读数可作为参考来设定引晶温度。

按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。

硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动的稳定。

装料量越大,则所需时间越长。

待熔体稳定后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。

预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。

在熔接过程中要注意观察所发生的现象来判断熔硅表面的温度是否合适,在合适的温度下,熔接后在界面处会逐渐产生由固液气三相交接处的弯月面所导致的光环(通常称为“光圈”),并逐渐由光环的一部分变成完整的圆形光环,温度过高会使籽晶熔断,温度过低,将不会出现弯月面光环,甚至长出多晶。

熟练的操作人员,能根据弯月面光环的宽度及明亮程度来判断熔体的温度是否合适。

3.引细颈虽然籽晶都是采用无位错硅单晶制备的[16~19],但是当籽晶插入熔体时,由于受到籽晶与熔硅的温度差所造成的热应力和表面张力的作用会产生位错。

最全的材料晶体生长工艺汇总

最全的材料晶体生长工艺汇总

最全的材料晶体生长工艺汇总提拉法提拉法又称直拉法,丘克拉斯基(Czochralski)法,简称CZ法。

它是一种直接从熔体中拉制出晶体的生长技术。

用提拉法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等多种重要的人工宝石晶体。

提拉法的原理:首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶下降至接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,并在不断提拉和旋转过程中,最终生长出圆柱状的大块单晶体。

提拉法的工艺步骤可以分为原料熔化、引晶、颈缩、放肩、等径生长、收尾等几个阶段。

具体过程如示意图。

提拉法晶体生长工艺有两大应用难点:一是温度场的设置和优化;二是熔体的流动和缺陷分析。

下图为提拉法基本的温度场设置以及五种基本的熔体对流模式。

在复杂的工艺条件下,实际生产需要调整的参数很多,例如坩埚和晶体的旋转速率,提拉速率等。

因此实际中熔体的温度场和流动模式也更复杂。

下图是不同的坩埚和晶体旋转速率下产生的复杂流动示意图。

这两大应用难点对晶体生长的质量和效率都有很大影响,是应用和科研领域中最关心的两个问题。

通常情况下为了减弱熔体对流,人为地引入外部磁场是一种有效办法,利用导电流体在磁场中感生的洛伦兹力可以抑制熔体的对流。

常用的磁场有横向磁场、尖端磁场等。

下图是几种不同的引入磁场类型示意图。

引入磁场可以在一定程度上减弱对流,但同时磁场的引入也加大了仿真模拟的难度,使得生长质量预测变的更难,因此需要专业的晶体生长软件才能提供可靠的仿真数据。

晶体提拉法有以下优点:(1)在晶体生长过程中可以直接进行测试与观察,有利于控制生长条件;(2)使用优质定向籽晶和“缩颈”技术,可减少晶体缺陷,获得优质取向的单晶;(3)晶体生长速度较快;(4)晶体光学均一性高。

晶体提拉法的不足之处在于:(1)坩埚材料对晶体可能产生污染;(2)熔体的液流作用、传动装置的振动和温度的波动都会对晶体的质量产生影响。

晶体生长方法(新)

晶体生长方法(新)

晶体生长方法1) 提拉法(Czochralski,Cz )晶体提拉法的创始人是J. Czochralski ,他的论文发表于1918年。

提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。

近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC ),如图1,能够顺利地生长某些易挥发的化合物(GaP 等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。

所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。

这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。

提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。

图1 提拉法晶体生长装置结构示意图2)热交换法(Heat Exchange Method, HEM)热交换法是由D. Viechnicki和F.Schmid于1974年发明的一种长晶方法。

其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。

特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有图2HEM晶体生长装置结构示意图特定形状要求的晶体。

