人教部编版初中数学中考重难点知识梳理
初中数学的重点难点知识总结
初中数学的重点难点知识总结数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
下面是小编为大家整理的关于初中数学的重点难点知识,希望对您有所帮助!等比数列q的取值范围应该是|q|<1且q≠0,数列和收敛于a1/(1-q)。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。
其中{an}中的每一项均不为0。
注:q=1时,an为常数列。
等比数列性质(1)若m、n、p、q∈N+,且m+n=p+q,则am×an=ap×aq。
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)若“G是a、b的等比中项”则“G2=ab(G≠0)”。
(4)若(an)为等比数列且各项为正,公比为q,则(log以a为底an 的对数)成等差,公差为log以a为底q的对数。
(5)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)×qn,它的指数函数y=ax有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
等阶和同阶的区别区别:等价,不是等阶。
等价无穷小就是同阶无穷小,同阶无穷小不一定是等价无穷小。
同阶无穷小含义是无穷小量,是极限为零的量。
例如若x→0时,limf(X)=0,则称f(X)是当x→0时的无穷小量,简称无穷小。
同阶无穷小量,其主要对于两个无穷小量的比较而言,意思是两种趋近于0的速度相仿。
1.等价无穷小含义等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。
无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。
2.无穷小量无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。
无穷小量即以数0为极限的变量,无限接近于0。
中考数学复习 查补重难点 整式相关运算与探索表达规律(解析版)
查补重难点01.整式相关运算与探索表达规律考点一:幂运算与乘法公式1.幂运算公式:⎪⎩⎪⎨⎧∙===∙∙+底数分别乘方的积)(积的乘法,等于各个,指数相乘)(幂的乘方,底数不变数不变,指数相加)(同底数幂的乘法,底n n n n m n m n m n m b a ab a a a a a )()(2.乘法公式:(1)平方差公式:();22)(b a b a b a -=-+(2)完全平方公式:()2222222)(2b ab a b a b ab a b a +-=-++=+;题型1.幂运算与乘法公式基本运算1)符号处理不当:在幂的运算中,很多同学计算时符号容易出错。
计算时,可以先确定计算符号,负数进行运算时,看次方,负数的奇次幂结果为负,偶次幂结果为正。
2)忽视指数为“1”的幂:在幂的运算中,有些同学会忽视指数为“1”的幂,从而导致计算的错误。
指数为“1”时通常省略不写,但是计算时不能漏加。
3)忽视0指数幂、负指数幂成立的条件:在计算零指数幂或负指数幂时,要注意,底数不能等于0.4)运用完全平方公式时,①丢掉系数的平分;②丢掉中间乘积项或漏了系数的“2倍”;③不能正确区分中间项符号特征。
5)运用平方差公式时,没找准“a ”与“b ”。
例1.(2023·江苏镇江·中考真题)下列运算中,结果正确的是()A .22423m m m +=B .243·m m m =C .422m m m ÷=D .246()m m =【答案】C【分析】根据合并同类项、同底数幂的乘法运算和除法运算、幂的乘方运算逐项分析,即可求解.【详解】解:22223m m m +=,故A 选项错误;24246m m m m +⋅==,故B 选项错误;42422m m m m -÷==,故C 选项正确;()42248m m m ⨯==,故D 选项错误.故选:C .【点睛】本题考查了合并同类项、同底数幂的乘法运算和除法运算、幂的乘方运算,掌握以上运算法则是解题的关键.变式1.(2023年江苏省镇江市中考数学真题)如图,在甲、乙、丙三只袋中分别装有球29个、29个、5个,先从甲袋中取出2x 个球放入乙袋,再从乙袋中取出(22)x y +个球放入丙袋,最后从丙袋中取出2y 个球放入甲袋,此时三只袋中球的个数相同,则+2x y 的值等于()A .128B .64C .32D .16【答案】A 【分析】先表示每个袋子中球的个数,再根据总数可知每个袋子中球的个数,进而求出2x ,2y ,最后逆用同底数幂相乘法则求出答案.【详解】调整后,甲袋中有29-22)x y +(个球,29222292x x y y +--=-,乙袋中有(292)y -个球,52+2252x y y x +-=+,丙袋中有(52)x +个球.∵一共有29+29+5=63(个)球,且调整后三只袋中球的个数相同,∴调整后每只袋中有633=21÷(个)球,∴52=21x +,292=21y -,∴216x =,28y =,∴222168128x y x y +=⋅=⨯=.故选:A .【点睛】本题考查了幂的混合运算,找准数量关系,合理利用整体思想是解答本题的关键.变式2.(2023·四川成都·统考中考真题)下列计算正确的是()A .22(3)9x x -=-B .27512x x x +=C .22(3)69x x x -=-+D .22(2)(2)4x y x y x y -+=+【答案】C【分析】分别根据积的乘方、合并同类项、乘法公式逐项求解判断即可.【详解】解:A 、22(3)9x x -=,故原计算错误,不符合题意;B 、7512x x x +=,故原计算错误,不符合题意;C 、22(3)69x x x -=-+,故原计算正确,符合题意;D 、22(2)(2)4x y x y x y -+=-,故原计算错误,不符合题意,故选:C .【点睛】本题考查积的乘方、合并同类项、乘法公式,熟记完全平方公式和平方差公式,正确判断是解答的关键.题型2.完全平方公式变形求值(知二求二)乘法公式求值类的题目,关键在于恒等变形,反复利用平方差公式和完全平方公式,结合公式中各项的情况,做出相应的变形。
