全国高中数学必修2立体几何专题二面角典型例题解法总结

合集下载

高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)

高中数学必修2立体几何专题二面角典型例题解法总结(最新整理)

AA 1 =2, E、E 1 、F 分别是棱 AD、AA 1 、AB 的中点。
D1
A1 (1) 证明:直线 EE 1 //平面 FCC 1 ;
C1 B1
(2) 求二面角 B-FC 1 -C 的余弦值。
E1
D
E
A
F
C B
证(1)略 解 ( 2) 因 为 AB=4, BC=CD=2, 、 F 是 棱 AB 的 中 点 ,所 以 A1 BF=BC=CF,△BCF 为正三角形,取 CF 的中点 O,则 OB⊥CF,又因
分析:本题是一道典型的利用三垂线定理求二面角问题,在证明 AD⊥平面 PAB 后,容易发现平面 PAB⊥ 平面 ABCD,点 P 就是二面角 P-BD-A 的半平面上的一个点,于是可过点 P 作棱 BD 的垂线,再作平面 ABCD
的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角 P BD A 的大
2 ,则 GF
2

2
又∵ SA AC 6 ,∴ AM 2 ,∵ AM AB 2 , ABM 600 ∴△ ABM 是等边三角形,∴
BF 3 。在△ GAB 中, AG 6 , AB 2 , GAB 900 ,∴ BG 3 4 11
2
2
2
cos BFG GF 2 FB 2 BG 2
6
,求二面角 E—AF—C 的余弦值.
2
分析:第 1 题容易发现,可通过证 AE⊥AD 后推出 AE⊥平面 APD,使命 题获证,而第 2 题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在 二面角的棱 AF 上找到可计算二面角的平面角的顶点 S,和两边 SE 与 SC,进而计算二面角的余弦值。(答

2020高二数学立体几何之综合法求二面角含答案(新高考)

2020高二数学立体几何之综合法求二面角含答案(新高考)

综合法求二面角一、知识梳理:二面角的相关概念1.定义:从一条直线出发的所组成的图形.(立体图形)2.相关概念:(1)这条直线叫做二面角的;(2)两个半平面叫做二面角的.3.画法:4.记法:二面角α-l-β或二面角α-AB-β或二面角P-l-Q或二面角P-AB-Q.5.二面角的平面角:(1)若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l-β的平面角是(2)二面角的平面角α的取值范围是;平面角是直角的二面角叫做.二、牛刀小试:1.在二面角α-l-β的棱l上任选一点O,若∠AOB是二面角α-l-β的平面角,则必须具有的条件是()A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β2.二面角α-l-β的大小为60°,异面直线a,b分别垂直于α,β,则a与b所成角的大小__.三、经典例题例1在三棱锥V-ABC中,VA=AB=VB=AC=BC=2,VC=3,求二面角V-AB-C的大小.方法总结:定义法利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法.例2如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.(1)证明:平面SBC⊥平面SAB;(2)求二面角A-SC-B的平面角的正弦值.方法总结:三垂线法是利用三垂线定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法.这种方法关键是找垂直于二面角的面的垂线.此方法是属于较常用的.三垂线定理:在平面内的一条直线如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.三垂线定理的逆定理:在平面内的一条直线如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.四、课堂反馈1. 如图,AB是圆的直径,P A垂直于圆所在的平面,C是圆上一点(不同于A,B)且P A=AC,则二面角P-BC-A的大小为()A.60°B.30°C.45°D.15°2.如图,在长方体ABCD-A1B1C1D1中,AB=AD=23,CC1=2,则二面角C1-BD-C的大小为________.3.如图所示,将等腰直角三角形ABC沿斜边BC上的高AD折成一个二面角,此时∠B′AC =60°,那么这个二面角大小是________.五、课后作业1、如图,正方体的棱长为1,B′C∩BC′=O,求:(1)AO与A′C′所成角的大小;(2)AO与平面ABCD所成角的正切值;(3)平面AOB与平面AOC所成角的大小.2、如图,二面角α-l-β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为30°,则AB 与平面β所成的角的正弦值是________.3、求正四面体(棱长均相等的三棱锥)的侧面与底面所成二面角的大小.综合法求二面角(教师版)一、知识梳理:二面角的相关概念1.定义:从一条直线出发的两个半平面所组成的图形.2.相关概念:(1)这条直线叫做二面角的棱;(2)两个半平面叫做二面角的面.3.画法:4.记法:二面角α-l-β或二面角α-AB-β或二面角P-l-Q或二面角P-AB-Q.5.二面角的平面角:(1)若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l-β的平面角是∠AOB.(2)二面角的平面角α的取值范围是0°≤α≤180°.平面角是直角的二面角叫做直二面角.二、牛刀小试:1.在二面角α-l-β的棱l上任选一点O,若∠AOB是二面角α-l-β的平面角,则必须具有的条件是()A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β答案D2.二面角α-l-β的大小为60°,异面直线a,b分别垂直于α,β,则a与b所成角的大小是________.答案60°解析过直线a上一点作b的平行线b′,则根据二面角的定义和线面垂直的性质可知,a与b′的夹角为60°,所以a与b所成角的大小是60°.三、经典例题例1在三棱锥V-ABC中,VA=AB=VB=AC=BC=2,VC=3,求二面角V-AB-C的大小.解取AB的中点D,连接VD,CD,∵△VAB中,VA=VB=AB=2,∴△VAB为等边三角形,∴VD⊥AB且VD=3,同理CD⊥AB,CD=3,∴∠VDC为二面角V-AB-C的平面角,而△VDC是等边三角形,∠VDC=60°,∴二面角V-AB-C的大小为60°.方法总结:定义法利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法.例2如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.(1)证明:平面SBC⊥平面SAB;(2)求二面角A-SC-B的平面角的正弦值.(1)证明∵∠SAB=∠SAC=90°,∴SA⊥AB,SA⊥AC,又AB ∩AC =A ,AB ,AC ⊂平面ABC , ∴SA ⊥平面ABC ,又BC ⊂平面ABC ,∴SA ⊥BC ,又AB ⊥BC ,SA ∩AB =A ,SA ,AB ⊂平面SAB , ∴BC ⊥平面SAB ,又BC ⊂平面SBC ,∴平面SBC ⊥平面SAB .(2)解 取SB 的中点D ,连接AD ,则AD ⊥SB ,垂足为点D ,由(1)知平面SBC ⊥平面SAB ,平面SBC ∩平面SAB =SB ,AD ⊂平面SAB , ∴AD ⊥平面SBC .作AE ⊥SC ,垂足为点E ,连接DE , 则DE ⊥SC ,则∠AED 为二面角A -SC -B 的平面角.设SA =AB =2,则SB =BC =22,AD =2,AC =23,SC =4. 由题意得AE =3,Rt △ADE 中,sin ∠AED =AD AE =23=63,∴二面角A -SC -B 的平面角的正弦值为63.方法总结:三垂线法是利用三垂线定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法.这种方法关键是找垂直于二面角的面的垂线.此方法是属于较常用的.三垂线定理:在平面内的一条直线如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.三垂线定理的逆定理:在平面内的一条直线如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.四、课堂反馈1. 如图,AB 是圆的直径,P A 垂直于圆所在的平面,C 是圆上一点(不同于A ,B )且P A =AC ,则二面角P -BC -A 的大小为 ( )A.60°B.30°C.45°D.15° 答案 C解析 由条件得P A ⊥BC ,AC ⊥BC ,又P A ∩AC =A ,P A ,AC ⊂平面P AC ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C.2.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =23,CC 1=2,则二面角C 1-BD -C 的大小为________.答案 30°解析 如图,取BD 的中点O ,连结OC ,OC 1, ∵AB =AD =23,∴CO ⊥BD ,CO = 6. ∵CD =BC ,∴C 1D =C 1B ,∴C 1O ⊥BD . ∴∠C 1OC 为二面角C 1-BD -C 的平面角. tan ∠C 1OC =C 1C OC =26=33.∴∠C 1OC =30°,即二面角C 1-BD -C 的大小为30°.3.如图所示,将等腰直角三角形ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是________.答案 90°解析 由题意知,∠B ′DC 即为此二面角的平面角, 设AB =AC =1,连结CB ′, 则△AB ′C 为等边三角形, ∴B ′C =1,又B ′D =CD =22, ∴在△B ′DC 中,B ′D 2+CD 2=B ′C 2, ∴B ′D ⊥CD ,∴∠B ′DC =90°, 即此二面角的大小为90°.五、课后作业1、如图,正方体的棱长为1,B ′C ∩BC ′=O ,求:(1)AO 与A ′C ′所成角的大小; (2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角的大小. 解 (1)∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC . ∵AB ⊥平面BC ′,OC ⊂平面BC ′, ∴OC ⊥AB ,又OC ⊥BO ,AB ∩BO =B ,AB ,BO ⊂平面ABO , ∴OC ⊥平面ABO .又OA ⊂平面ABO ,∴OC ⊥OA . 在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12,∴∠OAC =30°.即AO 与A ′C ′所成角为30°. (2)如图,作OE ⊥BC 于E ,连接AE .∵平面BC ′⊥平面ABCD ,平面BC ′∩平面ABCD =BC ,OE ⊂平面BC ′, ∴OE ⊥平面ABCD ,∴∠OAE 为OA 与平面ABCD 所成的角. 在Rt △OAE 中,OE =12,AE =12+⎝⎛⎭⎫122=52,∴tan ∠OAE =OE AE =55.即AO 与平面ABCD 所成角的正切值为55. (3)由(1)可知OC ⊥平面AOB .又∵OC ⊂平面AOC ,∴平面AOB ⊥平面AOC . 即平面AOB 与平面AOC 所成的角为90°.2、如图,二面角α-l -β的大小是60°,线段AB ⊂α,B ∈l ,AB 与l 所成的角为30°,则AB 与平面β所成的角的正弦值是________.答案34解析 如图,作AO ⊥β于O ,AC ⊥l 于C ,连接OB ,OC ,则OC ⊥l ,则∠ACO 为二面角α-l -β的平面角,∠ABC 为AB 与l 所成的角.设AB 与β所成的角为θ,则∠ABO =θ.由图象得sin θ=AO AB =AC AB ·AO AC =sin 30°·sin 60°=34.。

二面角题型归纳及解题方法

二面角题型归纳及解题方法

αβa O A B 二面角题型归纳及解题方法二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。

求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,我们分为三类问题六种解题方法。

从而给出二面角的通性通法。

第一类:有棱二面角的平面角的方法方法1、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1、(全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,,点M 在侧棱上,=60°(I )证明:M 在侧棱的中点 (II )求二面角的余弦值。

证(I )略解(II ):利用二面角的定义。

在等边三角形中过点作交于点,则点为AM 的中点,过F 点在平面ASM 内作,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM S ABCD -ABCD SD ⊥ABCD 2AD =2DC SD ==SC ABM ∠SC S AM B --ABM B BF AM ⊥AM F F GF AM ⊥F GFB ∠FG∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角的大小为)36arccos(-举一反三:空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B -PC -A 的大小。