Czochralski(CZ)方式拉单晶

Czochralski(CZ)方式拉单晶

单晶体原那么上能够由固态、液态(熔体或溶液)或气态生长而得。

事实上人工晶体多半由熔体达到必然的过冷或溶液达到必然的过饱和而得。

晶体生长是用必然的方式和技术,使单晶体由液态或气态结晶成长。

由液态结晶又能够分成熔体生长或溶液生长两大类。

熔体生长法这类方法是最常用的,主要有提拉法(又称丘克拉斯基法)、坩埚下降法、区熔法、焰熔法(又称维尔纳叶法)等。

提拉法此法是由熔体生长单晶的一项最主要的方法,被加热的坩埚中盛着熔融的料,籽晶杆带着籽晶由上而下插入熔体,由于固液界面附近的熔体维持一定的过冷度、熔体沿籽晶结晶,并随籽晶的逐渐上升而生长成棒状单晶。

坩埚可以由高频感应或电阻加热。

半导体锗、硅、氧化物单晶如钇铝石榴石、钆镓石榴石、铌酸锂等均用此方法生长而得。

应用此方法时控制晶体品质的主要因素是固液界面的温度梯度、生长速率、晶转速率以及熔体的流体效应等。

坩埚下降法将盛满材料的坩埚置放在竖直的炉内,炉分上下两部分,中间以挡板隔开,上部温度较高,能使坩埚内的材料维持熔融状态,下部则温度较低,当坩埚在炉内由上缓缓下降到炉内下部位置时,材料熔体就开始结晶。

坩埚的底部形状多半是尖锥形,或带有细颈,便于优选籽晶,也有半球形状的以便于籽晶生长。

晶体的形状与坩埚的形状是一致的,大的碱卤化合物及氟化物等光学晶体是用这种方法生长的。

区熔法将一个多晶材料棒,通过一个狭窄的高温区,使材料形成一个狭窄的熔区,移动材料棒或加热体,使熔区移动而结晶,最后材料棒就形成了单晶棒。

这方法可以使单晶材料在结晶过程中纯度提得很高,并且也能使掺质掺得很均匀。

区熔技术有水平法和依靠表面张力的浮区熔炼两种。

焰熔法这个方法的原理是利用氢和氧燃烧的火焰产生高温,使材料粉末通过火焰撒下熔融,并落在一个结晶杆或籽晶的头部。

由于火焰在炉内形成一定的温度梯度,粉料熔体落在一个结晶杆上就能结晶。

小锤敲击料筒震动粉料,经筛网及料斗而落下,氧氢各自经入口在喷口处,混合燃烧,结晶杆上端插有籽晶,通过结晶杆下降,使落下的粉料熔体能保持同一高温水平而结晶。

九-单晶硅制备直拉法

九-单晶硅制备直拉法

CZ各生产环节及注意事项
单晶基本作业流程
冷却
拆炉、清扫
安装热场
装料
化料
收尾
等径
转肩
放肩
引晶
稳定
直拉生长工艺
(1)原料的准备 还炉中取出的多晶硅,经破碎成块状,用HF和HNO3的混
合溶液进行腐蚀,再用纯净水进行清洗,直到中性,烘干 后备用。HF浓度40%,HNO3浓度为68%。一般HNO3: HF=5:1(体积比)。最后再作适当调整。反应式
腐蚀清洗前必须将附在硅原料上的石墨、石英渣及油污等清 除干净。
石英坩埚若为已清洁处理的免洗坩埚,则拆封后就可使用。 所用的籽晶也必须经过腐蚀清洗后才能使用。
直拉生长工艺
②装炉 选定与生产产品相同型号、晶向的籽晶,把它固定在籽晶
轴上。 将石英坩埚放置在石墨坩埚中。 将硅块料及所需掺入的杂质料放人石英坩埚中。 装炉时应注意:热场各部件要垂直、对中,从内到外、从
直拉生长工艺
⑤晶颈生长 晶颈直径的大小,要根据所生产的单晶的重量决定,
其经验公式为 d=1.608×10-3DL1/2
d为晶颈直径; D为晶体直径;L为晶体长度,cm。 目前,投料量60~90kg,晶颈直径为4~6mm。 晶颈较理想的形状是:表面平滑,从上至下直径微收
或等径,有利于位错的消除。
.
17
石墨坩埚
单个三瓣埚
三瓣埚组合后
单 个 三 瓣 埚和 埚底
单 个 三 瓣 埚和 埚底 及中 轴
加热器
➢ 左图为石墨加热器三维图。
➢ 上图为加热器脚的连接方式。加热器 脚和石墨螺丝、石墨电极间需要垫石墨纸, 目的是为了更加良性接触,防止打火。
重要的原、辅料
1、硅的基本性质

