热力学基础计算题-答案分解
大学物理第九章热力学基础习题答案精品.doc

习题九9-1 一系统由图示的状态。
经Q&/到达状态。
,系统吸收了320J热量,系统对外作功126J。
⑴若。
沥过程系统对外作功42J,问有多少热量传入系统?(2)当系统由b沿曲线ba返回状态。
,外界对系统作功84 J,试问系统是吸热还是放热?热量是多少?懈]由热力学第一定律Q = \E + A p得星=。
-4在a<b过程中,E b - E = M = 0 - A = 320 -126 = 194/在讪过程中Q2 =^ + 4 = 194 + 42 = 236/o在ba过程中Q, = E. - E b + & = -AE + & = -194-84 = -278J本过程中系统放热。
9-2 2mol氮气由温度为300K,压强为 1.013x10*)(latm)的初态等温地压缩到 2.026 xl05Pa(2atm)o求气体放出的热量。
[解]在等温过程中气体吸收的热量等于气体对外做的功,所以Q T=A=/?TIn-^- = 2x8.3lx300x In-= -3.46x 103JM ]P,2mol 2即气体放热为3.46x103, o9-3 一定质量的理想气体的内能E随体积的变化关系为E- V图上的一条过原点的直线,如图所示。
试证此直线表示等压过程。
[证明]设此直线斜率为奴则此直线方程为E = ki,又E随温度的关系变化式为E = M—Cv ・T = k'TM mo i所以kV = k'T因此堂= C = C(C为恒量)T k又由理想气体的状态方程知,华=。
'(C'为恒量)所以P为恒量即此过程为等压过程。
9-4 2mol氧气由状态1变化到状态2所经历的过程如图所示:⑴沿I一所一2路径。
(2)1 — 2 直线。
试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化。
[解](1)在1-初一2这一过程中,做功的大小为该曲线下所围的面积,氧气对外做负功。
热力学基础计算题-问题详解

《热力学基础》计算题答案全1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)(1) 计算这个过程中气体对外所作的功.(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?解:(1) 等温过程气体对外作功为 ⎰⎰===0000333ln d d V V V V RT V VRT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分(2) 绝热过程气体对外作功为V V V p V p W V V V V d d 0003003⎰⎰-==γγ RT V p 1311131001--=--=--γγγγ 2分 =2.20×103 J 2分2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A .(1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=νC V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =νC V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分m 3) 53. 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)解:氦气为单原子分子理想气体,3=i(1) 等体过程,V =常量,W =0据 Q =E +W 可知 )(12T T C M M E Q V mol-=∆==623 J 3分 (2) 定压过程,p = 常量, )(12T T C M M Q p mol-==1.04×103 J E 与(1) 相同.W = Q E =417 J 4分(3) Q =0,E 与(1) 同W = E=623 J (负号表示外界作功) 3分4. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气).已知气体的初压强p 1=1atm ,体积V 1=1L ,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,(1) 在p -V 图上将整个过程表示出来.(2) 试求在整个过程中气体内能的改变.(3) 试求在整个过程中气体所吸收的热量.(1 atm =1.013×105 Pa)(4) 试求在整个过程中气体所作的功.解:(1) p -V 图如右图. 2分 (2) T 4=T1E =0 2分(3) )()(2312T T C M M T T C M M Q V mol p mol -+-= )]2(2[23)2(25111111p p V V V p -+-= 11211V p ==5.6×102 J 4分 (4) W =Q =5.6×102 J 2分(L)p (atm)5.1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量.(2) 气体对外界所作的功.(3) 气体吸收的热量.(4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ).由状态方程得 Δ(pV ) =R ΔT ,故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分6. 有1 mol 刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27℃,若经过一绝热过程,使其压强增加到16 atm .试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度.( 1 atm= 1.013×105 Pa , 玻尔兹曼常量k=1.38×10-23 J ·K -1,普适气体常量R =8.31J ·mol -1·K -1 )解:(1) ∵ 刚性多原子分子 i = 6,3/42=+=ii γ 1分 ∴ 600)/(11212==-γγp p T T K 2分 3121048.7)(21)/(⨯=-=∆T T iR M M E mol J 2分 (2) ∵绝热 W =-ΔE =-7.48×103 J (外界对气体作功) 2分(3) ∵ p 2 = n kT 2∴n = p 2 /(kT 2 )=1.96×1026 个/m 3 3分7. 如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知常量.试求:(1) 气体从体积V 1膨胀到V 2所作的功;(2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.解:(1) d W = p d V = (a 2 /V 2 )d Vp 1p p 12)11()/(2122221V V a dV V a dW W V V -===⎰⎰ 2分 (2) ∵ p 1V 1 /T 1 = p 2V 2 /T 2∴ T 1/ T 2 = p 1V 1 / (p 2V 2 )由 11/p a V =,22/p a V =得 p 1 / p 2= (V 2 /V 1 )2∴ T 1/ T 2 = (V 2 /V 1 )2 (V 1 /V 2) = V 2 /V 1 3分8. 汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=?解:据 iRT M M E mol 21)/(=, RT M M pV mol )/(= 2分 得 ipV E 21= 变化前 11121V ip E =, 变化后22221V ip E = 2分 绝热过程 γγ2211V p V p =即 1221/)/(p p V V =γ 3分题设 1221p p =, 则 21)/(21=γV V 即 γ/121)21(/=V V ∴ )21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ 3分9. 2 mol 氢气(视为理想气体)开始时处于标准状态,后经等温过程从外界吸取了 400 J的热量,达到末态.求末态的压强.(普适气体常量R =8.31J ·mol -2·K -1)解:在等温过程中, ΔT = 0Q = (M /M mol ) RT ln(V 2/V 1)得 0882.0)/(ln 12==RTM M Q V Vmol 即 V 2 /V 1=1.09 3分末态压强 p 2 = (V 1 /V 2) p 1=0.92 atm 2分10. 为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:等压过程W = p ΔV =(M /M mol )R ΔT 1分 iW T iR M M E mal 2121)/(==∆∆ 1分双原子分子5=i 1分∴ 721=+=+=∆W iW W E Q J 2分11.两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为V 0,其中盛有温度相同、压强均为p 0的同种理想气体.现保持气体温度不变,用外力缓慢移动活塞(忽略磨擦),使左室气体的体积膨胀为右室的2倍,问外力必须作多少功?为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:设左、右两室中气体在等温过程中对外作功分别用W 1、W 2表示,外力作功用W ′表示.由题知气缸总体积为2V 0,左右两室气体初态体积均为V 0,末态体积各为4V 0/3和2V 0/3 . 1分据等温过程理想气体做功:W =(M /M mol )RT ln(V 2 /V 1)得 34ln 34ln 0000001V p V V V p W == 得 32ln 32ln 0000002V p V V V p W == 2分 现活塞缓慢移动,作用于活塞两边的力应相等,则W ’+W 1=-W 221W W W --=')32ln 34(ln 00+-=V p 89ln 00V p = 2分12.一定量的理想气体,从A 态出发,经p -V 图中所示的过程到达B 态,试求在这过程中,该气体吸收的热量..解:由图可得A 态: =A A V p 8×105 JB 态: =B B V p 8×105 J∵ B B A A V p V p =,根据理想气体状态方程可知B A T T = E = 0 3分根据热力学第一定律得:)()(D B B A C A V V p V V p W Q -+-==6105.1⨯= J 2分13. 如图,体积为30L 的圆柱形容器内,有一能上下自由滑动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔、温度为127℃的单原子分子理想气体.若容器外大气压强为1标准大气压,气温为27℃,求当容器内气体与周围达到平衡时需向外放热多少?(普适气体常量 R = 8.31 J ·mol -1·K -1)解:开始时气体体积与温度分别为 V 1 =30×10-3 m 3,T 1=127+273=400 K∴气体的压强为 p 1=RT 1/V 1 =1.108×105 Pa大气压p 0=1.013×105 Pa , p 1>p 053)可见,气体的降温过程分为两个阶段:第一个阶段等体降温,直至气体压强p 2 = p 0,此时温度为T 2,放热Q 1;第二个阶段等压降温,直至温度T 3= T 0=27+273 =300 K ,放热Q 2 (1) )(23)(21211T T R T T C Q V -=-= ==1122)/(T p p T 365.7 K∴ Q 1= 428 J 5分 (2) )(25)(32322T T R T T C Q p -=-==1365 J ∴ 总计放热 Q = Q 1 + Q 2 = 1.79×103 J 5分14.一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中(1) 气体对外作的功;(2) 气体内能的增量;(3) 气体吸收的热量.(1 atm =1.013×105 Pa) 解:(1) 气体对外作的功等于线段c a 下所围的面积 W =(1/2)×(1+3)×1.013×105×2×103 J =405.2 J3分(2) 由图看出 P aV a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分15. 一定量的理想气体在标准状态下体积为 1.0×102 m 3,求下列过程中气体吸收的热量:(1) 等温膨胀到体积为 2.0×102 m 3;(2) 先等体冷却,再等压膨胀到 (1) 中所到达的终态.已知1 atm= 1.013×105 Pa ,并设气体的C V = 5R / 2.解:(1) 如图,在A →B 的等温过程中,0=∆T E , 1分 ∴ ⎰⎰===2121d d 11V V V V T T V V V p V p W Q )/ln(1211V V V p = 3分将p 1=1.013×105 Pa ,V 1=1.0×102 m 3和V 2=2.0×102 m 3代入上式,得 Q T ≈7.02×102 J 1分 (2) A →C 等体和C →B 等压过程中∵A 、B 两态温度相同,∴ ΔE ABC ∴ Q ACB =W ACB =W CB =P 2(V 2-V 1)3分又 p 2=(V 1/V 2)p 1=0.5 atm 1分∴ Q ACB =0.5×1.013×105×(2.0-1.0)×102 J ≈5.07×102 J 1分16. 将1 mol 理想气体等压加热,使其温度升高72 K ,传给它的热量等于1.60×103 J ,求:(1) 气体所作的功W ;(2) 气体内能的增量E ∆;(3) 比热容比.p(普适气体常量11K mol J 31.8--⋅⋅=R )解:(1) 598===∆∆T R V p W J 2分 (2) 31000.1⨯=-=∆W Q EJ 1分 (3) 11K mol J 2.22--⋅⋅==∆TQ C p11K mol J 9.13--⋅⋅=-=R C C p V 6.1==V p C C γ 2分17. 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=1.2×106 Pa ,V 0=8.31×10-3m 3,T 0 =300 K 的初态,后经过一等体过程,温度升高到T 1 =450 K ,再经过一等温过程,压强降到p = p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p / C V=5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .(2) 气体从始态变到末态的全过程中从外界吸收的热量.(普适气体常量R = 8.31 J ·mol -1·K -1) 解:(1) 由 35=V p C C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23= 2分 (2) 该理想气体的摩尔数 ==000RT V p ν 4 mol 在全过程中气体内能的改变量为 △E =νC V (T 1-T 2)=7.48×103 J 2分 全过程中气体对外作的功为 011ln p p RT W ν= 式中 p 1 ∕p 0=T 1 ∕T 0 则 30111006.6ln ⨯==T T RT W ν J . 2分 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J . 2分18.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED是任意过程,组成一个循环。
大学热力学基础习题答案

