高中数学必修一教案指数函数

合集下载

高一数学《指数函数》优秀教案(优秀5篇)

高一数学《指数函数》优秀教案(优秀5篇)

高一数学《指数函数》优秀教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!高一数学《指数函数》优秀教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。

人教版高中数学必修一《指数函数及其性质》教案

人教版高中数学必修一《指数函数及其性质》教案

指数函数及其性质教案一、教学目的1、使学生掌握指数函数的概念、图象和性质;能初步简单应用。

2、使学生理解数形结合的基本数学思想方法,培养学生观察、联想、类比、猜测、归纳的能力。

3、使学生体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题。

4、通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力。

二、教学重点、难点教学重点:指数函数的定义、图象、性质.教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。

三、教具、学具准备:多媒体课件:使用多媒体教学手段,增大教学容量和直观性,提高教学效率与质量。

四、教学方法遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。

依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

五、学法指导1.再现原有认知结构。

在引入两个实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

2.领会常见数学思想方法。

在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

3.在互相交流和自主探究中获得发展。

在实例的课堂导入、指数函数的性质研究、例题与训练、课内小结等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

4.注意学习过程的循序渐进。

在概念、图象、性质、应用的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

高中数学必修1第2章第一节指数函数教案:指数函数及其性质

高中数学必修1第2章第一节指数函数教案:指数函数及其性质

2.1.2指数函数及其性质教学设计(第1课时)一.教学目标:1、知识与技能:了解指数函数的定义,掌握指数函数的性质,并会用性质解决简单问题。

2、过程与方法:通过绘出函数图象、总结函数性质等教学过程,培养观察、总结,并综合运用数形结合思想解决问题的能力,并逐步形成善于与他人合作探究的团队意识。

3、情感、态度与价值观:通过观察、探究、讨论等思维活动,激发学习数学的兴趣,形成学数学、爱数学、用数学的良好习惯二.重、难点.教学重点:指数函数的图象和性质 教学难点:利用探究方式得出函数性质 三.学法与教具:①学法:观察法、讲授法及讨论法. ②教具:多媒体.[教学设想]1. 情境设计师:同学们先看两个问题(用幻灯分两屏放映)问题1、在2000年,专家预测,未来20年,我国GDP (国内生产总值)年平均增长率可望达到7.3%,那么,在2001~2020年,各年的GDP 可望为2000年的多少倍? 如果把我国2000年GDP 看成是1个单位,2001年为第一年,那么: 1年后(即2001年),我国的GDP 可望为2000年的_______倍。

2年后呢?,……,x 年后呢?问题2、一种放射性物质不断衰变为其他物质,每经过一年,剩留的质量约是原来的84%,求出这种物质的剩留量y 随时间x (单位:年)变化的函数关系。

师:请同学们朗读例题,并给出答案。

生1:经过x 年后,GDP 可望为2000年的x %)3.71(+倍。

生2:物质的剩留量y 随时间x 变化的函数关系是:x y 84.0=师:我们看到,例题中的两个函数是一种新的函数,函数的形式是指数幂的形式,它的底数是常数,而未知数x 却出现在指数位置,我们称这样的函数为指数函数。

从今天开始,我们来研究指数函数(板书:指数函数) 师:那么,指数函数是怎样定义的呢?(板书指数函数定义:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R 。

高中数学2.1.2指数函数及其性质教案新人教A版必修1

高中数学2.1.2指数函数及其性质教案新人教A版必修1

指数函数及其性质一、【教学目标】1.知识与技能:理解指数函数的概念,画出具体指数函数图象,能经过观察图象得出两类指数函数图象的地位关系;在理解函数概念的基础上,能运用所学知识解决简单的数学成绩;2.过程与方法:在教学过程中,利用画板作图加深对指数函数的认识,让先生在数学活动中感受数学思想方法之美、领会数学思想方法之重要;3.情感、态度、价值观:经过本节课自主探求研讨式教学,使先生获得研讨函数的规律和方法;培养先生自动学习、合作交流的认识。

二、【学情分析】指数函数式在先生零碎学习了函数概念,基本掌握函数性质的基础上进行研讨的,是先生对函数概念及其性质的第一次运用.教材在之前的学习中给出链各个理论的例子(GDP的增长成绩和碳14的衰减成绩),曾经让先生感遭到了指数函数的理论背景,但这两个例子的背景对于先生来说有些陌生.本节课先设计两个看似简单的成绩,但能经过得到超出想象的结果来激发先生学习新知的兴味和愿望。

