等差数列说课ppt

合集下载

4.2.1 等差数列的性质 课件PPT

4.2.1  等差数列的性质  课件PPT
3.等差中项
如果a,A,b成等差数列.那么A叫做a与b的等
差中项.即 A a b
2
例题分析
例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价 值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设 备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请 确定d的范围.
4.2.1等差数列的性质
知识梳理
1.等差数列概念 an an1 d n 2
2.等差数列通项公式及其变体
通项公式: an a1 n 1d
变体: (1)an=dn+(a1-d)(n∈N*),
(2)an=am+(n-m)d(m,n∈N*),
(3)d=ann--mam(m,n∈N*,且 m≠n).
知识梳理
归纳总结
等差数列的性质1:
等差数列每相邻两项之间插入 kk N* 合适的
数,还可以是等差数列
等差数列中每隔 kk N* 项抽取出来的项,按
照原顺序排列,构成的仍是等差数列
分析:(1){an}是一个确定的数列,只要把a1 ,a2表示为{bn}中的项, 就可以利用等差数列的定义得出的通项公式;(2)设{an}中的第n项是 {bn}中的第cn项,根据条件可以求出n与cn的关系式,由此即可判断b29 是否为{an}的项.
特别的, 若s t 2 p s,t, p N* ,则as at 2ap
(3)应用等差数列解决生活中实际问题
谢谢
小结:
(1)等差数列的性质1:
等差数列每相邻两项之间插入 kk N*个合适的数,还可以
是等差数列
等差数列中每隔 kk N * 项抽取出来的项,按照原顺序排列,
构成的仍是等差数列

等差数列说课PPT课件

等差数列说课PPT课件
m n p q
从数学美的角度记忆公式
《等差数列》教学说明
教学程序
问题探究 公式推导 公式应用 小结作业 练习3:简单变式,针对全体学生
如图,一个堆放铅笔的V形架的最下面一层放 1 支铅笔,往上每一层都比它下面一层多放 1 支,最上面一层放 120 支 . 这个 V 形架上共放 了多少支铅笔? 解:由题意知,这个V型架自下而上是个 由120层的铅笔构成的等差数列,记为 {an},
教学程序
问题探究 公式推导 公式应用 小结作业
n(a1 an ) an=a1+(n-1)d n( n 1) Sn Sn na1 d 2 2
《等差数列》教学说明
教学程序
问题探究 公式推导 公式应用 小结作业 怎样记忆公式?应用公式时应注意那 些问题? 等差数列的通项公式an=a1+(n-1)d 等差数列的性质:若 m+n=q+P 若m n p q,则 a a a a 则am+an=ap+aq
Sn=a1+ a2 +a3 +…+an-2+an-1+an 倒序相加 Sn=an+an-1+an-2+…+a3 + a2 +a1 2Sn=(a1+an)+ (a2+an-1)+ (a3+an-2)+…+ (an-2+a3)+ (an-1+a2)+ (an+a1)=n(a1+an)
《等差数列》教学说明
教法学法 教学程序 反馈评价
•教学难点:
公式推导过程中的转化思想
《等差数列》
地位作用

等差数列说课PPT

等差数列说课PPT

问题 1:说出这四个数列的后面一项是多少? 问题 2:说出这四个数列的共同特点?
新课研究 公式推导 应用举例 反馈练习 归纳小结 布置作业 0,5,10,15,20,…… 48,53,58,63. 18,15.5,13,10.5,8,5.5. ① ② ③
10072,10144,10216,10288,10360. ④
新课探究 公式推导 应用举例 反馈练习 归纳小结 布置作业