全国高中数学必修2立体几何专题二面角典型例题解法总结

全国高中数学必修2立体几何专题二面角典型例题解法总结

又∵ SA AC 6 ,∴ AM 2 ,∵ AM AB 2 ,ABM 600∴△ ABM 是等边三角形,BF 3 。

在△ GAB 中,AG 626,AB 2,GAB 900,cos BFG GF 2FB2BG 22GF FB132222112面角S AM6B的大小为arccos( 36)二面角的求法一、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S—AM—B 中半平面ABM 上的一已知点(B)向棱AM 作垂线,得垂足(F);在另一半平面ASM 内过该垂足(F)作棱AM 的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例 1 如图,四棱锥S ABCD 中,底面ABCD为矩形,SD 底面ABCD ,AD 2DC SD 2,点M在侧棱SC上,ABM =60(I)证明:M 在侧棱SC 的中点(II )求二面角S AM B 的大小。

证(I)略AM 的中点,过F点在平面ASM 内作GF AM ,GF交AS 于G,连结AC,∵△ ADC≌△ ADS,∴ AS-AC,且M是SC的中点,∴ AM⊥SC,GF⊥ AM,∴ GF∥AS,又∵ F为AM 的中点,∴GF是△ AMS的中位线,点G是AS的中点。

则GFB 即为所求二面角. ∵ SM 2 ,则GF解(II ):利用二面角的定义。

在等边三角形A BM 中过点B 作BF AM 交AM 于点F ,则点F 为二、三垂线法 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂 直.通常当点 P 在一个半平面上则通常用三垂线定理法求二面角的大小。

解二面角问题三种方法(习题和答案)

解二面角问题三种方法(习题和答案)

C AD A A 1B DC C 1 B 1 解二面角问题(一)寻找有棱二面角的平面角的方法和求解。

(1)定义法:利用二面角的平面角的定义.在二面角的棱上取一点.过该点在两个半平面内作垂直于棱的射线.两射线所成的角就是二面角的平面角.这是一种最基本的方法。

要注意用二面角的平面角定义的三个“主要特征”来找出平面角.当然这种找出的角要有利于解决问题。

下面举几个例子来说明。

例1:如图.立体图形V -ABC 的四个面是全等的正三角形.画出二面角V -AB -C 的平面角并求出它的度数。

例2:在三棱锥P-ABC 中.∠APB=∠BPC=∠CPA=600.求二面角A-PB-C 的余弦值。

这样的类型是不少的.如下列几道就是利用定义法找出来的:1、在正方体ABCD -A 1B 1C 1D 1中.找出二面角B -AC -B 1的平面角并求出它的度数。

2、.边长为a 的菱形ABCD .∠ACB=600.现沿对角线BD 将其折成才600的二面角.则A 、C 之间的距离为 。

(菱形两条对角线互相垂直.对折后的一条对角线成两条线段仍都垂直于另一条对角线.则所成的角是二面角的平面角)3、正三棱柱ABC —A 1B 1C 1的底面边长是4.过BC 的一个平面与AA 1交于D .若AD =3.求二面角D ―BC ―A 的正切值。

总之.能用定义法来找二面角的平面角的.一般是图形的性质较好.能够较快地找到满足二面角的平面角的三个主要特征。

并且能够很快地利用图形的一些条件来求出所要求的。

在常见的几何体有正四面体.正三棱柱.正方体.以及一些平面图形.正三角形.等腰三角形.正方形.菱形等等.这些有较好的一些性质.可以通过它们的性质来找到二面角的平面角。

至于求角.通常是把这角放在一个三角形中去求解。

由图形及题目的已知条件来求这个三角形的边长或者角.再用解三角形的知识去求解。

(2)三垂线法:是利用三垂线的定理及其逆定理来证明线线垂直.来找到二面角的平面角的方法。

二面角求法及经典题型归纳

二面角求法及经典题型归纳

二面角求法归纳18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。

以下是求二面角的五种方法总结,及题形归纳。

定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG FGFG∴二面角S AM B --的大小为)36arccos(-例2. (2010全国I 理,19题,12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 . (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF,则226,3AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°.例3(2010浙江省理,20题,15分)如图, 在矩形ABCD 中,点,E F 分别 在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将 AEF 翻折成'A EF ,使平面'A EF BEF ⊥平面.(Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长.练习(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,P A⊥平面ABCD,60ABC∠=︒,E,F分别是BC, PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面P AD所成最大角的正切值为62,求二面角E—AF—C的余弦值.分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。

利用传统方法解决二面角问题(五大题型)(解析版)

利用传统方法解决二面角问题(五大题型)(解析版)