三、【教材分析】本节课是《普通高中课程标准实验教科书·数学1》(人教A版)第二章第一节第二课【(2.1.2)《指数函数及其性质》.根据理论情况,将《指数函数及其性质》划分为三节课指数函数及其性质、指数函数及其性质的运用(1)、指数函数及其性质的运用(2)】,这是第一节“指数函数及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及消费理论中有着广泛的运用,所以指数函数应重点研讨。

四、【教学重难点】1.教学重点:指数函数的概念、底数互为倒数的指数函数的图象关于y轴对称。

2.教学难点:底数a的范围讨论,自变量的取值范围和由函数的图象归纳指数函数的性质。

五、【教学方法】自主预习、合作探求、体验践行。

六、 【教学装备】多媒体装备。

七、 【课时安排】第一课时(新知课)。

八、 【教学过程】(一) 创设情境,引出成绩(约3分钟)师:观察图片,你能说出这是甚么吗?生:国际象棋师:这盘象棋隐含了这么一个故事?生:....师:国王为了奖励发明者达依尔特许愿满足他提的任意一个请求,那么达伊尔提出如下要求在棋盘第一格放2粒大米,第二格放4粒大米,第三格放8粒大米,…按这个规律.最初一格棋盘上的大米数就是我要的.请问:最初一格的大米数是多少呢?生:642师:那么国王能否满足他的要求呢?【学情预设】先生会说能.也有说不能的.教师公布数据领会指数函数的爆炸增长,642粒大米是每年全世界粮食产量的1000多倍,明显国王是满足不了他的请求.师:请写出米粒数与棋盘格数的函数关系式.生:{}2,1,2,,64x y x =∈师: “一尺之棰,日取其半,万世不竭.”这句话来自著名的《庄子·天下篇》,哪位同学能用数学言语来表述它的含义?生:。

高中数学必修一第一节教案高中数学必修一第一课(5篇)

高中数学必修一第一节教案高中数学必修一第一课(5篇)

高中数学必修一第一节教案高中数学必修一第一课(5篇)高中数学必修一第一节教案高中数学必修一第一课篇一1、学问目标:使学生理解指数函数的定义,初步把握指数函数的图像和性质。

2、力量目标:通过定义的引入,图像特征的观看、发觉过程使学生懂得理论与实践的辩证关系,适时渗透分类争论的数学思想,培育学生的探究发觉力量和分析问题、解决问题的力量。

3、情感目标:通过学生的参加过程,培育他们手脑并用、多思勤练的良好学习习惯和勇于探究、锲而不舍的治学精神。

教学重点、难点:1、重点:指数函数的图像和性质2、难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区分,加深其感性熟悉。

教学方法:引导——发觉教学法、比拟法、争论法教学过程:一、事例引入t:上节课我们学习了指数的运算性质,今日我们来学习与指数有关的函数。

什么是函数?s: --------t:主要是表达两个变量的关系。

我们来考虑一个与医学有关的例子:大家对“非典”应当并不生疏,它与其它的传染病一样,有肯定的埋伏期,这段时间里病原体在机体内不断地生殖,病原体的生殖方式有许多种,分裂就是其中的一种。

我们来看一种球菌的分裂过程:c:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。

一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )s,t:(争论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),从函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。

二、指数函数的定义c:定义:函数 y = a x (a0且a≠1)叫做指数函数, x∈r.。

问题 1:为何要规定 a 0 且 a ≠1?s:(争论)c: (1)当 a 0 时,a x 有时会没有意义,如 a=﹣3 时,当x= 就没有意义;(2)当 a=0时,a x 有时会没有意义,如x= - 2时,(3)当 a = 1 时,函数值 y 恒等于1,没有讨论的必要。