中考数学知识点归纳人教版
中考数学知识点归纳人教版
中考数学是中学阶段数学知识的重要总结,涵盖了代数、几何、统计与概率等多个领域。
以下是人教版中考数学知识点的归纳:
一、数与代数
1. 实数:包括有理数和无理数,理解实数的性质和运算规则。
2. 代数式:包括整式和分式,掌握代数式的运算法则和化简技巧。
3. 方程与不等式:一元一次方程、一元二次方程、分式方程的解法,以及不等式的解集。
4. 函数:一次函数、反比例函数、二次函数的性质和图像,理解函数的基本概念和应用。
二、几何
1. 平面图形:包括线段、角、三角形、四边形、圆等,掌握其性质和计算方法。
2. 立体图形:包括立体图形的表面积和体积计算。
3. 图形的变换:包括平移、旋转、反射等,理解图形变换的基本概念和性质。
4. 相似与全等:理解相似图形和全等图形的性质,掌握证明方法。
三、统计与概率
1. 数据的收集与处理:包括数据的收集、整理和描述,掌握统计图表的绘制。
2. 概率:理解概率的基本概念,掌握概率的计算方法。
四、综合应用
1. 数学建模:将数学知识应用于解决实际问题,培养解决实际问题的能力。
2. 数学思维:包括逻辑推理、抽象思维等,提高学生的数学思维能力。
结束语
通过以上对中考数学知识点的归纳,我们可以看出,中考数学不仅要
求学生掌握基础的数学知识,更注重培养学生的数学思维和解决实际
问题的能力。
希望同学们能够系统地复习这些知识点,为中考做好充
分的准备。
中考数学复习重点重难点知识点精讲
中考数学复习重点重难点知识点精讲中考数学作为一门综合性学科,涉及面广,知识点繁多。
在备考过程中,掌握数学的重点、难点知识点,是提高成绩的关键。
本文将针对中考数学的复习,对重点、难点知识进行精讲。
一、整数与有理数整数是数学的基础,要求同学们掌握整数的四则运算、绝对值、比较大小等基本性质。
在中考中,整数的四则运算和求绝对值的问题经常出现,需要同学们熟练掌握。
有理数是整数和分数的统称,同时也是中考的重点内容。
在复习中,要注意各种形式的有理数的转化和比较。
同时,还要掌握有理数的四则运算,包括加减乘除。
二、代数式与方程式代数式是由数和字母通过运算符号组成的式子。
在数学中,代数式是解决问题的重要手段。
同学们需要掌握代数式的基本性质、展开和因式分解等操作。
方程式是用等号连接的含有未知数的代数式。
在中考中,方程式是经常出现的题型,要求同学们掌握解方程的方法与步骤。
特别是一元一次方程、一元二次方程的解法,需要熟练掌握。
三、图形与几何几何是数学的一大分支,其重要性不言而喻。
在中考数学中,图形与几何占据了相当大的比重。
同学们需重点掌握图形的基本性质、定理和公式。
例如,长方形、正方形、平行四边形等基本图形的性质,需要同学们熟练掌握。
同时,还要掌握计算图形的周长、面积等相关计算方法。
四、概率与统计概率与统计是数学中的实际应用领域,也是中考数学的一大重点。
同学们需要掌握基本的概率与统计的概念,包括事件、样本空间、随机性等。
同时,在中考中,概率与统计经常与图表相结合出现,需要同学们熟练读取和分析图表中的数据,并作出相应的判断和推理。
此外,还需要熟练掌握概率的计算方法,包括概率的加法原理和乘法原理等。
结语:以上便是中考数学复习的重点、难点知识点的精讲。
同学们在备考中,应根据自己的实际情况,有针对性地进行复习,加强对难点知识的理解和掌握。
同时,多做题、多思考,提高解题能力和应用能力。
相信只要同学们认真复习,就一定能够在中考中取得优异的成绩。
(完整版)新人教版初中数学知识点重难点归纳整理
新人教版初中数学知识点重难点归纳整理分章节知识点归纳七年级上册第一章 有理数 1 正数和负数 2 有理数 3 有理数的加减法 4 有理数的乘除法 5 有理数的乘方详细内容1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章 整式的加减 1 整式 2 整式的加减详细内容1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
人教版初中数学中考复习知识点归纳总结全册
人教版初中数学中考复习知识点归纳总结
全册
第一章:有理数
1. 有理数的概念和表示方法
- 有理数是可以表示为两个整数的比例的数,包括整数、分数
和小数。
- 有理数可以用分数的形式表示,也可以用小数的形式表示。
2. 有理数的比较和大小关系
- 有理数可以通过大小关系进行比较,可以使用大小符号(<, >, =)进行表示。
3. 有理数的加法和减法
- 有理数之间可以进行加法和减法运算,运算结果仍为有理数。
...
第二章:代数式及其计算
1. 代数式的概念和性质
- 代数式是由数、字母和运算符号组成的表达式。
- 代数式可以进行加法、减法、乘法和除法运算。
2. 代数式的加法和减法
- 代数式之间可以进行加法和减法运算,运算结果仍为代数式。
...
第三章:方程及其应用
1. 方程的概念和解的概念
- 方程是含有未知数的等式。
- 方程的解是能使方程成立的值。
2. 一元一次方程
- 一元一次方程是一个未知数的一次方程。
- 解一元一次方程的方法包括移项、合并同类项、化简和求解。
...