利用传统方法解决二面角问题【题型归纳目录】题型一:定义法题型二:三垂线法题型三:射影面积法题型四:垂面法题型五:补棱法【方法技巧与总结】二面角的求法法一:定义法在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角,如图在二面角α-l -β的棱上任取一点O ,以O 为垂足,分别在半平面α和β内作垂直于棱的射线OA 和OB ,则射线OA 和OB 所成的角称为二面角的平面角(当然两条垂线的垂足点可以不相同,那求二面角就相当于求两条异面直线的夹角即可).法二:三垂线法在面α或面β内找一合适的点A ,作AO ⊥β于O ,过A 作AB ⊥c 于B ,则BO 为斜线AB 在面β内的射影,∠ABO 为二面角α-c -β的平面角.如图1,具体步骤:①找点做面的垂线;即过点A ,作AO ⊥β于O ;②过点(与①中是同一个点)做交线的垂线;即过A 作AB ⊥c 于B ,连接BO ;③计算:∠ABO 为二面角α-c -β的平面角,在Rt △ABO 中解三角形.图1图2图3法三:射影面积法凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos θ=S 射S 斜=S △A 'B 'C 'S △ABC,如图2)求出二面角的大小;法四:补棱法当构成二面角的两个半平面没有明确交线时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题.当二平面没有明确的交线时,也可直接用法三的摄影面积法解题.法五:垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角.【典型例题】题型一:定义法1.(2024·高一·江西宜春·期末)如图(1),六边形ABCDEF 是由等腰梯形ADEF 和直角梯形ABCD 拼接而成,且∠BAD =∠ADC =90°,AB =AF =EF =ED =2,AD =CD =4,沿AD 进行翻折,得到的图形如图(2)所示,且∠AEC =90°.(1)求证:CD ⊥平面ADEF .(2)求二面角C -AE -D 的余弦值;【解析】(1)在等腰梯形ADEF 中,作EM ⊥AD 于M ,则DM =AD -EF 2=1,AM =3,EM =3,可得AE =3+9=23,连接AC ,则AC =42,因为∠AEC =90°,可得EC =25,由ED 2+DC 2=EC 2,可得CD ⊥ED ,且CD ⊥AD ,AD ∩ED =D ,AD ,ED ⊂平面ADEF ,所以CD ⊥平面ADEF .(2)由(1)可知CD ⊥平面ADEF ,且AE ⊂平面ADEF ,可得CD ⊥AE ,且CE ⊥AE ,CE ∩CD =C ,CE ,CD ⊂平面CDE ,可得AE ⊥平面CDE ,且DE ⊂平面CDE ,可得AE ⊥DE ,又AE ⊥CE ,可知∠CED 就是二面角C -AE -D 的平面角,在Rt △CDE ,可得cos ∠CDE =DE CE =225=55,所以二面角C -AE -D 的余弦值为55.2.(2024·高一·全国·随堂练习)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB上,且∠CAB =30°,点D 为AC 的中点.(1)证明:AC ⊥平面POD(2)求二面角P -AC -O 的正弦值.【解析】(1)证明:连接PC ,则PC =PA ,因为点D 为AC 的中点,所以PD ⊥AC ,因为AB 为⊙O 的直径,所以∠ACB =90°,所以AC ⊥BC ,因为O 为AB 的中点,D 为AC 的中点,所以OD ‖BC ,OD =12BC ,所以OD ⊥AC ,因为PD ∩OD =D ,PD ,OD ⊂平面POD ,所以AC ⊥平面POD ,(2)由(1)知PD ⊥AC ,OD ⊥AC ,所以∠PDO 为二面角P -AC -O 的平面角,因为PO ⊥平面ABC ,OD ⊂平面ABC ,所以PO ⊥OD ,因为∠ACB =90°,∠CAB =30°,AB =2,所以BC =12AB =1,所以OD =12BC =12,所以在Rt △POD 中,sin ∠PDO =OP PD =22+14=223,所以二面角P -AC -O 的正弦值为2233.(2024·高一·河南商丘·阶段练习)如图,四边形ABCD 是正方形,PA ⊥平面ABCD ,且PA =AB =2 . 求:(1)求二面角B -PA -C 的大小.(2)求二面角A -PD -C 的大小.(3)求二面角B -PD -A 的大小的正弦值.【解析】(1)∵PA ⊥平面ABCD ,AB ,AC ⊂面ABCD ,∴PA ⊥AB ,PA ⊥AC ,∴∠BAC 为二面角B -PA -C 的平面角,又∵四边形ABCD 是正方形,∴∠BAC =45°,即二面角B -PA -C 的大小为45°;(2)作PD 的中点E ,PC 的中点F ,连接AE ,EF ,AF ,∵PA ⊥平面ABCD ,AD ⊂面ABCD ,∴PA ⊥AD ,∵PA =AB ,∴△PAD 为等腰直角三角形,∵E 为PD 的中点,∴AE ⊥PD ,又∵PA ⊥CD ,AD ⊥CD ,PA ,AD ⊂平面PAD ,且PA ∩AD =A ,∴CD ⊥平面PAD ,∴CD ⊥PD ,∵E ,F 分别为PD 和PC 的中点,∴EF ⊥PD ,∴∠AEF 为二面角A -PD -C 的平面角,∵EF ⎳CD ,∴EF ⊥平面PAD ,∴EF ⊥AE ,∴∠AEF =90°,即二面角A -PD -C 的大小为90°;(3)连接BE ,BD ,∵PB =AP 2+AB 2=22,BD =AB 2+AD 2=22,∴PB =BD ,∴BE ⊥PD ,∴∠AEB 二面角B -PD -A 的大小的平面角,又∵PA ⊥AB ,AB ⊥AD ,AP ,AD ⊂平面PAD ,且PA ∩AD =A ,∴AB ⊥平面PAD ,∴AB ⊥AE ,∵PD =2AP =22,∴ED =12PD =2,∴BE =BD 2-ED 2=6,∴sin ∠AEB =AB BE=63 ,即二面角B -PD -A 的大小的正弦值63.题型二:三垂线法1.(2024·高一·湖南长沙·阶段练习)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC .(1)证明:平面PBC⊥平面PAC;(2)设AB=PC=2,AC=1,求二面角B-PA-C的余弦值.【解析】(1)证明:∵AB是圆O的直径,∴BC⊥AC,又∵PC⊥平面ABC,BC⊂平面ABC,∴PC⊥BC,∵PC∩AC=C,且PC,AC⊂平面PAC,∴BC⊥平面PAC,又BC⊂平面PBC,∴平面PBC⊥平面PAC.(2)过C作CM⊥PA于M,连结BM,∵BC⊥平面PAC,PA⊂平面PAC,∴PA⊥BC,∵BC∩CM=C,且BC,CM⊂平面BCM,∴PA⊥平面BCM,又BM⊂平面BCM,∴PA⊥BM,∴∠BMC为二面角B-PA-C的平面角,在Rt△BMC中,∵CM=25,BC=3,∴BM=45+3=195,则cos∠BMC=MCBM=25195=21919,∴二面角B-PA-C的余弦值为21919.2.(2024·高一·江苏南京·阶段练习)如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为菱形,且有AB=1,PA=2,∠ABC=60°,E为PC中点.(1)证明:AC⊥面BED;(2)求二面角E-AB-C的平面角的正弦值.【解析】(1)证明:设AC与BD交于点O,连接EO,因为E,O分别为PC,AC的中点,所以EO⎳PA,又因为PA⊥底面ABCD,且BD、AC⊂底面ABCD,所以PA⊥BD,PA⊥AC,又因为EO⎳PA,所以EO⊥BD,EO⊥AC,AC∩BD=O,所以EO⊥底面ABCD,又四边形ABCD为菱形,所以BD⊥AC,则EO⊥AC,BD⊥AC,且EO∩BD=O,EO,BD⊂平面BED,所以AC⊥平面BED;(2)过O作OF⊥AB于F,连接EF,由(1)知OE⊥底面ABCD,且FO、AB⊂底面ABCD,所以OE⊥AB,OE⊥FO,又EO∩FO=O,EO、FO⊂平面EOF,所以AB⊥平面EOF,又EF⊂平面EOF,所以AB⊥EF,即∠EFO为二面角E-AB-C的平面角,因为底面ABCD为菱形,AB=1,∠ABC=60°,所以△ABC是边长为1的等边三角形,则AO=12,FO=12sin60°=34,又PA=2,则EO=12PA=22,在直角三角形EOF中,EF=11 4,则cos∠EFO=FOEF=3311,所以sin∠EFO=22211,故所求二面角的正弦值为222 11.3.(2024·高二·江苏南京·阶段练习)如图,在四棱锥P­ABCD中,PA⊥平面ABCD,四边形ABCD为菱形,∠ADC=60°,PA=AD=4,E为AD的中点.(1)求证:平面PCE⊥平面PAD;(2)求二面角A-PD-C的平面角的正弦值.【解析】(1)由题意,因为四边形ABCD为菱形,所以DA=DC.连接AC.因为∠ADC=60°,所以△ADC为等边三角形,从而CA=CD.在△ADC中,E是AD的中点,所以CE⊥AD.因为PA⊥平面ABCD,CE⊂平面ABCD,所以CE⊥PA.∵PA∩AD=A,PA⊂面PAD,AD⊂平面PAD,CE⊄面PAD,∴EC⊥平面PAD.又CE⊂平面PCE,∴平面PCE⊥平面PAD(2)由题意及(1)得,在平面PAD中,过点E作EM⊥PD,垂足为M,连接CM.因为EC⊥平面PAD,PD⊂平面PAD,所以EC⊥PD.又EM∩CE=E, EM⊂平面EMC,CE⊂平面EMC,所以PD⊥平面EMC.又CM⊂平面EMC,所以PD⊥CM,从而∠EMC是二面角A­PD­C的平面角.在Rt△EMD中,ED=2,∠ADP=45°,所以EM=MD= 2.在Rt△CMD中,MD=2,CD=4,所以CM=CD2-MD2=14.在Rt△CME中,CE=23,sin∠EMC=CECM =2314=427,所以二面角A­PD­C的平面角的正弦值为42 7.题型三:射影面积法1.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PDC所成二面角的大小.【解析】因为PA⊥平面ABCD,AD⊂平面ABCD,所以PA⊥AD,又AD⊥AB,且PA∩AB=A,PA,AB⊂平面PAB,所以AD⊥平面PAB,同理BC⊥平面PAB,所以ΔPCD在平面PBA上的射影为ΔPAB.设平面PBA与平面PCD所成二面角为θ,所以cosθ=SΔPABSΔPCD=12a212a⋅2a=22,所以θ=45°.故平面PBA与平面PCD所成二面角的大小为45°.2.(2024·新疆和田·高一校考期末)在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是正三角形,平面PAD⊥底面ABCD.(1)证明:AB⊥平面PAD;(2)求面PAD与面PDB所成的二面角的正切值.【解析】(1)证明:∵底面ABCD是正方形,∴AB ⊥AD ,∵平面PAD ⊥底面ABCD ,平面PAD ∩底面ABCD =AD ,∴由面面垂直的性质定理得,AB ⊥平面PAD ;(2)(法一)由题意,△PBD 在面PAD 上的射影为△PAD .设AD =a ,则S △PAD =34a 2,△PBD 中,PD =a ,BD =2a ,PB =2a ,∴S △PBD =12×a ×2a 2-a 24=74a 2,∴面PAD 与面PDB 所成的二面角的余弦值为37,∴面PAD 与面PDB 所成的二面角的正切值为23=233.(法二)如图所示:取PD 中点E ,连接AE ,BE .设AD =a ,则BD =PB =2a ,所以AE ⊥PD ,BE ⊥PD ,所以∠AEB 是平面PAD 与平面PDB 所成的二面角的平面角,在Rt △AEB 中,AE =32a ,AB =a ,∠BAE =π2,所以tan ∠AEB =AB AE =a 32a =23=233.3.(2024·高一课时练习)直角三角形ABC 的斜边在平面α内,两条直角边分别与平面α成30°和45°角,则这个直角三角形所在的平面与平面α所成的锐二面角的余弦值为.【答案】64【解析】过点C 作CD ⊥平面α,垂足为D ,连接AD ,BD ,∵AD ,BD ,AB ⊂平面α,则CD ⊥AD ,CD ⊥BD ,CD ⊥AB ,设CD =h >0,不妨设AC ,BC 分别与平面α成30°和45°角,则BC =2h ,AC =2h ,AD =3h ,BD =h ,过C 作CE ⊥AB ,垂足为E ,连接ED ,∵CD ⊥AB ,CE ∩CD =C ,CE ,CD ⊂平面CDE ,则AB ⊥平面CDE ,且DE ⊂平面CDE ,∴DE ⊥AB ,即所求二面角的平面角为∠CED ,由△ABC 的面积可得S △ABC =12AB ⋅CE =12AC ⋅BC ,由△ABD 的面积可得S △ABD =12AB ⋅DE =12AD ⋅BD ,∵cos ∠CED =DE CE =S △ABD S △ABC =12AD ⋅BD 12AC ⋅BC =3h ⋅h 2h ⋅2h =64,故所求锐二面角的余弦值为64.故答案为:64.题型四:垂面法1.(2024·高一·云南玉溪·期末)如图,三棱锥P -ABC 的底面△ABC 是等腰直角三角形,其中AB =AC =PA =PB =2,平面PAB ⊥平面ABC ,点E ,N 分别是AB ,BC 的中点.(1)证明:EN ⊥平面PAB ;(2)求二面角C -PB -A 的余弦值.【解析】(1)证明:因为三棱锥P -ABC 的底面是等腰直角三角形,且AB =AC =2,所以AB ⊥AC ,又点E ,N 分别是AB ,BC 的中点,故EN ∥AC ,故EN ⊥AB ,又平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,EN ⊂平面ABC ,故EN ⊥平面PAB .(2)如图,取PB 的中点为F ,连接AF ,CF ,因为PA =PB =AB =2,所以AF ⊥PB ,AF =3.又平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,AB ⊥AC ,AC ⊂平面ABC ,故AC ⊥平面ABP ,PB ⊂平面ABP ,故AC ⊥PB ,AC ∩AF =A ,AC ,AF ⊂平面ACF ,故PB ⊥平面ACF ,CF ⊂平面ACF ,故PB ⊥CF ,则∠CFA 即为所求的角,于是tan ∠CFA =CA AF =23,cos ∠CFA =217,所以二面角C -PB -A 的余弦值为217.2.(2024·高一·安徽芜湖·期末)如图,在三棱台ABC -DEF 中,∠ACB =90°,BF ⊥AD ,BC =2,BE =EF =FC =1.(1)求证:平面BCFE ⊥平面ABC ;(2)若直线AE 与平面BCFE 所成角为π3,求平面DEC 和平面ABC 所成角的正切值.【解析】(1)取BC 中点为O ,连接FO ,∵BE =EF =FC =1,BC =2,所以BO =OC =FC =1,故∠BFO =∠OBF ,∠CFO =∠COF =∠FCO ,由三角形内角和可得∠BFO +∠CFO =90°,故BF ⊥FC ,又∵BF ⊥AD ,AD ,FC ⊂平面ADFC ,AD ,FC 为相交直线,∴BF ⊥平面ADFC ,AC ⊂平面ADFC ,∴BF ⊥AC又∵∠ACB =90°,即BC ⊥AC ,BF ∩BC =B ,BF ,BC ⊂平面BCFE ,∴AC ⊥平面BCFE ,AC 在平面ABC 内,∴平面BCFE ⊥平面ABC(2)由(1)知直线AE 与平面BCFE 所成角为∠AEC ,∴AC EC=3,由于AE =AF =BC 2-FC 2=3,∴AC =3设平面DEC 和平面ABC 的交线为l ,由于AB ⎳平面DEC ,AB ⊂平面ABC ,所以l ∥AB ,过点E 作EG ⊥BC 于G ,又(1)知平面BCFE ⊥平面ABC ,且两平面的交线为BC ,EG ⊂平面BCFE ,∴EG ⊥平面ABC ,l ∈平面ABC ,所以EG ⊥l ,且EG =EB 2-BC -EF 2 2=32,再过点G 作GK ⊥l 于K ,连接EK ,GK ∩EG =G ,GK ,EG ⊂平面EGK ,所以l ⊥平面EGK ,EK ⊂平面EGK ,故l ⊥EK ,∵∠EKG 即为所求角,BG =12,GC =32,GK =GC ⋅sin ∠BCK =32sin ∠BCK =32sin ∠B =32×313=9213∵tan ∠EKG =EG EK =32×2139=399题型五:补棱法1.