第三单元长方体和正方体的知识点整理

合集下载

第三单元 长方体和正方体的体积 2023-2024学年五年级数学下册重难点知识点(人教版)

第三单元 长方体和正方体的体积 2023-2024学年五年级数学下册重难点知识点(人教版)

人教版五年级数学下册同步重难点知识点第三单元长方体和正方体的体积温馨提示:图片放大更清晰!1.掌握长方体、正方体的特征,认识各个部分的名称。

2.掌握长方体和正方体的表面积的计算方法。

3.理解体积的概念,掌握体积单位及体积单位之间的进率,能正确进行单位的换算。

4.掌握长方体和正方体体积的计算方法。

5.掌握容积的意义、容积单位间的进率及容积单位与体积单位的换算。

6.会计算不规则物体的体积。

重点:1.长方体、正方体的特征。

2.长方体、正方体表面积和体积的计算方法。

难点:用公式解决生活中的实际问题。

知识点一:认识长方体长方体是由六个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形。

一个长方体有6个面,相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。

知识点二:认识正方体正方体是(也叫立方体)是由六个完全相同的正方形围成的立体图形。

一个正方体有6个面,每个面完全相同;有12条棱,每条棱长度相等;有8个顶点。

知识点三:长方体、正方体的展开图长方体和正方体的展开图都有多种。

利用长方体和正方体的展开图可以探究各个面之间的关系。

知识点四:长方体、正方体表面积的计算长方体或正方体6个面的总面积,叫做它的表面积。

长方体的表面积:(长×宽+长×高+宽×高)×2正方体的表面积:棱长×棱长×6知识点五:体积和体积单位物体所占空间的大小叫做物体的体积。

计量体积要用体积单位,常用的体积单位有立方厘米、立方分米和立方米,可以分别写成cm³、dm³和m³。

知识点六:长方体、正方体体积公式的推导长方体的体积=长×宽×高 V = abh正方体的体积=棱长×棱长×棱长 V = a3知识点七:长方体、正方体体积公式的应用长方体或正方体底面的面积叫底面积。

长方体或正方体的体积=底面积×高V = Sh知识点八:体积单位间的进率1dm³=1000cm ³ 1m³=1000dm³高级单位转换成为低级单位,用乘法进率,小数点向右移;低级单位转化成高级单位,用除法进率,小数点向左移。