晶体生长方法(新)

晶体生长方法(新)

晶体生长方法(新)晶体生长方法1) 提拉法(Czochralski,Cz)晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。

提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。

近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),如图1,能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。

所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生图1 提拉法晶体生长装置结构示意图长出几何形状及内在质量都合格单晶的过程。

这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。

提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。

2) 热交换法(Heat Exchange Method, HEM)热交换法是由D. Viechnicki和F.Schmid于1974年发明的一种长晶方法。

其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。

特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。

简述cz法提拉单晶的工艺流程

简述cz法提拉单晶的工艺流程

简述cz法提拉单晶的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!CZ(提拉)法是一种用于生产大直径、高质量单晶材料的方法,主要用于制备硅、锗等半导体材料。

CZ生长炉

CZ生长炉

CZ法主要设备:CZ生长炉CZ法生长炉的组成元件可分成四部分(1)炉体:包括石英坩埚,石墨坩埚,加热及绝热元件,炉壁(2)晶棒及坩埚拉升旋转机构:包括籽晶夹头,吊线及拉升旋转元件(3)气氛压力控制:包括气体流量控制,真空系统及压力控制阀(4)控制系统:包括侦测感应器及电脑控制系统加工工艺:加料→熔化→缩颈生长→放肩生长→等径生长→尾部生长(1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。

杂质种类有硼,磷,锑,砷。

(2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。

(3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。

由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩劲生长使之消失掉。

缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。

(4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。

(5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。

单晶硅片取自于等径部分。

(6)尾部生长:在长完等径部分之后,如果立刻将晶棒与液面分开,那么效应力将使得晶棒出现位错与滑移线。

于是为了避免此问题的发生,必须将晶棒的直径慢慢缩小,直到成一尖点而与液面分开。

这一过程称之为尾部生长。

长完的晶棒被升至上炉室冷却一段时间后取出,即完成一次生长周期。

单晶硅棒加工成单晶硅抛光硅片加工流程:单晶生长→切断→外径滚磨→平边或V型槽处理→切片倒角→研磨腐蚀--抛光→清洗→包装切断:目的是切除单晶硅棒的头部、尾部及超出客户规格的部分,将单晶硅棒分段成切片设备可以处理的长度,切取试片测量单晶硅棒的电阻率含氧量。