谈一谈通过本节课的教学, 你学到了什么?体验到什么? 掌握了什么?
1、等差数列的概念及数学表达式; 2、等差数列的通项公式an=a1+(n-1)d; 3、用“数学建模”思想方法解决实际问 题.
新课探究 公式推导 应用举例 反馈练习 归纳小结 布置作业
新课探究 公式推导 应用举例 反馈练习 归纳小结 布置作业
问题3:等差数列 {an} 的首项为a1,公差为d, 如何用首项与公差将an表示出来?
据等差数列的定义:
a2-aቤተ መጻሕፍቲ ባይዱ=d
a3-a2=d a4-a3=d …… an-an-1=d 将这(n-1)个等式左右两边分别相加,得到:
an-an-1=(n-1)d
课题:
等差数列
重庆师范大学 数学学院
教材分析
1、教材所处的地位与作用
2、教学重点、难点
教学目标
知识目标 :要求学生理解和掌握等差数列的概念,并
了解等差数列通项公式的推导及过程 能力目标 :注重培养学生观察、分析、归纳、推理的 能力;在领会了函数与数列的关系的前提下,把研究函 数的方法迁移到研究数列上来,培养学生的知识、方法 迁移能力,提高学生分析和解决问题的能力
共同特点:从第二项起,每一项与前一
项的差为同一个常数

《等差数列的概念》课件

《等差数列的概念》课件

等差数列在实际问题中的应用
物理学中的周期问题
在物理学中,很多周期性问题可以用等差数 列来表示和解决。例如,摆动问题、振动问 题、波动问题等。
统计学中的数据分组
在统计学中,数据分组是常见的数据处理方 法。而等差数列可以用来表示数据的组距和 分组范围。例如,将一组数据分成若干组, 每组的组距相等,就可以用等差数列来表示 各组的范围。
题目二
等差数列的通项公式是什么? 如何推导?
题目三
等差数列的前n项和公式是什 么?如何推导?
题目四
等差数列的性质有哪些?请举 例说明。
习题答案与解析
答案一
等差数列是指每一项与它前一项的差等于同一个常数的数列。例如:1, 4, 7, 10, 13...,其 中每一项与前一项的差为3。
解析一
通过举例说明等差数列的定义,帮助学生理解等差数列的基本概念。
总结词:严谨规范
详细描述:等差数列的一般形式是 a_n=a_1+(n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公 差,n 是项数。
等差数列的图像表示
总结词:直观形象
详细描述:等差数列的图像是一条直线,任意两个相邻的点在这条直线上等距。首项 a_1 是图像在 y 轴上的截距,公差 d 控 制着直线的斜率。
答案二
等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$a_1$是首项,$d$是公差,$n$是项 数。推导过程如下:$a_n=a_1+(n-1)d=a_1+a_2+(n-2)d=...=a_1+a_2+...+a_{n1}+nd=S_n+nd$,其中$S_n$为前n项和。
习题答案与解析

等差数列说课课件.ppt

等差数列说课课件.ppt

...
6,10,14,18,…
设计意图 通过活动引出两个具体的等差数列,初步认
活动
识等差数列的特征,为正确理解概念奠定基 小组合作,动手操作 础;学生观察两个数列特点,引出等差数列
思考,讨论,回答 的概念,ቤተ መጻሕፍቲ ባይዱ过对问题的总结,培养学生由具
体到抽象、由特殊到一般的认知能力;使学
生在参与活动中,提高学习兴趣。
石家庄机电职业中专 白晓曼
石家庄机电职业中专 白晓曼
合作交流
情景体验
自主探 究
情景感 悟
石家庄机电职业中专 白晓曼
授课时间 45分钟
复习回顾 旧知重现
2分钟

创设情境 发现新知
6分钟

擂台比武 见招拆招
14分钟

动手动脑 深入探究
5分钟

身体力行 学以致用
15分钟
提炼感悟 盘点收获
2分钟
分层落实 课后巩固
设计意图
体现知识要点,突出重点内容,给学生留下清晰深刻的印象。
石家庄机电职业中专 白晓曼
2、 创设情境 发现新知
分组活动: 请你将课前准备好的火柴摆成如图所示的正方形,并将所用火 柴的数目写成数列,并观察所得数列有何规律?



n
4,7,10,13,16,……
石家庄机电职业中专 白晓曼
2、 创设情境 发现新知
请你将课前准备好的棋子摆“上”字,并将所用棋子的数目写成数列,并 观察所得数列有何规律?并说出得出的两个数列有什么共同点?
石家庄机电职业中专 白晓曼
2、 创设情境 发现新知
等差数列的概念:
如果一个数列,从第二项开始每一项与它前