《指数函数(1)》示范公开课教案【高中数学必修第一册北师大】

《指数函数(1)》示范公开课教案【高中数学必修第一册北师大】

《指数函数的图象和性质(1)》教学设计1.理解指数函数的概念、图象和性质.2.在探究式的学习中,体会研究函数的基本方法.重点:指数函数的概念和性质.难点:用指数函数的性质比较不同底数、不同指数的指数幂的大小.一、新课导入情境1.陶渊明曾说过:“勤学如春起之苗,不见其增,日有所长;辍学如磨刀之石,不见其损,日有所亏.”这句话告诉我们什么道理呢?假定现在获取的知识量是1,学习的知识按照每天1%的速度增长,那么,若干天后会怎样?两年后、三年后会怎样?怎么计算?答案:一天后是1.01,两天后是1.012,三天后是1.013,一年后是1.01365.我们用变量x 表示天数,那么你获取的知识量y 与天数工之间的关系可以用一个什么样的式子来表示呢?答案:y =1.01x (x ∈N +).假设知识的减少量也按照每天1%计算,将“辍学如磨刀之石,不见其损,日有所亏”翻译成数学的式子,得到什么?答案:y =0.99x (x ∈N +).计算一下,一个月你减少了多少?一年后你还剩下多少?答案:一个月30天减少了y =1−0.9930,一年365天后还剩下1−0.99365.情境2.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”你能用一个函数来描述它吗?答案:y =(12)x(x ∈N +).二、新知探究问题1:上述三个函数有何共同特征?答案:以上三个函数都可以写成y =a x 的形式.问题2:根据上面的特征,你能抽象、概括出这类函数的表达式吗?答案:一般地,我们把形如y =a x (a >0,且a ≠1)的函数叫作指数函数,其中x 是自变量,函数的定义域是R .◆教学目标◆教学重难点 ◆◆教学过程问题3:请同学们想一想,为何规定a >0,且a ≠1?答案:若a <0则有些函数在实数范围内没有意义,比如,当a =−2,x =12此时函数为y =(−2)12无意义;当a =1时,函数值永远都等于1,研究这样的固定不变量没有价值.问题4:如何讨论一个函数的性质,用什么方法?从什么角度?答案:华罗庚曾经说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”,我们需要结合函数图象,利用数形结合法研究函数的性质.问题5:指数函数的图象是怎样的?有怎样的性质呢?首先让我们研究一下底数大于1的情形. 学生活动:探究1.请同学们自己按照列表、描点、连线的步骤,借用所给的部分数据,先分别画出函数y =2x ,y =3x 的图象,再把两个图象画在同一平面直角坐标系中进行比较.(给出部分数据,便于学生进行描点.投影学生所作的图象,增强学生学习的信心.) 实例分析:先分析一个具体的指数函数y =2x . 列表、描点、连线,画出函数y =2x 的图象 x ⋯ -3 -2 -1 0 1 2 3 ⋯ y =2x⋯1814121248⋯从图象可以看出:函数y =2x 的图象位于x 轴的上方;从最左侧贴近x 轴的位置逐渐上升,过点(0,1),继续上升,函数值越来越大,图象越来越陡,直至无穷.由此得到函数y =2x 的性质:函数y =2x 在R 上是增函数,且值域是(0,+∞).再分析函数y =3x 列表、描点﹑连线,画出函数y =3x 的图象. x ⋯ -2 -1 0 1 2 ⋯ y =3x ⋯1913139⋯从图象可以看出:函数y=3x的图象也是位于x轴的上方;从最左侧贴近x轴的位置逐渐上升,过点(0,1),继续上升,函数值越来越大,图象越来越陡,直至无穷.由此得到函数y=3x的性质:函数y=3在R上是增函数,且值域是(0,+oo).由此可见函数y=2x与y=3x的性质是完全一样的.在同一平面直角坐标系中画出函数y=2x 与y=3x的图象,可以看出:在y轴左侧,函数y=3x的图象在函数y=2x的图象下方;在y轴右侧,函数y=3x的图象在函数y=2x的图象上方.探究2.当a>1时,指数函数的图象从左向右是怎样的趋势呢?是上升的还是下降的呢?用几何画板动态演示,观察随着a的变化图象的变化趋势.得出结论:当底数a>1时,指数函数的图象从左向右看是上升的,而且底数越大,图象在y轴右侧的部分就越靠近y轴.对于函数y=a x和y=b x(a>b>1):当x<0时,0<a x<b x<1;当x=0时,a x=b x=1;当x>0时,a x>b x>1.探究3.你能根据函数图象写出指数函数的性质吗?小组进行讨论.学生观察图象得出性质如下表:(左、右无限延伸)R三、应用举例例1指出下列函数中,哪些是指数函数?(1)y=4∙3x;(2)y=πx;(3)y=(−3)x;(4)y=x3;(5)y=−3x;(6)y=3−x;(7)y=2x+2;(8)y=2x+1.答案:(2)(6)是指数函数,其余均不满足y=a x(a>0,且a≠1)这种形式.设计意图:熟练掌握指数函数的解析式,理解指数函数的概念.例2比较下列各题中两个值的大小;(1)50.8,50.7;(2)7−0.15,7−0.1;(3)1.70.3,3.1−0.1.答案:(1)因为函数y=5x在R上是增函数,且0.8>0.7,所以50.8>50.7;(2)因为函数y=7x在R上是增函数,且−0.15<−0.1,所以7−0.15<7−0.1;(3)因为函数y=1.7x在R上是增函数,且0.3>0,所以1.70.3>1.70=1;因为函数y=3.1x在R上是增函数,且−0.1<0,所以3.1−0.1<1.70=1;因此,1.70.3>3.1−0.1.设计意图:通过比较幂值的大小,进一步理解指数函数的单调性.例3(1)求使不等式4x>32成立的实数x的集合;(2)已知方程9x−1=243,求实数x的值.解:(1)因为4x=22x,32=25,所以原不等式可化为22x>25.,因为函数y=2x在R上是增函数,所以2x>5,即x>52,+∞).因此,使不等式4x>32成立的实数x的集合是(52(2)因为9x−1=(32)x−1=32x−2,243=35,所以原方程可化为32x−2=35..因为y=3x在R上是增函数,所以2x−2=5,即x=72四、课堂练习1.某种细胞分裂时,由1个分裂为2个,2个分裂为4个⋯⋯一直分裂下去,请写出得到的细胞个数y与分裂次数之间的函数关系式.2.若函数y=(a2−4a+5)∙a x是指数函数,求实数a.3.比较下列各题中两个数的大小:(1)3−2.1,3−2.7;(2)21.6,20.6.参考答案:1.解:分裂个数y=2x,x为分裂次数.2.解:因为函数y=(a2−4a+5)∙a x是指数函数,则a>0且a≠1,且a2−4a+5=1,解得a=2.3.解:(1)因为函数y=3x在R上是增函数,且-2.1>-2.7,所以3−2.1>3−2.7;(2)因为函数y=2x在R上是增函数,且1.6>0.6,所以21.6>20.6.五、课堂小结1.指数函数的概念:一般地,我们把形如y=a x(a>0,且a≠1)的函数叫作指数函数,其中x是自变量,函数的定义域是R.(左、右无限延伸)R 教材第89页习题3-3A 组第1题.。