(继续列举下一章节的内容)
总结
本文档总结了人教版初中数学中考的重点知识点,包括有理数、代数式及其计算、方程及其应用等多个章节的内容。
每个章节介绍
了该主题的概念、性质和解题方法。
这些知识点是中考数学复习的
重点内容,希望能对同学们的复习提供帮助。
人教版:中考数学必考知识点全总结!速收藏,考试重难点轻松解决
人教版:中考数学必考知识点全总结!速收藏,考试重难点轻
松解决
想要中考数学考得好,首先知识框架肯定少不了,每单元的重点内容是什么,哪些又是考试必考的内容,都是学好数学的先决条件。
很多同学认为初中数学难度大,其实就在于缺少巩固归纳的能力,以至于复习的时候根本不知道哪部分还比较欠缺,这样一来学习效率不但得不到提高,考试成绩也很难取得高分。
中考数学的考点内容有很多,函数、几何、代数等都是必考的内容。
所以相关的公式定理首先必须要明确,重视基础数学概念,加深对知识点的一个理解,然后在合理运用这些知识点去解决数学难题。
另外多做相应的练习题也非常重要,数学本身就是一门理科学科,多做多练,提前熟悉了考试题型后,肯定是会非常有帮助的。
下面为了帮助大家,老师今天特地将,人教版中考数学必考知识点进行了全总结!希望同学们速速收藏好,因为这些都是考试必考的内容,吃透掌握,考试重难点定能轻松解决,数学成绩定会有很大的提升。
【精编】中考必备:人教版初中数学知识点总结(完整版)2023
【精编】中考必备:人教版初中数学知识点总结(完整版)2023一、数与式1.数的认识1.1 自然数自然数是人们最早形成的概念之一,即从1开始逐一加1的数字序列。
自然数包括正整数和零。
1.2 负数负数是小于零的整数。
负数在数轴上表示为向左移动。
1.3 整数整数由自然数、0和负数组成。
1.4 分数分数表示除法的一种形式。
分数由分子和分母组成,分子表示被除数,分母表示除数。
1.5 小数小数是不能化为整数比的数,可以写成分数的带分数形式或非循环小数和循环小数的形式。
2.有理数有理数是可以表示为两个整数之比的数,包括整数、分数和小数。
3.实数实数是有理数和无理数的统称。
4.函数函数是一种特殊的关系,它把一个数集的每个元素都对应到另一个数集的唯一元素上。
函数包括定义域、值域、图像等概念。
5.代数式及其计算代数式是用数和字母表示的式子。
代数式的计算包括合并同类项、提取公因式、配方法、乘法公式、因式分解等。
二、图形与几何1.平面图形平面图形包括点、线段、射线、直线、角、三角形、四边形、多边形和圆等。
2.三视图及等腰三角形三视图是一个物体分别在正、左、上三个方向上的投影图。
等腰三角形是指两边边长相等的三角形。
3.全等三角形及判断相似全等三角形是指对应的三边和三个内角全部相等的三角形。
相似三角形是指对应的两个角相等的三角形。
4.平行线及其性质平行线是指在同一个平面上不相交的直线。
平行线的性质包括平行公理、平行线性质、平行线定理等。
5.比例与分析比例是指两个数或两个量之间的相等关系。
比例的应用包括比例尺、比例方程、比例的四性质等。
6.圆与圆周角圆是指平面上任意一点与一个确定的点之间的距离相等的点的集合。
圆周角是指与圆心角对应的两条弧所夹的角。
7.计算器的使用计算器是辅助学习数学的工具之一,学生需要学会合理使用、读取和解读计算器上的数值。
三、数据与概率1.统计图及频数分布统计图用直方图、折线图、饼图等形式将数据进行可视化展示。
人教版九年级数学下册全册中考知识点梳理(共27讲)
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲 一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例 1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子. (2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a 与b 的差不大于1”用不等式表示为a -b≤1. 2.不等式的基本性质 性质1:若a >b,则 a ±c >b ±c ;性质2:若a >b,c >0,则ac >bc ,a c >b c ;性质3:若a >b,c <0,则ac <bc ,a c <b c. 牢记不等式性质3,注意变号. 如:在不等式-2x >4中,若将不等式两边同时除以-2,可得x <2.知识点二 :一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230m mx ++>是关于x 的一元一次不等式,则m 的值为-1. 4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x ≥a x >a x ≤a x <a知识点三 :一元一次不等式组的定义及其解法5.定义 由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示. (2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a的解集是x >-1,则a 的取值范围是a <1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a <b 解集 数轴表示 口诀x a x b ≥⎧⎨≥⎩ x ≥b 大大取大 x a x b≤⎧⎨≤⎩ x ≤a 小小取小 x a x b≥⎧⎨≤⎩ a ≤x ≤b 大小,小大中间找 x a x b≤⎧⎨≥⎩ 无解 大大,小小取不了 知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等; b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲 平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系. (2)几何意义:坐标平面内任意一点M 与有序实数对(x ,y )的关系是一一对应. 点的坐标先读横坐标(x 轴),再读纵坐标(y 轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示): 点P (x,y)在第一象限⇔x >0,y >0; 点P (x,y)在第二象限⇔x <0,y >0; 点P (x,y )在第三象限⇔x <0,y <0; 点P (x,y )在第四象限⇔x >0,y <0.(2)坐标轴上点的坐标特征: ①在横轴上⇔y =0;②在纵轴上⇔x =0;③原点⇔x=0,y =0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P (a ,b )的对称点的坐标特征:①关于x 轴对称的点P 1的坐标为(a ,-b );②关于y 轴对称的点P 2的坐标为(-a ,b ); ③关于原点对称的点P 3的坐标为(-a ,-b ).(5)点M (x,y )平移的坐标特征:M (x,y ) M 1(x+a ,y ) M 2(x+a ,y+b )(1)坐标轴上的点不属于任何象限. (2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同. (3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x 轴、y 轴作垂线,从而将其割补成可以直接计算面积的图形来解决. 3.坐标点的距离问题(1)点M(a,b)到x 轴,y 轴的距离:到x 轴的距离为|b |;)到y 轴的距离为|a |.(2)平行于x 轴,y 轴直线上的两点间的距离:点M 1(x 1,0),M 2(x 2,0)之间的距离为|x 1-x 2|,点M 1(x 1,y ),M 2(x 2,y )间的距离为|x 1-x 2|;点M 1(0,y 1),M 2(0,y 2)间的距离为|y 1-y 2|,点M 1(x ,y 1),M 2(x ,y 2)间的距离为|y 1-y 2|.平行于x 轴的直线上的点纵坐标相等;平行于y 轴的直线上的点的横坐标相等.知识点二:函 数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一确定的值与其对应,那么就称x 是自变量,y 是x 的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35x x +-中自变量的取值范围是x ≥-3且x ≠5. 5.函数的图象 (1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点; ②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法: ①设时间为t (或线段长为x ),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示, 再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y 随x 的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y 值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x 轴的线段.