长方体和正方体知识点汇总

长方体和正方体知识点汇总

长方体和正方体知识点汇总一、长方体长方体是一种具有六个面,每个面均为长方形的立体图形。

它的特点是长宽高不相等,分别对应着长方体的三条棱。

下面总结一些长方体的基本知识:1. 长方体的表面积公式为:S=2×(ab+bc+ac),其中a、 b、 c 分别为长方体的三个面的长宽高。

2. 长方体的体积公式为:V=abc,其中a、b、c分别为长方体的三个面的长宽高。

3. 长方体的对角线长度公式为:d=√(a²+b²+c²),其中a、b、c 分别为长方体的三个面的长宽高。

4. 长方体的中心对称轴是一条连接长方体两面中心点的直线,它与长方体的三条棱垂直。

5. 长方体的垂直截面是长方形,水平截面是正方形或长方形。

6. 长方体的立体对称轴有3条:一条是连接对角面中心的对称轴,另外两条是互相垂直的,分别连接相对边中心的对称轴。

7. 长方体的顶点个数为8个。

顶点是立方体的八个角。

二、正方体正方体是一种有六个面,每个面均为正方形的立体图形。

它具有的特点是长宽高相等,都是边长,下面总结一些正方体的基本知识:1. 正方体的表面积公式为:S=6a²,其中a为正方体的边长。

2. 正方体的体积公式为:V=a³,其中a为正方体的边长。

3. 正方体的对角线长度公式为:d=√3a,其中a为正方体的边长。

4. 正方体的中心对称轴是一条连接正方体两面中心点的直线,它与正方体的任何一边垂直。

5. 正方体的垂直截面和水平截面都是正方形。

6. 正方体的立体对称轴有4条:一条是连接对角面中心的对称轴,另外三条是互相垂直的,分别连接相对边中心的对称轴。

7. 正方体的顶点个数为8个。

顶点是正方体的八个角。

总结:长方体和正方体相比,长方体的三条棱长度不相等,而正方体的三条棱长度相等。

在实际生活中,我们可以用长方体来描述一些长宽高不相同的物品,例如房屋、柜子等;而正方体通常用来描述一些长宽高相同的物品,例如小盒子等。

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单

人教版五年级数学下册第三单元《长方体和正方体》知识点汇总清单一、长方体和正方体的定义及特征长方体:有6个面的立体图形,每个面都是长方形,任意两个相邻面都是全等的,相对的面是平行的。

正方体:是一种特殊的长方体,所有的面都是正方形。

二、长方体和正方体的面、棱和顶点1. 面:长方体有6个面,分别是底面、顶面和4个侧面。

正方体同样有6个面,每个面都是正方形。

2. 棱:长方体有12条棱,正方体有12条棱。

3. 顶点:长方体有8个顶点,正方体也有8个顶点。

三、长方体和正方体的名字长方体和正方体的命名按底部的形状来命名,如下所示:1. 底面为长方形的长方体,我们称为长方体;2. 底面为正方形的长方体,我们称为正方体。

四、长方体和正方体的面积和体积1. 面积:长方体的面积计算公式:面积 = 底面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 + 侧面积 = 2ab + 2bc + 2ac(其中a、b、c分别为长方体的长、宽、高)正方体的面积计算公式:面积 = 正方形的边长 ×正方形的边长 ×6 = a × a × 6(其中a为正方体的边长)2. 体积:长方体的体积计算公式:体积 = 底面积 ×高 = 底面积 × c(其中c 为长方体的高)正方体的体积计算公式:体积 = 正方形的边长 ×正方形的边长 ×正方形的边长 = a × a × a(其中a为正方体的边长)五、长方体和正方体的应用及实例长方体和正方体在日常生活中有许多应用,比如:1. 盒子和容器:我们常见的纸箱、塑料盒子、储物箱等都是长方体或正方体的形状,它们能够容纳各种物品。