大学热力学基础习题答案大学热力学基础习题答案热力学是物理学中的重要分支,研究物质能量转化和能量守恒的规律。
在大学物理学课程中,热力学是一个重要的内容,学生通过习题练习可以更好地理解和掌握热力学的基本原理和计算方法。
下面将为大家提供一些大学热力学基础习题的答案,希望能够对大家的学习有所帮助。
1. 一摩尔理想气体在等温过程中,从体积V1膨胀到体积V2。
求气体对外界做功W。
答案:根据理想气体的状态方程PV=nRT,可以得到P1V1=P2V2,其中P1和P2分别为气体的初始和末态压强,R为气体常数,T为气体的温度。
由于等温过程中温度不变,所以P1V1=P2V2。
根据气体对外界做功的定义,W=PdV,其中P为气体的压强,dV为气体的体积变化。
将P1V1=P2V2代入上式,可以得到W=P1(V2-V1)。
2. 一个物体的内能U与温度T的关系为U=aT^3,其中a为常数。
求物体的热容C。
答案:热容C定义为物体单位温度变化时吸收或释放的热量与温度变化之比。
根据题目中给出的内能与温度的关系式,可以得到U=aT^3。
对该式两边求导,得到dU=3aT^2dT。
根据热容的定义,C=dU/dT,即C=3aT^2。
所以物体的热容C为3aT^2。
3. 一个物体从初始温度T1加热到温度T2,吸收的热量为Q。
如果将该物体再从温度T2降到温度T1,释放的热量是多少?答案:根据热力学第一定律,物体吸收的热量等于内能的增加,即Q=ΔU。
由于物体在加热过程中内能增加,所以ΔU>0。
而在降温过程中,物体内能减少,即ΔU<0。
根据热力学第一定律的表达式Q=ΔU+W,可以得到释放的热量为Q+W。
由于该物体在加热过程中对外界做正功,所以W>0。
因此,在降温过程中释放的热量为Q+W<0。
4. 一个物体的熵S与温度T的关系为S=bT^2,其中b为常数。
求物体的热容C。
答案:热容C定义为物体单位温度变化时吸收或释放的热量与温度变化之比。
热力学练习题全解

热力学练习题全解热力学是研究热能转化和热力学性质的科学,它是物理学和化学的重要分支之一。
在热力学中,我们通过解决一系列练习题来巩固和应用所学知识。
本文将为您解答一些热力学练习题,帮助您更好地理解和应用热力学的基本概念和计算方法。
1. 练习题一题目:一个理想气体在等体过程中,吸收了50 J 的热量,对外界做了30 J 的功,求该气体内能的变化量。
解析:根据热力学第一定律,内能变化量等于热量和功之和。
即ΔU = Q - W = 50 J - 30 J = 20 J。
2. 练习题二题目:一摩尔理想气体从A状态经过两个等温过程和一段绝热过程转变为B状态,A状态和B状态的压强和体积分别为P₁、P₂和V₁、V₂,已知 P₂ = 4P₁,V₁ = 2V₂,求这个过程中气体对外界做的总功。
解析:由两个等温过程可知,气体对外界做的总功等于两个等温过程的功之和。
即 W = W₁ + W₂。
根据绝热过程的特性,绝热过程中气体对外做功为零。
因此,只需要计算两个等温过程的功即可。
根据理想气体的状态方程 PV = nRT,结合已知条件可得:P₁V₁ = nRT₁①P₂V₂ = nRT₂②又已知 P₂ = 4P₁,V₁ = 2V₂,代入式①和式②可得:8P₁V₂ = nRT₁③4P₁V₂ = nRT₂④将式③和式④相减,可得:4P₁V₂ = nR(T₁ - T₂) ⑤由于这两个等温过程温度相等,即 T₁ = T₂,代入式⑤可得:4P₁V₂ = 0所以,这个过程中气体对外界做的总功 W = 0 J。
通过以上两个练习题的解答,我们可以看到在热力学中,我们通过应用热力学第一定律和理想气体的状态方程等基本原理,可以解答各种热力学问题。
熟练掌握这些计算方法,有助于我们更深入地理解热力学的基本概念,并应用于实际问题的解决中。
总结:本文对两道热力学练习题进行了详细解答,分别涉及了等体过程和等温过程。
通过这些例题的解析,读者可以理解和掌握热力学的基本计算方法,并将其应用于实际问题的求解中。
第13章 热力学基础习题及答案