等差数列的概念公开课ppt课件

等差数列的概念公开课ppt课件
个公式来表示,那么这个公式叫做这个数列的递推 公式。
(1)第23到第29届奥运会举行的年份依次为 1984,1988,1992,1996,2000,2004,2008
(2)已知数列{an} ,其中 a1 =15, an = an-1 -2,n≥2, 写出这个数列的前六项。
15 13 11 9 7 5 (3)所有正偶数排成一列组成的数列
本节课主要学习: 一个定义:an an1 d, n 2, n N (d是常数)
一个公式:an a1 (n 1)d
一种思想:方程思想.
d 64
(2) 15,13,11,9,7,5 (3) 2, 4, 6, 8, 10, ……
a8=? a1d00=2?我
们该如何求解 呢?d 2
(4) 1, 1, 1, 1, 1, ……
d 0
公差为0的数列
叫做常数列
公差d是每一项(第2项起)与它的前一项的差, 防止把被减数与减数弄颠倒,而且公差可以是正数, 负数,也可以为0 .
复习回顾
数列的定义,通项公式,递推公式
按一定次序排成的一列数叫做数列。
一般写成a1,a2,a3,…,an,…,简记为{an}。
如果数列{an}的第n项an与n的关系可以用一个公式来表示,
那么这个公式就叫做这个数列的通项公式。
如果已知数列{an}的第1项(或前几项),且任一项 an与它的前一项a n-1(或前几项)间的关系可以用一
已知一个等差数列{an}的首项是a1, 公差是d,如何求出它的任意项an呢?
根据等差数列的定义填空
a2 =a1+d,
a3 = a2 +d =( a1 + d ) +d =a1 + 2 d,
a4 = a3 +d =( a1 + 2 d ) +d =a1 + 3 d , ……

等差数列课件ppt课件

等差数列课件ppt课件
等差数列课件 ppt
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?

4.2.2等差数列的前n项和公式说课课件(人教版)

4.2.2等差数列的前n项和公式说课课件(人教版)

列的首项和公差得到它的前n项和公式吗?
转化为基本量a1和d
Sn
n(a1 2
an )
an a1 (n 1)d
n(n 1) Sn na1 2 d
也可以通过
Sn a1 a2 a3 an
利用求和公式和每 项具体化
a1 (a1 d ) (a1 2d ) [a1 (n 1)d ]
1
n项 2
2
n 1个
n n 1
2
2
n 1 1 n n 1 n n 1
2
2
2
演绎推理“推”公式
问题4:在求前n个正整数的和时,对n分奇偶数进行讨论得到的结果是一样
的,那么怎样避开分类讨论实现“配对”,将“不同数的求和”化归为“相
同数的求和”呢?
“奇数加奇数、偶数加偶数”都可以变成偶数,根据这个性质让它自己和自己配对.
3+98 =101 a3+a98 =101
50+51 =101 a50+a51=101
S100 (1 100 ) (2 99) (50 51)
=50 ×101=5050 首尾配对法
通过S配10对0=凑(a成1+相a1同00)的+数(a,2+变a9“9) 多+…步+求(和a5”0+为a51) “一步相乘=5”0 ,×即10将1“=5不05同0数的求和”转化为
(简化计算)
设计意图:高斯算法蕴含着等差数列的特殊性 质,让学生去观察、探索、发现等差数列的 这一性质,引导学生提炼高斯算法的实质, 体会转化与化归的思想方法.
高斯 Gauss.C.F (1777~1855)
高斯, 德国数学家. 与阿基米德, 牛顿 并称为历史上最 伟大的数学家, 有 “数学王子”之称.