2. 建筑:很多建筑物的砖块、砖石等都是长方体形状的,如砖墙、柱子等建筑结构。

3. 学习用具:书包、文具盒等也常常是长方体或正方体的形状。

举例:1. 如果一座长方体的长、宽、高分别为3厘米、4厘米、5厘米,则该长方体的面积为36平方厘米,体积为60立方厘米。

长方体和正方体单元知识点

长方体和正方体单元知识点

长方体和正方体单元知识点1. 长方体(Rectangular Prism):长方体是由6个矩形面组成的立体图形。

它的所有对面都是相等的,并且相对的面是平行的。

长方体有8个顶点、12条边和6个面。

1.1定义:长方体的定义可以用以下几个要素来描述:-一个有6个矩形面的立体图形。

-每个面都是直角相邻的。

-所有面的边长都不相等。

-所有对面都是平行的。

1.2特征:长方体具有以下特征:-所有边长不相等。

-所有对面都是平行的。

-每个面上的相对边长相等。

-所有的角都是直角。

1.3表面积计算:长方体的表面积可以通过计算每个面的面积,并将结果相加得到。

表面积 = 2lw + 2lh + 2wh其中,l、w和h分别代表长方体的长度、宽度和高度。

1.4体积计算:长方体的体积可以通过将长度、宽度和高度相乘来计算。

体积 = lwh2. 正方体(Cube):正方体是一种特殊的长方体,其所有边长相等。

正方体有8个顶点、12条边和6个面。

正方体具有更多的对称性和特殊性质。

2.1定义:正方体的定义可以用以下几个要素来描述:-一个具有6个正方形面的立体图形。

-所有边长相等。

-所有的角都是直角。

2.2特征:正方体具有以下特征:-所有边长相等。

-所有对面都是平行的。

-每个面上的角度都是直角。

-具有更多的对称性,即旋转或反射一个正方体的结果仍然是一个正方体。

2.3表面积计算:正方体的表面积可以通过计算每个面的面积,并将结果相加得到。

表面积=6s^2其中,s代表正方体的边长。

2.4体积计算:正方体的体积可以通过将边长三次幂(即三次方)来计算。

体积=s^3其中,s代表正方体的边长。

总结:长方体和正方体都是由矩形面组成的三维立体图形。

长方体具有所有边长不相等的特征,而正方体具有所有边长相等的特征。

它们在计算表面积和体积时的公式也有所不同。

长方体的表面积为2lw + 2lh + 2wh,体积为lwh;而正方体的表面积为6s^2,体积为s^3、正方体具有更多的对称性和特殊性质。

最新人教五年级下册三单元长方体和正方体

最新人教五年级下册三单元长方体和正方体
立方米 立方分米 立方厘米
重点题型
运用转化法解决复合体积单位的换算问题
例1:填空
2m³300dm³=( )dm³ 8.25dm³=( )dm³( )cm³
运用图示法解决立体图形的拼割问题
例2:一个长方体木块,长1.2dm,宽9cm,高7cm。将它锯成棱长为0.3dm的正方体小木块,最多可以锯成多少块?
巩固练习
将棱长是6dm的正方体铁块浸没到一个长方体水槽中,水面上升了3dm.再放入一个不规则石块(石块完全浸没在水中),水面又上升了2dm(水没有溢出),求不规则石块的体积。
知识点三:长方体的长、宽、高
知识点:相交于一个顶点的三条棱的长度分别叫作长方体的长、宽、高。长方体的12条棱中有4条长、4条宽和4条高。长方体的棱长总和=(长+宽+高)×4
(注意:对于同一个长方体,摆放方式不同,长、宽、高也就不同)
知识点四:正方体的特征
知识点:正方体是由6个完全相同的正方形围成的立体图形。一个正方体由6个面、8个顶点、12条棱,所有的棱长度相等。正方体的棱长总和=棱长×12
重点题型
运用转化法解决水面升高问题
例1:有一个长方体容器,从里面量长5dm,宽4dm,高6dm,里面注有水,水深3dm,把一块棱长为2dm的正方体铁块浸入水中,水面上升了多少分米?
求不规则物体体积的实际运用
例2:一个长方体鱼缸,从里面量,长是25cm,宽是12cm,高是36cm.小雨放入10条金鱼后,水面高度从20cm上升到33cm.这10条鱼的总体积是多少立方厘米?
练习巩固
某小学五年级学生用棱长4cm的正方体积木在宣传栏旁边搭起了一面积木墙,这面墙长8m、宽12cm、高2m,这面墙一共用了多少块积木?
3.3.3容积和容积单位

人教版五年级下册数学第三单元知识点易错点汇总(配练习完整版)[1]1

人教版五年级下册数学第三单元知识点易错点汇总(配练习完整版)[1]1

人教版五年级下册数学第三单元知识点易错点汇总一、长方体和正方体的认识 【知识点1】要素 立体图形棱面 顶点数量 特征 数量 特征数量 特征长方体12互相平行的棱长度相等 6相对的面完全相同 8同一个顶点引出的三条棱分别叫做长、宽、高特殊长方体 12 垂直于正方形面的棱长度相等 6 两个面是正方形,其余四个面是完全相同的长方形 8正方体 12 所有的棱长度都相等6 所有面都是正方形且完全相同8一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形! 练习:(1)判断并改正:长方体的六个面一定是长方形; ( ) 正方体的六个面面积一定相等; ( )一个长方体(非正方体) 最多有四个面面积相等; ( )相交于一个顶点的三条棱相等的长方体一定是正方体。

( ) 一个长方体中,可能有4个面是正方形。

( ) 正方体是特殊的长方体。

( )长方体的三条棱分别叫做长、宽、高。

( )有两个面是正方形的长方体一定是正方体。

( ) 有三个面是正方形的长方体一定是正方体。

( ) 正方体的相邻三条棱的交点叫做顶点。

( )有两个相对的面是正方形的长方体,另外四个面的面积是相等的。

( ) 长方体和正方体最多可以看到3个面。

( )长方体的12条棱中,长、宽、高各有4条。

( )正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。

( ) 长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。

( ) 一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。

( ) (2)一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。

(3)一个长方体的底面是一个正方形,则它的4个侧面是( )形。

(4)正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。

(5)把长方体放在桌面上,最多可以看到( )个面。

最少可以看到( )个面。

【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4 长方体棱长和=下面周长×2+高×4 长方体棱长和=右面周长×2+长×4 长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12 棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。