Czochralski法在半导体级硅单晶生长中的应用

Czochralski法在半导体级硅单晶生长中的应用

Czochralski法在半导体级硅单晶生长中的应用引言半导体技术的快速发展为现代电子产品的制造提供了坚实的基础。

而半导体材料的最基本组成部分就是硅单晶,其高纯度和晶格完整性对于制造高性能半导体器件至关重要。

为了满足对高质量硅单晶的需求,科学家们不断探索和改进各种生长方法。

在这其中,Czochralski法因其高生长质量和较大晶体尺寸的能力而成为了最常用的硅单晶生长方法之一。

本文将着重探讨Czochralski法在半导体级硅单晶生长中的应用。

一、Czochralski法的原理和特点Czochralski法,简称CZ法,是一种通过在熔融状态下来生长单晶的方法。

其原理是将高纯度的硅材料加热至熔点以上,并将立体角状的单晶硅种子缓慢地浸入熔融硅中,然后逐渐提升种子和硅熔液之间的界面。

通过拉出硅熔液和凝固加热后的单晶种子,最终获得所需尺寸和纯度的硅单晶。

Czochralski法相比其他生长方法具有如下特点:1. 高纯度:Czochralski法所需的起始硅材料纯度较高,因此容易获得高纯度的硅单晶。

这对于半导体技术来说至关重要,因为杂质的存在会严重影响半导体器件的性能。

2. 大尺寸:Czochralski法可以生长出较大尺寸的硅单晶,可达到几英寸至几十英寸的直径。

大尺寸的硅单晶对于制造大规模集成电路和其他高性能半导体器件非常重要。

3. 晶格完整性:Czochralski法生长的硅单晶具有很好的晶格完整性和结晶质量,这对于保证半导体器件的稳定性以及提高效率非常有益。

二、1. 半导体器件制造:Czochralski法生长出的硅单晶是制造各种半导体器件的重要基础材料。

例如,大规模集成电路(VLSI)在制造过程中需要使用高纯度和大尺寸的硅单晶作为衬底。

Czochralski法可以满足这些制造要求,从而保证了半导体器件的性能和稳定性。

2. 光伏行业:Czochralski法生长的硅单晶也广泛应用于光伏行业,用于制造太阳能电池。

CZ法的基本原理

CZ法的基本原理

CZ法的基本原理CZ法的基本原理,多晶体硅料经加热熔化,待温度合适后,经过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶锭的拉制。

炉内的传热、传质、流体力学、化学反应等过程都直接影响到单晶的生长与生长成的单晶的质量,拉晶过程中可直接控制的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转与升降速率,炉内保护气体的种类、流向、流速、压力等。

CZ法生长的具体工艺过程包括装料与熔料、熔接、细颈、放肩、转肩、等径生长和收尾这样几个阶段。

1.装料、熔料装料、熔料阶段是CZ生长过程的第一个阶段,这一阶段看起来似乎很简单,但是这一阶段操作正确与否往往关系到生长过程的成败。

大多数造成重大损失的事故(如坩埚破裂)都发生在或起源于这一•阶段。

2.籽晶与熔硅的熔接当硅料全部熔化后,调整加热功率以控制熔体的温度。

一般情况下,有两个传感器分别监测熔体表面和加热器保温罩石墨圆筒的温度,在热场和拉晶工艺改变不大的情况下,上一炉的温度读数可作为参考来设定引晶温度。

按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。

硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动的稳定。

装料量越大,则所需时间越长。

待熔体稳定后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。

预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。

在熔接过程中要注意观察所发生的现象来判断熔硅表面的温度是否合适,在合适的温度下,熔接后在界面处会逐渐产生由固液气三相交接处的弯月面所导致的光环(通常称为“光圈”),并逐渐由光环的一部分变成完整的圆形光环,温度过高会使籽晶熔断,温度过低,将不会出现弯月面光环,甚至长出多晶。

熟练的操作人员,能根据弯月面光环的宽度及明亮程度来判断熔体的温度是否合适。

3.引细颈虽然籽晶都是采用无位错硅单晶制备的[16~19],但是当籽晶插入熔体时,由于受到籽晶与熔硅的温度差所造成的热应力和表面张力的作用会产生位错。

CZ生长原理及工艺流程

CZ生长原理及工艺流程

CZ生长原理及工艺流程CZ法的基本原理,多晶体硅料经加热熔化,待温度合适后,经过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶锭的拉制。

炉内的传热、传质、流体力学、化学反应等过程都直接影响到单晶的生长与生长成的单晶的质量,拉晶过程中可直接控制的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转与升降速率,炉内保护气体的种类、流向、流速、压力等。