(2024·山东淄博·高一统考期末)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为棱BB 1、BC 的中点.(1)证明:直线DN ⎳平面AMD 1;(2)设平面AMD 1与平面ABCD 的交线为l ,求点M 到直线l 的距离及二面角D 1-l -C 的余弦值.【解析】(1)证明:取CC 1的中点E ,连接DE 、NE 、ME ,在正方体ABCD -A 1B 1C 1D 1中,BB 1⎳CC 1且BB 1=CC 1,∵M 、E 分别为BB 1、CC 1的中点,则BM ⎳CE 且BM =CE ,故四边形BCEM 为平行四边形,则ME ⎳BC 且ME =BC ,又因为AD ⎳BC 且AD =BC ,则ME ⎳AD 且ME =AD ,故四边形ADEM 为平行四边形,则DE ⎳AM ,∵DE ⊄平面AMD 1,AM ⊂平面AMD 1,∴DE ⎳平面AMD 1,因为AB ⎳C 1D 1且AB =C 1D 1,故四边形ABC 1D 1为平行四边形,则BC 1⎳AD 1,∵N 、E 分别为BC 、CC 1的中点,则NE ⎳BC 1,则NE ⎳AD 1,∵NE ⊄平面AMD 1,AD 1⊂平面AMD 1,∴NE ⎳平面AMD 1,∵DE ∩NE =E ,DE 、NE ⊂平面DEN ,所以,平面DEN ⎳平面AMD 1,∵DN ⊂平面DEN ,∴DN ⎳平面AMD 1.(2)延长D 1M 、DB 交与点P ,连接AP ,则直线AP 即为直线l ,因为BB 1⎳DD 1且BB 1=DD 1,M 为BB 1的中点,则PM PD 1=PB PD =BM DD 1=12,故点B 为PD 的中点,M 为PD 1的中点,在△ABP 中,AB =2,BP =BD =22,∠ABP =135°,由余弦定理可得AP2=AB2+BP2-2AB⋅BP cos135°=20,则AP=25,cos∠BAP=AB2+AP2-BP22AB⋅AP =255,则sin∠BAP=1-cos2∠BAP=55,过点D在平面ABCD内作DF⊥直线AP,垂足为点F,连接D1F,sin∠DAF=sin90°-∠BAP=cos∠BAP=255,所以,DF=AD sin∠DAF=455,∵DD1⊥平面ABCD,l⊂平面ABCD,∴DD1⊥l,∵DF⊥l,DF∩DD1=D,DF、DD1⊂平面DD1F,∴l⊥平面DD1F,∵D1F⊂平面DD1F,∴D1F⊥l,故二面角D1-l-C的平面角为∠D1FD,且D1F=DD21+DF2=655,故点M到直线l的距离为355,cos∠D1FD=DFD1F =23,因此,二面角D1-l-C的平面角的余弦值为23.2.(2024·湖南常德·高一临澧县第一中学校考期末)《九章算术》是中国古代的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右.它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”,已知在三棱锥P-ABC中,PA⊥平面ABC.(1)从三棱锥P-ABC中选择合适的两条棱填空:⊥,则三棱锥P-ABC为“鳖臑”;(2)如图,已知AD⊥PB,垂足为D,AE⊥PC,垂足为E,∠ABC=90°.(i)证明:平面ADE⊥平面PAC;(ii)设平面ADE与平面ABC交线为l,若PA=23,AC=2,求二面角E-l-C的大小.【解析】(1)因为“鳖臑”是由四个直角三角形组成的四面体,又PA⊥平面ABC,所以PA⊥AB,PA⊥AC,PA⊥BC;即△PAB,△PAC为直角三角形;若BC⊥AB,由AB∩PA=A,AB,PA⊂平面PAB,可得:BC⊥平面PAB;所以BC⊥PB,即△ABC,△PBC为直角三角形;满足四个面都是直角三角形;同理,可得BC⊥AC或BC⊥PB或BC⊥PC,都能满足四个面都是直角三角形;故可填:BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC;(2)(i)证明:∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,又BC⊥AB,PA∩AB=A,PA,AB⊂平面PAB,∴BC⊥平面PAB,又AD⊂平面PAB,∴BC⊥AD,又AD⊥PB,PB∩BC=B,PB,BC⊂平面PBC,∴AD⊥平面PBC,又PC⊂平面PBC,∴PC⊥AD,又AE⊥PC,AE∩AD=A,AD,AE⊂平面ADE,∴PC⊥平面ADE,又PC⊂平面PAC,∴平面ADE⊥平面PAC.(ii)由题意知,在平面PBC中,直线DE与直线BC相交.如图所示,设DE∩BC=F,连结AF,则AF即为l.∵PC⊥平面AED,l⊂平面AED,∴PC⊥l,∵PA⊥平面ABC,l⊂平面ABC,∴PA⊥l,又PA∩PC=P,PA,PC⊂平面PAC,∴l⊥平面PAC,又AE,AC⊂平面PAC,∴AE⊥l,AC⊥l.∴∠EAC即为二面角E-l-C的一个平面角.在△PAC中,PA⊥AC,PA=23,AC=2,∴PC=4,又AE⊥PC,∴AE=AP×ACPC =23×24=3,∴cos∠EAC=AEAC =32,∴∠EAC=30°,∴二面角E-l-C的大小为30°.3.(2024·黑龙江牡丹江·高一牡丹江一中校考期末)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设PC =2AB =4,求二面角E -l -C 大小的取值范围.【解析】(1)∵EF ⎳AC ,AC ⊂平面ABC ,EF ⊄平面ABC ,∴EF ⎳平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以EF ⎳l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以l ⎳平面PAC ;(2)设直线l 与圆O 的另一个交点为D ,连接DE ,FB ,如图:由(1)知,BD ⎳AC ,而AC ⊥BC ,所以BD ⊥BC ,所以PC ⊥平面ABC ,所以PC ⊥BD ,而PC ∩BC =C ,所以BD ⊥平面PBC ,又FB ⊂平面PBC ,所以BD ⊥BF ,所以∠FBC 就是二面角E -l -C 的平面角,因为PC =2AB =4,点F 是PC 的中点,所以FC =12PC =AB =2,故tan ∠FBC =FC BC =AB BC =1cos ∠ABC ,注意到0<∠ABC <π2,所以0<cos ∠ABC <1,所以tan ∠FBC >1,因为0<∠FBC <π2,所以∠FBC ∈π4,π2 ,所以二面角E -l -C 大小的取值范围为π4,π2.【过关测试】1.(2024·高一·广西玉林·阶段练习)如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,2AB =2BC =CC 1=2,D 是棱CC 1的中点,(1)求证:B1D⊥平面ABD;(2)求平面AB1D与侧面BB1C1C所成锐角的正切值.【解析】(1)证明:因为直三棱柱ABC-A1B1C1中,2BC=CC1=2,D是棱CC1的中点,所以BC=CD=C1D=B1C1=1,BB1=2,∠BCD=∠B1C1D=90°,所以BD2=BC2+CD2=2,B1D2=C1D2+B1C21=2,所以BD2+B1D2=4=BB21,所以BD⊥B1D,因为BB1⊥平面ABC,AB⊂平面ABC,所以BB1⊥AB,因为∠ABC=90°,所以AB⊥BC,因为BB1∩BC=B,BB1,BC⊂平面BB1C1C,所以AB⊥平面BB1C1C,所以B1D⊂平面BB1C1C,所以AB⊥B1D,因为AB∩BD=B,AB,BD⊂平面ABD,所以B1D⊥平面ABD;(2)因为B1D⊥平面ABD,AD⊂平面ABD,所以B1D⊥AD,因为BD⊥B1D,平面AB1D∩平面BB1C1C=B1D,所以∠ADB就是平面AB1D与侧面BB1C1C所成的平面角,因为AB⊥平面BB1C1C,BD⊂平面BB1C1C,所以AB⊥BD,在Rt△ADB中,AB=1,BD=2,则tan∠ADB=ABBD=12=22,所以平面AB1D与侧面BB1C1C所成锐角的正切值为2 2 .2.(2024·高一·河南商丘·阶段练习)如图,在棱长为3的正方体ABCD-A1B1C1D1中,E,F为棱AA1的两个三等分点.(1)求证:CE∥平面BDF;(2)求二面角C1-BD-F的余弦值.【解析】(1)如图,连接AC交BD于点O,连接OF.在△ACE中,O为AC的中点,F为AE的中点,所以OF∥CE,又平面BDF,OF⊂平面BDF,所以CE∥平面BDF.(2)连接C1O,C1F,A1C1.在正方体中,BD⊥AC,AA1⊥BD,AC∩AA1=A,AC,AA1⊂平面A1AC 所以BD⊥平面A1AC,而OF,OC1均在平面A1AC内,所以BD⊥OF,BD⊥OC1,所以∠FOC1是二面角C1-BD-F的平面角.因为正方体的棱长为3,所以AC=32,AO=322,AF=1,由勾股定理得FO=3222+12=222,C1O=322 2+32=362,C1F=(32)2+22=22.在△FOC1中,由余弦定理得cos∠FOC1=FO2+C1O2-C1F22FO⋅C1O=-3333,所以二面角C1-BD-F的余弦值为-33 33.3.(2024·高一·山东淄博·阶段练习)在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,AB=2,AC∩BD=O,PO⊥底面ABCD,PO=2,点E在棱PD上,且CE⊥PD.(1)证明:平面PBD⊥平面ACE;(2)证明:OE⊥PD(3)求二面角D-AC-E的余弦值【解析】(1)∵PO⊥平面ABCD,AC⊂平面ABCD,∴PO⊥AC,∵在菱形ABCD中,AC⊥BD,且BD∩PO=O,BD,PO⊂平面PBD,∴AC⊥平面PBD,∵AC⊂平面ACE,∴平面ACE⊥平面PBD,即平面PBD⊥平面ACE;(2)连接OE,则平面ACE∩平面PBD=OE,由(1)知AC ⊥平面PBD ,PD ⊂平面PBD ,则AC ⊥PD ,又∵CE ⊥PD ,CE ∩AC =C ,CE ,AC ⊂平面ACE ,∴PD ⊥平面ACE ,OE ⊂平面ACE ,∴PD ⊥OE ,即OE ⊥PD .(3)由于AC ⊥平面PBD ,OE ⊂平面PBD ,则AC ⊥OE ,又AC ⊥OD ,且平面EAC ∩平面DAC =AC ,OE ⊂平面EAC ,OD ⊂平面DAC ,故∠DOE 为二面角D -AC -E 的平面角;在菱形ABCD 中,AB =2,∠ABC =60°,则△ABC 是等边三角形,而O 为AC ,BD 的中点,则OD =OB =3,又OP =2,∴PD =22+3 2=7,故OE =OP ⋅OD PD =237=2217,∴cos ∠DOE =OE OD =22173=277,即二面角D -AC -E 的余弦值为277.4.(2024·高一·陕西西安·阶段练习)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,E ,F 分别为A 1B ,A 1C 的中点,D 为B 1C 1上的点,且A 1D ⊥B 1C .(1)求证:平面A 1FD ⊥平面BCC 1B 1;(2)若三棱柱所有棱长都为a ,求二面角A 1-B 1C -C 1的平面角的正切值.【解析】(1)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,则三棱柱ABC -A 1B 1C 1为直三棱柱,∴BB 1⊥平面A 1B 1C 1,A 1D ⊂平面A 1B 1C 1,∴BB 1⊥A 1D ,∵A 1D ⊥B 1C ,B 1C ∩BB 1=B 1,B 1C ,BB 1⊂平面BCC 1B 1,∴A 1D ⊥平面BCC 1B 1,又A 1D ⊂平面A 1FD ,∴平面A 1FD ⊥平面BCC 1B 1;(2)因为三棱柱所有棱长都为a,则△A1B1C1为等边三角形,A1D⊥平面BCC1B1,B1C1⊂平面BCC1B1,所以A1D⊥B1C1,所以D为B1C1的中点,过点D作B1C垂线,垂足为H,连接A1H,∵A1D⊥B1C,DH⊥B1C,A1D∩DH=D,A1D,DH⊂平面A1DH,∴B1C⊥平面A1DH,又A1H⊂平面A1DH,所以B1C⊥A1H,则∠A1HD是二面角A1-B1C-C1的平面角,A1D⊥平面BCC1B1,DH⊂平面BCC1B1,所以A1D⊥DH,∴A1D=32a,DH=22B1D=24a,tan∠A1HD=A1DDH=6,故二面角A1-B1C-C1的平面角的正切值为6.5.(2024·高一·广东云浮·阶段练习)如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为菱形,且有AB=1,PA=2,∠ABC=60°,E为PC中点.(1)证明:PA⎳平面BED;(2)求二面角E-AB-C的平面角的正弦值.【解析】(1)设AC与BD交于点O连接EO,因为E,O分别为PC,AC的中点,所以EO∥PA,又因为PA⊄平面BED,EO⊂平面BED,所以PA ⎳平面BED ;(2)过O 作OF ⊥AB 于F ,连接EF ,因为PA ⎳OE ,且PA ⊥平面ABCD所以OE ⊥平面ABCD ,AB ⊂平面ABCD ,所以OE ⊥AB ,又EO ∩FO =O ,EO ,OF ⊂平面EOF ,所以AB ⊥平面EOF ,又EF ⊂平面EOF ,所以AB ⊥EF ,即∠EFO 为二面角E -AB -C 的平面角,由EO =12PA =22,△ABC 是边长为1的等边三角形,即FO =12sin60°=34,在直角三角形EOF 中,EF =114,即cos ∠EFO =FO EF =3311,sin ∠EFO =1-cos 2∠EFO =22211.所以所求二面角的正弦值为22211.6.(2024·高一·山东枣庄·阶段练习)如图,E 是直角梯形ABCD 底边AB 的中点,AB =2DC =2BC ,将△ADE 沿DE 折起形成四棱锥A -BCDE .(1)求证:DE ⊥平面ABE ;(2)若二面角A -DE -B 为60°,求二面角A -DC -B 的余弦值.【解析】(1)在直角梯形ABCD 中,易知DC ⎳BE ,且DC =BE ,所以四边形BCDE 为平行四边形,又∠EBC =90°,AB =2DC =2BC ,E 是AB 的中点,所以四边形BCDE 是正方形,从而DE ⊥EB ,也即DE ⊥EA ,因此,在四棱锥A -BCDE 中,EB ∩EA =A ,EB ,EA ⊂平面ABE ,所以DE ⊥平面ABE ;(2)由(1)知,∠AEB 即二面角A -DE -B 的平面角,故∠AEB =60°,又AE =EB ,可得△AEB 为等边三角形;设BE 的中点为F ,CD 的中点为G ,连接AF ,FG ,AG ,从而AF ⊥BE ,FG ⎳DE ,于是AF ⊥CD ,FG ⊥CD ,AF ∩FG =F ,AF ,FG ⊂平面AFG ,从而CD ⊥平面AFG ,AG ⊂平面AFG ,因此CD ⊥AG ;所以∠AGF 即所求二面角A -DC -B 的平面角.由(1)中DE ⊥平面ABE ,且FG ⎳DE ,从而FG ⊥平面ABE ,AF ⊂平面ABE 所以FG ⊥AF ,设原直角梯形中,AB =2DC =2BC =2a ,则折叠后四棱锥中AF =32a ,FG =a ,从而AG =AF 2+FG 2=72a 于是在Rt △AFG 中,cos ∠AGF =FG AG=277;即二面角A -DC -B 的余弦值为277.7.(2024·高一·北京怀柔·期末)如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.(1)证明:CD 1⎳平面A 1BD ;(2)证明:BD ⊥平面A 1AC ;(3)求二面角A 1-BD -A 的正弦值.