人教版五年级下册数学单元知识点归纳——第三单元 长方体和正方体

人教版五年级下册数学单元知识点归纳——第三单元  长方体和正方体

3 长方体和正方体一、认识长方体和正方体的特征及它们的展开图。

1.长方体是由6.个.长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

在一个长方体中,相对的面完全相.......同.,.相对的棱长度相等........。

长方体有8.个顶点...,.12..条棱..。

2.相交于同一个顶点的三条棱的长度分别叫做长方体的长、宽、高.....。

3.长方体12条棱的长度和叫做长方体的棱长总和。

长方体的棱长总和........=.4.条长..+.4.条宽..+.4.条高..=.(.长.+.宽.+.高.).×.4.。

用字母表示:C=..(.a+b+h .....).×.4.。

4.正方体是由6.个完全相同的正方形.........围成的立体图形,正方体有8.个顶点...,.12..条棱..,.12..条棱的长度都相等........。

5.正方体是长、宽、高都相等的长方体,正方体是特殊的.......长方体...。

6.正方体的棱长总和=棱长×12。

用字母表示:C=..12..a .。

7.认识长方体和正方体的展开图。

特别注意:当长方体相对的两个面是正方形时,其他四个面是大小和形状完全相同的长方形。

温馨提示:长方体的长、宽、高的位置不是固定不变的。

长方体的摆法不同,长、宽、高也就不同。

温馨提示:长方体的上面和下面、前面和后面、左面和右面分别是相对的面。

温馨提示:长方体和正方体的展开图并不是唯一的,左图只是其中的一种。

无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

五年级下册数学第三单元知识整理

五年级下册数学第三单元知识整理

五年级下册数学第三单元知识整理一、长方体和正方体的认识咱就说这长方体和正方体啊,那可太有意思了。

长方体呢,它有6个面,每个面可能是长方形,也有可能有两个相对的面是正方形哦。

这12条棱,分成三组,每组4条棱长度相等呢。

8个顶点,就像8个小卫士一样,稳稳地站在那里。

正方体就更特别啦,它可以说是特殊的长方体,为啥呢?因为正方体的6个面都是正方形,而且12条棱长度都相等。

这正方体就像一个规规矩矩的小方块,特别可爱。

二、长方体和正方体的表面积表面积这个概念,就好比是给长方体或者正方体穿上一层衣服,需要多少布料的问题。

长方体的表面积呢,是把它6个面的面积加起来。

我们可以先算出每个面的面积,然后再加起来。

比如说,前面和后面的面积是长乘高,左面和右面的面积是宽乘高,上面和下面的面积是长乘宽。

正方体的表面积就简单多了,因为它每个面都一样大,只要算出一个面的面积,再乘以6就好啦,一个面的面积就是棱长乘棱长。

三、长方体和正方体的体积体积这个东西啊,就像是物体占了多大的空间。

长方体的体积是长乘宽乘高,这个公式一定要记住哦。

正方体的体积呢,就是棱长乘棱长乘棱长,其实就是棱长的三次方。

这里面有个很有趣的地方,我们可以通过体积公式来解决很多实际问题。

比如说,知道一个长方体的长、宽、高,就能算出它的体积;反过来,如果知道体积和其中的两个量,也能算出剩下的那个量。

四、体积单位间的进率体积单位有立方厘米、立方分米和立方米。

1立方分米等于1000立方厘米,1立方米等于1000立方分米。

这就像是一个大家庭里的不同小家庭,它们之间有着明确的关系。

我们在进行体积单位换算的时候,一定要注意这个进率哦。

比如说,把一个大的体积单位换算成小的体积单位,就乘以进率;把小的体积单位换算成大的体积单位,就除以进率。

五、容积和容积单位容积呢,就是容器所能容纳物体的体积。

比如说一个盒子能装多少东西,这就是它的容积。

容积单位有升和毫升,1升等于1000毫升。

第三单元 长方体与正方体知识归纳及练习

第三单元 长方体与正方体知识归纳及练习

本题求体积用的公式是“底面积×高”,也可以说用的是“横截面积×长”。

另外对于把一个长方体截成两段,截了一次,增加了两个面,如果是截成三段,就是截了两次,增加了四个面。

也就是说每截一次,增加两个面。