CZ法生长的具体工艺过程包括装料与熔料、熔接、细颈、放肩、转肩、等径生长和收尾这样几个阶段。

1.装料、熔料装料、熔料阶段是CZ生长过程的第一个阶段,这一阶段看起来似乎很简单,但是这一阶段操作正确与否往往关系到生长过程的成败。

大多数造成重大损失的事故(如坩埚破裂)都发生在或起源于这一·阶段。

2.籽晶与熔硅的熔接当硅料全部熔化后,调整加热功率以控制熔体的温度。

一般情况下,有两个传感器分别监测熔体表面和加热器保温罩石墨圆筒的温度,在热场和拉晶工艺改变不大的情况下,上一炉的温度读数可作为参考来设定引晶温度。

按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。

硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动的稳定。

装料量越大,则所需时间越长。

待熔体稳定后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。

预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。

在熔接过程中要注意观察所发生的现象来判断熔硅表面的温度是否合适,在合适的温度下,熔接后在界面处会逐渐产生由固液气三相交接处的弯月面所导致的光环(通常称为“光圈”),并逐渐由光环的一部分变成完整的圆形光环,温度过高会使籽晶熔断,温度过低,将不会出现弯月面光环,甚至长出多晶。

熟练的操作人员,能根据弯月面光环的宽度及明亮程度来判断熔体的温度是否合适。

3.引细颈虽然籽晶都是采用无位错硅单晶制备的[16~19],但是当籽晶插入熔体时,由于受到籽晶与熔硅的温度差所造成的热应力和表面张力的作用会产生位错。

CZ晶体生长理论基础培训

CZ晶体生长理论基础培训

dt/dx=0
dt/dx<0 界面凹向熔体
0
x
SHANGYU JING SHENG M&E ENGINEERING CO., LTD
16
合理的热场

CZ法长晶时,热场中存在晶体和熔体两种形态,热场 合理性分析不能只局限于片面。

晶体温度分布情况 熔体温度分布情况 固液界面温度分布情况

SHANGYU JING SHENG M&E ENGINEERING CO., LTD
ltd结论要有足够大的晶体纵向温度梯度才能长出稳定的单晶要有足够大的晶体纵向温度梯度才能长出稳定的单晶足够大的纵向梯度使单晶生长时产生的潜热和熔体传给晶足够大的纵向梯度使单晶生长时产生的潜热和熔体传给晶体的热量带走保持结晶界面的温度平衡
单晶炉技 术 培 训
CZ法晶体生长理论
2010-7-10 1
晶体的物理特性
4
晶体的熔化热与结晶潜热
晶体熔化和凝固与时间关系对应曲线上出现“温度平台”是因 为熔化过程中,晶体由固态向液态变化一过程需吸收一定的热量 (熔化热),使晶体内原子有足够的能量冲破晶格束缚,破坏固态
结构。反之,凝固时过程会释放一定的结晶潜热。
SHANGYU JING SHENG M&E ENGINEERING CO., LTD
SHANGYU JING SHENG M&E ENGINEERING CO., LTD
3
晶体的物理特性 晶体各向异性
晶体在不同方向上导热性质、力学性质、电学 性质等各物理、化学性质不同,是因为晶体各晶 面格点密度的不同。
SHANGYU JING SHENG M&E ENGINEERING CO., LTD