等差数列说课稿ppt课件

等差数列说课稿ppt课件

四、教学程序
(一)复习引入
(二)新课探究
(三)应用举例
(四)反馈练习 (五)归纳小结
(六)布置作业
(一)复习引入
1.从函数观点看,数列可看作是定义域为______对应的一列 函数值,从而数列的通项公式也就是相应函数的 __。
(N﹡;解析式)
2.小明目前会100个单词,他打算从今天起不再背单词了, 结果不知不觉地每天忘掉2个单词,那么在今后的五天内 他的单词量逐日依次递减为: 100,98,96,94,92,…
3. 小芳只会5个单词,他决定从今天起每天背记10个单词, 那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ,…
复习引入
4、水库的管理人员为了保证优质鱼类有良好生 活环境,用定期放水清理水库的杂鱼。如果一个水 库的水位为18m,自然放水每天水位降低2.5m,最 低降至5m。那么从开始放水算起,到可以进行清理 工作的那天,水库每天的水位组成数列(单位: m):
难点2 突破
新课探究
接着举例说明:
若一个等差数列
{a
}
n
的首项是1,公差是2,
得出这个数列的通项公式是:an 1 n 1 2
即 an 2n 1
(三)应用举例
例题 1
例题2
(1)求等差数列 8,5,2,-1 … 的第20项;第30项; 第40项
(2)-401是不是等差数列 -5,-9,-13,…的项? 如果是,是第几项?
一 教材分析
等 差
二 学情教法分析
数 列
三 学法指导
四 教学程序
五 板书设计
一、教材分析
1、教材的地位 和作用
高中数学的重要内 容;承前启后,

等差数列说课ppt课件用

等差数列说课ppt课件用
PAOLO DESIGN
1100 101 共多少对?
100 100(1+100)101 50 5050 2
探究发现
学生对高斯的算法是熟悉的,但是他们对这 种方法的认识可能处于模仿、记忆的阶段 。
为了促进学生对这种算法的进一步理解, 设计了下面问题。
PAOLO DESIGN
问题1(2):图案中,第1层到第31层一共有多少颗宝石?



这是求奇数个项和的问题,不能

简单模仿偶数个项求和的办法,
需要把中间项16看成首、尾两项

1和31的等差中项。

通过前后比较得出认识:高斯

“首尾配对” 的算法还得分奇、

偶个项的情况求和。
进而提出有无简单的方法?
PAOLO DESIGN
问题1:图案中,第1层到第31层一共有多少颗宝石?
1
创 设
2 3


自 主 探 究
31
31 30 29
借助几何图形之 直观性,引导学 生使用熟悉的几 何方法:把“全 等三角形”倒置, 与原图补成平行 四边形,从而获得 算法如下。
PAOLO DESIGN
1+2+3+…+30+31=?
建 S = 1 + 2 + 3 + … + 29 + 30 + 31

模 型
PAOLO DESIGN
5.教学反思
1.说教材
2.说教法
4.教学过程
PAOLO DESIGN
3.说学法
1.知识基础
学生已学习了函数,数列的定义和通项公式等有 关基础知识,并且在初中已了解特殊的数列求和.

4.2.1等差数列的概念PPT课件(人教版)

4.2.1等差数列的概念PPT课件(人教版)

an a1 (n 1)d
结论:等差数列的通项公式的一般情势:an=am+(n-m)d
练习
求下列等差数列的通项公式
(1)9,18,27,36,45,54,63,72...
(1)an=9+(n-1)×9=9n
(2)38,40,42,44,46,48...
(2)an=38+(n-1)×2=2n+36
ab
叫做a与b的等差中项。即 A
2
这个式子叫做这个数列的递推公式.
引入
请看下面几个问题中的数列.
1.北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,
环绕天心石的是9圈扇环形的石板,从内到外各圈的石板数依
次为
9,18,27,36,45,54,63,72,81.①
2.S,M,L,XL,XXL,L型号的女装上衣对应的尺码分别是
38,40,42,44,46,48.②
求an 的公差和首项;(2)求等差数列 8,5, 2, 的第20项.
解: (1)当n 2时,由an 5 2n, 得
an1 5 2(n 1) 7 2n.
于是, d an an1 (5 2n) (7 2n) 2.
当n 1时, a1 5 2 3.
练习
判断下列数列是否为等差数列,若是,求出首项和公差
(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10
×
(2) 3,3,3,3,3,3
a1=3,公差 d=0 常数列
(3) 3x,6x,9x,12x,15x
a1=3x 公差 d= 3x
(4)95,82,69,56,43,30
a1=95 公差 d=-3