人教B版高中数学必修一教案-3.1 指数与指数函数

人教B版高中数学必修一教案-3.1 指数与指数函数

2.1.2 指数函数及其性质(1)三维目标一、知识与技能1.掌握指数函数的概念、图象和性质..能借助计算机或计算器画指数函数的图象. 3.能由指数函数图象探索并理解指数函数的性质. 二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等.2.通过探讨指数函数的底数a >0,且a ≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识.2.在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段. 教学重点指数函数的概念和性质. 教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教具准备多媒体、学案. 教学过程(一)新课导学探究一:指数函数的概念问题1:细胞分裂时,第一次由1个分裂成2个(即 12),第2次由2个分裂成4个(即 ),第3次由4个分裂成8个(即 ),如此下去,如果第x 次分裂得到 个细胞,那么细胞个数y 与次数x 的关系式是问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。

”请你写出截取x 次后,木棰剩余量y 关于x 的关系式是【讨论】:(1)这两个关系式是否构成函数?我们发现:在两个关系式中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式2x y= 和 1()2xy = 都是函数关系式。

(2)这是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?我们发现: 函数2x y= 和 1()2xy =在在形式上是是相同的,解析式的右边都是指数式,且自变量都在指数位置上。

底数是常数,指数是自变量。

结论:函数2x y= 和 1()2x y =都是函数y =a x 的具体形式.函数y =a x是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数. (引入新课,书写课题)(二)概念讲解指数函数的概念:一般地,函数y =a x (a >0,a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 思考:1、指数函数解析式的结构特征: ①xa 前面的系数为:1 ②a 的取值范围:a >0,a ≠1③指数只含x2:为什么规定10≠>a a 且呢?否则会出现什么情况呢?①当0=a ,ⅰ若0>x ,则00=xⅱ若0≤x ,则x0无意义,如:21-=x ,则010102121===-y 无意义。

新人教版高中数学必修一教案:第3节 指数函数

新人教版高中数学必修一教案:第3节 指数函数

2.3指数函数【知识要点】1. 指数函数:一般地,函数y=xa (a>0,且a ≠1)叫做指数函数。

2. 指数函数y=xa (a>0,且a ≠1)的图像与性质3.指数函数的运算性质 (1)m n a a ∙= m na +(a>0,m,n ∈R )(2)()m nmna a= (a>0,m,n ∈R )(3)()n n nab a b = (a>0,m,n ∈R ) (4)mnm na a a-÷= (a>0,m,n ∈R )(5) ()nn n a a b b= (a>0,b>0,n ∈R )4. 指数函数图像的平移规律若已知y=xa 的图像,则把y=xa 的图像向左平移b(b>0)个单位,则得到y=x ba +的图像;把y=xa 的图像向右平移b (b>0)个单位,则得到y=x ba-;把y=xa 的图像向上平移b(b>0)个单位,则得到y=xa +b 的图像;把y=xa 的图像向下平移b(b>0)个单位,则得到y=xa -b的图像。