第10讲 一次函数知识点一 :一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念 (1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b/k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.例:当k =1时,函数y =kx +k -1是正比例函数,2.一次函数k ,b K >0, K >0, K >0,b=0 k <0, k <0, k <0,(1)一次函数y=kx+b 中,k 确定xy第四象限(+,-)第三象限 (-,-)第二象限 (-,+)第一象限 (+,+)–1–2–3123–1–2–3123O的性质 符号 b >0 b <0b >0b <0 b =0了倾斜方向和倾斜程度,b 确定了与y 轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法. 例:已知函数y =-2x +b ,函数值y 随x 的增大而减小(填“增大”或“减小”).大致 图象经过象限 一、二、三 一、三、四 一、三 一、二、四 二、三、四 二、四 图象性质y 随x 的增大而增大 y 随x 的增大而减小 3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x 轴的交点,只需令y=0,解出x 即可;求与y 轴的交点,只需令x=0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是⎝⎛⎭⎫-b k ,0,与y 轴的交点是(0,b );(2)正比例函数y =kx (k ≠0)的图象恒过点(0,0).例:一次函数y =x +2与x 轴交点的坐标是(-2,0),与y 轴交点的坐标是(0,2). 知识点二 :确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为: ①设:设函数表达式为y =kx +b (k ≠0); ②代:将已知点的坐标代入函数表达式,解方程或方程组; ③解:求出k 与b 的值,得到函数表达式. (2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式; ③平移转化型:如已知函数是由y=2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可. (2)只要给出一次函数与y 轴交点坐标即可得出b 的值,b 值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2. 5.一次函数图象的平移 规律:①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同.②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h. 例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三 :一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.例:(1)已知关于x 的方程ax+b=0的解为x=1,则函数y=ax+b 与x 轴的交点坐标为(1,0). (2)一次函数y=-3x+12中,当x>4时,y 的值为负数.7.一次函数与方程组二元一次方程组 的解⇔两个一次函数y=k 1x+b 和y=k 2x+b 图象的交点坐标. 8.一次函数与不等式 (1)函数y=kx+b 的函数值y >0时,自变量x 的取值范围就是不等式kx+b >0的解集(2)函数y=kx+b 的函数值y <0时,自变量x 的取值范围就是不等式kx+b <0的解集知识点四 :一次函数的实际应用9.一般步骤 (1)设出实际问题中的变量;(2)建立一次函数关系式; (3)利用待定系数法求出一次函数关系式; (4)确定自变量的取值范围; (5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义; (6)做答.一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲 反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例y=k 2x+by=k 1x+b1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例13讲二次函数的应用第第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质5. 三角形中内、外角与角平分线的规律总结如图①,AD 平分∠BAC ,AE ⊥BC ,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°;如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等.(3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ; ②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD ⊥BC,D 为BC 的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形 (1)性质①边角关系:三边相等,三角都相等且都等于60°. 即AB =BC =AC ,∠BAC =∠B =∠C =60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴. (2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB =AC ,且∠B =60°,则△ABC 是等边三角形. (1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC 中,∠B=60°,AB=AC ,BC=3,则△ABC 的周长为9.知识点二 :角平分线和垂直平分线3.角平分线 (1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB. (2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2,则AC=6.4.垂直平分线图形 (1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上. 知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A +∠B =90°; (2) 30°角所对的直角边等于斜边的一半.即若∠B =30°则AC =12AB ;(3)斜边上的中线长等于斜边长的一半.即若CD 是中线,则CD =12AB. (4)勾股定理:两直角边a 、b 的平方和等于斜边c 的平方.即 a 2+b 2=c 2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b 为直角边,c 为斜边,h 是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定 (1) 有一个角是直角的三角形是直角三角形.即若∠C =90°,则△ABC 是Rt △; (2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD =BD =CD ,则△ABC 是Rt △(3) 勾股定理的逆定理:若a 2+b 2=c 2,则△ABC 是Rt △.第17讲 相似三角形十六、 知识清单梳理知识点一:比例线段关键点拨与对应举例21P COBAPC OBAD ABCa bc DABCa bc1. 比例线段 在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC =. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条 件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件 中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. 6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方. (3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为9:4.(2) 如图,DE ∥BC , AF ⊥BC,已知S △ADE:S △ABC=1:4,则AF:AG =1:2.F E D CBA l 5l 4l 3l 2l 1ODCBAED CBAFE DC BAFE DC B AFE DC B A7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式角(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O 出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤 (1)弄清题中名词、术语,根据题意画出图形,建立数学模型; (2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.