第十三章习题热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是。
2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。
3、一定量的理想气体,分别经历如图(1) 所示的abc过程,(图中虚线ac为等温线),和图(2) 所示的def过程(图中虚线df为绝热线).判断这两种过程是吸热还是放热.abc过程热,def过程热.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是。
(=γC p/C V)5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.VV答案1、(1)(4)是正确的。
2、是A-B 吸热最多。
3、abc 过程吸热,def 过程放热。
4、P 0/2。
5、等压, 等压, 等压理想气体的功、内能、热量1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。
2、 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为 。
3、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209J ,气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K)4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.p (×105 Pa)3 m 3)5、 1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量. (2) 气体对外界所作的功. (3) 气体吸收的热量. (4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)答案1、3J2、-700J3、124.7 J ,-84.3 J4、500J ;700J5、解:)(25)(112212V p V p T T C E V -=-=∆ (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ).(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R .p p p 12循环过程1、 如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η的关系及这两个循环所作的净功W 1和W 2的关系是 η1 η2 ,W 1 W 22、 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:3、一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为_______ K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加________ K .4、如图,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η1_________,η2__________,η 3 __________.5、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.6、 1 mol 单原子分子理想气体的循环过程如T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各个过程系统吸收的热量; (2) 经一循环系统所作的净功; (3) 循环的效率. BAC DC 'D 'p p-3m 3)p O 3T 0 2T 0 T 0fad b c e(注:循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=0.693)答案 1、=;<2、S 1 = S 2.3、500 ; 1004、33.3% ; 50%; 66.7%5、解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W Q -= 且 1212T TQ Q =∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') =''='1/Q W η29.4% (2) ='-='η121T T 425 K6、解:单原子分子的自由度i =3.从图可知,ab 是等压过程,V a /T a = V b /T b ,T a =T c =600 KT b = (V b /V a )T a =300 K (1) )()12()(c b c b p ab T T R i T T C Q -+=-= =-6.23×103 J (放热) )(2)(b c b c V bc T T R iT T C Q -=-= =3.74×103 J (吸热) Q ca =RT c ln(V a /V c ) =3.46×103 J (吸热) (2) W =( Q bc +Q ca )-|Q ab |=0.97×103 J (3) Q 1=Q bc +Q ca , η=W / Q 1=13.4%热力学第二定律1、根据热力学第二定律判断下列说法的正误: (A) 功可以全部转换为热,但热不能全部转换为功. ( ) (B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 ( )(C) 不可逆过程就是不能向相反方向进行的过程.()(D) 一切自发过程都是不可逆的.()2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了___________________________的过程是不可逆的,而克劳修斯表述指出了________________的过程是不可逆的.3、所谓第二类永动机是指________________________________________,它不可能制成是因为违背了________________________________________.答案1、⨯,⨯,⨯,√2、功变热;热传导3、从单一热源吸热,在循环中不断对外作功的热机;热力学第二定律。
06 热力学基础习题答案

热力学基础习题参考答案1. 根据pV nRT =可以判断,D 正确。
2. 对于理想气体,其内能与温度成正比。
则由题意可知,温度随体积的变化关系为一直线。
根据pV nRT =可知,C 正确。
3. 根据热力学第一定律Q E A =∆+,两个过程中,0E ∆>且相同,而12A A >,因此B 正确。
4. 根据题意:气体自由膨胀,0A =;容器密闭绝热,0Q =;根据热力学第一定律Q E A =∆+,可知0E ∆=。
即始末两个状态温度相同。
由pV nRT =可知,B 正确。
5. 根据图示有b c d T T T >>,所以D 正确。
6. 根据两种摩尔热容的定义,温度升高相同时,内能改变量相同,等容过程对外不作功,而等压过程作功,因此吸收热量就多。
所以C 正确。
7. 对于双原子分子,自由度5i =,吸收热量2722P i Q C dT RdT RdT +===;内能改变量522V i E C dT RdT RdT ∆===;因此对外作功A Q E RdT =-=。
所以D 正确。
8. 根据热力学第二定律,B 正确。
二、填空题1、等温2、2112)(V V V V a -,降低3、2))((1221V V P P -+,)(251122V P V P - 4、>,<,>5、从概率较小的客观状态向概率较大的客观状态(在P216页倒数第15行); 状态的概率增大(在P216页倒数第11行);6、放热,吸热7、268J ,732J8、不能,不可能超过理论效率1. 根据热力学第一定律Q E A =∆+,当0E ∆=(即等温过程)时,Q A =。
2. 气体膨胀对外作功221121212()V V V V a V V aA pdV dV V VV -===⎰⎰。
根据a pV nRT V ==可知膨胀时温度降低。
3. 对外作功就是P-V 图上曲线的面积,所以1221()()2P P V V A +-=;内能增量22115()2V E C T PV PV ∆=∆=-。
热力学习题及答案解析

热力学习题及答案解析热力学是物理学中的一个重要分支,研究热量和能量转化的规律。
在学习热力学的过程中,经常会遇到一些题目,下面我将针对几个常见的热力学学习题目进行解析。
1. 热力学第一定律是什么?请用自己的话解释。
热力学第一定律,也被称为能量守恒定律,它表明能量在系统中的转化是守恒的。
简单来说,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
这个定律可以用数学公式表示为:ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做的功。
2. 一个物体从20°C加热到80°C,热量变化是多少?要计算这个问题,我们需要使用热容量的概念。
热容量表示单位温度变化时物体吸收或释放的热量。
对于一个物体,它的热容量可以表示为C = m × c,其中m表示物体的质量,c表示物体的比热容。
假设这个物体的质量为1kg,比热容为4.18J/g°C。
那么它的热容量就是C =1kg × 4.18J/g°C = 4.18J/°C。
根据热力学第一定律,热量的变化等于系统内能的变化,即Q = ΔU。
由于这个物体只发生温度变化,内能的变化可以表示为ΔU = C × ΔT,其中ΔT表示温度的变化。
根据题目给出的信息,温度变化为80°C - 20°C = 60°C。
将这些数值代入公式,我们可以得到热量变化为Q = ΔU = C × ΔT = 4.18J/°C × 60°C = 250.8J。
所以,这个物体的热量变化为250.8J。
3. 一个气体在等温过程中吸收了300J的热量,对外做了100J的功,求系统内能的变化。
在等温过程中,温度保持不变,因此根据热力学第一定律,系统内能的变化等于吸收的热量减去对外做的功,即ΔU = Q - W。
根据题目给出的信息,吸收的热量Q = 300J,对外做的功W = 100J。
大学热学题库及答案详解

大学热学题库及答案详解一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q - WB. ΔH = Q + WC. ΔS = Q/TD. ΔG = Q - W答案:A2. 在等压过程中,系统与外界交换的热能等于:A. ΔUB. ΔHC. ΔSD. ΔG答案:B3. 理想气体的内能只与温度有关,这是因为:A. 理想气体分子间无相互作用力B. 理想气体分子间有相互作用力C. 理想气体分子的动能与温度无关D. 理想气体分子的势能与温度无关答案:A二、填空题4. 根据热力学第二定律,不可能制造一个循环动作,其唯一结果就是______。
答案:从单一热源吸热全部转化为功而不产生其他效果5. 熵是热力学系统无序程度的度量,其变化量总是______。
答案:不小于零三、简答题6. 简述热力学第二定律的克劳修斯表述和开尔文-普朗克表述。
答案:热力学第二定律的克劳修斯表述是:不可能实现一个循环过程,其唯一结果就是从一个单一热源吸热并将这热量完全转化为功。
开尔文-普朗克表述是:不可能从单一热源吸热使之完全转化为功而不产生其他影响。
7. 解释什么是卡诺循环,并说明其效率。
答案:卡诺循环是一种理想化的热机循环,包括两个等温过程和两个绝热过程。
其效率由下式给出:η = 1 - (Tc/Th),其中Tc是冷热源的绝对温度,Th是热热源的绝对温度。
四、计算题8. 已知理想气体的摩尔质量为M,气体的温度从T1升高到T2,求气体的内能变化量ΔU。
答案:对于理想气体,内能变化量仅与温度变化有关,与压力和体积无关。
内能变化量可以通过以下公式计算:ΔU = n * Cv * (T2 -T1),其中n是气体的摩尔数,Cv是摩尔定容热容。
9. 一个绝热容器内装有一定量的气体,气体经历一个绝热过程,其体积从V1减小到V2,求气体的温度变化。
答案:对于绝热过程,根据热力学第一定律,Q = ΔU,且W = -P *ΔV。
由于绝热过程Q = 0,所以ΔU = -W = P * (V1 - V2)。
《大学物理》热力学基础练习题及答案解析