促进剂cz生产工艺

促进剂cz生产工艺

促进剂cz生产工艺促进剂是一种添加剂,能够促进其他化学物质的反应速率或转化效果。

促进剂广泛应用于工业生产中,尤其在化学制药和农药生产中扮演着重要角色。

本文将介绍促进剂的生产工艺。

促进剂的生产工艺主要包括原料准备、发酵、提取和纯化等环节。

首先,需要准备原料。

促进剂的原料一般来自自然界的植物、动物或微生物。

这些原料经过采集或培养收获之后,需要进行初步处理,如洗涤、去皮、研磨等,以去除杂质并增加提取效率。

接下来是发酵过程。

发酵是将微生物用于生产过程中的一种常见方法。

选择合适的微生物菌种,并提供适宜的环境条件,如适宜的温度、pH值、氧气供应等。

通过控制这些条件,促进剂的生产菌种就能够快速繁殖,并产生出目标物质。

发酵过程中还需要控制微生物的生长速率和产物生成速率,以提高产量和质量。

之后是提取过程。

该过程旨在从发酵液中提取出所需的促进剂。

一般采用物理或化学方法对发酵液进行处理。

物理方法包括离心、过滤、浓缩等;化学方法则是利用溶剂、酸碱等与促进剂发生作用,使其转化成易于提取的形式。

提取过程中需要控制温度、酸碱度等条件,以确保促进剂的稳定性和提取效率。

最后是纯化过程。

由于提取得到的物质一般含有大量的杂质,需要经过纯化处理,以提高产品的纯度和质量。

纯化的方法可以是结晶、蒸馏、萃取等。

纯化过程中需要注意物质的稳定性和纯度的保持,同时也要考虑生产成本和效益。

以上就是促进剂的生产工艺的简要介绍。

不同的促进剂可能会具有不同的生产工艺,但总体来说,原料准备、发酵、提取和纯化是促进剂生产的基本环节。

通过科学合理的生产工艺,可以提高产量和质量,降低生产成本,从而更好地满足工业生产的需求。

CZ法单晶生长原理及工艺流程

CZ法单晶生长原理及工艺流程

CZ法单晶生长原理及工艺流程CZ法(Czochralski法)是单晶生长的一种常用方法,广泛应用于半导体材料的制备过程中。

本文将详细介绍CZ法的工作原理以及工艺流程。

CZ法的工作原理如下:1.准备工作:准备一块高纯度的多晶硅原料,并在其表面涂布一层助熔剂。

然后,将原料放入一个石英坩埚中。

2.熔化过程:将石英坩埚放入坩埚炉中,升高温度以熔化硅原料。

同时,通过坩埚底部的加热元件产生的热量,将熔融的硅原料保持在一定的温度。

3.指定晶向:在熔化的硅原料表面,放置一个指定晶向的晶体种子。

晶体种子通常是一个高纯度的单晶硅。

通过仔细控制晶体种子的摆放角度和旋转速度,从而决定新生长单晶的晶向。

4.拉扩晶体:缓慢下拉晶体种子,同时使晶体种子保持旋转。

晶体种子下拉的速度和旋转的速度需要精确控制,以确保逐渐形成一个高纯度的单晶硅。

同时,通过在坩埚底部和顶部分别加热和冷却,控制熔液的温度梯度,促使晶体的生长。

5.冷却固化:当晶体生长到一定大小时,停止加热并逐渐冷却晶体。

冷却过程中,晶体会逐渐固化并形成一个完整的单晶。

CZ法的工艺流程如下所示:1.原料准备:准备高纯度的多晶硅原料,通常通过化学分析和物理检验等方式确认其纯度。

2.石英坩埚处理:对石英坩埚进行处理,以确保其纯度。

首先,将石英坩埚清洗,并在高温下进行退火处理,以去除杂质和氧化物。

3.加热和熔化:将硅原料放入石英坩埚中,并将其放入坩埚炉中加热。

逐渐提高温度,直到硅原料完全熔化。

4.控制晶向:在熔融的硅原料表面放置单晶硅种子,通过旋转和倾斜种子,以确定新生长单晶的晶向。

5.拉扩晶体:缓慢下拉晶体种子,并保持旋转。

通过精确控制下拉速度和旋转速度,以及坩埚底部和顶部的加热和冷却,控制熔液的温度梯度,促使晶体的生长。

6.冷却固化:当晶体生长到一定大小时,停止加热并逐渐冷却晶体。

冷却过程中,晶体逐渐固化并形成一个完整的单晶。

7.后处理:根据需要,对生长好的单晶进行切割和抛光等后处理工艺,以得到符合要求的单晶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cz生长原理及工艺
New Roman "> CZ法的差不多原理,多晶体硅料经加热熔化,待温度合适后,通过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶锭的拉制。

炉内的传热、传质、流体力学、化学反应等过程都直截了当阻碍到单晶的生长与生长成的单晶的质量,拉晶过程中可直截了当操纵的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转与升降速率,炉内爱护气体的种类、流向、流速、压力等。