10、综合运用体积单位、长度单位的知识。

将一个大的形体分成一个小的形体。

将小正方体紧紧地排成一排,能排多少米,实际上就是将这些小正方体的棱长加起来,看有多长。

棱长是1米的正方体,它的体积是1立方米,棱长是1分米的正方体,它的体积是1立方分米,1立方米= 1000立方分米,所以能分成1000个。

顺次紧紧地排成一排,那么就能排成1000分米,1000分米= 100米。

长方体和正方体练习题一、填空题。

1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。

2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。

3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。

体积是()。

4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。

5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要()块这样的小木块,拼成的正方体的棱长是(),表面积是()。

6、估计下列物体的体积有多大,并填空。

教室讲台()家里冰箱()一本数学书()一支粉笔()一个苹果()课室的空间()一瓶大可乐()电脑主机()一块橡皮()7、把一个正方体切成两个完全相等的长方体,每个长方体有()顶点。

8、把一个容积是500ml的量杯里先注入200ml的水,然后放入一个土豆,这时测量杯里的容量为350ml,这个土豆的体积是()cm29、一个底面周长是1。

6分米的正方体鱼缸的容积是()升。

10、一个长方体中,最多有()个面面积相等,最多有()条棱长度相等。

11、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。

长方体和正方体知识点汇总

长方体和正方体知识点汇总

长方体和正方体知识点汇总一、长方体和正方体的认识1、长方体定义:长方体是由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

面:长方体有 6 个面,相对的面完全相同。

棱:长方体有 12 条棱,相对的棱长度相等。

按长度可分为三组,每一组有 4 条棱。

顶点:长方体有 8 个顶点。

2、正方体定义:正方体是用六个完全相同的正方形围成的立体图形。

面:正方体有 6 个面,每个面都是正方形,且 6 个面完全相同。

棱:正方体有 12 条棱,12 条棱的长度都相等。

顶点:正方体有 8 个顶点。

3、长方体和正方体的关系正方体是特殊的长方体,当长方体的长、宽、高都相等时,就变成了正方体。

二、长方体和正方体的表面积1、表面积的定义长方体或正方体 6 个面的总面积,叫做它的表面积。

2、长方体表面积的计算公式:长方体的表面积=(长×宽+长×高+宽×高)× 2例如:一个长方体的长为 5 厘米,宽为 4 厘米,高为 3 厘米,其表面积为:(5×4 + 5×3 + 4×3)× 2 = 94(平方厘米)3、正方体表面积的计算公式:正方体的表面积=棱长×棱长× 6例如:一个正方体的棱长为 6 厘米,其表面积为:6×6×6 = 216(平方厘米)三、长方体和正方体的体积1、体积的定义物体所占空间的大小叫做物体的体积。

2、体积单位常用的体积单位有立方厘米、立方分米、立方米。

1 立方厘米:棱长为 1 厘米的正方体,体积是 1 立方厘米。

1 立方分米:棱长为 1 分米的正方体,体积是 1 立方分米。

1 立方米:棱长为 1 米的正方体,体积是 1 立方米。

3、长方体体积的计算公式:长方体的体积=长×宽×高例如:一个长方体的长为 6 厘米,宽为 5 厘米,高为 4 厘米,其体积为:6×5×4 = 120(立方厘米)4、正方体体积的计算公式:正方体的体积=棱长×棱长×棱长例如:一个正方体的棱长为 5 厘米,其体积为:5×5×5 = 125(立方厘米)5、体积单位的换算1 立方米= 1000 立方分米1 立方分米= 1000 立方厘米四、长方体和正方体的容积1、容积的定义容器所能容纳物体的体积,叫做它的容积。