5. 指数函数的实际运用在实际生活中经常遇到的与指数函数有关的函数模型:(1)指数增长模型,在(1)x y N p =+型函数中N 为原产值,p 为平均增长率,y 为总产值,x 为时间。

(2)复利计算公式(1)xy a r =+(a 为本金,r 为每期利率,x 为期数,y 为本利和),我国现行定期储蓄中的自动转存业务类似复利计算。

【知识应用】1. 方法:判断一个函数是否为指数函数,通过知道指数函数y=xa (a>0,且a ≠1)解析式的结构特征:(1)底数:大于零且不等于1的常数;(2)指数:自变量x ;(3)系数:1. (特别提醒:指数函数的结构的三个特征是判断函数是否为指数函数的三个标准,缺一不可)【J 】例1 指出下列函数中哪些是指数函数:(1)y= 4x (2)y= 4x (3)y=-4x(4)y= (4)x- (5)xy π=【L 】例2已知函数2(33)xa a a -+是指数函数,则a=_________【C 】例3 指出下列函数哪些是指数函数:(1)y=24x (2)y=xx (3)y= (21)xa -(a>12,且a ≠1) (4)31xy =+2. .方法:利用函数图像研究函数性质是一种直观而形象的的方法,记忆指数函数性质时可以联想函数的图像。

高一数学指数函数教案1

高一数学指数函数教案1

高一数学指数函数教案在一年的数学教学活动中, 作为高一数学老师的你知道怎样写高一数学指数函数教案吗?来写一篇高一数学指数函数教案吧, 它会对你的教学工作起到不菲的帮助。

下面是为大家收集有关于高一数学指数函数教案, 希望你喜欢。

高一数学指数函数教案1一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容, 直线和圆的位置关系是本章的重点内容之一。

从知识体系上看, 它既是点与圆的位置关系的延续与提高, 又是学习切线的判定定理、圆与圆的位置关系的基础。

从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系, 渗透了数形结合、分类讨论、类比、化归等数学思想方法, 有助于提高学生的思维品质。

二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法讨论点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法, 从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标激发求知欲和学习爱好, 锻炼乐观探索、发现新知识、总结规律的能力, 解题时养成归纳总结的良好习惯。

四、教学重难点(一)重点用解析法讨论直线与圆的位置关系。

(二)难点体会用解析法解决问题的数学思想。

五、教学方法根据本节课教材内容的特点, 为了更直观、形象地突出重点, 突破难点, 借助信息技术工具, 以几何画板为平台, 通过图形的动态演示, 变抽象为直观, 为学生的数学探究与数学思维提供支持.在教学中采纳小组合作学习的方式, 这样可以为不同认知基础的学生提供学习机会, 同时有利于发挥各层次学生的作用, 老师始终坚持启发式教学原则, 设计一系列问题串, 以引导学生的数学思维活动。

高一数学指数函数教案汇总6篇

高一数学指数函数教案汇总6篇

高一数学指数函数教案汇总6篇高一数学指数函数教案汇总6篇教案对于老师是重要的。

学习可以说很枯燥,记公式做题,做大量的类型题。

这时候,如果教师有一份明确的说课稿,将会大大提升教学效率,下面小编给大家带来关于高一数学指数函数教案,希望会对大家的工作与学习有所帮助。

高一数学指数函数教案篇1教学目标:(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:(1)重点:了解集合的含义与表示、集合中元素的特性。

(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗集合与元素之间有怎样的关系[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。

理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。

人教版高中数学必修一2-1-2《指数函数及其性质》公开课教案

人教版高中数学必修一2-1-2《指数函数及其性质》公开课教案

课题:指数函数及其性质2.1.2 指数函数及其性质一、教学目标:1.理解指数函数的概念,掌握指数函数的图象和性质.2.通过教学,掌握研究函数性质的思路方法,如类比、从特殊到一般等,增强学生识图用图的能力.3.在指数函数的学习过程中,培养学生观察、分析、归纳等思维能力,体会分类讨论思想、数形结合等数学思想. 二、教学重点、难点:教学重点:指数函数的定义、图象和性质.教学难点:指数函数定义、图象和性质的发现总结。