第五单元 四边形第19讲 多边形与平行四边形知识点一:多边形关键点拨与对应举例 1.多边形的相关概念 (1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n 边形的一个顶点可以引(n -3)条对角线,并且这些对角线把多边形分成了(n -2)个三角形;n 边形对角线条数为()32n n -. 多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解. 例:(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.2.多边形的内角和、外角和 ( 1 ) 内角和:n 边形内角和公式为(n -2)·180°(2)外角和:任意多边形的外角和为360°.3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n 边形的每个内角为()2180n n -⋅,每一个外角为360°/n.( 3 ) 正n 边形有n 条对称轴.(4)对于正n 边形,当n 为奇数时,是轴对称图形;当n 为偶数时,既是轴对称图形,又是中心对称图形.知识点二 :平行四边形的性质4.平行四边形的定义 两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法: (1)平行四边形相邻两边之和等于周长的一半. (2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题. (3)过平行四边形对5.平行四边形的性质(1) 边:两组对边分别平行且相等.即AB ∥CD 且AB =CD ,BC ∥AD 且AD =BC.(2)角:对角相等,邻角互补.即∠BAD =∠BCD ,∠ABC =∠ADC , ∠ABC +∠BCD =180°,∠BAD +∠ADC =180°.(3)对角线:互相平分.即OA =OC ,OB =OD(4)对称性:中心对称但不是轴对称.ODCBA。
2024中考数学知识点总结
2024中考数学知识点总结一、数与式1. 数的分类与立法运算- 自然数、整数、有理数、无理数的概念及相互关系。
- 自然数、整数、有理数的加减法、乘除法的规则。
- 无理数的定义及有理数与无理数的运算。
2. 数的积、商和负数- 实数的积的符号规定及实数的乘法运算律。
- 正数和负数的乘法及除法。
- 负数的概念及运算。
3. 数轴及整式的定义和四则运算- 数轴的概念与表示法。
- 整数的概念及整式的定义。
- 整式的加减法和乘法。
4. 一元一次整式方程- 整式方程的概念和解一元一次整式方程的方法。
- 一元一次整式方程的实际应用。
二、图形与运算1. 基本图形、圆与弦- 正方形、长方形、平行四边形、等腰三角形、直角三角形、等边三角形等基本图形的性质与判断。
- 圆的概念、圆心角、弧与弧长的关系。
2. 平移、旋转与镜像- 平面上的平移、旋转和镜像的概念及判断。
- 图形的平移、旋转和镜像的性质及判断。
3. 直线、角、三角- 直线的概念及判断。
- 角的概念、相邻角、对顶角、对角线等性质及判断。
- 三角形的分类、判断和性质。
4. 相交线与平行线- 平行线与相交线的性质及判断。
- 平行线与平行线的性质及判断。
5. 不等式、区间与正数幂- 不等式的概念及解不等式的方法。
- 区间的概念及判断。
- 正数指数与幂以及具体问题的表示与计算。
三、函数与图像1. 函数的概念与运算- 函数的定义及函数与方程的关系。
- 函数的运算规则。
- 函数的自变量与因变量的关系。
2. 一次函数和二次函数- 一次函数的定义、图象及特征。
- 一次函数的性质及应用。
- 二次函数的定义、图象及特征。
3. 方程与函数- 方程与函数的关系及解方程的基本思路。
- 一次方程、二次方程的定义、方法及应用。
4. 极大极小值- 极大极小值的概念、条件。
- 一元二次函数的极大极小值的应用。
5. 图像的平移与缩放- 图像平移的概念、规律及图示。
- 图像缩放的概念、规律及图示。
6. 函数的定义域和值域- 函数定义域的概念及计算。
人教部编版初中数学中考必考易错知识点汇总
人教部编版初中数学中考必考易错知识点汇总一、数与式易错点1有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。
弄不清绝对值与数的分类。
选择题考得比较多。
易错点2关于实数的运算,要掌握好与实数的有关概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3平方根、算术平方根、立方根的区别。
易错点4分式值为零时易忽略分母不能为零。
易错点5分式运算要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
填空题易考。
非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7计算第一题易考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8科学记数法,精确度。
这个知道就好!易错点9代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程/组与不等式/组易错点1各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2运用等式性质时,两边同除以一个数必须要注意不能为O的情况,还要关注解方程与方程组的基本思想。
消元降次的主要陷阱在于消除了一个带X公因式时回头检验!易错点3运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
关于一元二次方程的取值范围的题目易忽视二次项系数不为0。
易错点5关于一元一次不等式组有解、无解的条件易忽视相等的情况。
易错点6解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8利用函数图象求不等式的解集和方程的解。
三、函数易错点1各个待定系数表示的的意义。
易错点2熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
初三数学知识点总结和重点难点总结
初三数学知识点总结和重点难点总结《初三数学知识点总结和重点难点总结:一场奇妙的数学之旅》嘿,各位小伙伴们!今天来和大家聊聊初三数学那些事儿。
初三数学啊,就像是一场奇妙的冒险之旅,充满了各种各样的知识点和重难点,等着我们去探索和征服。
首先呢,咱们先来看看那些重要的知识点。
函数啊,就像是个调皮的小精灵,一会儿直线,一会儿曲线,让我们捉摸不透。
相似三角形就像是一群长得很像的小伙伴,它们之间有着各种奇妙的比例关系。
圆呢,则像个圆滚滚的大宝贝,有着各种美妙的性质。
还有概率统计,就像是在玩猜大小的游戏,不过这里面可是有学问的哦!说到重点难点,那就不得不提二次函数啦!这家伙可真是让人又爱又恨。
爱的是它在解决实际问题的时候特别好用,恨的是它的图像和性质真的有点复杂呀!那些抛物线一会儿高,一会儿低,对称轴也是变来变去,要想搞清楚它,可得下一番功夫呢。
还有相似三角形,那些相似比啊,相似条件啊,一不小心就会搞混。
有时候看着两个三角形觉得它们很像,结果发现不是相似三角形,那种感觉就像是找错了对象一样尴尬。
圆也是个大难题呀!什么圆心角、圆周角,什么切线、割线,各种概念和定理让人眼花缭乱。
不过只要我们慢慢理清头绪,多做几道题,就会发现圆其实也没那么可怕啦。
那我们该怎么应对这些重难点呢?嘿嘿,这就需要我们像勇士一样勇敢地去战斗啦!多做题肯定是少不了的,通过做题来加深对知识点的理解和掌握。
做错的题可不要放过哦,要像宝贝一样把它收藏起来,反复研究,直到搞懂为止。
还有哦,上课一定要认真听讲!老师就像是我们的引路人,能带着我们穿过那些迷雾。
如果有不懂的地方,千万不要害羞,大胆地去问老师或者同学,大家一起探讨,既能解决问题,又能增进感情呢。
初三数学虽然有点难,但也是充满乐趣的。
当我们攻克一个难题的时候,那种成就感简直爆棚!就像是打了一场大胜仗一样爽歪歪。
小伙伴们,让我们一起加油,在初三数学的奇妙之旅中勇往直前,征服那些知识点和重难点,收获满满的知识和乐趣吧!加油!。
人教版中考数学知识点梳理.函数(精心整理)