【解析】(1)在正方体ABCD -A 1B 1C 1D 1,A 1D 1⎳BC 且A 1D 1=BC ,∴A 1BCD 1为平行四边形,∴A 1B ⎳CD 1,∵CD 1⊄平面A 1BD ,A 1B ⊂平面A 1BD ∴CD 1⎳平面A 1BD ;(2)∵正方体ABCD -A 1B 1C 1D 1,AA 1⊥底面ABCD ,BD ⊂底面ABCD ,∴AA 1⊥BD ,∵正方形ABCD 中,AC ⊥BD ,又∵AA 1⊂平面A 1AC ,AC ⊂平面A 1AC ,AA 1∩AC =A ,∴BD ⊥平面A 1AC ;(3)∵在正方形ABCD 中,设AC ∩BD =O ,连接A 1O ,∴AC ⊥BD ,AO ⊥BD ,∵△A 1BD 中,A 1B =A 1D =22,△A 1BD 为等腰三角形,∴A 1O ⊥BD ,∴∠A 1OA 即为二面角A 1-BD -A 的平面角,∵在Rt △A 1AO 中,AA 1=2,AO =2,∴A 1O =6,∴sin ∠A 1OA =A 1A A 1O=63,即二面角A 1-BD -A 的正弦值为63.8.(2024·高一·广西·期末)如图,四棱锥P -ABCD ,PA ⊥平面ABCD ,∠BAD =∠BCD =π2,AB =BC =2,PA =BD =4,过点C 作直线AB 的平行线交AD 于F ,G 为线段PD 上一点.(1)求证:平面PAD ⊥平面CFG ;(2)求平面PBC 与平面PDC 所成二面角的余弦值.【解析】(1)因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,因为∠BAD =π2,所以AB ⊥AD ,因为PA ∩AD =A ,PA 、AD ⊂平面PAD ,所以AB ⊥平面PAD ,因为CF ⎳AB ,所以CF ⊥平面PAD ,因为CF ⊂平面CFG ,所以平面CFG ⊥平面PAD ;(2)连结AC ,过点B 作BE ⊥PC 于点E ,连接DE ,如图,PA ⊥平面ABCD ,AD 、AC ⊂平面ABCD ,所以PA ⊥AD ,PA ⊥AC ,因为∠BAD =∠BCD =π2,AB =BC =2,PA =BD =4,由勾股定理得:AD=BD2-AB2=23,则∠ADB=30°,同理可得CD=23,∠CDB=30°,故∠ADC=60°,所以三角形ACD为等边三角形,AC=CD=23,同理可得:PB=PA2+AB2=25,PC=PA2+AC2=27,PD=PA2+AD2=27,在△BCP中,由余弦定理得:cos∠BCP=BC2+CP2-PB22BC⋅CP=4+28-2087=327,则CE=BC cos∠BCP=627,BE=BC2-CE2=197,在△CDP中,由余弦定理得:cos∠PCD=PC2+CD2-DP22PC⋅CD=12+28-2823×47=327,在△CDE中,DE2=CE2+CD2-2CE⋅CD cos∠PCD=3628+12-2×627×23×327=757,因为CE2+DE2=12=CD2,所以DE⊥PC,所以∠BED是平面PBC与平面PDC所成二面角的平面角,由余弦定理得:cos∠BED=BE2+DE2-BD22BE⋅DE=197+757-162×197×757=-35795.9.(2024·高一·辽宁葫芦岛·期末)如图,在多面体ABCDEF中,菱形ABCD的边长为2,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3.(1)在线段FC上确定一点H,使得平面BDH⎳平面AEF;(2)设G是线段EC的中点,在(1)的条件下,求二面角A-HG-B的大小.【解析】(1)H为线段FC的中点.证明如下:在菱形ABCD中,连接AC与BD交于点O,于是O为AC中点,在△AFC中,OH为中位线,所以OH⎳AF,因为OH⊂平面BDH,AF⊄平面BDH,所以AF⎳平面BDH,又因为四边形BDEF是矩形,BD⎳EF,因为BD ⊂平面BDH ,EF ⊄平面BDH ,所以EF ⎳平面BDH ,又AF ,EF ⊂平面AEF ,且AF ∩EF =E ,所以平面AEF ⎳平面BDH .(2)分别取EF ,HG ,OC 中点M ,N ,P ,连接MO ,MA ,MC ,NP ,NO ,NA ,于是,N 为线段MC 中点,易知,在矩形BDEF 中MO ⊥BD ,菱形ABCD 中AC ⊥BD ,且MO ∩AC =O ,MO ,AC ⊂平面AMC ,所以BD ⊥平面AMC .又GH 为△CEF 的中位线,故GH ⎳EF ,且BD ⎳EF ,所以GH ⎳BD .所以GH ⊥平面AMC .又AN ,ON ⊂平面AMC ,所以GH ⊥AN ,GH ⊥ON .所以∠ANO 为二面角A -HG -B 的平面角.由已知,平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD ,MO ⊂平面BDEF ,且MO ⊥BD ,可得MO ⊥ABCD .又NP 为△CMO 的中位线,所以NP ⎳MO ,且NP =12MO =32,所以NP ⊥平面ABCD ,进而NP ⊥AP .在菱形ABCD 中,AO =3,PO =32,AP =AO +PO =332.在直角△NPA 中,tan ∠NAP =NP AP=33,所以∠NAP =π6.在直角△NPO 中,tan ∠NOP =NP OP=3,所以∠NOP =π3,所以,∠ANO =∠NOP -∠NAP =π6.即二面角A -HG -B 的大小为π6.10.(2024·高一·贵州毕节·期末)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,且AB =3,AD =2,侧面PAD 是等腰三角形,且PA =PD =2,侧面PAD ⊥底面ABCD .(1)求证:AP ⊥平面PCD ;(2)求侧面PBC 与底面ABCD 所成二面角的正弦值.【解析】(1)证明:在△APD 中,AD =2,PA =PD =2∴AD 2=AP 2+DP 2∴AP ⊥DP又∵侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD ,AD ⊥CD ,CD ⊂平面ABCD ,∴CD ⊥平面APD ,又AP ⊂平面APD ,∴CD ⊥AP ,又CD ∩DP =D ,CD ,DP ⊂平面PCD ,∴AP ⊥平面PCD .(2)取AD 的中点为M ,连接PM ,∵PA =PD ,所以PM ⊥AD又∵侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD ,PM ⊂面PAD ,∴PM ⊥平面ABCD又BC ⊂平面ABCD ,∴PM ⊥BC ,过点M 作MG ⊥BC ,垂足为G ,连接PG ,又PM ∩MG =M ,PM ,MG ⊂平面PMG ,∴BC ⊥平面PMG ,又MG ⊂平面PMG ,PG ⊂平面PMG ,∴BC ⊥MG ,BC ⊥PG ,∴∠PGM 为侧面PBC 与底面ABCD 所成二面角的平面角,在直角△PMG 中,PM =12AD =1,MG =3,∴PG =10,∴sin ∠PGM =PM PG =110=1010,即侧面PBC 与底面ABCD 所成二面角的正弦值为1010.11.(2024·高一·内蒙古包头·期末)如图,已知AB 是圆的直径,且AB =4,PA 垂直圆所在的平面,且PA =3,M 是弧AB 的中点.(1)求点A 到平面PBM 的距离;(2)求二面角A -BM -P 的正弦值.【解析】(1)设点A 到平面PBM 的距离为d ,由题意知BM ⊥AM ,因为PA ⊥平面MAB ,BM ⊂平面MAB ,所以BM ⊥PA ,又AM ∩PA =A ,AM ,PA ⊂平面PAM ,则BM ⊥平面PAM ,又PM ⊂平面PAM ,所以BM ⊥PM ,由V A -PBM =V P -ABM ,得13S △PBM ⋅d =13S △ABM ⋅PA ,12PM ⋅BM ⋅d =12AM ⋅BM ⋅3,即17d =62,故d =63417,所以点A 到平面PBM 的距离为63417;(2)由(1)得BM ⊥AM ,BM ⊥PM ,所以∠PMA 即为二面角A -BM -P 的平面角,因为AB =4,M 是弧AB 的中点,所以MA =MB =22,因为PA ⊥平面MAB ,AM ⊂平面MAB ,所以AM ⊥PA ,则PM =9+8=17,则sin ∠PMA =PA PM =317=31717,所以二面角A -BM -P 的正弦值为31717.12.(2024·高一·辽宁·期末)如图1,在等腰直角△ABC 中,∠C =π2,D ,E 分别是AC ,AB 的中点,F 为线段CD 上一点(不含端点),将△ADE 沿DE 翻折到△A 1DE 的位置,连接A 1C ,A 1B ,得到四棱锥A 1-BCDE ,如图2所示,且A 1F ⊥CD .(1)证明:A 1F ⊥平面BCDE ;(2)若直线A 1E 与平面BCDE 所成角的正切值为155,求二面角A 1-BD -C 的平面角的正切值.【解析】(1)证明:因为∠C =π2,且DE ∥BC ,所以DE ⊥AD ,所以DE ⊥A 1D ,DE ⊥DC ,又因为A 1D ∩CD =D ,且A 1D ,CD ⊂平面A 1DC ,所以DE ⊥平面A 1DC ,因为A 1F ⊂平面A 1DC ,所以DE ⊥A 1F ,又因为A 1F ⊥CD ,CD ∩DE =D 且CD ,DE ⊂平面BCDE ,所以A 1F ⊥平面BCDE .(2)如图所示,连接EF ,因为D ,E 分别是AC 与AB 的中点,可得A 1D =CD =DE ,又因为A 1F ⊥平面BCDE ,所以直线A 1E 与平面BCDE 所成的角为∠A 1EF ,由直线A 1E 与平面BCDE 所成角的正切值为155,即tan ∠A 1EF =155,设DF=x,则A1F=A1D2-DF2=A1D2-x2,EF=DE2+DF2=A1D2+x2,所以tan∠A1EF=A1FEF=A1D2-x2A1D2+x2=155,解得A1D=2x,即F为CD的中点,过F作FO⊥BD,垂足为O,因为A1F⊥平面BCDE,BD⊂平面BCDE,所以A1F⊥BD,又因为A1F∩OF=F,且A1F,OF⊂平面A1OF,所以BD⊥平面A1OF,因为A1O⊂平面A1OF,所以A1O⊥BD,所以二面角A1-BD-C的平面角为∠A1OF,由BC=4x,CD=2x,则BD=BC2+CD2=25x,所以OF=12⋅CD⋅BCBD=255x,因为A1F=A1D2-x2=3x,所以tan∠A1OF=A1FOF=152.13.(2024·高一·安徽宣城·期末)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点,△OCD是边长为2的等边三角形.(1)若AB=22,求直线AB和CD所成角的余弦值;(2)若点E在棱AD上,AE=13AD且三棱锥A-BCD的体积为4,求二面角E-BC-D平面角大小的正弦值.【解析】(1)分别取BC、AC的中点M、N,连接OM,ON,MN,因为О为BD中点,所以MO∥CD,MN∥AB且MO=12CD,MN=12AB,所以异面直线AB和CD所成角(或为邻补角)即为∠OMN,因为AB=AD,O为BD中点,所以AO⊥BD,因为△OCD是边长为2的等边三角形,所以BO=DO=2,MN=12AB=2,MO=12CD=1,又因为平面ABD⊥平面BCD,AO⊥BD,平面ABD∩平面BCD=BD,AO⊂平面ABD,所以AO⊥平面BCD,因为OC⊂平面BCD,所以AO⊥OC,由OC=OD,得△AOC≌△AOD,得AC=AD=AB=22.在直角三角形△AOC中,则ON=12AC=2,在△MON中,根据余弦定理得,cos∠OMN=MN2+MO2-ON22MN⋅MO =(2)2+1-(2)22×2×1=24或cos∠OMN=122=24所以直线AB和CD所成角的余弦值为2 4.(2)过点E作EN∥AO交BD于N.过点N作NM∥CD交BC于点M,连接ME,因为EN∥AO且AO⊥BD,所以EN⊥BD,因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,EN⊂平面ABD,所以EN⊥平面BCD,因为BC⊂平面BCD,所以EN⊥BC,在△BCD中,因为OB=OD=OC,所以BC⊥CD,因为NM∥CD,所以MN⊥BC,因为MN∩EN=N,MN,EN⊂平面MNE,所以BC⊥平面MNE,因为ME⊂平面MNE,所以BC⊥ME,所以∠EMN为所求的二面角E-BC-D的平面角,因为S△BCD=12BD⋅CD⋅sin∠BDC=12×4×2×32=23,因为V A-BCD=13S△BCD⋅OA=13×23⋅OA=4,所以OA=23,又因为AE=13AD,EN∥AO,所以ENAO=DEDA=23,得EN=23OA=433,因为NM ∥CD ,所以MN CD=BN DB =46=23,因为CD =2,所以MN =43.又EN =433,所以3MN =EN .所以tan ∠EMN =EN MN =3,所以sin ∠EMN cos ∠EMN =3,得sin ∠EMN3=cos ∠EMN ,因为sin 2∠EMN +cos 2∠EMN =1,sin ∠EMN >0,所以解得sin ∠EMN =32.所以二面角E -BC -D 平面角大小的正弦值为32.14.(2024·高一·福建福州·期末)如图,四棱锥P -ABCD 的侧面PAD 是边长为2的正三角形,底面ABCD 为正方形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点.(1)求证:DM ⊥PC ;(2)在线段PB 上是否存在一点Q 使得MQ ⎳平面PNC ,存在指出位置,不存在请说明理由.(3)求二面角B -PC -N 的正弦值.【解析】(1)∵△PAD 为正三角形,N 为AD 中点,∴PN ⊥AD ,又∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PN ⊂平面PAD ,∴PN ⊥平面ABCD ,DM ⊂平面ABCD ,∴PN ⊥DM ,在正方形ABCD 中,易知△DAM ≌△CDN ,∴∠ADM =∠DCN ,而∠ADM +∠MDC =90°,∴∠DCN +∠MDC =90°,∴DM ⊥CN ,∵PN ∩CN =N ,PN ,CN ⊂平面PNC ,∴DM ⊥平面PNC ,∵PC ⊂平面PNC ,∴DM ⊥PC .(2)存在,当BQ =14BP时MQ ⎳平面PNC ,取BE 的四等分点E (靠近B ),取BP 的四等分点Q (靠近B ),连接ME 、EQ 、MQ ,则QE ⎳PC ,QE ⊄平面PNC ,PC ⊂平面PNC ,所以QE ⎳平面PNC ,由BM DC=BE DN =12,所以△MBE ∽△CDN ,所以∠EMB =∠DCN ,又∠EMB +∠MEB =90°,∠DCN +∠NCB =90°,所以∠NCB =∠MEB ,所以ME ⎳NC ,ME ⊄平面PNC ,NC ⊂平面PNC ,所以ME ⎳平面PNC ,又ME ∩QE =E ,ME ,QE ⊂平面MEQ ,所以平面MEQ ⎳平面PNC ,MQ ⊂平面MEQ ,所以MQ ⎳平面PNC ,即当BQ =14BP时MQ ⎳平面PNC .(3)取DC 的中点F ,连接BF 交NC 于点G ,过点G 作GH ⊥PC 交PC 于点H ,连接BH ,则DF ⎳BM 且DF =BM ,所以四边形DFBM 为平行四边形,所以BF ⎳DM ,又DM ⊥平面PNC ,所以BF ⊥平面PNC ,PC ⊂平面PNC ,所以BF ⊥PC ,又GH ∩BF =G ,GH ,BF ⊂平面GHB ,所以PC ⊥平面GHB ,BH ⊂平面GHB ,所以PC ⊥BH ,所以∠BHG 为二面角B -PC -N 的平面角,因为△BCF ∽△CGF ,所以BC CG =CF FG =BF CF,又CG =BC ⋅CF BF =255,所以FG =55,BG =455,又△CGH ∽△CPN ,所以CG CP =GHPN ,又CN =22+12=5,PN =22-12=3,PC =5 2+3 2=22,即25522=GH 3,所以GH =3010,所以BH =30102+4552=142,所以sin ∠BHG =BG BH =455142=47035,故二面角B -PC -N 的正弦值为47035.。