《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
热力学习题及答案解析

热力学习题及答案解析
热力学学习题及答案解析
热力学是物理学的一个重要分支,研究能量转化和热力学系统的性质。
在学习
热力学的过程中,我们经常会遇到各种热力学学习题,通过解题可以加深对热
力学知识的理解。
下面我们就来看看一些常见的热力学学习题及答案解析。
1. 问题:一个理想气体在等温过程中,体积从V1扩大到V2,求气体对外界所
做的功。
答案解析:在等温过程中,理想气体对外界所做的功可以用以下公式表示:
W = nRTln(V2/V1),其中n为气体的摩尔数,R为气体常数,T为温度。
根据这
个公式,我们可以计算出气体对外界所做的功。
2. 问题:一个物体从20摄氏度加热到80摄氏度,求其温度变化时吸收的热量。
答案解析:物体温度变化时吸收的热量可以用以下公式表示:Q = mcΔT,其
中m为物体的质量,c为物体的比热容,ΔT为温度变化。
根据这个公式,我们
可以计算出物体温度变化时吸收的热量。
3. 问题:一个热机从高温热源吸收了500J的热量,向低温热源放出了300J的
热量,求该热机的热效率。
答案解析:热机的热效率可以用以下公式表示:η = 1 - Q2/Q1,其中Q1为
热机从高温热源吸收的热量,Q2为热机向低温热源放出的热量。
根据这个公式,我们可以计算出该热机的热效率。
通过以上几个热力学学习题及答案解析,我们可以看到在解题的过程中,需要
灵活运用热力学知识,并且掌握一定的计算方法。
希望通过不断的练习和思考,我们能够更好地理解和掌握热力学知识,提高解题能力。
热力学习题与答案(原件)讲解

材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。
答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P S T G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。
(假设两固相具有相同的晶体结构)。
由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。
根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。
在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。
3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。
第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。
图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。
4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。
热力学基础习题、答案及解法(2011.1.6)

热力学基础习题、答案及解法一、选择题1. 如图一所示,一定量的理想气体,由平衡状态A 变到平衡状态B (b a P P =),则无论经过的是什么过程,系统必然 【B 】(A )对外做正功 (B )内能增加 (C )从外界吸热 (D )向外界吸热2. 对于室温下的单原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比Q W 等于 【C 】 (A )32 (B )21 (C )52 (D )72参考答案:T R MW p ∆=μT R i M Q p ∆⎪⎭⎫⎝⎛+=22μ522222=+=∆⎪⎭⎫ ⎝⎛+∆=i T R i M TR MQ W pp μμ3. 压强、体积、温度都相等的常温下的氧气和氦气,分别在等压过程中吸收了相等的热量,它们对外做的功之比为 【C 】 (A )1:1 (B )5:9 (C )5:7 (D )9:5参考答案:T R i M Q p ∆⎪⎭⎫ ⎝⎛+=22μ RT M pV μ=氦氧T T ∆⎪⎭⎫⎝⎛+=∆⎪⎭⎫ ⎝⎛+223225 P VA∙B∙O1图75=∆∆氦氧T T T R M W p ∆=μ 75=∆∆=氦氧氦氧T T W W p p 4. 在下列理想气体过程中,哪些过程可能发生? 【D 】 (A )等体积加热时,内能减少,同时压强升高 (B )等温压缩时,压强升高,同时吸收 (C )等压压缩时,内能增加,同时吸热 (D )绝热压缩时,压强升高,同时内能增加参考答案:0=dV 0=W T R i M E Q ∆⎪⎭⎫⎝⎛=∆=2μ 0=dT 0=∆E !11!2ln lnp p RT M V V RT MW Q μμ=== 0=dp T R i M Q ∆⎪⎭⎫ ⎝⎛+=22μ T R i M E ∆⎪⎭⎫ ⎝⎛=∆2μ T R MV p W ∆=∆=μ 0=dQ 0=Q ⎰⎪⎪⎭⎫⎝⎛--=-=∆⎪⎭⎫⎝⎛=-=∆--1011001112γγγγμV V V p pdV T R i M W E5. 分别在等温、等压、等容情况下,将400J 的热量传给标准状态下的2mol 氢气,关于3个过程热量和内能的变化说法正确的是【D 】 (A )等容过程做功最多,等压过程内能增加最多 (B )等压过程做功最多,等容过程内能增加最多 (C )等温过程做功最多,等压过程内能增加最多 (D )等温过程做功最多,等容过程内能增加最多参考答案:0=dV 0=W T R i M E Q ∆⎪⎭⎫⎝⎛=∆=2μ 0=dT 0=∆E !11!2ln lnp p RT M V V RT MW Q μμ===0=dp T R i M Q ∆⎪⎭⎫ ⎝⎛+=22μ T R i M E ∆⎪⎭⎫ ⎝⎛=∆2μ T R MV p W ∆=∆=μ 6. 如图所示,一定量的理想气体经历c b a →→过程,在此过程中气体从外界吸收热量Q ,系统内能变化ΔE ,则以下哪种说法是正确的? 【A 】 (A )系统从外界吸收热量,内能增大; (B )系统从外界吸收热量,内能减少; (C )系统向外界放出热量,内能增大; (D )系统向外界放出热量,内能减少。
热力学基础习题及解答

=41.8 +
2×0.082×8.6 1
= 46.2(升)
=0.046m3
目录 结束
6-21 一热机在1000K和300K的两热源 之间工作。如果(1)高温热源提高到1100 K,(2)低温热源降到200K,求理论上的 热机效率各增加多少?为了提高热机效率哪 一种方案更好?
目录 结束
解: h0= 1
6-4 2mol 的氮气,在温度为300K、压 强为1.0×105Pa时,等温地压缩到2.0×105 Pa。求气体放出的热量。
目录 结束
解:
Q T = AT
=
MMmolRT
ln
p 2
p 1Biblioteka = 2×8.31×300ln2= -3.4×103J
目录 结束
6-6 将500J的热量传给标准状态下2mol 的氢。 (1) 若体积不变,问这热量变为什么?氢的温
=
T2 T1
p
a
b
p1
T2
=
V2 V1
T1
=
3 2
×40 =
60K
p2
o V2
c V V 1 目录 结束
Qp = MMmoCl p (T2 T1)
=
25×3+ 2×8.31× (60 2
40 )
= 10.4×103 J
E2
E
1
=
M Mmol
i 2
R
(
T2
T1)
=
25×
3 2
×8.31× (60
40 )
度变为多少? (2) 若温度不变,问这热量变为什么?氢的压
强及体积各变为多少? (3) 若压强不变,问这热量变为什么?氢的温 度及体积各变为多少?
第三章化学热力学基础含答案