(完整版)人教版五年级下册数学第三单元《长方体和正方体的认识》知识点

(完整版)人教版五年级下册数学第三单元《长方体和正方体的认识》知识点

第三单元《长方体和正方体》1.长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。

2.长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3.长方体的特征(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。

特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。

(3)长方体有12条棱,相对的棱长度相等。

可分为三组,每一组有4条棱。

还可分为四组,每一组有3条棱。

(3)长方体有8个顶点。

每个顶点连接三条棱。

(4) 长方体相邻的两条棱互相(相互)垂直。

长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

在一个长方体中,相对的面完全相同,相对的棱长度相等。

顶点个数面棱个数大小关系条数长度关系8 6 相对的面相等12 平行的棱长相等4.棱长总和公式:长方体棱长总和=4条长+4条宽+4条高=(长+高+宽)×4宽=棱长之和÷4-长-高长=棱长之和÷4-宽-高高=棱长之和÷4-宽-长二、正方体的认识:1. 正方体的认识:正方体是由6个完全相同的正方形围成的立体图形。

正方体有6个面,12条棱,8个顶点,每个面都是正方形,面积都相等。

每条棱的长度都相等。

正方体的长、宽、高都相等,统称棱长。

2.长方体和正方体的关系:正方体是一种特殊的长方体。

3.正方体棱长之和:棱长×12=棱长之和棱长之和÷12=棱长4.长方体的表面积(1)长方体和正方体6个面的总面积,叫做它的表面积。

(2)表面积计算公式①.因为长方体有“上”、“下”、“前”、“后”、“左”、“右”6个面,相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。

②长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示: S=(ab+ah+bh)×2长方体表面积=(长×宽+长×高+宽×高)×2设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:S = 2ab + 2bc+ 2ca= 2 ( ab + bc + ca)长方体没盖的表面积=长×宽+长×高×2 +宽×高×2③特殊长方体的表面积(有两个面是正方形)正方形的两个面完全相同,其余四个面完全相同。

小学五年级数学下册第三单元知识点大全,各个版本都有!

小学五年级数学下册第三单元知识点大全,各个版本都有!

小学五年级数学下册第三单元知识点大全,各个版本都有!人教版第三单元《长方体和正方体》1、长方体或正方体的认识①一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

判断:长方体的三条棱分别叫做长方体的长宽高。

(×)长方体特点:有6个面(6个面都是长方形或者4个面是长方形,2个面是正方形),8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

一个长方体(不含正方体)最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

最多有4个面完全相同。

用6个完全一样的长方形可以围成一个长方体(×)。

长方体12条棱可以分成3组,分别有4条长、4条宽、4条高。

②由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:正方体有12条棱,它们的长度都相等。

有8个顶点。

正方形的6个面是完全相同的正方形。

正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

③比较④长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4长= 棱长总和÷4-宽-高 a=L÷4-b-h宽= 棱长总和÷4-长-高 b=L÷4-a-h高= 棱长总和÷4-长-宽 h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷12例1、如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道,打结处共用2分米。

一共要用绳子多长?2、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?2、长方体或正方体的表面积表面积的意义:长方体或者正方体的6个面的总面积,叫做它的表面积。