二面角求法及经典题型归纳

二面角求法及经典题型归纳

二面角求法归纳18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。

以下是求二面角的五种方法总结,及题形归纳。

定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG FGFG∴二面角S AM B --的大小为)36arccos(-例2. (2010全国I 理,19题,12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 . (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF,则226,3AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°.例3(2010浙江省理,20题,15分)如图, 在矩形ABCD 中,点,E F 分别 在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将 AEF 翻折成'A EF ,使平面'A EF BEF ⊥平面.(Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长.练习(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,P A⊥平面ABCD,60ABC∠=︒,E,F分别是BC, PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面P AD所成最大角的正切值为62,求二面角E—AF—C的余弦值.分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。

立体几何二面角5种常见解法

立体几何二面角5种常见解法

立体几何二面角5种常见解法立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作 棱的 垂线‘得出平面角,用定义法时‘要认真观察图形的特T 生;例、如图,已知二面角a-a-p 等于120° ,PA 丄a ,A ea,PB 丄例、在四棱锥P-ABCD 中,ABCD 是正方形,PA 丄平面ABCD , 一、定义法: - —面角I可见楼型—不见棱型解法 垂线法 *垂面法积法十P ,Bep.求 z APB 的大"、.PA=AB=a,求二面角B-PC-D的大小二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD中,ABCD是平行四边形,PA丄平面ABCD,PA=AB=a,z ABC=30°,求二面角P-BC-A 的大小。

例、(2003北京春)如图,ABCD-AiBiCiDi是长方体,侧棱AA】长为1, 底面为正方体且边长为2,E是棱BC的中点,求面GDE与面CDE所成二面角的正切值・DAB例、△ ABC 中,Z A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°。

求(1 )二面角P—BC—A的大小;(2)二面角C—PB—A的大小例、(2006年陕西试题)如图4,平面丄平面,n =h AG ,BG ,点A在直线I上的射影为Al,点B在I的射影为Bl,已知AB=2 ? AA 1=1,BBi=2,求:二面角Ai —AB — Bi 的大小.A三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半 平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的 平面与棱垂直;例、空间的点P 到二面角 I 的面、及棱I 的距离分别为四、射影法:(面积法)利用面积射影公式S 射=$原85 ,其中为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA 丄平面ABCD ,PA=AB= a ,求平面PBA 与平面PDC 所成二面角的大小。

解二面角问题三种方法(习题及答案)

解二面角问题三种方法(习题及答案)

C A B DA A 1B DC C 1 B 1 解二面角问题(一)寻找有棱二面角的平面角的方法和求解。

(1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。

要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。

下面举几个例子来说明。

例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。

例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。

这样的类型是不少的,如下列几道就是利用定义法找出来的:1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。

2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。

(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角)3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。

总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。

并且能够很快地利用图形的一些条件来求出所要求的。

在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。

至于求角,通常是把这角放在一个三角形中去求解。

由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。

(2)三垂线法:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法。

二面角的四种求法-2021-2022学年高一数学(人教A版2019必修第二册)(解析版)

二面角的四种求法-2021-2022学年高一数学(人教A版2019必修第二册)(解析版)

立体几何专题:二面角的四种求法一、二面角1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。

3、二面角的大小范围:[0°,180°] 二、求二面角大小的步骤是: (1)作:找出这个平面角;(2)证:证明这个角是二面角的平面角;(3)求:将作出的角放在三角形中,解这个三角形,计算出平面角的大小. 三、确定二面角的平面角的方法:1、定义法(棱上一点双垂线法):提供了添辅助线的一种规律(1)方法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)具体演示:如图所示,以二面角的棱a 上的任意一点O 为端点, 在两个面内分别作垂直于a 的两条射线OA ,OB ,则∠AOB 为此二面角的平面角2、三垂线法(面上一点双垂线法)----最常用(1)方法:自二面角的一个面上一点向另外一个面作垂线,再由垂足向棱作垂线得到棱上的点(即斜足),斜足和面上一点的连线与斜足和垂足的连线所夹的角,即为二面角的平面角(2)具体演示:在平面α内选一点A 向另一个平面β作垂线AB ,垂足为B ,再αβaOAB过点B 向棱a 作垂线BO ,垂足为O ,连接AO ,则∠AOB 就是二面角的平面角。

