AFD高标清幅型变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、高、标清同播的解决方案
对于高标清同播的播出系统来说,如何正确完成标清与高清信号的上下变换,并保持画面内容的完整和美观,是系统设计中需要着重考虑的关键问题。全流程应用AFD技术,可以保证高标清变换中幅型变化的正确性。常见的高标清上下变换有以下几种。
图1、高清下变换标清的主要形式
图2、标清上变换高清的主要形式
其中14:9在国内不常见,在欧美国家的电视节目中可能会遇到。
播出时面对两类不同的节目信号源:直通HD/SD-SDI信号和MXF-op1a文件。无论对于哪种类型,一种思路是采用两版节目分别对应,即高清一版、标清一版。另外一种是通过嵌入
AFD信息,依托视频服务器、上下变换器等设备实现幅型变换自动适应。根据SMPTE 2016系列标准,实现基于文件和基于信号嵌入AFD信息的技术已经成熟,也是未来的发展趋势。
AFD(Active Format Description)是活动图像格式描述的缩写。它主要用来描述一个视频编码帧中,人们感兴趣的那部分活动图像的显示格式。AFD 可以嵌入在MPEG视频流、基带SDI 信号的辅助数据区和MXF文件内的元数据区,实际播出中可以在HD/SD-SDI信号流和MXF文件中写入AFD信息,达到自适应选择宽高比变换方式的目的。AFD在制作、转换的过程中不会丢失,可以被下一级设备识别。在SMPTE 2016-1 至2016-5标准中,对于AFD的编码规范做了定义:
2016-1: 定义AFD 和bar data 元数据格式,解释每个bit位信息2016-2: 定义平移-扫描(Pan & Scan)元数据格式2016-3: 定义AFD 和bar data 元数据在VANC中的位置2016-4: 定义平移-扫描(Pan & Scan)元数据在VANC中的位置2016-5: 将AFD、bar data 和平移-扫描(Pan & Scan)数据按KLV格式定义,写入MXF文件的规范。
注:KLV (Key-Length-Value) 是一种数据编码格式,常用于在视频数据流中嵌入所需信息。
AFD信息是用1个byte来标识的:b7,b6,b5,b4,b3,b2,b1,b0。其中b2表示当前编码的帧是4:3(b2=0)还是16:9(b2=1)方式;b6~b3代表了我们设定的1001、1010、1111等AFD code。每个编码帧对应一个AFD,它不但给出了本帧画面中人们感兴趣的那部分活动图像的幅型比,还标识了此活动图像处于本帧画面的什么位置,以及有无特殊的区域保护要求等信息;b7,b1,b0是保留位置,通常被置为0。SMPTE 2016-1标准中描述了所有AFD编码的含义。Bar Data可以作为AFD的辅助信息使用。当活动图像不能填满整个编码帧,而且AFD本身不能完整描述其范围(如幅型比既不是4:3,也不是16:9或14:9)时,就需要用到Bar Data。此时,Bar Data用来标识画面中未用区域的精确位置。AFD 和Bar Data按照上述方法组成的附属数据包(ANC packets),可以放置在切换行后第二行与活动图像的最后行之间的任意行。因此,对于625/50i系统,它们可以放置在9~23(322~336)行,对于1125/50i系统,它们可以放置在10~21(572~583)行。当支持AFD信息的上/下变换器接收到带有AFD的视频信号时,它们能够自动解读出这些AFD信息所给出的活动画面的幅型比和位置信息,并根据这些信息来指导自己的上下变换方式。例如当下变换器接收到AFD=1010的高清信号后,即可知道当前的视频信号为16:9图像,活动图像位于全屏幕。根据这些信息,下变换器在做下变换时就会按照预先设置选择上下加黑边的变换方式。同理,当下一条节目变为AFD=1111的高清信号时,下变换器就会根据AFD信息,按照预先设置自动选择两侧切边的变换方式。值得注意的是,当上/下变换器完成变换后,它会根据变换后的图像格式赋予新的AFD值,所以输出信号的AFD值与输入信号的AFD值并不一致。
表1、AFD格式转换描述
播出系统中AFD 解决方案
•在文件备播过程中,根据节目单信息,AFD在迁移过程中嵌入MXF文件中。
•在总控矩阵接入AFD嵌入器,对需要加入AFD值的信号预设相应信息。
•播出下变换中,有AFD按AFD变换,没有按缺省方式default变换。
播出通道设计
从方案设计上,我们做了三种选择,分别对应图3、4。
图3、高标清同播模式A、B
A. 频道1、2按图3方案建设,标清通道配置了标清16X2切换开关,可以实现标清外
来、彩条与测试图的播出。该方案实现自动控制复杂,播控机要控制高清切换台、切换器、主备标清切换器、高清标清键控器等多个设备。
B. 频道3-6,缺少图3中的虚框内设备,实现高、标清同播,标清通道无法切入新的
信号。
图4、高清播出模式C
C. 频道7-10,按图4方式,只有高清链路输出。
二、备播的策略
新播控平台的建设,定位在全台网的架构下,着眼于黑龙江台全台网系统的发展,从全局角度出发,使得播控平台既能满足目前节目播出业务需要,也能适配全台网架构下的互联模式。系统设计重点是文件备播系统,承担着节目文件的缓存及安全备播任务。该系统包括接口缓存部分和备播存储部分,接口缓存部分是系统对外的门户,用于接收外部系统的备播提交;备播存储区主要用于文件备播过程中的存储,用于向播出服务器推送文件。
在黑龙江台的设计中,采用了两台EMC Celerra NS480统一存储作为备播存储,Celerra NS-480为多协议环境提供了高级故障切换和完全自动化的存储分层功能,支持NAS、CIFS、iSCSI、SAN等多种协议,使用了经验证的后端EMC CLARiiON CX4 阵列技术。这里对Celerra NS-480不做过多的介绍。
图5、备播存储架构
二级存储体(即备播存储,相对于播出服务器的存储称为一级存储)设计为主、备方式。文件传输时,播出系统的主存储通过EMB总线读取一次节目文件,两个存储体之间由镜像服务器做校验,镜像到备存储体。只有校验一致的节目文件才能够显示迁移成功,充分保障节目文件的传输安全。
接口缓存区是外部系统节目文件传输至播出系统的过渡区域,所有进入播出系统的节目文件在接口缓存区域等待进行符合性及质量性审核,不符合规格的文件直接删除。
备播缓存区是只有符合迁移策略,且通过MD5校验、技审及人工复审的节目文件才能够进入备播缓存区,因此备播缓存区定位为合格的待播节目存储区。
对于文件读取,我们采用冗余读取、负载均衡方式,即根据负载情况,将读取按照客户端分布由应用策略负载均衡读取,带宽分担方式;
备播存储区与接口缓存区是业务逻辑的区别,并不是物理存储的划分,依靠数据库和元数据的标志进行逻辑分区。