第9讲平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念〔1〕定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.〔2〕几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征〔如下图〕:点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P〔x,y〕在第三象限⇔x<0,y<0;点P〔x,y〕在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.〔3〕各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数〔4〕点P〔a,b〕的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).〔5〕点M〔x,y〕平移的坐标特征:M〔x,y〕M1(x+a,y)M2(x+a,y+b)〔1〕坐标轴上的点不属于任何象限.〔2〕平面直角坐标系中图形的平移,图形上所有点的坐标变化情况一样.〔3〕平面直角坐标系中求图形面积时,先观察所求图形是否为规那么图形,假设是,再进一步寻找求这个图形面积的因素,假设找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题〔1〕点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.〔2〕平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念〔1〕常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.〔2〕函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.〔3〕函数自变量的取值范围:一般原那么为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共局部. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象〔1〕分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.〔2〕以几何图形〔动点〕为背景判断函数图象的方法:①设时间为t〔或线段长为x〕,找因变量与t(或x)之间存在的函数关系,用含t(或x)的读取函数图象增减性的技巧:①当函数图象从左到右呈“上升〞〔“下降〞〕状态时,函数y随x的增大而增大〔减小〕;②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123O式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围. 么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数二、知识清单梳理知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念〔1〕概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.〔2〕图象形状:一次函数y=kx+b是一条经过点〔0,b〕和〔-b/k,0〕的直线.特别地,正比例函数y=kx的图象是一条恒经过点〔0,0〕的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0〔1〕一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.〔2〕比拟两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:函数y=-2x+b,函数值y随x的增大而减小(填“增大〞或“减小〞).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是()-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是〔-2,0〕,与y轴交点的坐标是〔0,2〕.知识点二:确定一次函数的表达式4.确定一次函数表达式的条件〔1〕常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.〔2〕常见类型:①两点确定表达式;②两对函数对应值确定表达式;③平移转化型:如函数是由y=2x平移所得到的,且经过点〔0,1〕,那么可设要求函数的解析式为y=2x+b,再把点〔0,1〕的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:一次函数经过点〔0,2〕,那么可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,那么可知它们的k值一样.②假设向上平移h单位,那么b值增大h;假设向下平移h单位,那么b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程〔组〕、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b〔k、b是常数,k≠0〕的图象与x轴交点的横坐标.例:〔1〕关于x的方程ax+b=0的解为x=1,那么函数y=ax+b与x轴7.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.的交点坐标为〔1,0〕.〔2〕一次函数y=-3x+12中,当x>4时,y的值为负数.8.一次函数与不等式〔1〕函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集〔2〕函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤〔1〕设出实际问题中的变量;〔2〕建立一次函数关系式;〔3〕利用待定系数法求出一次函数关系式;〔4〕确定自变量的取值范围;〔5〕利用一次函数的性质求相应的值,对所求的值进展检验,是否符合实际意义;〔6〕做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型〔1〕求一次函数的解析式.〔2〕利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念〔1〕定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.〔2〕形式:反比例函数有以下三种根本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,那么该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况〔1〕判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示〔2〕反比例函数值大小的比拟时,首先要判断自变量的取值是否同号,即是否在同一个象限内,假设不在那么不能运用性质进展比拟,可以画出草图,直观地判断.k>0 图象经过第一、三象限〔x、y同号〕每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限〔x、y异号〕每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征〔1〕由两条曲线组成,叫做双曲线;〔2〕图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;〔3〕图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:假设(a,b)在反比例函数kyx=的图象上,那么(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:反比例函数图象过点〔-3,-1〕,那么它的解析式是y=3/x.y=k2x+by=k1x+b知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义〔1〕意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.〔2〕常见的面积类型:失分点警示相关面积,求反比例函数的表达式,注意假设函数图象在第二、四象限,那么k<0.例:反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,那么该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合〔1〕确定交点坐标:【方法一】一个交点坐标为〔a,b〕,那么根据中心对称性,可得另一个交点坐标为〔-a,-b〕.【方法二】联立两个函数解析式,利用方程思想求解.〔2〕确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解〔3〕在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.〔4〕比拟函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如下图,三个阴影局部的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤〔1题意找出自变量与因变量之间的乘积关系;〔2设出函数表达式;〔3〕依题意求解函数表达式;〔4〕根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质四、知识清单梳理知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式〔1〕三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是〔h,k〕; ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.〔2〕待定系数法:巧设二次函数的解析式;根据条件,得到关于待定系数的方程〔组〕;解方程〔组〕,求出待定系数的值,从而求出函数的解析式.假设条件是图象上的三个点或三对对应函数值,可设一般式;假设顶点坐标或对称轴方程与最值,可设顶点式;假设抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质第13讲二次函数的应用。