长方体和正方体知识点汇总

长方体和正方体知识点汇总

长方体和正方体知识点汇总一、长方体和正方体的定义及性质1. 定义长方体:长方体是一种六个面都是矩形的立体图形,其中相对的两个面是长方形,其余四个面是正方形。

正方体:正方体是一种六个面都是正方形的立体图形,每个面的边长相等。

2. 性质(1)长方体的性质长方体有6个面,12条棱,8个顶点。

相对的面是长方形,其余四个面是正方形。

相邻的棱长相等,相对的棱长也相等。

长方体的对角线互相垂直,且相等。

(2)正方体的性质正方体有6个面,12条棱,8个顶点。

所有面都是正方形,边长相等。

相邻的棱长相等,相对的棱长也相等。

正方体的对角线互相垂直,且相等。

二、长方体和正方体的表面积与体积1. 长方体的表面积与体积(1)表面积长方体的表面积是指六个面的面积之和。

设长方体的长、宽、高分别为a、b、c,则长方体的表面积S为:S = 2(ab + ac + bc)(2)体积长方体的体积是指长、宽、高三个维度的乘积。

设长方体的长、宽、高分别为a、b、c,则长方体的体积V为:V = abc2. 正方体的表面积与体积(1)表面积正方体的表面积是指六个面的面积之和。

设正方体的边长为a,则正方体的表面积S为:S = 6a^2(2)体积正方体的体积是指边长的三次方。

设正方体的边长为a,则正方体的体积V为:V = a^3三、长方体和正方体的空间关系1. 长方体的空间关系长方体的底面与顶面平行,且底面与侧棱垂直。

长方体的侧面与底面垂直,且相邻侧面互相垂直。

长方体的对角线互相垂直,且相等。

2. 正方体的空间关系正方体的底面与顶面平行,且底面与侧棱垂直。

正方体的侧面与底面垂直,且相邻侧面互相垂直。

正方体的对角线互相垂直,且相等。

四、长方体和正方体的应用1. 长方体的应用长方体广泛应用于建筑设计、家具设计、包装设计等领域。

长方体的体积和表面积计算对于计算材料用量、确定空间大小等有重要作用。

2. 正方体的应用正方体在建筑设计、雕塑创作、数学建模等领域有广泛的应用。

长方体和正方体的知识点整理

长方体和正方体的知识点整理

长方体和正方体的知识点整理长方体和正方体是几何学中的两种常见立体图形。

它们在几何学、物理学和工程学等领域中具有广泛的应用。

下面是关于。

一、长方体的定义和性质:1. 长方体是一种六个面都是矩形的几何体,每对相对的面是相等并平行的。

2. 长方体具有8个顶点、12条棱和6个面。

3. 长方体的面包括底面、顶面、前后左右四个侧面。

4. 长方体的棱包括底边、顶边和侧棱。

5. 长方体的对角线是连接非相邻顶点的线段。

长方体的对角线的长度可以通过勾股定理计算。

6. 长方体的体积可以通过底面积与高度的乘积计算,即V = l × w × h,其中l、w、h分别表示长方体的长度、宽度和高度。

7. 长方体的表面积可以通过各个面的面积之和计算,即A = 2lw + 2lh + 2wh。

8. 对于长方体来说,当长方体的长度、宽度和高度相等时,它就是一个正方体。

二、正方体的定义和性质:1. 正方体是一种六个面都是正方形的几何体。

2. 正方体具有8个顶点、12条边和6个面。

3. 正方体的面包括底面、顶面、前后左右四个侧面。

4. 正方体的对角线是连接非相邻顶点的线段。

正方体的对角线的长度可以通过勾股定理计算。

5. 正方体的棱长度都相等。

6. 正方体的体积可以通过边长的立方计算,即V = a^3,其中a表示正方体的边长。

7. 正方体的表面积可以通过各个面的面积之和计算,即A = 6a^2。

8. 正方体的对称轴有4条,分别是通过两个相对的棱中点的线段。

三、长方体和正方体的应用:1. 长方体和正方体在建筑、家具和包装等领域中都有广泛应用。

例如,房屋的建筑结构常常利用长方体形状的砖块、瓷砖等构建。

2. 长方体和正方体在物流和仓储管理中起着重要作用。

货物、箱子和容器常常采用长方体和正方体的形状,以便更好地摆放和储存。

3. 长方体和正方体在数学教育中也是一个重要的学习对象。

学生通过研究长方体和正方体的性质和计算方法,提高他们的几何学能力。

长方体与正方体知识点总结

长方体与正方体知识点总结

长方体与正方体知识点总结长方体和正方体是几何学中常见的三维立体图形。

本文将对长方体与正方体的定义、性质、公式以及应用进行总结。

一、长方体的定义与性质长方体是一种具有六个矩形面的立体图形,其中相对的面是相等的,并且每个面都是矩形。

长方体具有以下性质:1. 全面:长方体的六个面都是矩形面,每个面都是全面。

2. 全等:相对的面积相等,且相邻面是相等的。

3. 全直角:长方体的每个面都与相邻面垂直相交,形成直角。

4. 对角线相等:长方体的对角线长度相等。

5. 体对角线:长方体的一个对角线连接两个不相邻的顶点,叫做体对角线。