等差数列ppt课件

等差数列ppt课件

等差数列的表示方法
通项公式
an = a1 + (n-1)d,其中an是第n项 ,a1是首项,d是公差。
前n项和公式
Sn = n/2 * (2a1 + (n-1)d),其中Sn 是前n项和,a1是首项,d是公差。
等差数列的性质
01
02
03
公差性质
公差d是任意两个相邻项 的差,即an - a(n-1) = d 。
04
等差数列的应用
在数学中的应用
基础概念理解
等差数列是数学中的基础 概念,对于理解数列、函 数等其他数学概念有着重 要作用。
数学运算
等差数列的特性使其在数 学运算中有着广泛的应用 ,例如求和、求差等。
解决数学问题
等差数列可以用来解决一 些复杂的数学问题,例如 求解方程、不等式等。
在物理中的应用
综合练习题
题目:已知一个等差数列的前4项 和为40,前8项和为64,求这个 等差数列的前12项和。
答案:88
解析:根据等差数列的求和公式 ,得到前4项和$S_4 = frac{4}{2} times (2a_1 + (4-1)d) = 40$, 前8项和$S_8 = frac{8}{2} times (2a_1 + (8-1)d) = 64$。解这个 方程组得到首项$a_1=13$,公差 $d=-2$。然后根据等差数列的求 和公式,得到前12项和$S_{12} = frac{12}{2} times (2 times 13 + (12-1) times (-2)) = 88$。
等差数列在日常生活和科学研究中有着广泛的应用,如计算 存款利息、解决几何问题等。
公式中的参数意义
01
02

等差数列公式ppt课件

等差数列公式ppt课件

下节课预告
• 下节课我们将学习等差数列在实际生活中的应用,以及如何利 用等差数列解决实际问题。同时,我们还将学习等差数列的性 质,进一步加深对等差数列的理解。
感谢观看
THANKS
一般形式
等差数列的通项公式可以 表示为an=kn+b,其中k 和b是常数,n是项数。
特殊形式
当k=0时,等差数列变为 常数列;当b=0时,等差 数列变为等差序列。
扩展形式
通过变换通项公式,我们 可以得到其他形式的等差 数列。
等差数列通项公式的应用
数学问题求解
数学建模
利用通项公式可以求解等差数列中的 未知数。
日常计数
在日常生活中,我们经常使用等差 数列来计数物品,例如按顺序排列 的电话号码、门牌号等。
等差数列在数学领域中的应用
数学分析
在数学分析中,等差数列是研究 函数和级数的重要工具,可以用
于证明一些数学定理和性质。
几何学
在几何学中,等差数列可以用于 计算一些几何形状的周长、面积
和体积等。
组合数学
在组合数学中,等差数列可以用 于计算组合数的公式和性质。
通过建立数学模型,我们可以利用通 项公式解决实际问题。
实际应用
等差数列在日常生活和科学研究中有 着广泛的应用,例如在统计学、物理 学等领域。
03
等差数列的求和公式
等差数列求和公式的推导
01
通过对等差数列的性质进行归纳 和演绎,利用倒序相加法推导出 等差数列的求和公式。
02
倒序相加法的原理是将等差数列 的前n项和与后n项和相加,再除 以2得到n项和的公式。
等差数列求和公式还可以用于解决一 些实际问题,例如计算存款的本金和 利息、计算工资等。