三、教学过程:1.创设情境引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……以此类推,1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系式是什么?生: y 与 x 之间的关系式,可以表示为y =2x ,*x N .引例2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”则截取x 次后,木棰剩余量y 与x 的函数关系式是什么?生: y 与 x 之间的关系式,可以表示为1()2x y = ,*x N ∈.问题1: 观察函数12()2xxy y ==与的解析式,这两个函数是不是我们以前学习的一次、二次、反比例函数?这两个函数的解析式有何共同特征?生:不是以前学习的一次、二次、反比例函数,他们的共同特征都是xy a =的形式. 问题2: 你能模仿以前学习的一次、二次、反比例函数的定义,给出这一新型函数的定义吗?学生回答xy a =,若回答不出,教师因势利导,然后板书课题:指数函数及其性质. 2. 指数函数的定义一般地,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .(归纳指数函数的定义,学生可能归纳不全,如想不到限制条件0a >且1a ≠,师直接说即可.)问题3: 在指数函数的定义中,为什么规定底数0a >且1a ≠呢? 生:(1)若0a =,则当0x >时,0xa =;当0x ≤时,xa 无意义;(2)若a <0,则对x 的某些值,可使xa 无意义,如12,2a x =-=; (3)若1a =,则无论x 取何值,它总是1,没有研究的价值.师:以上同学解释得都有一定道理但不够,底数a 范围的确定,是为了保证a 在这个范围内取值时,这一类函数的定义域永远是相同的.师:请大家来看下面一组练习:判断下列函数是不是指数函数?(学生回答)1(1)3x y += (2)3x y = (3)3x y =- 3(4)y x =(5)x y x =(6)x y π= (7)(3)x y =- ()()821xy a =-1(2a >且1)a ≠ 规律总结:指数函数的特征:(1)幂的系数为1;(2)底数是一个正的不等于1常数;(3)指数为自变量x .3. 指数函数的图象师:问题4:要研究一种新函数,如何研究?生:定义—图象—性质-应用师:问题5:研究一个函数,主要研究它的哪些性质呢? 生:定义域、值域、特殊点、单调性、最值、奇偶性.师:既然我们明晰了研究函数的思路和方法,那请你画指数函数(0,1)xy a a a =>≠且的图象.生:不知道底数a ,画不出来.师:那我们先画哪个指数函数的图象呢? 生:画12()2xxy y ==与的图象.师:请大家画出以下四个指数函数的图象.()()()()112 2()2133 4()3x x x xy y y y ==== 由学生分组上黑板画图,然后师生一起订正。

数学指数函数教学教案(最新5篇)

数学指数函数教学教案(最新5篇)

数学指数函数教学教案(最新5篇)高一数学《指数函数》优秀教案篇一一、教学目标:1、知识与技能(1)理解指数函数的概念和意义;(2)与的图象和性质;(3)理解和掌握指数函数的图象和性质;(4)指数函数底数a对图象的影响;(5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小(6)体会具体到一般数学讨论方式及数形结合的思想。

2、情感、态度、价值观(1)让学生了解数学来自生活,数学又服务于生活的哲理。

(2)培养学生观察问题,分析问题的能力。

二、重、难点:重点:(1)指数函数的概念和性质及其应用。

(2)指数.函数底数a对图象的影响。

(3)利用指数函数单调性熟练比较几个指数幂的大小。

难点:(1)利用函数单调性比较指数幂的大小。

(2)指数函数性质的归纳,概括及其应用。

三、教法与教具:①学法:观察法、讲授法及讨论法。

②教具:多媒体。

四、教学过程:第一课时讲授新课指数函数的定义一般地,函数(0且≠1)叫做指数函数,其中是自变量,函数的定义域为R。

提问:在下列的关系式中,哪些不是指数函数,为什么?(1)(2)(3)(4)(5)(6)(7)(8)(1,且)小结:根据指数函数的定义来判断说明:因为0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R。

若0,如在实数范围内的函数值不存在。

若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。

先来研究的情况。

下面我们通过用计算机完成以下表格,并且用计算机画出函数的图象。

再研究,01的情况,用计算机完成以下表格并绘出函数的图象。

从图中我们看出。

通过图象看出实质是上的。

讨论:的图象关于轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出的函数图象。

练习p711,2作业p76习题3-3A组2课后反思:高一数学《指数函数》优秀教案篇二教学目标:进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

高中数学人教A版 必修1《4.2.2指数函数的图象和性质》说课(23张PPT)教案(说课稿)

高中数学人教A版 必修1《4.2.2指数函数的图象和性质》说课(23张PPT)教案(说课稿)

4.2.2 指数函数的图象和性质说课稿今天我说课的题目是《指数函数的图象和性质》,下面我将从说教材、说学情、说教法学法、说教学过程、说板书设计这五个方面进行我的说课。