CZ法生长的具体工艺过程包括装料与熔料、熔接、细颈、放肩、转肩、等径生长和收尾如此几个时期。

1.装料、熔料
装料、熔料时期是CZ生长过程的第一个时期,这一时期看起来看起来专门简单,然而这一时期操作
正确与否往往关系到生长过程的成败。

大多数造成重大缺失的事故(如坩埚破裂)都发生在或起源于这一·时期。

2.籽晶与熔硅的熔接
当硅料全部熔化后,调整加热功率以操纵熔体的温度。

一样情形下,有两个传感器分不监测熔体表面和加热器保温罩石墨圆筒的温度,在热场和拉晶工艺改变不大的情形下,上一炉的温度读数可作为参考来设定引晶温度。

按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。

硅料全部熔化后熔体必须有一定的稳固时刻达到熔体温度和熔体的流淌的稳固。

装料量越大,则所需时刻越长。

待熔体稳固后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。

预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。

在熔接过程中要注意观看所发生的现象来判定熔硅表面的温度是否合适,在合适的温度下,熔接后在界面处会逐步产生由固液气三相交接处的弯月面所导致的光环(通常称为“光圈”),并逐步由光环的一部分变成完整的圆形光环,温度过高会使籽晶熔断,温度
过低,将可不能显现弯月面光环,甚至长出多晶。

熟练的操作人员,能按照弯月面光环的宽度及明亮程度来判定熔体的温度是否合适。

3.引细颈
尽管籽晶差不多上采纳无位错硅单晶制备的[16~19],然而当籽晶插入熔体时,由于受到籽晶与熔硅的温度差所造成的热应力和表面张力的作用会产生位错。

因此,在熔接之后应用引细颈工艺,即Dash技术,能够使位错消逝,建立起无位错生长状态。

Dash的无位错生长技术的原理见7.2节。

金刚石结构的硅单晶中位错的滑移面为{111}面。

当以[l00]、[lll]和[ll0]晶向生长时,滑移面与生长轴的最小夹角分不为36.16°、l9.28°和0°。

位错沿滑移面延伸和产生滑移,因此位错要延伸、滑移至晶体表面而消逝,以[100]晶向生长最容易,以[111]晶向生长次之,以[ll0]晶向生长情形若只存在延伸效应则位错会贯穿整根晶体。

细颈工艺通常采纳高拉速将晶体直径缩小到大约3mm。

在这种条件下,冷却过程中热应力专门小,可不能产生新的位错。

因此,细颈的最小长度L与直径D的关系可由下式表示:
式中,θ为滑移面与生长轴的最小夹角。

高拉速可形成过饱和点缺陷。

在这种条件下,即使[ll0]晶向生长位错也通过攀移传播到晶体表面。

实践发觉,重掺锑晶体细颈粗而短就能够排除位错,可能是通过攀移机制实现的。

在籽晶能承担晶锭重量的前提下,细颈应尽可能细长,一样直径之比应达到1:10。

4.放肩
引细颈时期完成后必须将直径放大到目标直径,当细颈生长至足够长度,同时达到一定的提拉速率,即可降低拉速进行放肩。

目前的拉晶工艺几乎都采纳平放肩工艺,即肩部夹角接近180°,这种方法降低了晶锭头部的原料缺失。

5.转肩
晶体生长从直径放大时期转到等径生长时期时,需要进行转肩,当放肩直径接近预定目标时,提升拉速,晶体逐步进入等径生长。

为保持液面位置不变,转肩时或转肩后应开始启动埚升,一样以适当的埚升并使之随晶升变化。

放肩时,直径增大专门快,几乎不显现弯月面光环,转肩过程中,弯月面光环慢慢显现,宽度增大,亮度变大,拉晶操作人员应能按照弯月面光环的宽度和亮度,准确地判定直径的变化,并及时调整拉速,保证转肩平滑,晶体直径平均并达到目标值。