《等差数列说课》课件

《等差数列说课》课件

医学领域
等差数列也可以用来描述 医学领域中的一些问题, 如人体生理周期、药物剂 量和治疗效果等。
日常生活中的例子
等差数列还可以用来描述 日常生活中的一些问题, 如时间间隔、距离和速度 等。
05
课程总结与展望
本节课的总结
重点概念
等差数列的定义、通项公 式、性质等。
教学方法
通过实例、练习和互动, 使学生更好地理解和掌握 等差数列的相关知识。
式等。
解决数学问题
等差数列的知识可以帮助我们解决 一些数学问题,如求两个数的和、 求两个数的差等。
数学建模
等差数列也可以用于数学建模,例 如在解决物理学、工程学和社会科 学等领域的问题时,可以用等差数 列来描述一些数量关系。
等差数列在物理中的应用
物理学中的周期性现象
物理学中的热力学过程
等差数列可以用来描述物理学中的周 期性现象,如振动、波动和交流电等 。
02
等差数列的定义与性质
等差数列的定义
总结词
明确、简洁
详细描述
等差数列是一种常见的数列,其特点是任意两个相邻项的差是一个常数。
等差数列的通项公式
பைடு நூலகம்
总结词
准确、完整
详细描述
等差数列的通项公式是`a_n = a_1 + (n-1)d`,其中`a_n`是第n 项,`a_1`是第一项,d是公差,n 是项数。
《等差数列说课》ppt课件
目录
• 课程导入 • 等差数列的定义与性质 • 等差数列的求和公式 • 等差数列的应用举例 • 课程总结与展望
01
课程导入
导入等差数列的概念
总结词:明确概念
详细描述:通过实例和定义,向学生明确等差数列的概念,即每一项与它的前一 项的差等于同一个常数的数列。

等差数列说PPT教学课件

等差数列说PPT教学课件

7
判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,……;(√ d=-1) 2. 0.70,0.71,0.72,0.73,0.74……;(√
d=0.01) 3. 0,0,0,0,0,0,…….;(√ d=0) 4. 1,2,3,2,3,4,……;(×) 5. 1,0,1,0,1,……(×)
2020/12/10
8
通项公式
(不完全归纳) 给出等差数列的首项,公差 d ,
由学生研究分组讨论 a4 ,的通项公 式。通过总结 a4 的通项公式由学生猜d
想 a40 的通项公式,进而归纳 an 的通 项公式。
2020/12/10
9
若一等差数列{ an }的首项是 a1 ,公差 是 d,则据其定义可得:
应用举例 随堂练习
5
复习引入
1.从函数观点看,数列可看作是定义域为 __________对应的一列函数值,从而数列的通项公式 也就是相应函数的______。
2. 小芳只会5个单词,他决定从今天起每天背记10 个单词,那么在今后的五天内他的单词量逐日依次递增 为5,10,15,20,25
3.1+2+3+┉+100=?
2020/12/10
2
教学目标
在知识上:理解并掌握等差数列的概念;了解等差数列的通项 公式的推导过程及思想。
在能力上:培养学生观察、分析、归纳、推理的能力;在领会 函数与数列关系的前提下,把研究函数的方法迁移来研究数列, 培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分 析问题和解决问题的能力。
2、若数例{ a n } 是等差数列,若 bn = kan , (k 为常数)试证明:数列{ bn }是等差数列。