数学中考知识点归纳2024
数学中考知识点归纳2024一、数与代数。
(一)有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 能准确区分有理数和无理数,无理数是无限不循环小数,如π、√(2)等。
2. 有理数的运算。
- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
- 减法:减去一个数,等于加上这个数的相反数。
- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。
- 除法:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n中,a 叫做底数,n叫做指数。
正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
- 运算顺序:先算乘方,再算乘除,最后算加减;有括号的先算括号里面的。
(二)实数。
1. 平方根、算术平方根、立方根。
- 平方根:如果x^2 = a(a≥slant0),那么x叫做a的平方根,记作x=±√(a)。
- 算术平方根:正数a的正的平方根叫做a的算术平方根,记作√(a),0的算术平方根是0。
- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x = sqrt[3]{a}。
2. 实数的大小比较。
- 正数大于0,0大于负数,正数大于负数。
- 两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
- 还可以通过数轴比较实数大小,数轴上右边的数总比左边的数大。
(三)代数式。
1. 代数式的概念。
- 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
初三数学知识点归纳人教版
初三数学知识点归纳人教版一、一元二次方程。
1. 定义。
- 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
例如(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法:将一元二次方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后再用直接开平方法求解。
例如x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。
例如x^2-3x+2 = 0,分解因式得(x - 1)(x -2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
4. 一元二次方程根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),若方程的两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。
二、二次函数。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a≠0)的函数叫做二次函数,其中a、b、c是常数,x是自变量。
新人教版初中数学知识点重难点归纳整理
新人教版初中数学知识点重难点归纳整理一、初中数学知识点总体概述初中数学是数学学科的一个重要组成部分,也是初中学生必修的一门课程。
初中数学的主要任务是培养学生综合运用数学知识,发展数学思维,提高解决数学问题的能力。
初中数学知识点主要包括代数、几何、函数、概率、统计等方面的内容。
其中,数与代数是初中数学的基础;几何涉及图形与空间的运用;函数是初步探讨数与几何之间的联系;概率与统计是初中数学的应用部分。
二、重难点归纳整理1. 代数代数是初中数学的重难点之一。
代数的基础是方程式的解法和一些代数法则的运用。
学生在这个阶段应该掌握以下重点内容:•一元一次方程的解法;•二元一次方程组的解法;•一元二次方程的解法;•代数表达式的化简;•因式分解和分式的运算;•式子的等价变形。
2. 几何几何也是初中数学的重点之一。
初中阶段的几何主要涉及图形的形状、大小、位置、方向和运动等方面的问题。
几何需要学生具备切实地操作能力和抽象迁移能力,尤其是能够通过图形模型解决实际问题。
学生在这个阶段应该掌握以下重点内容:•各种平面图形的构造与性质;•三角形的构造、性质及判定;•直线、角、周长与面积的计算;•勾股定理的运用;•空间几何中的图形与计算;•数轴及其应用。
3. 函数初中数学中的函数是初步掌握数与几何之间联系的一个关键环节。
学生应该学会根据函数的图像或表格来推断函数的性质以及绘制函数的图像,理解函数与自然界和社会现象之间的相互关系。
学生在这个阶段应该掌握以下重点内容:•线性函数的概念、图像及其性质;•平方函数、立方函数、绝对值函数的概念、图像及其性质;•一次函数和二次函数的关系;•函数的复合、反函数及其运算;•不等式中的代数式和函数式;•应用题中的函数建模。
4. 概率与统计概率与统计是初中数学的应用部分。
它对于学生提高对现实问题的理解和解决问题的能力有着非常重要的作用。
学生在这个阶段应该掌握以下重点内容:•概率的概念、计算方法及应用;•随机事件和样本空间的概念;•统计数据的收集、整理、分析及表示方法;•中心趋势度量和离散程度度量的计算及应用;•正态分布的概念、计算和应用。
人教版九年级数学知识点归纳
人教版九年级数学知识点归纳情况是在不断的变化,要使自己的思想适应新的情况,就得学习。
下面给大家带来一些关于人教版九年级数学知识点归纳,希望对大家有所帮助。
人教版九年级数学知识点1二次函数一、二次函数1、一般地,如果是常数,,那么叫做的二次函数。
是自变量。
其中,a是二次项系数;b一次项系数;c是常数项。
2、二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤。
3、二次函数的图象:是常数,,的图像是抛物线。
抛物线与它的对称轴的交点叫抛物线的顶点。
顶点是抛物线的最高点或最低点。
4、求抛物线顶点(最大或最小值)和对称轴的方法(1)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。
(2)公式:,∴顶点是,对称轴是直线。
5、二次函数的图象的特点:(1)抛物线的顶点是坐标原点,对称轴是轴;(2)抛物线的顶点是(h,k),对称轴是x=h;(3)抛物线的顶点是(),对称轴是;①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点。
|a|越大,开口越小。
|a|越小,开口越大。
(4)几种特殊的二次函数的图像特征二、二次函数与二元一次方程的关系人教版九年级数学知识点2相似一、图形的相似1.图形的相似:如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽)性质:相似多边形的对应角相等,对应边的比相等。
2.判定:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。
3.相似比:相似多边形的对应边的比叫相似比。
相似比为1时,相似的两个图形全等。
二、相似三角形1.性质:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
2.判定.①如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
②如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
③如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
人教版新课标初中数学总复习知识点总结
初中数学总复习知识点总结实数一、重要概念1.数的分类及概念 数系表:说明:“分类〞的原那么:1〕相称〔不重、不漏〕2〕有标准2.非负数:正实数与零的统称。