第三章 化学热力学基础1、以下物质在什么情况下⊿f H θm 、⊿f G θm 、S θm 数值为零。
H 2、O 2、Cl 2、Br 2、I 2、P 、Ag 、C 、Sn2、什么时候⊿r H θm =⊿f H θm (B )3、估算反应的温度条件:低温、高温、任何温度自发或不自发4、哪些属于状态函数:H 、G 、S 、U 、p 、V 、T 、n 、W 、Q 、Q p 、Q v5、方程式相加、减、倍数(分数)、正逆,⊿H 、⊿G 、⊿S 变化?6、转变温度计算7、标态下反应自发性计算判定:⊿r G θm练习:一、单选题1、如果一个反应的吉布斯自由能变为零,则反应:A 、能自发进行B 、 是吸热反应C 、是放热反应D 、 处于平衡状态2、已知: Mg(s) + Cl 2(g) = MgCl 2(s) mr H ∆= -642 kJ·mol -1,则: A 、在任何温度下,正向反应是自发的B 、在任何温度下,正向反应是不自发的C 、高温下,正向反应是自发的;低温下,正向反应不自发D 、高温下,正向反应是不自发的;低温下,正向反应自发3、某化学反应可表示为A(g) + 2B(s)−→−2C(g)。
已知 m r H ∆< 0,下列判断正确的是 :A 、 仅常温下反应可以自发进行B 、 仅高温下反应可以自发进行C 、 任何温度下反应均可以自发进行D 、 任何温度下反应均难以自发进行4、已知 CO(g) = C(s) +21O 2(g) 的 m r H ∆> 0, m r S ∆< 0, 则此反应A 、 低温下是自发变化B 、 高温下是自发变化C 、 低温下是非自发变化,高温下是自发变化D 、 任何温度下都是非自发的5、稳定单质在298 K ,100 kPa 下,下述正确的是:A 、 m S , m f G ∆为零B 、 m f H ∆不为零C 、 m S 不为零, m f H ∆为零D 、 m S , m f G ∆, m f H ∆均为零6、在下列反应中,焓变等于AgBr(s) 的 m f H ∆的反应是:A 、 Ag +(aq) + Br -(aq) = AgBr(s)B 、 2Ag(s) + Br 2(g) = 2AgBr(s)C 、 Ag(s) +21Br 2(l) = AgBr(s) D 、 Ag(s) +21Br 2(g) = AgBr(s)7、已知下列数据,哪个反应表示Δr H m Θ=Δf H m Θ (C 2H 5OH, l )A .2C(金)+3H 2(l)+1/2O 2(g ) = C 2H 5OH (l)B .2C(石)+3H 2(g l)+1/2O 2(l) =C 2H 5OH (l)C .2C(石)+3H 2(g)+1/2O 2(g )= C 2H 5OH (l)D .2C(石)+3H 2(g)+1/2O 2(g ) = C 2H 5OH (g)8、下列各热力学函数中,哪些函数值不是零?A 、⊿f H θm (O 2,g,298K);B 、⊿f G θm (I 2,s,298K);C 、 ⊿f H θm (Br 2,l,298K);D 、S θ(H 2,g,298K)9、一种反应在高温下能自发进行,而在低温下不能自发进行的条件是:A . Δr H θ m < 0 ,Δr S θ m < 0 ; B. Δr H θ m < 0,Δr S θ m > 0 ;C. Δr H θ m > 0,Δr S θ m > 0 ;D. Δr H θ m > 0,Δr S θ m < 010、 “反应3H 2(g)+N 2(g)=2NH 3(g)在标准状态下进行”的含义是:A 、在p(H 2)=p(N 2)=p(NH 3)=100KPa 条件下进行;B 、298K ,保持p(H 2)=p(N 2)=p(NH 3)=100KPa 条件下进行;C 、反应系统保持压力100KPa 条件下进行;D 、p=100KPa 的H 2和N 2混合,反应发生。
化学热力学基础习题解答

第一章 化学热力学基础1-1 气体体积功的计算式 dV P W e ⎰-= 中,为什么要用环境的压力e P 在什么情况下可用体系的压力体P答: 在体系发生定压变化过程时,气体体积功的计算式 dV P W e ⎰-= 中,可用体系的压力体P 代替e P ;1-2 298K 时,5mol 的理想气体,在1定温可逆膨胀为原体积的 2 倍; 2 定压下加热到373K ;3定容下加热到373K;已知 C v,m = ·mol -1·K -1;计算三过程的Q 、W 、△U 、△H 和△S;解 1 △U = △H = 02 kJ nC Q H m P P 72.13)298373(,=-==∆W = △U – Q P = - kJ3 kJ nC Q U m V V 61.10)298373(,=-==∆W = 01-3 容器内有理想气体,n=2mol , P=10P,T=300K;求 1 在空气中膨胀了1dm 3,做功多少 2 膨胀到容器内压力为 lP,做了多少功3膨胀时外压总比气体的压力小 dP , 问容器内气体压力降到 lP 时,气体做多少功解:1此变化过程为恒外压的膨胀过程,且Pa P e 510=2此变化过程为恒外压的膨胀过程,且Pa P e 510=3 VnRT P dP P P e =≈-= 1-4 1mol 理想气体在300K 下,1dm 3定温可逆地膨胀至10dm 3,求此过程的 Q 、W 、△U 及△H;解: △U = △H = 01-5 1molH 2由始态25℃及P 可逆绝热压缩至 5dm -3, 求1最后温度;2最后压力; 3 过程做功;解:1 3511178.2410298314.81-=⨯⨯==dm P nRT V W f dl p A dl p dVδ=-⋅=-⋅⋅=-⋅外外外2 Pa V nRT P 53222104.91053.565314.81⨯=⨯⨯⨯==- 3 )2983.565(314.85.21)(12,-⨯⨯⨯-=--=∆-=T T nC U W m V1-6 40g 氦在3P 下从25℃加热到50℃,试求该过程的△H 、△U 、Q 和W ;设氦是理想气体; He 的M=4 g·mol -1解: J nC Q H m P P 3.519625314.825440)298323(,=⨯⨯⨯=-==∆ W = △U – Q P =1-7 已知水在100℃ 时蒸发热为 J·g -1,则100℃时蒸发30g 水,过程的△U 、△H 、 Q 和W为多少计算时可忽略液态水的体积解: mol n 67.11830== 1-8 298K 时将1mol 液态苯氧化为CO 2 和 H 2O l ,其定容热为 -3267 kJ·mol -1 , 求定压反应热为多少解: C 6H 6 l + g → 6CO 2 g +3 H 2O l1-9 300K 时2mol 理想气体由ldm -3可逆膨胀至 10dm -3 ,计算此过程的嫡变;解: 11229.3810ln 314.82ln -⋅=⨯==∆K J V V nR S 1-10.已知反应在298K 时的有关数据如下C 2H 4 g + H 2O g → C 2H 5OH l△f H m /kJ·mol -1 - -C P , m / J·K -1·mol -1计算1298K 时反应的△r H m ;2反应物的温度为288K,产物的温度为348K 时反应的△r H m ;解1 △r H m = - + - = - kJ·mol -12 288K C 2H 4 g + H 2O g → C 2H 5OH l 348K↓△H 1 ↓△H 2 ↑△H 3298K C 2H 4 g + H 2O g → C 2H 5OH l 298K△r H m = △r H m 298K + △H 1 + △H 2 + △H 3= - + + ×298-288 + × 348-298×10-3= - kJ·mol -11-11 定容下,理想气体lmolN 2由300K 加热到600K ,求过程的△S;已知11,,)006.000.27(2--⋅⋅+=mol K J T C N m P解: T R C C m P m V 006.069.18,,+=-=1-12 若上题是在定压下进行,求过程的嫡变;解: ⎰+=∆600300006.000.27dT T T S 1-13 下,2mol 甲醇在正常沸点时气化,求体系和环境的嫡变各为多少已知甲醇的气化热△H m = ·mol -1解: 132.2082.337101.352-⋅=⨯⨯=∆=∆K J T H n S m 体系 1-14 绝热瓶中有373K 的热水,因绝热瓶绝热稍差,有4000J 的热量流人温度为298K 的空气中,求1绝热瓶的△S 体;2环境的△S 环;3总熵变△S 总;解:近似认为传热过程是可逆过程△S 总 = △S 体 + △S 环 = ·K -11-15 在298K 及标准压力下,用过量100%的空气燃烧 1mol CH 4 , 若反应热完全用于加热产物,求燃烧所能达到的最高温度;CH 4 O 2 CO 2 H 2O g N 2△f H m /k J ·mol -1- 0 - -C P , m / J·K -1·mol -1解; 空气中 n O 2 = 4mol , n N 2 = n O 2 ×79%÷21%= 15molCH 4g +2 O 2 → CO 2 g + 2H 2O g△r H m 298K = 2× + – = - kJ反应后产物的含量为:O 2 CO 2 H 2O g N 2n / mol 2 1 2 15 - ×103 + 2×+ 15× + + 2× T-298 = 0T = 1754K1-16.在110℃、105Pa 下使 1mol H 2Ol 蒸发为水蒸气,计算这一过程体系和环境的熵变;已知H 2Og 和H 2Ol 的热容分别为 J·K -1·g -1和 J·K -1·g -1,在100℃、105Pa 下H 2Ol 的的汽化热为 J·g -1;解: 1mol H 2Ol , 110℃, 105Pa ----→ 1mol H 2Og , 110℃, 105Pa↓H1 , S1↑H3 , S31mol H2Ol , 100℃, 105Pa ----→1mol H2Og , 100℃, 105PaH2 , S2= kJ= J·K-11-17 1mol ideal gas with C v,m= 21J·K-1·mol-1,was heated from 300K to 600K by 1 reversible isochoric process; 2reversible isobaric process. Calculate the △U separately.解:1由题知△U = n C v,m △T = 1×21×600-300= 6300J2 对由于△U只是温度的函数,所以△U2 = △U1 = 6300J1-18 Calculate the heat of vaporization of 1mol liquid water at 20℃, . △vap H m water = kJ·mol-1, C p,m water = J·K-1·mol-1, C p,m water vapor = J·K-1·mol-1 at 100℃, .解:1mol H2Ol , 20℃, 105Pa ----→1mol H2Og , 20℃, 105Pa↓H1 , ↑H3 ,1mol H2Ol , 100℃, 105Pa ----→1mol H2Og , 100℃, 105PaH2H+ nCp,mg △T△H =△H1 + △H2 +△H3 = nCp,ml △T+ n△vapθm= 1××100-20×10-3+ 1× + 1××20-100×10-3= kJ。
10-热力学基础习题解答