等差数列及其通项公式ppt课件

等差数列及其通项公式ppt课件

新课探索
一般地,如果一个数列从第 2 项起,每一项与它的 前一项之差都等于同一个常数,那么这个数列称为等差数列, 这个常数叫作等差数列的公差,公差通常用字母 d 表示.
数列①、②、③均为等差数列, 它们的公差分别为-0.5,2%,4.
显然,若数列{an}为等差数列,那么它的递推关系为: an-an-1=d,n≥2 ; an+1-an = an-an-1,n≥2.
1.2.1 等差数列及其通项公式
温故知新
数列的通项公式: 如果数列{an}的第n项an,可以用关于n的一个公式表示,
那么这个公式就称为数列{an}的通项公式.
数列的递推公式: 如果数列{an}的任一项an+1与它的前一项an之间的关系可
用一个公式来表示,即an+1 =f (an),n≥1,那么这个公式就叫作 数列{an}的递推公式;a1称为数列{an}的初始条件.
归纳小结
性质2 如果an,am,ap,aq为等差数列{an}的项,且n+m=p+q, (n,m,p,q∈N+)那么
an+ am = ap+ aq. 特别地,若n+m=2p,那么 an+ am = 2ap. 证明:记等差数列{an}的公差为d,则
an=a1+(n-1)d, am=a1+(m-1)d, ap=a1+(p-1)d,aq=a1+(q-1)d, 所以 an+am =2a1+(n+m-2)d, ap+aq=2a1+(p+q-2)d, 又 n+m=p+q,所以 an+am = ap+aq .
新课探索
当n=1时,等式两边均为a1,这表明该等式对任意n∈N+都成立, 因此等差数列{an}通项公式为:
an=a1+(n-1)d(n∈N+)
新课探索
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何求Sn?
方法1: Sn = a1 a2 a3 an
Sn = an an1 an2 a1
2Sn (a1 an ) (a2 an1) (a3 an2) (an a1)
n(a1 an )
Sn
=
n(a1 2
an )
方法2:
Sn a1 (a1 d) (a1 2d) a1 (n 1)d
2.创设情境,提出问题
泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙 杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的 主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵寝以宝石 镶饰,图案之细致令人叫绝。传说陵寝中有一个三角形图案, 以相同大小的圆宝石镶饰而成,共有100层,奢靡之程度,可见 一斑。 问题1:你知道这个图案一共花了多少宝石吗? 问题2:你知道1+2+3+、、、、+100=?在1787年已被高斯 解 决,征求高斯故事。
二、教学重难点:
重点:等差数列的前n项和公式。
用等差数列前项和公式解决简单实际问题。
难点:等差数列的前n项和公式的推导。
关键通过具体的例子发现一般规律。
三、教学过程:
1、上节回顾,铺垫思维
(1)等差数列的定义: an 是等差数列 an an1 d(n 2)
(2)通项公式:an a1 (n 1)d (3)重要性质:m n p q am an =ap aq (m, n, p,q 0)
等差数列的前n项和
(第一课时)
人民教育出版社 普通高中课程标准实验教科书 数学 必修5 第二章 第2-3节
等差数列的前n项和
一、教学目标 二、教学重难点: 三、教学过程: (四)总结公式,进行记忆 (五)公式应用 (六)课堂小结,布置作业
一、教学目标
知识与技能目标:掌握等差数列的前n项和公式, 并能运用公式解决简单的问题。 过程与方法目标:经历公式的推导过程,体会 数形结合的数学思想,体验从特殊到一般的研 究方法,掌握倒序相加法。 情感与态度价值观:使学生获得发现的成就感, 优化思维品质,提高代数的推理能力。
高斯算法:1+100=101,2+99=101,……, 50+51=101,
所以原式=50×(1+101)
问题3:图案中,第1层到第21层一共有多少颗宝石?即1+2+3+····+21=? 借助几何图形的直观性,引导学生使用熟悉的几何方法: 把“全等三角形”倒置,与原图补成平行四边形
获得算法:
S21
(1
21) 2
21
问题4:求1到n的正整数之和,即 1+2+3+····+n=?
sn 1 2 3 (n 1) n
sn n (n 1) (n 2) 2 1
2sn (1 n) (1 n) (1 n)
n
Байду номын сангаас
sn
n(n 1) 2
(三)类比联想,解决问题
设等差数列an的前n项和为Sn,即Sn = a1 + a2 + a3 an,
小结:回顾从特殊到一般的研究方法 倒序相加法求和及数形结合函数与方程的数学思想 掌握等差数列的前n项和公式及简单应用
课后作业:p120 1、2题
学习永远 不晚。
JinTai College
感谢您的阅读!
为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
n(n
1)d 2
n
5.公式的应用
例:等差数列中,已知: a1 4, a8 18, n 8 ,求前n 项和及公差d.(教师引导,师生共同完成) 选用公式:根据已知条件选用适当的公式 求出 变用公式:要求公差d,需将公式2变形运用,求d 知三求二 等差数列的五个基本量知三可求另外两个
6.课堂小结,布置作业
2Sn (a1 an ) (a1 an )
n个
n(a1 an )
(a1 an )
Sn
=
n(a1 2
an )
把 an a1 (n 1)d 代入
公式一:
Sn
=
n(a1
2
an
)
得到
Sn
=
na1
n(n
2
1)d
4.总结公式,进行记忆
公式一:
Sn
=
n(a1 2
an )
Sn
=
na1
相关文档
最新文档