〔表为:x ≥0〕 常见的非负数有:性质:假设干个非负数的和为0,那么每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a 〔a ≠±1〕;B.1/a 中,a ≠0;C.0<a <1时1/a >1;a>1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义〔“三要素〞〕②作用:A.直观地比拟实数的大小;B.明确表达绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数〔正整数—自然数〕定义及表示:奇数:2n-1实数 无理数(无限不循环小数)正分数 负分数正整数负整数 (有限或无限循环性数) 整数分数 0 实数 负数整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)偶数:2n 〔n 为自然数〕7.绝对值:①定义〔两种〕:代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││〞是“非负数〞的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││〞出现,其关键一步是去掉“││〞符号。
二、实数的运算1. 运算法那么〔加、减、乘、除、乘方、开方〕2. 运算定律〔五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律〕3. 运算顺序:A.高级运算到低级运算;B.〔同级运算〕从“左〞 到“右〞〔如5÷51×5〕;C.(有括号时)由“小〞到“中〞到“大〞。
三、应用举例〔略〕附:典型例题1. :a 、b 、x 在数轴上的位置如下列图,求证:│x-a │+│x-b │ =b-a.2.:a-b=-2且ab<0,〔a ≠0,b ≠0〕,判断a 、b 的符号。
人教版中考数学知识点归纳
人教版中考数学知识点归纳中考数学是学生升入高中的重要关口,难度不容小觑。
为了帮助学生系统地掌握人教版中考数学的重点知识,本文将对人教版中考数学知识点进行归纳总结。
以下是人教版中考数学常见知识点及其重难点的详细介绍。
一、数与式的运算在数与式的运算中,常见的知识点有加法、减法、乘法和除法。
其中,乘法是中考数学的重难点之一。
学生需要掌握乘法表的基础,了解乘法的运算法则,掌握乘法综合运用的方法。
此外,学生还需要了解小数、分数、百分数的运用以及其与整数四则运算的关系。
二、代数式及其运算代数式是中考数学的重要内容之一,包括代数式的定义、代数式的基本性质、多项式的展开式、配方法等内容。
其中,多项式的展开式是一个重要难点,需要学生掌握二次多项式、三次多项式的展开方法。
在配方法中,需要学生了解通项公式,掌握两个三角函的运用,以及能够正确应用配方法消去分式的难点。
三、常用函数常用函数包括一次函数、二次函数、常比例函数、反比例函数等。
其中,一次函数和二次函数是中考数学中的重点内容。
学生需要掌握一次函数和二次函数的基本概念、性质和定义,了解函数的图像、单调性、奇偶性等,以及掌握方程求解的方法。
四、几何知识几何知识包括平面几何和空间几何两个部分。
其中,平面几何主要包括角和三角形、直线和圆等内容,而空间几何涉及的内容则更为广泛,包括平行和垂直、角和面积、几何体等。
在解题时,学生需要掌握等腰三角形、直角三角形和全等三角形的求解方法以及勾股定理、正弦定理等三角函数的知识点。
五、数据及概率数据及概率是考到应用题中的重点。
学生需要了解数据统计方法如频数、频率、中位数、众数和一些数据的图形展示方式。
在概率理论方面,学生需要掌握一些基本概率公式和概率加法及乘法原理。
在应用题中的概率问题,学生需要正确理解题意,以便能够运用概率相关知识解决实际问题。
六、解析几何解析几何属于高中数学课程的一部分,但在中考数学中也包含了一些基础的内容。
学生需要了解坐标系的建立、点、线、圆的方程等基本知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教部编版初中数学中考重难点知识梳理
一、构建完整的知识框架
1.构建完整的知识框架是我们解决问题的基础,想要学好数学必须重视基础概念,必须加深对知识点的理解,然后会运用知识点解决问题,遇到问题自己学会反思及多维度的思考,最后形成自己的思路和方法。
但有很多初中学生不重视书本的概念,对某些概念一知半解,对知识点没有吃透,知识体系不完整,就会出现成绩飘忽不定的现象。
2.正确理解和掌握数学的一些基本概念、法则、公式、定理,把握他们之间的内在联系。
由于数学是一门知识的连贯性和逻辑性都很强的学科,正确掌握学过的每一个概念、法则、公式、定理可以为以后的学习打下良好的基础,如果在学习某一内容或解某一题时碰到了困难,那么很有可能就是因为与其有关的、以前的一些基本知识没有掌握好所造成的,因此要经常查缺补漏,找到问题并及时解决之,努力做到发现一个问题及时解决一个问题。
只有基础扎实,解决问题才能得心应手,成绩才会提高。
二、数学中考知识重难点分析
1.函数(一次函数、反比例函数、二次函数)中考占总分的15%左右。
特别是二次函数是中考的重点,也是中考的难点,在填
空、选择、解答题中均会出现,且知识点多,题型多变。
而且一道解答题一般会在试卷最后两题中出现,一般二次函数的应用和二次函数的图像、性质及三角形、四边形综合题难度较大。
有一定难度。
如果在这一环节掌握不好,将会直接影响代数的基础,会对中考的分数会造成很大的影响。
2.应用题,中考中占总分的30%左右。
包括方程(组)应用,一元一次不等式(组)应用,函数应用,解三角形应用,概率与统计应用几种题型。
一般会出现二至三道解答题(30分左右)及2—3道选择、填空题(10分—15分),占中考总分的30%左右。
现在中考对数学实际应用的考察会越来越多,数学与生活联系越来越紧密,应用题要求学生的理解辨别能力很强,能从问题中读出必要的数学信息,并从数学的角度寻求解决问题的策略和方法。
方程思想、函数思想、数形结合思想也是中学阶段一种很重要的数学思想、是解决很多问题的工具。
3.整式、分式、二次根式的化简运算。
整式的运算、因式分解、二次根式、科学计数法及分式化简等都是初中学习的重点,它贯穿于整个初中数学的知识,是我们进行数学运算的基础,其中因式分解及理解因式分解和整式乘法运算的关系、分式的运算是难点。
中考一般以选择、填空形式出现,但却是解答题完整解答的基础。
运算能力的熟练程度和答题的正确率有直接的关系,掌握不好,答题正确率就不会很高,进而后面的的方程、不等式、函数也无法学好。
4.圆,中考中占总分的10%左右。
包括圆的基本性质,点、直线与圆位置关系,圆心角与圆周角,切线的性质和判定,扇形弧长及面积,这章节知识是在初三学习的。
其中切线的性质和判定、圆中的基本性质的理解和运用、直线与圆的位置关系、圆中的一些线段长度及角度的计算是重点也是难点。
5.三角形(全等、相似、角平分线、中垂线、高线、解直角三角形)、四边形(平行四边形、矩形、菱形、正方形),中考中占总分25%左右。
三角形是初中几何图形中内容最多的一块知识,也是学好平面几何的必要基础,贯穿初二到到初三的几何知识,其中的几何证明题及线段长度和角度的计算对很多学生是难点。
只有学好了三角形,后面的四边形乃至圆的证明就容易理解掌握了,反之,后面的一切几何证明更将无从下手,没有清晰的思路。
其中解三角形在初三下册学习,是以直角三角形为基础
的,在中考中会以船的触礁、楼高、影子问题出现一道大题。
因此在初中数学学习中也是一个重点。
四边形在初二进行学习的,其中特殊四边形的性质及判定定理很多,容易混淆,深刻理解这些性质和判定、理清它们之间的联系是解决证明和计算的基础,四边形中题型多变,计算、证明都有一定难度。
经常在中考选择题、填空题及解答题的压轴题(最后一题)中出现,对学生综合运用知识的能力要求较高。
三、各年级的常见现象及应对策略
初一学不好数学:
许多小学数学学科成绩很好的学生到了初中数学成绩会出现下滑,成绩不稳定等现象。
初中数学与小学数学相比,知识的深度、广度、能力要求都有不小的提高。
对概念、法则、公式、定理知识一知半解,没有吃透课本内容。
课后又不能及时巩固、总结、寻找知识间的联系,只是赶作业、套题型,遇到难题缺乏思考,学习方法的缺乏或不得当严重制约学生的有效思维,久而久之容易形成思维惰性,学不好数学。
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。
相反,如果能够打好初一数学基础,初二的学习只会是更上一层楼!
策略:
1.狠抓基础,循序渐进。
立足课本,把课本知识点吃透,辅以基础知识、基本方法的训练,先以基础题为主,培养运算能力,提升自信心。
等基础知识熟悉了,再逐渐加深难度,能举一反三,形成自己的思维。
能灵活运用知识点。
2.提高作业质量和效率。
每天作业是对当天所学内容的巩固,如果能高质量的完成当天的作业,就能把当天所学的知识点消化吸收,遗留的问题就少,进而学习效率就高。
3.培养良好的学习习惯。
及时预习书本知识,然后带着问题去听课,提高课堂效率。
总结相似的题型,收集自己的典型错题和不会做的题目。
就不懂得问题,积极讨论、请教老师。
自己制定每日学习计划,形成习惯。
初二数学成绩下滑:
初中数学是一个整体。
初二的难点多,初三的考点多。
相对而言,初一数学知识点虽然很多,但都比较基础,中考多以基础题为主,要求不高。
初二是初中数学学习的一个拐点,坡度突然增加,知识点上的增多和难度的增加,在学习方法上学生是很容易适应的。
特别是几何内容的增加,它的研究对象从“数”到“形”发生变化,方法也从“运算”到“推理”发生变化,学生的分析能力和表达能力跟不上就很难从图形中找到关系,推理论证困难学。