一、说教材首先,教材的地位和作用。

本节课选自人民教育出版社2019版必修第一册第四章第二节第二课时。

前面幂函数的学习为指数函数的研究提供了方法和依据,也为后续对数的学习奠定基础,在知识系统中起了承上启下的作用。

同时,在实际生活中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材。

其次,教学目标。

根据数学核心素养的要求,制定如下目标:1.能画出具体指数函数的图象2.能根据指数函数的图象说明指数函数的性质3.掌握指数函数的性质并解决简单问题。

最后,教学重难点。

通过对教学目标的分析,确定本节课的重点为指数函数的图象、性质,难点为指数函数图象和性质的探索与概括的过程。

…………………………………………………………………………………第二,说学情通过前一阶段的教学,学生对函数和图象的认识有了一定的认知结构,主要体现在三个层面: 知识层面:学生已初步掌握了函数的基本性质和简单的指数运算技能。

能力层面:学生在初中已经掌握了用描点法描绘函数的图象,幂函数的学习提供了按“背景-概念-图象和性质-应用”的顺序研究函数。

情感层面:学生思维活跃,乐于合作,有探究问题的意识,但思维的严谨性和分类讨论、归纳推理等能力有待于提高。

…………………………………………………………………………………第三,说教法学法在教法上,本节课主要采用四个问题与两个探究为载体的任务驱动式教学方法,启发引导学生归纳总结。

德国教育家第斯多惠曾说过“一个坏的教师奉送知识,一个好的教师则教人发现知识。

”在终身学习的时代背景之下,这就要求教师在教学过程中不能仅仅教授学科专业知识,更加注重学生对学习方法的把握,培养学生独立获取知识的能力。

为此,在教学过程中我将从以下几个方面渗透学法:1.学会作图识图,培养学生从函数图象中归纳函数性质。

高中数学教案《指数函数》

高中数学教案《指数函数》

教学计划:《指数函数》一、教学目标1.知识与技能:学生能够理解指数函数的概念,掌握指数函数的一般形式及其性质。

学生能够识别并绘制指数函数的图像,理解图像与函数性质之间的关系。

学生能够运用指数函数解决简单的实际问题,如增长率、衰减率等。

2.过程与方法:通过观察、比较、归纳等方法,引导学生发现指数函数的特征和规律。

通过动手实践(如绘制函数图像),加深学生对指数函数性质的理解。

通过案例分析,培养学生将实际问题抽象为数学问题的能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养探索数学奥秘的好奇心。