2.一定量理想气体,从状态A开始,分别经历等压、等温、绝热三种过程(AB、
AC、AD),其容积由V,都膨胀到2h,其中o
(A)气体内能增加的是等压过程,气体内能减少的的是等温过程。
(B)气体内能増加的是绝热过程,气体内能减少的的是等压过程。
(0气体内能增加的是等压过程,气体内能减少的的是绝热过程。
WT\-7\
6.热力学第二定律定性表述:开尔文表述、克劳修斯表述;热力学第二定律的统计意
义;
7.矯与熾增原理S=klnWAS=kin字NO\S = S2~S{= f_(^)(ir逆
J】1
习题
一、选择题
10. A
二、填空题
1.15J
2.2/5
3.1.6xlO4J
4.一丨叫丨;-\W2\
5.J;J
6.500;700
4.(1) 7/ = 10%;(2)W;.=3x104J
习题
一选择题
i.1摩尔氧r和1摩尔水蒸代(均视为刚性分子理想气体),在体积不变的情况下 吸收相等的热量,则它们的:
(A)温度升高相同,压强增加相同。(B)温度升高不同,压强增加不同。
(C)温度升高相同,压强增加不同。(D)温度升高不同,压强增加相同o
7
7.W/R;-W
3
8.尹M;0
2
g・
'Z+2 ' i+2
10. 8.31 J ; J
三、计算题
1.J ;麻=200 J;氐=0
(3)循环中气体总吸热Q=200J.
3.(1)治一X10°J ;(2)A£;fX104J:
(3)净功X103J:⑷"二13%
本章要点
1.体积功w = [ pdU
大学热学试题及答案解析

大学热学试题及答案解析一、选择题1. 热力学第一定律表明,能量守恒定律在热现象中同样适用,其数学表达式为:A. △U = Q + WB. △U = Q - WC. △U = Q + PD. △U = Q - P答案:B解析:热力学第一定律,也称为能量守恒定律,表示系统内能的变化等于系统吸收的热量减去系统对外做的功。
因此,正确的表达式是△U = Q - W。
2. 理想气体状态方程为:A. PV = nRTB. PV = mRTC. PV = nMRTD. PV = mMRT答案:A解析:理想气体状态方程描述了理想气体在一定温度和压力下体积和物质的量之间的关系。
其中,P表示压力,V表示体积,n表示物质的摩尔数,R表示理想气体常数,T表示温度。
二、填空题1. 热传导的三种基本方式是:______、______和______。
答案:导热、对流、辐射解析:热传导的三种基本方式分别是导热、对流和辐射。
导热是指热量通过物质内部分子振动传递;对流是指热量通过流体的宏观运动传递;辐射是指热量通过电磁波传递。
2. 根据热力学第二定律,不可能从单一热源取热使之完全变为有用功而不产生其他影响,这被称为______。
答案:开尔文-普朗克表述解析:热力学第二定律有多种表述方式,其中开尔文-普朗克表述指出,不可能从单一热源取热使之完全变为有用功而不产生其他影响。
三、简答题1. 简述热力学第三定律。
答案:热力学第三定律指出,当系统的温度趋近于绝对零度时,系统的熵趋近于一个常数。
解析:热力学第三定律是关于低温物理和熵的一个定律。
它表明,绝对零度是无法达到的,因为当系统温度趋近于绝对零度时,系统的熵趋近于一个常数,而不是零。
2. 解释为什么说热机的效率不可能达到100%。
答案:热机的效率不可能达到100%,因为根据热力学第二定律,不可能从单一热源取热使之完全变为有用功而不产生其他影响。
解析:热机是将热能转化为机械能的设备。
由于热力学第二定律的限制,热机在工作过程中不可避免地会有能量损失,如热量散失、摩擦等,因此其效率不可能达到100%。
热力学基础计算题