3、垂面法(空间一点垂面法)(1)方法:过空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角。

(2)具体演示:过二面角内一点A 作AB ⊥α于B ,作AC ⊥β于C , 面ABC 交棱a 于点O ,则∠BOC 就是二面角的平面角。

4、射影面积法求二面角coss S射影(1)方法:已知平面β内一个多边形的面积为S ,它在平面α内的射影图形的面积为S射影,平面α和平面β所成的二面角的大小为θ,则COSθ=S射影S.这个方法对于无棱二面角的求解很简便。

二面角典型例题分析

二面角典型例题分析

二面角·典型例题分析例1 如图1-125,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-PA-C的平面角的正切值。

分析由PC⊥平面ABC,知平面ABC⊥平面PAC,从而B在平面PAC上的射影在AC 上,由此可用三垂线定理作出二面角的平面角。

解∵ PC⊥平面ABC∴平面PAC⊥平面ABC,交线为AC作BD⊥AC于D点,据面面垂直性质定理,BD⊥平面PAC,作DE⊥PA于E,连BE,据三垂线定理,则BE⊥PA,从而∠BED是二面角B-PA -C的平面角。

设PC=a,依题意知三角形ABC是边长为a的正三角形,∴ D是∵PC = CA=a,∠PCA=90°,∴∠PAC=45°∴在Rt△DEA评注本题解法使用了三垂线定理来作出二面角的平面角后,再用解三角形的方法来求解。

例2 在60°二面角M-a-N内有一点P,P到平面M、平面N的距离分别为1和2,求点P到直线a的距离。

(图1-126)分析设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ.同理,有PB⊥a,∵ PA∩PB=P,∴ a⊥面PAQB于Q又 AQ、BQ平面PAQB∴ AQ⊥a,BQ⊥a.∴∠AQB是二面角M-a-N的平面角。

∴∠AQB=60°连PQ,则PQ是P到a的距离,在平面图形PAQB中,有∠PAQ=∠PBQ=90°∴ P、A、Q、B四点共圆,且PQ是四边形PAQB的外接圆的直径2R在△PAB中,∵ PA=1,PB=2,∠BPA=180°-60°=120°,由余弦定理得AB2=1+4-2×1×2cos120°=7由正弦定理:例3 如图1-127过正方形ABCD的顶点A作PA⊥平面ABCD,设PA=AB=a 求(1)二面角B-PC-D的大小;(2)平面PAB和平面PCD所成二面角的大小。

2023年高考数学-----二面角模型规律方法与典型例题讲解

2023年高考数学-----二面角模型规律方法与典型例题讲解

2023年高考数学-----二面角模型规律方法与典型例题讲解【规律方法】如图1所示为四面体−P ABC ,已知二面角−−P AB C 大小为α,其外接球问题的步骤如下:(1)找出△PAB 和△ABC 的外接圆圆心,分别记为1O 和2O .(2)分别过1O 和2O 作平面PAB 和平面ABC 的垂线,其交点为球心,记为O . (3)过1O 作AB 的垂线,垂足记为D ,连接2O D ,则2⊥O D AB .(4)在四棱锥12−A DO OO 中,AD 垂直于平面12DO OO ,如图2所示,底面四边形12DO OO 的四个顶点共圆且OD 为该圆的直径.【典型例题】例1.(2022·贵州·模拟预测(理))如图,在三棱锥A BCD −中,ABC 是边长为形,AD CD ==D AC B −−的余弦值为23,则三棱锥A BCD −外接球的表面积为______.【答案】84π5【解析】如图1,取AC 中点E ,连接BE ,DE ,ABC 与ACD 为等边三角形,则,BE AC DE AC ⊥⊥,,,BEDE E BE DE =⊂平面BDE ,故AC ⊥平面BDE ,故二面角D AC B −−的平面角为DEB ∠,又AC ⊂平面ABC , 所以平面BDE ⊥平面ABC ,平面BDE ⋂平面ABC BE =, 过D 作DH BE ⊥于H ,DH ⊂平面BDE ,所以DH ⊥平面ABC , 由题意得2cos 3DEB ∠=,3DE BE ===,∴2323EH =⨯=,则DH =设ABC 外接圆圆心为2O ,则2O 在BE 上,半径为2BO ,过2O 作平面ABC 的垂线l , 则三棱锥A BCD −外接球的球心一定在直线l 上.∵21122sin 2AC BO B =⨯==,∴221,1EO O H =∴=, 过D 作BE 的平行线交l 于点F ,则21FD O H ==,∵D ,B 在球面上,外接球球心可能在三棱锥内也可能在三棱锥外, 取截面如图2,3,设外接球球心O ,半径R , 令2OO x =,则2FO FO x =±,2FO DH =∴22222222FO FD R OO BO R⎧+=⎪⎨+=⎪⎩,当2FO FO x =+时,化简得64,x +==当2FO FO x =−时,化简得64,x −==得2215R =,∴284π4π5S R ==, 故答案为:84π5. 例2.(2022·江西赣州·高三阶段练习(文))已知菱形ABCD 的边长为2,且60DAB ∠=︒,沿BD 把ABD △折起,得到三棱锥A BCD '−,且二面角A BD C '−−的平面角为120︒,则三棱锥A BCD '−的外接球的表面积为___________.【答案】283π【解析】取BD 的中点H ,连接A H ',CH ,因为ABCD 为菱形,所以A H BD '⊥,CH BD ⊥, 故A HC '∠为二面角A BD C '−−的平面角,则120A HC '∠=︒,由题意可知A BD '△,BCD △为正三角形,则外接球球心位于过A BD '△,BCD △的中心且和它们所在面垂直的直线上,故分别取A BD '△,BCD △的重心为1G ,2G ,过点1G ,2G 分别作两个平面的垂线,交于点O ,点O 即为三棱锥的外接球的球心,由题意可知A BD BCD '≅△△,球心到面A BD '和面BCD 的距离相等,即12OG OG =, 连接OD ,OH ,则1260OHG OHG ∠=∠=︒,菱形ABCD 的边长为2,∴1123HG =131cos 602HG OH ===︒,∴2222713OD OH HD =+=+=⎝⎭, 即三棱锥A BCD '−的外接球的半径273R =, 所以其外接球的表面积为27284433R πππ=⨯=. 故答案为:283π例3.(2022·江苏·南京市金陵中学河西分校高三阶段练习)在三棱锥A BCD −中,△BCD 是边长为3的正三角形,且AD =AB =A BD C −−的大小为3π,则此三棱锥外接球的体积为________.【解析】根据题意,222AD BD AB +=,所以AD BD ⊥,取BD 中点为E ,AB 中点M ,则//ME AD ,12ME AD ==,ME DB ⊥,BCD 是正三角形,CE DB ⊥, MEC ∠是二面角A ﹣BD ﹣C 的平面角,60MEC ∠=︒, 90ADB ∠=︒,M 是ADB 的外心,设N 是DBC 的外心,设过M 与平面ABD 垂直的直线与过N 垂直于平面BCD 的直线交于点O ,则O 是三棱锥A DBC −外接球球心,3CN BN ===EN EM =, 由于平面MNO 与MEO 同时垂直于BD ,所以M E N O 、、、共面, 在四边形MENO 中,由60MEC ∠=︒,EN =ME =090OME ONE ∠=∠= , 可得:12ON =,外接球半径为r OB ===体积为343V π=⨯=⎝⎭.例4.(2022·广东汕头·高三阶段练习)在边长为2的菱形ABCD 中,BD =将菱形ABCD沿对角线AC 对折,使二面角B AC D −−的余弦值为13,则所得三棱锥A BCD −的外接球的表面积为___________. 【答案】6π【解析】依题意在边长为2的菱形ABCD 中,BD =60ABC ADC︒∠=∠=, 如下图所示,易知ABC 和ACD 都是等边三角形,取AC 的中点N ,则DN AC ⊥,BN AC ⊥.DNBN N =,,DN BN ⊂平面BND ,所以AC ⊥平面BND ,所以BND ∠是二面角B AC D −−的平面角,过点B 作BO DN ⊥交DN 于点O , 由AC ⊥平面BND ,BO ⊂平面BND ,所以AC BO ⊥, DNAC N =,,DN AC ⊂平面ACD ,所以BO ⊥平面ACD .因为在BDN 中,BN DN ==所以22212cos 332343BD BN DN BN DN BND =+−⋅⋅∠=+−⨯⨯=,则2BD =.故三棱锥A BCD −为正四面体,由BO ⊥平面ACD ,所以O 为底面ACD 的重心,所以23OD DN =13ON DN =,则BO =,设外接球的半径为R ,则()222R OD BO R =+−,解得R因此,三棱锥A BCD −的外接球的表面积为22446R πππ=⨯=⎝⎭.故答案为:6π.。

立体几何二面角专题方法总结(定义法、向量法、三垂线法、补棱法)

立体几何二面角专题方法总结(定义法、向量法、三垂线法、补棱法)
2.三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的 射影垂直,那么它也和这条斜线垂直
3.三垂线定理的逆定理:如果平面内一条直线和穿过这个平面的一条 斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
如图 1,在二面角 —l 一 中,过平面 内一点 A 作 AO⊥平面 ,垂足为 O,过点 O 作 OB⊥l 于 B(过 A 点作 AB⊥于 B),连结 AB(或 OB),由三垂线定理(或逆定理)知 AB⊥ l(或 OB⊥l),则∠ABO 为二面角 —l— 的平面角.
4 . 三垂线法三部曲(两垂一连) ( 1 )作面的垂线(任一个半平面的垂线) ( 2 )作棱的垂线
( 3 )连线 例 1 已知斜三棱柱 ABC—A1B1C1 中,∠BCA=90°,AC=BC,A1 在底面 ABC 的射影恰为 AC 的中点 M,又知 AA1 与底面 ABC 所成的角为 60°. (1)求证:BC⊥平面 AA1CC1; (2)求二面角 B 一 AA1—C 的正切值.
3
五、 射影法
若多边形面积为 S, 它在一个平面上的射影的面积为 S0, 则多边形所在平面与这个平面所 成的二面角 θ, 满足 S0=Scosθ, 利用这个公式求二面角的方法称“射影法”, 射影法对于 解决棱不太明显的二面角问题有独特的作用.
例 1 过正方形 ABCD 的顶点 A 作线段 PA⊥平面 ABCD, 若 AB=PA, 则平
→→

b=
a b
.利用这一结论,我们可以较方便地处理立体几何中二面角的问题.


| a ||b|
例 1 在四棱锥 V-ABCD 中,底面 ABCD 是正方形,侧面 VAD 是正三 角形,平面 VAD⊥底面 ABCD.求面 VAD 与面 VDB 所成的二面角的余 弦值.