培养学生的逻辑思维能力和严谨的科学态度。

引导学生认识到数学在现实生活中的应用价值,增强应用数学的意识。

二、教学重点和难点重点:指数函数的概念、一般形式、性质及其图像特征。

难点:理解指数函数图像与函数性质之间的关系,以及运用指数函数解决实际问题。

三、教学过程1. 引入新课(5分钟)生活实例引入:通过展示细胞分裂、人口增长、放射性物质衰减等实际问题的例子,引导学生思考这些现象背后的数学规律。

提出问题:引导学生观察这些现象的共同点,即都涉及到了“基数”和“指数”的概念,进而引出指数函数的概念。

明确目标:介绍本节课将要学习的内容——指数函数,并说明学习目标。

2. 讲授新知(15分钟)定义讲解:详细讲解指数函数的概念、一般形式(如,其中且)及其基本性质(如定义域、值域、单调性等)。

图像展示:利用多媒体设备展示不同底数下指数函数的图像,引导学生观察图像特征,如底数大于1时函数图像上升,底数在0和1之间时函数图像下降等。

性质归纳:引导学生根据图像特征归纳出指数函数的性质,如单调性、过定点(如)等。

3. 案例分析(10分钟)例题讲解:选取一两个具有代表性的例题(如计算复利、分析人口增长趋势等),详细讲解如何运用指数函数模型解决问题。

思路展示:通过板书或PPT展示解题思路和步骤,引导学生理解如何将实际问题抽象为数学问题并求解。

《4.2.1指数函数的概念》教学设计教案

《4.2.1指数函数的概念》教学设计教案
从情感层面看,高一的学生充满了好奇心与求知欲,为顺利解决问题提供了良好的情感、态度基础,但探
究问题的能力以及合作交流等方面的发展不够均衡.
四、教学重难点
重点:指数函数的概念及其应用.
难点:从实际问题中,发现问题变化规律的本质,抽象出指数函数的概念.
五、教学设计
教学环节
环节一
环节目标
自主学习成果
分享
教学活动(师生活动)
媒体作用及设计意图
教师在课前给学生布置自主学习任务.
教师从学生上传的作业中,
(详见课前学习任务单)任务一:探究三
挑出典型错误或优秀答案,在
个不同背景的函数模型.任务二:归纳三个
课堂上进行展示.
函数的共同特征.
学生通过平板上传作业,提交后,即可
将学习任务前置,培养学生
观看答案自己订正.有不能独立解决的问
数函数的教学,体会“背景——概念——图象与性质——应用”的研究具体函数的一般思路.
三、学情分析
从知识方面看,学生已经学习了函数概念及其性质,掌握了一些初等函数的基本性质;并且对于指数幂的运
算,学生已经学习了将指数运算扩充到实数范围内,掌握了基本的指数运算技能.这些都为指数函数的学习奠定
了良好基础.
从能力方面看,学生初步具备了数形结合的思想,初步具备了研究具体函数的一般思路和方法.
达成上述目标的标志是:
①能够结合教科书中问题 1 的游客增长模型和问题 2 的碳 14 衰减模型,通过运算发现其中具体的增长或衰
减的规律,并从中体会实际问题中变量间的关系.在了解指数函数的实际意义的基础上,理解指数函数所刻画
的变化规律,清楚其定义域和底数的取值范围.
②经历由具体实例抽象为具体函数、再由具体函数概括为指数函数的过程,提升数学抽象的素养.并结合指
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题 3.1.2指数函数 上课人
课型
新授课
时间
教学重点 指数函数的图象和性质
教学难点
用数形结合的方法从特殊到一般地探索,概括指数函数的性质
学习目标 1.理解指数函数的概念,掌握指数函数的图象与性质;
2.归纳总结出比较大小的规律方法;
3.体会由特殊到一般的数学思维方式。

备课设计
双边活动 一、创设情境,引入概念
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,1个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数关系式是什么?
问题2:放射性物质衰变
二者有何共同特点?定义域是什么? 二、解读学习目标
1.理解指数函数的概念,掌握指数函数的图象与性质;
2.归纳总结出比较大小的规律方法;
3.体会由特殊到一般的数学思维方式。

三、预习案核心引领
(0,1)x y a a a x R =>≠定义:一般地,函数叫做指数函数,其中是自变量,函数的定义域是。

1.从形式上看指数函数的解析式有何特征? 指数函数是形式化的概念,要判断一个函数是否是指数函数,需抓住三点: ①底数a 大于零且不等于1的常数; ②化简后幂指数有单一的自变量x ;
③化简后幂的系数为1,且没有其他的项
2.01a a >≠在定义中为什么规定且?
=100=x 0
,a 2,f(x)111
x ,,246
x x
x
x
x >⎧⎨
≤⎩=-==---(1)当a=1时,f(x)=1为常值函数,无研究必要,(2)当a=0时,f(x)=0无意义,(3)当a<0时,f(x)=a 如(-2),
无意义
3. 底数a 对指数函数图象的影响
了解指数函数的实际背景,抽象出问题的共同特征,并把定义域由正整数集推广到实数集。

让学生明确本节课的目标,每个人目标及其明确地投入课堂中去。

让学生根据预习自测1明确如何判断给定函数是否为指数函数。

让生分类讨论反面情况为什么不考虑,明确这样规定的合理性。

四、学生合作探究
讨论、展示、总结、提升、变式、拓展
具体要求:
1.重点讨论:(1)指数函数的概念,指数函数的图象和性质(求定义域和值域)预习自测2和例1
(2)比较两个幂的形式的数大小的方法?例2及拓展
2.先组内讨论,再组间讨论或黑板上讨论;
3.错误的题目要改错,找出错因,总结题目的规
律、方法和易错点,注重多角度考虑问题。

我展示,我精彩
11组(前)
例1(2)6组(前)例1(1)1组(前)预习自测313组(后)例2拓展8组(白)例2(2)3组(后)例2(3)题目展示小组题目展示小组题目展示小组例1(2)2组(后)例2(1)7组(后)例2(2)12组(后)•要求:(1)小组长根据展示分工安排展示;展示同学
脱稿展示,步骤规范,用好双色笔(白色粉笔写过程
,黄色粉笔写总结,要点:序号化)。

•(2)非展示同学积极讨论,做好巩固和落实。

五、课堂点评与课内探究 探究点一:利用指数函数的图象和性质求复合函数的定义域、值域 例1 (2)(x)2x
f = 【规律方法】
(一)求复合函数()f x y a =的定义域等价于求()f x 的定义域
(二)求复合函数()f x y a =的定义域
(),()t
t f x g t a == 1.换元法,换元后转化成求新函数的值域(化繁为简)
2.注意新元的范围和值域的格式:区间或集合形式
探究点二:利用指数函数图象和性质比较大小
用问题引领学生讨论,充分发挥
学习小组互帮互助效益最大化的作用。

学生分工合作探究自己和自己小
组存在的问题,并总结解决这类问题的解决方法,并展示到黑板上供其他小组
分享,共同提高。

让学生分析解题思路,其他同学
各抒己见,相互补充。

引导学生思考外
层函数和内层函数及换元法。

相关文档
最新文档