《热力学基础》计算题1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)(1) 计算这个过程中气体对外所作的功.(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?解:(1) 等温过程气体对外作功为⎰⎰===0000333ln d d V V V V RT V VRT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分(2) 绝热过程气体对外作功为V V V p V p W V V V V d d 00003003⎰⎰-==γγRT V p 1311131001--=--=--γγγγ 2分 =2.20×103 J 2分2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:(1) A →B : ))((211A B A B V V p p W -+==200 J .ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J . 150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分m 3) 53. 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)解:氦气为单原子分子理想气体,3=i(1) 等体过程,V =常量,W =0据 Q =∆E +W 可知)(12T T C M M E Q V mol-=∆==623 J 3分 (2) 定压过程,p = 常量,)(12T T C M M Q p mol-==1.04×103 J ∆E 与(1) 相同.W = Q - ∆E =417 J 4分(3) Q =0,∆E 与(1) 同W = -∆E=-623 J (负号表示外界作功) 3分4. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气).已知气体的初压强p 1=1atm ,体积V 1=1L ,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,(1) 在p -V 图上将整个过程表示出来.(2) 试求在整个过程中气体内能的改变.(3) 试求在整个过程中气体所吸收的热量.(1 atm =1.013×105 Pa)(4) 试求在整个过程中气体所作的功.解:(1) p -V 图如右图. 2分 (2) T 4=T 1∆E =0 2分(3))()(2312T T C M M T T C M M Q V mol p mol -+-= )]2(2[23)2(25111111p p V V V p -+-= 11211V p ==5.6×102 J 4分 (4) W =Q =5.6×102 J 2分5.1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量.(2) 气体对外界所作的功.(3) 气体吸收的热量.(4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)(L) p (atm) p 1p p 12解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则 )(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ).由状态方程得 Δ(pV ) =R ΔT ,故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分6. 有1 mol 刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27℃,若经过一绝热过程,使其压强增加到16 atm .试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度.( 1 atm= 1.013×105 Pa , 玻尔兹曼常量k=1.38×10-23 J ·K -1,普适气体常量R =8.31J ·mol -1·K -1 )解:(1) ∵ 刚性多原子分子 i = 6,3/42=+=ii γ 1分 ∴ 600)/(11212==-γγp p T T K 2分3121048.7)(21)/(⨯=-=∆T T iR M M E mol J 2分 (2) ∵绝热 W =-ΔE =-7.48×103 J (外界对气体作功) 2分(3) ∵ p 2 = n kT 2∴n = p 2 /(kT 2 )=1.96×1026 个/m 3 3分7. 如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知常量.试求:(1) 气体从体积V 1膨胀到V 2所作的功;(2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.解:(1) d W = p d V = (a 2 /V 2 )d V)11()/(2122221V V a dV V a dW W V V -===⎰⎰ 2分 (2) ∵ p 1V 1 /T 1 = p 2V 2 /T 2∴ T 1/ T 2 = p 1V 1 / (p 2V 2 )由 11/p a V =,22/p a V =得 p 1 / p 2= (V 2 /V 1 )2∴ T 1/ T 2 = (V 2 /V 1 )2 (V 1 /V 2) = V 2 /V 1 3分8. 汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=?解:据 iRT M M E mol21)/(=, RT M M pV mol )/(= 2分 得 ipV E 21= 变化前 11121V ip E =, 变化后22221V ip E = 2分 绝热过程 γγ2211V p V p = 即 1221/)/(p p V V=γ 3分题设 1221p p =, 则 21)/(21=γV V 即 γ/121)21(/=V V ∴ )21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ 3分9. 2 mol 氢气(视为理想气体)开始时处于标准状态,后经等温过程从外界吸取了 400 J的热量,达到末态.求末态的压强.(普适气体常量R =8.31J·mol -2·K -1)解:在等温过程中, ΔT = 0Q = (M /M mol ) RT ln(V 2/V 1)得 0882.0)/(ln 12==RTM M Q V Vmol 即 V 2 /V 1=1.09 3分末态压强 p 2 = (V 1 /V 2) p 1=0.92 atm 2分10. 为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:等压过程 W = p ΔV =(M /M mol )R ΔT 1分 内能增 iW T iR M M E mal 2121)/(==∆∆ 1分 双原子分子5=i 1分∴ 721=+=+=∆W iW W E Q J 2分11.两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为V 0,其中盛有温度相同、压强均为p 0的同种理想气体.现保持气体温度不变,用外力缓慢移动活塞(忽略磨擦),使左室气体的体积膨胀为右室的2倍,问外力必须作多少功?为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:设左、右两室中气体在等温过程中对外作功分别用W 1、W 2表示,外力作功用W ′表示.由题知气缸总体积为2V 0,左右两室气体初态体积均为V 0,末态体积各为4V 0/3和2V 0/3 . 1分据等温过程理想气体做功:W =(M /M mol )RT ln(V 2 /V 1)得 34ln 34ln0000001V p V V V p W == 得 32ln 32ln 0000002V p V V V p W == 2分 现活塞缓慢移动,作用于活塞两边的力应相等,则W’+W 1=-W 221W W W --=')32ln 34(ln 00+-=V p 89ln 00V p = 2分12.一定量的理想气体,从A 态出发,经p -V 图中所示的过程到达B 态,试求在这过程中,该气体吸收的热量..解:由图可得A 态: =A A V p 8×105 JB 态: =B B V p 8×105 J∵ B B A A V p V p =,根据理想气体状态方程可知B A T T =∆E = 0 3分根据热力学第一定律得:)()(D B B A C A V V p V V p W Q -+-==6105.1⨯= J 2分13. 如图,体积为30L 的圆柱形容器内,有一能上下自由滑动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔、温度为127℃的单原子分子理想气体.若容器外大气压强为1标准大气压,气温为27℃,求当容器内气体与周围达到平衡时需向外放热多少?(普适气体常量 R = 8.31 J ·mol -1·K -1)解:开始时气体体积与温度分别为 V 1 =30×10-3 m 3,T 1=127+273=400 K∴气体的压强为 p 1=RT 1/V 1 =1.108×105 Pa大气压p 0=1.013×105 Pa , p 1>p 0可见,气体的降温过程分为两个阶段:第一个阶段等体降温,直至气体压强p 2 = p 0,此时温度为T 2,放热Q 1;第二个阶段等压降温,直至温度T 3= T 0=27+273 =300 K ,放热Q 2(1) )(23)(21211T T R T T C Q V -=-= 365.7 K∴ Q 1= 428 J 5分(2) )(25)(32322T T R T T C Q p -=-==1365 J ∴ 总计放热 Q = Q 1 + Q 2 = 1.79×103 J 5分53)14.一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中(1) 气体对外作的功;(2) 气体内能的增量;(3) 气体吸收的热量.(1 atm =1.013×105 Pa) 解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J3分(2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分15. 一定量的理想气体在标准状态下体积为 1.0×10-2 m 3,求下列过程中气体吸收的热量:(1) 等温膨胀到体积为 2.0×10-2 m 3;(2) 先等体冷却,再等压膨胀到 (1) 中所到达的终态.已知1 atm= 1.013×105 Pa ,并设气体的C V = 5R / 2.解:(1) 如图,在A →B 的等温过程中,0=∆T E , 1分 ∴ ⎰⎰===2121d d 11V V V V T T V V V p V p W Q )/ln(1211V V V p = 3分 将p 1=1.013×105 Pa ,V 1=1.0×10-2 m 3和V 2=2.0×10-2 m 3 代入上式,得 Q T ≈7.02×102 J 1分 (2) A →C 等体和C →B 等压过程中 ∵A 、B 两态温度相同,∴ ΔE ABC = 0 ∴ Q ACB =W ACB =W CB =P 2(V 2-V 1)3分又 p 2=(V 1/V 2)p 1=0.5 atm 1分∴ Q ACB =0.5×1.013×105×(2.0-1.0)×10-2 J ≈5.07×102 J 1分16. 将1 mol 理想气体等压加热,使其温度升高72 K ,传给它的热量等于1.60×103 J ,求:(1) 气体所作的功W ;(2) 气体内能的增量E ∆;(3) 比热容比γ.(普适气体常量11K mol J 31.8--⋅⋅=R )解:(1) 598===∆∆T R V p W J 2分(2)31000.1⨯=-=∆W Q E J 1分 (3) 11K mol J 2.22--⋅⋅==∆TQ C p 11K mol J 9.13--⋅⋅=-=R C C p V6.1==V p C C γ 2分p17. 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=1.2×106 Pa ,V 0=8.31×10-3m 3,T 0 =300 K 的初态,后经过一等体过程,温度升高到T 1 =450 K ,再经过一等温过程,压强降到p = p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p / C V =5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .(2) 气体从始态变到末态的全过程中从外界吸收的热量.(普适气体常量R = 8.31 J·mol -1·K -1) 解:(1) 由 35=V p C C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23= 2分 (2) 该理想气体的摩尔数 ==000RT V p ν 4 mol 在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J 2分 全过程中气体对外作的功为 011ln p p RT W ν= 式中 p 1 ∕p 0=T 1 ∕T 0 则 30111006.6ln⨯==T T RT W ν J . 2分 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J . 2分18.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED是任意过程,组成一个循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《热力学基础》计算题答案全1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8.31 1--⋅⋅K mol J 1,ln 3=1.0986)(1) 计算这个过程中气体对外所作的功.