二面角问题求解方法大全

二面角问题求解方法大全

二面角问题求解方法大全本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March五法求二面角一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

例1如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AMB --的大小。

练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。

例2. 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 111111ABCD P -ABCD60,22,2,2,3=∠====PAB PD PA AD AB ⊥AD PABPC AD A BD P -- (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。

(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。

重点高中数学必修2立体几何专题二面角典型例题解法总结

重点高中数学必修2立体几何专题二面角典型例题解法总结

重点高中数学必修2立体几何专题二面角典型例题解法总结————————————————————————————————作者:————————————————————————————————日期:二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。

在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FGFG练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

最新版,二面角求法及经典题型归纳

最新版,二面角求法及经典题型归纳

最新版,二面角求法及经典题型归纳立体几何中,二面角是指从一条直线出发的两个半平面所组成的图形,其中这条直线称为二面角的棱,而这两个半平面则被称为二面角的面。

二面角的平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角。

二面角的大小范围在0°到180°之间。

在求解二面角时,可以使用三垂线定理,即平面内的一条直线如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直。

此外,还可以使用二面角的平面角的定义法、垂面法和三垂线法。

其中,定义法是在棱上取一点,在两个半平面内作垂直于棱的两条射线,这两条射线所夹的角即为二面角的平面角。

垂面法是做垂直于棱的一个平面,这个平面与两个半平面分别有一条交线,这两条交线所成的角即为二面角的平面角。

三垂线法则是过一个半平面内一点(记为A)做另一个半平面的一条垂线,过这个垂足(记为B)再做棱的垂线,记垂足为C,连接AC,则∠ACB即为该二面角的平面角。

两个平面的法向量的夹角与这两个平面所成的二面角的平面角有着密切的关系。

在实际求解中,可以使用定义法来解题,并利用三角函数、正弦定理和余弦定理进行计算。

例如,在正方体ABCD-A1B1C1D1中,可以通过在二面角S-AMB中半平面ABM上的一已知点(B)向棱AM作垂线,得到垂足(F),然后在另一半平面ASM内过该垂足(F)作棱AM的垂线(如GF),这两条垂线(BF、GF)便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,最后使用直角三角函数、正弦定理和余弦定理求解即可。

过正方形ABCD的顶点A作PA平面ABCD,设PA=AB=a,求二面角BPCD的大小。

三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

通常当点P在一个半平面上,就可以用三垂线定理法求二面角的大小。

本定理也提供了另一种添辅助线的一般规律。

例如,过二面角B-FC-C中半平面BFC上的已知点B作另一半平面FC的垂线,得垂足O;再过该垂足O作棱FC的垂线,得垂足P,连结起点与终点得斜线段PB,便形成了三垂线定理的基本构图(斜线PB、垂线BO、射影OP)。

解答二面角问题的三种措施

解答二面角问题的三种措施

备考指南理能力.结合实例进行探讨.一、利用定义法一般地,在二面角的棱上选取一点,垂直于棱的射线,的平面角.面角的平面角;角形,根据正余弦定理、例1.如图1,四棱锥S -底面ABCD ,AD =2,DC =SD 点,∠ABM =60°,求二面角S -图1解:过B 点作BF ⊥AM ,过AC ,如图2所示,因为SD ⊥底面ABCD ,所以∠ADS =∠ADC =90°,因为DC =SD =2,所以Δ所以AC =AS ,因为AM ⊥SC ,GF ⊥AM ,中点,的中位线,点G 为AS 的中点,S -AM -B 的平面角,SA =AC =6,BM =2,3,=BF =3,GF 2+BF 2-GB 22GF ∙BF =,-B 的余弦值为最重要的一步便是找到二面角首先要根据二面角的平面角、AMB 及其棱AM ;然后在两BF ,GF ,则∠GFB 即为所求二将问题转.首先需根据题目中给出的来建立空间直角坐标系;然后求m 、n ;再根<m ,n >=m ∙n |m |∙|n |;最后还需根据.P -ABCD 中,PA ⊥平面ABCD ,∠BAD =120°,PA =AD =1,AB苏其亮54备考指南=2,M 、N(1)(2)解:(线为x 、y 则A N 12则 CM 设m则{令x 1设n则{n n 令x 2cos <直线为x 要先根据题意寻找垂其与二面然后根据平面几何知识,三角形的性质、平行四边形即可解题.棱锥S -ABC 中,SA ⊥平面垂直平分AC 、SC ,且交AC 、SC =BC ,求二面角E -BD -C 的、DB ,E 是SC 中点,SBC 的中线,则BE ⊥SC ,⋂DE =E ,BE 、DE ⊂平面BDE ,,所以SC ⊥BD .,BD ⊂平面ABC ,、SA ⊂平面SAC ,,平面BDE =DE ,平面SAC ⋂平⊥DC ,E -BD -C 的平面角,,所以SA ⊥AB ,SA ⊥AC ,2,SB =BC =22,AC =23,∠ACS =30°,所以∠EDC =60°,-C 的大小为60°..,DE 垂直平分AC 、SC ,即可.再在直角三角形SAB 、SAC 、即可解题.向量法、垂面法都是解答二面向却比较便捷,能有效.甘肃省白银市靖远县第一中学)55。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 7二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角.∵2=SM ,则22=GF , 又∵6==AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF 。

在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FGFG2 / 7练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

(答案:二面角的余弦值为515)二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。

本定理亦提供了另一种添辅助线的一般规律。

如(例2)过二面角B-FC 1-C 中半平面BFC 上的一已知点B 作另一半平面FC 1C 的垂线,得垂足O ;再过该垂足O 作棱FC 1的垂线,得垂足P ,连结起点与终点得斜线段PB ,便形成了三垂线定理的基本构图(斜线PB 、垂线BO 、射影OP )。

再解直角三角形求二面角的度数。

例2.如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。

(1) 证明:直线EE 1//平面FCC 1; (2) 求二面角B-FC 1-C 的余弦值。

证(1)略解(2)因为AB=4, BC=CD=2, 、F 是棱AB 的中点,所以BF=BC=CF,△BCF 为正三角形,取CF 的中点O,则OB ⊥CF,又因为直四棱柱ABCD-A 1B 1C 1D 1中,CC 1⊥平面ABCD,所以CC 1⊥BO,所以OB ⊥平面CC 1F,过O 在平面CC 1F 内作OP ⊥C 1F,垂足为P,连接BP,则∠OPB 为二面角B-FC 1-C 的一个平面角, 在△BCF 为正三角形中,3OB =,在Rt △CC 1F 中, △OPF ∽△CC 1F,∵11OP OF CC C F =∴22122222OP =⨯=+,EABCFE 1A 1B 1C 1D 1DF 1O PEAB CF E 1A 1B 1C 1D 1D3 / 7在Rt △OPF 中,22114322BP OP OB =+=+=,272cos 7142OP OPB BP ∠===,所以二面角B-FC 1-C 的余弦值为77.练习2如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.分析:本题是一道典型的利用三垂线定理求二面角问题,在证明AD ⊥平面PAB 后,容易发现平面PAB ⊥平面ABCD ,点P 就是二面角P-BD-A 的半平面上的一个点,于是可过点P 作棱BD 的垂线,再作平面ABCD 的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。

(答案:二面角A BD P --的大小为439arctan)三.补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。

即当二平面没有明确的交线时,一般用补棱法解决 例3如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2. (Ⅰ)证明:平面PBE ⊥平面P AB ;(Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的大小.分析:本题的平面P AD 和平面PBE 没有明确的交线,依本法显然要补充完整(延长AD 、BE 相交于点F ,连结PF .)再在完整图形中的PF .上找一个适合的点形成二面角的平面角解之。

(Ⅰ)证略解: (Ⅱ)延长AD 、BE 相交于点F ,连结PF .过点A 作AH ⊥PB 于H ,由(Ⅰ)知平面PBE ⊥平面P AB ,所以AH ⊥平面PBE . 在Rt △ABF 中,因为∠BAF =60°, 所以,AF =2AB =2=AP .在等腰Rt △P AF 中,取PF 的中点G ,连接AG . 则AG ⊥PF .连结HG ,由三垂线定理的逆定理得,AB CEDPFGHABCEDP4 / 7PF ⊥HG .所以∠AGH 是平面P AD 和平面PBE 所成二面角的平面角(锐角). 在等腰Rt △P AF中,2AG PA == 在Rt △P AB中,2225AP ABAP AB AH PBAPAB ====+所以,在Rt △AHG 中,sin 5AH AGH AG ∠=== 故平面P AD 和平面PBE 所成二面角(锐角)的大小是arcsin 5练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。

(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。

提示:本题需要补棱,可过A 点作CB 的平行线L (答案:所成的二面角为45O ) 四、射影面积法(coss S射影)凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。

例4.如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小;分析:本题要求二面角B —AP —C 的大小,如果利用射影面积法解题,不难想到在平面ABP 与平面ACP 中建立一对原图形与射影图形并分别求出S 原与S 射于是得到下面解法。

解:(Ⅰ)证略(Ⅱ)AC BC =,AP BP =,APC BPC ∴△≌△.又PC AC ⊥,PC BC ∴⊥.A B E P ACBPACBB 1C 1A 1L5 / 7又90ACB ∠=,即AC BC ⊥,且AC PC C =,BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.∴△ACE 是△ABE 在平面ACP 内的射影, 于是可求得:2222=+===CB AC AP BP AB ,622=-=AE AB BE ,2==EC AE 则1222121=•=•==∆CE AE S S ACE 射, 3622121=•=•==∆EB AE S S ABE原 设二面角B AP C --的大小为ϑ,则3331cos ===原射S S ϑ ∴二面角B AP C --的大小为33arccos=ϑ练习4:如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值.分析 平面AB 1E 与底面A 1B 1C 1D 1交线即二面角的棱没有给出,要找到二面角的平面角,则必须先作两个平面的交线,这给解题带来一定的难度。

考虑到三角形AB 1E 在平面A 1B 1C 1D 1上的射影是三角形A 1B 1C 1,从而求得两个三角形的面积即可求得二面角的大小。

(答案:所求二面角的余弦值为cos θ=32). 五、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。

例4:如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=12AD (I) 求异面直线BF 与DE 所成的角的大小; (II) 证明平面AMD ⊥平面CDE ; 求二面角A-CD-E 的余弦值。

A 1D 1 B 1C 1EDBC A图56 / 7现在我们用向量法解答:如图所示,建立空间直角坐标系,以点A 为坐标原点。

设,1=AB 依题意得(),,,001B (),,,011C (),,,020D (),,,110E (),,,100F .21121M ⎪⎭⎫ ⎝⎛,, (I )(),,,解:101B F -=(),,,110DE -= .2122100DEBF DE BF DE cos =•++=•=,于是BF所以异面直线B F 与DE 所成的角的大小为060.(II )证明:,,,由⎪⎭⎫ ⎝⎛=21121AM (),,,101CE -=()0AM CE 020AD =•=,可得,,, .AMD CE A AD AM .AD CE AM CE .0AD CE 平面,故又,因此,⊥=⊥⊥=•.CDE AMD CDE CE 平面,所以平面平面而⊥⊂(III )⎪⎩⎪⎨⎧=•=•=.0D 0)(CDE E u CE u z y x u ,,则,,的法向量为解:设平面.111(1.00),,,可得令,于是==⎩⎨⎧=+-=+-u x z y z x又由题设,平面ACD 的一个法向量为).100(,,=v练习5、如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB . (Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A BC 所成的角为θ,二面角1A BC A --的大小为ϕ,试判断θ与ϕ的大小关系,并予以证明.分析:由已知条件可知:平面ABB 1 A 1⊥平面BC C 1 B 1⊥平面ABC 于是很容易想到以B 点为空间坐标原点建立坐标系,并将相关线段写成用坐标表示的向量,先求出二面角的两个半平面的法向量,再利用两向量夹角公式求解。

相关文档
最新文档