从原理上讲也能够采纳升高熔体的温度来实现转肩,但升温会增强熔体中的热对流,降低熔体的稳固性,容易显现位错(断苞),因此,目前的工艺都采取提升拉速的快转肩工艺。

6.等径生长
当晶体差不多实现等径生长并达到目标直径时,就可实行直径的自动操纵。

在等径生长时期,不仅要操纵好晶体的直径,更为重要的是保持晶体的无位错生长。

晶体内总是存在着热应力,实践表明,晶体在生长过程中等温面不可能保持绝对的平面,而只要等温面不是平面就存在着径向温度梯度,形成热应力,晶体中轴向温度分布往往具有指数函数的形式,因而也必定会产生热应力。

当这些热应力超过了硅的临界应力时晶体中将产生位错。

由轴向温度梯度引起的位错密度ND能够用下式表示[41]:
式中,β是硅的热胀系数(在500~850℃温度范畴内约为
),b是柏格斯矢量的绝对
值,G是切变模量,σC是硅的临界应力,r 是晶体半径。

从式(4.28)可知,轴向温度梯度不引起位错的条件是
径向温度梯度引起的位错密度由下式表示
式中l是晶体长度。

从式(4.30)可知,径向温度梯度不引起位错的条件是
因此,必须操纵径向温度梯度和轴向温度梯度不能过大,使热应力不超过硅的临界应力,满足如此的条件才能保持无位错生长。

另一方面,多晶中夹杂的难熔固体颗粒、炉尘(坩埚中的熔体中的SiO挥发后,在炉膛气氛中冷却,混结成的颗粒)、坩埚起皮后的脱落物等,当它们运动至生长界面处都会引起位错的产生(常常称为断苞),其缘故一是作为非平均成核的结晶核,一是成为位错源。

调整热场的结构和坩埚在热场中的初始位置,能够改变晶体中的温度梯度。

调剂爱护气体的流量、压力,调整气体的流向,能够带走挥发物SiO和有害杂质CO气体,防止炉尘掉落,有利于无位错单晶的生长,同时也有改变晶体中的温度梯度的作用。

无位错状态的判定因晶体的晶向而异,一样可通过晶锭外侧面上的生长条纹(通常称为苞丝)、小平面(通常称为扁棱和棱线)来判定。

<111>生长时,在放肩时期有六条棱线显现,三条主棱线、三条副棱线、等晶时期晶锭上有苞丝和三个扁棱,因生长界面上小平面的显现而使弯月面光环上有明显的直线段部分。

生长晶向对准时,三个小平面应大小相等,相互间成l20°夹角。

但实际生长时往往由于生长方向的偏离,造成小平面有大有小,有的甚至消逝。

<100>方向生长时,有四条棱线,没有苞丝。

无位错生长时,在整根晶体上四条棱线应连续,只要有一条棱线消逝或显现不连续,讲明显现了位错(断苞)。

显现位错后的处理视情形不同处理方法也不同,当晶锭长度不长时,应进行回熔,然后重新拉晶;当晶锭超过一定的长度,而坩埚中还有许多熔料时,可将晶锭提起,冷却后取出,然后再拉出下一根晶锭;当
坩埚中的熔体所剩不多时,或者将晶体提起,或者连续拉下去,断苞部分作为回炉料。

拉晶人员应调整拉晶工艺参数,尽可能幸免显现位错。

那个地点所提到的“苞丝”实质上是旋转性表面条纹。

在4.2.5节中我们差不多讨论了在晶体转轴与温度场对称轴不一致的条件下,晶体旋转所产生的轴向(沿提拉方向)的生长速率起伏以及由此而产生的旋转性杂质条纹。

现在我们再来讨论在同样的条件下,晶体的径向(垂直于提拉方向)生长速率起伏所产生的结果。

一样来讲,位错反延的距离大约等于生长界面的直径。

因此,在拉晶终止时,应逐步缩小晶体的直径直至最后缩小成为一点,这一过程称为收尾。

收尾可通过提升拉速,也可通过升高温度的方法来实现,更多的是将两种方法结合起来,收尾时应操纵好收尾的速度,以防晶体过早地脱离液面。

目前先进的单晶炉能够实现从引晶到收尾的整个过程。

相关文档
最新文档