(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少?解:(1) 等温过程气体对外作功为⎰⎰===0000333ln d d V V V V RT V VRT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分(2) 绝热过程气体对外作功为V V V p V p W V V V V d d 00003003⎰⎰-==γγRT V p 1311131001--=--=--γγγγ 2分 =2.20×103 J 2分2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:(1) A →B : ))((211A B A B V V p p W -+==200 J .ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J . 150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分3) 53. 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)解:氦气为单原子分子理想气体,3=i(1) 等体过程,V =常量,W =0据 Q =∆E +W 可知)(12T T C M M E Q V mol-=∆==623 J 3分 (2) 定压过程,p = 常量,)(12T T C M M Q p mol-==1.04×103 J ∆E 与(1) 相同.W = Q - ∆E =417 J 4分(3) Q =0,∆E 与(1) 同W = -∆E=-623 J (负号表示外界作功) 3分4. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与气缸壁之间无摩擦且无漏气).已知气体的初压强p 1=1atm ,体积V 1=1L ,现将该气体在等压下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热膨胀,直到温度下降到初温为止,(1) 在p -V 图上将整个过程表示出来.(2) 试求在整个过程中气体内能的改变.(3) 试求在整个过程中气体所吸收的热量.(1 atm =1.013×105 Pa)(4) 试求在整个过程中气体所作的功.解:(1) p -V 图如右图. 2分 (2) T 4=T 1∆E =0 2分(3))()(2312T T C M M T T C M M Q V mol p mol -+-= )]2(2[23)2(25111111p p V V V p -+-= 11211V p ==5.6×102 J 4分 (4) W =Q =5.6×102 J 2分5.1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量.(2) 气体对外界所作的功.(3) 气体吸收的热量.(4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)(L) p (atm) p 1p p 12解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则 )(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ).由状态方程得 Δ(pV ) =R ΔT ,故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分6. 有1 mol 刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27℃,若经过一绝热过程,使其压强增加到16 atm .试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度.( 1 atm= 1.013×105 Pa , 玻尔兹曼常量k=1.38×10-23 J ·K -1,普适气体常量R =8.31J ·mol -1·K -1 )解:(1) ∵ 刚性多原子分子 i = 6,3/42=+=ii γ 1分 ∴ 600)/(11212==-γγp p T T K 2分3121048.7)(21)/(⨯=-=∆T T iR M M E mol J 2分 (2) ∵绝热 W =-ΔE =-7.48×103 J (外界对气体作功) 2分(3) ∵ p 2 = n kT 2∴n = p 2 /(kT 2 )=1.96×1026 个/m 3 3分7. 如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知常量.试求:(1) 气体从体积V 1膨胀到V 2所作的功;(2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.解:(1) d W = p d V = (a 2 /V 2 )d V)11()/(2122221V V a dV V a dW W V V -===⎰⎰ 2分 (2) ∵ p 1V 1 /T 1 = p 2V 2 /T 2∴ T 1/ T 2 = p 1V 1 / (p 2V 2 )由 11/p a V =,22/p a V =得 p 1 / p 2= (V 2 /V 1 )2∴ T 1/ T 2 = (V 2 /V 1 )2 (V 1 /V 2) = V 2 /V 1 3分8. 汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减少了一半,则变化前后气体的内能之比 E 1∶E 2=?解:据 iRT MM E mol 21)/(=, RT M M pV m ol )/(= 2分 得 ipV E 21= 变化前 11121V ip E =, 变化后22221V ip E = 2分 绝热过程 γγ2211V p V p = 即1221/)/(p p V V =γ 3分 题设 1221p p =, 则 21)/(21=γV V 即 γ/121)21(/=V V ∴ )21/(21/221121V ip V ip E E =γ/1)21(2⨯=22.1211==-γ 3分9. 2 mol 氢气(视为理想气体)开始时处于标准状态,后经等温过程从外界吸取了 400 J的热量,达到末态.求末态的压强.(普适气体常量R =8.31J·mol -2·K -1)解:在等温过程中, ΔT = 0Q = (M /M mol ) RT ln(V 2/V 1)得 0882.0)/(ln 12==RTM M Q V Vmol 即 V 2 /V 1=1.09 3分末态压强 p 2 = (V 1 /V 2) p 1=0.92 atm 2分10. 为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:等压过程 W = p ΔV =(M /M mol )R ΔT 1分iW T iR M M E mal 2121)/(==∆∆ 1分 双原子分子5=i 1分∴ 721=+=+=∆W iW W E Q J 2分11.两端封闭的水平气缸,被一可动活塞平分为左右两室,每室体积均为V 0,其中盛有温度相同、压强均为p 0的同种理想气体.现保持气体温度不变,用外力缓慢移动活塞(忽略磨擦),使左室气体的体积膨胀为右室的2倍,问外力必须作多少功?为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少热量?解:设左、右两室中气体在等温过程中对外作功分别用W 1、W 2表示,外力作功用W ′表示.由题知气缸总体积为2V 0,左右两室气体初态体积均为V 0,末态体积各为4V 0/3和2V 0/3 . 1分据等温过程理想气体做功:W =(M /M mol )RT ln(V 2 /V 1)得 34ln 34ln 0000001V p V V V p W == 得 32ln 32ln 0000002V p V V V p W == 2分 现活塞缓慢移动,作用于活塞两边的力应相等,则 W’+W 1=-W 2 21W W W --=')32ln 34(ln00+-=V p 89ln 00V p = 2分12.一定量的理想气体,从A 态出发,经p -V 图中所示的过程到达B 态,试求在这过程中,该气体吸收的热量..解:由图可得A 态: =A A V p 8×105 JB 态: =B B V p 8×105 J∵ B B A A V p V p =,根据理想气体状态方程可知B A T T =∆E = 0 3分根据热力学第一定律得:)()(D B B A C A V V p V V p W Q -+-==6105.1⨯= J 2分13. 如图,体积为30L 的圆柱形容器内,有一能上下自由滑动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔、温度为127℃的单原子分子理想气体.若容器外大气压强为1标准大气压,气温为27℃,求当容器内气体与周围达到平衡时需向外放热多少?(普适气体常量 R = 8.31 J ·mol -1·K -1)解:开始时气体体积与温度分别为 V 1 =30×10-3 m 3,T 1=127+273=400 K∴气体的压强为 p 1=RT 1/V 1 =1.108×105 Pa大气压p 0=1.013×105 Pa , p 1>p 0可见,气体的降温过程分为两个阶段:第一个阶段等体降温,直至气体压强p 2 = p 0,此时温度为T 2,放热Q 1;第二个阶段等压降温,直至温度T 3= T 0=27+273 =300 K ,放热Q 2(1) )(23)(21211T T R T T C Q V -=-= ==1122)/(T p p T 365.7 K∴ Q 1= 428 J 5分(2) )(25)(32322T T R T T C Q p -=-==1365 J ∴ 总计放热 Q = Q 1 + Q 2 = 1.79×103 J 5分53)14.一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中(1) 气体对外作的功;(2) 气体内能的增量; (3) 气体吸收的热量.(1 atm =1.013×105 Pa) 解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J3分(2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分15. 一定量的理想气体在标准状态下体积为 1.0×10-2 m 3,求下列过程中气体吸收的热量:(1) 等温膨胀到体积为 2.0×10-2 m 3;(2) 先等体冷却,再等压膨胀到 (1) 中所到达的终态.已知1 atm= 1.013×105 Pa ,并设气体的C V = 5R / 2.解:(1) 如图,在A →B 的等温过程中,0=∆T E , 1分 ∴ ⎰⎰===2121d d 11V V V V T T V V V p V p W Q )/ln(1211V V V p = 3分 将p 1=1.013×105 Pa ,V 1=1.0×10-2 m 3和V 2=2.0×10-2 m 3 代入上式,得 Q T ≈7.02×102 J 1分 (2) A →C 等体和C →B 等压过程中 ∵A 、B 两态温度相同,∴ ΔE ABC = 0 ∴ Q ACB =W ACB =W CB =P 2(V 2-V 1)3分又 p 2=(V 1/V 2)p 1=0.5 atm 1分∴ Q ACB =0.5×1.013×105×(2.0-1.0)×10-2 J ≈5.07×102 J 1分16. 将1 mol 理想气体等压加热,使其温度升高72 K ,传给它的热量等于1.60×103 J ,求:(1) 气体所作的功W ;(2) 气体内能的增量E ∆;(3) 比热容比γ.(普适气体常量11K mol J 31.8--⋅⋅=R )解:(1) 598===∆∆T R V p W J 2分(2)31000.1⨯=-=∆W Q E J 1分 (3) 11K mol J 2.22--⋅⋅==∆TQ C p 11K mol J 9.13--⋅⋅=-=R C C p V6.1==V p C C γ 2分p17. 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=1.2×106 Pa ,V 0=8.31×10-3m 3,T 0 =300 K 的初态,后经过一等体过程,温度升高到T 1 =450 K ,再经过一等温过程,压强降到p = p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p / C V =5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .(2) 气体从始态变到末态的全过程中从外界吸收的热量.(普适气体常量R = 8.31 J·mol -1·K -1) 解:(1) 由 35=V p C C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23= 2分 (2) 该理想气体的摩尔数 ==000RT V p ν 4 mol 在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=7.48×103 J 2分 全过程中气体对外作的功为 011ln p p RT W ν= 式中 p 1 ∕p 0=T 1 ∕T 0 则 30111006.6ln⨯==T T RT W ν J . 2分 全过程中气体从外界吸的热量为 Q = △E +W =1.35×104 J . 2分18.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED是任意过程,组成一个循环。