二、长方体的公式1. 表面积公式:长方体的表面积等于各个面积的总和,公式如下:表面积 = 2(长 ×宽 + 长 ×高 + 宽 ×高)2. 体积公式:长方体的体积等于底面积与高的乘积,公式如下:体积 = 长 ×宽 ×高三、正方体的定义与性质正方体是一种具有六个正方形面的立体图形,每个面都是正方形。

正方体具有以下性质:1. 全面:正方体的六个面都是正方形,每个面都是全面。

2. 全等:相对的面积相等,且相邻面是相等的。

3. 全直角:正方体的每个面都与相邻面垂直相交,形成直角。

4. 对角线相等:正方体的对角线长度相等。

5. 体对角线:正方体的对角线连接两个不相邻的顶点,叫做体对角线。

四、正方体的公式1. 表面积公式:正方体的表面积等于各个面积的总和,公式如下:表面积 = 6 × (边长 ×边长)2. 体积公式:正方体的体积等于边长的立方,公式如下:体积 = 边长 ×边长 ×边长五、长方体与正方体的应用由于长方体与正方体在生活与工作中广泛存在,所以它们的应用也十分广泛。

以下是一些常见的应用场景:1. 建筑领域:长方体和正方体常被用作建筑物的模型,能够帮助建筑师、设计师更好地展示建筑的外观和内部空间。

2. 包装与储物:长方体和正方体形状的箱子常被用于包装物品,方便储存和搬运。

长方体和正方体单元整理复习ppt课件.ppt

长方体和正方体单元整理复习ppt课件.ppt

12dm
8dm 6dm
底面积 =长x宽 长方体的体积=长x宽x高
=底面积 x高
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
正方体的体积=棱长x棱长x棱长
=底面积 X高
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
是不是所有的物体都有容积呢? 结论:
只有容器才能有容积,如果是实心 的木块等,是不会有容积的。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么






正方体的表面积=棱长×棱长×6

或者:正方体的表面积=棱长 ×6
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
分析在计算下列物体面积时,应考虑几 个面的面积。 1、制作一个无盖的铁皮桶的用料。 五个面
2、火柴盒的外壳用料。 五个面 3、火柴盒的内壳用料。 四个面

体的表面 2、表面积的计算


正方体:S=棱长X棱长X6


3、无盖,无底

1、体积和体积单位 体积的定义
体积单位
3、长 方体和 正方体
2、体积计算公式
长方体 V=abh 正方体 V=a3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三单元长方体和正方体的知识整理一、【概念】1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

在一个长方体中,相对面完全相同,相对的棱长度相等。

2、两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体有12条棱,它们的长度都相等,所有的面都完全相同。

4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

长方体的棱长总和=(长+宽+高)×4长=棱长总和÷4-宽-高宽=棱长总和÷4-长-高高=棱长总和÷4-长-宽正方体的棱长总和=棱长×12 正方体的棱长=棱长总和÷126、长方体或正方体的长、宽、高同时扩大几倍,棱长总和会扩大相同的倍数。

(如长、宽、高各扩大2倍,棱长总和就会扩大到原来的2倍)。

二、【长方体和正方体的表面积】1、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)长方体正方体无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab S=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)正方体的表面积= 棱长×棱长×6 S=a×a×6= 6a22、表面积的常用单位有:平方米、平方分米、平方厘米相邻两个面积单位之间的进率是1001m2 =100dm2 1 dm2 =100 cm2 1m2 =10000 cm23、生活实际:油箱、罐头盒等都是6个面;游泳池、鱼缸、粉刷教室等都只有5个面;水管、烟囱等都只有4个面。

4、长方体或正方体每截断一次会增加两个截面,所以这时的两个物体的表面积大于原来物体的表面积。

5、长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

三、【长方体和正方体的体积】1、体积:物体所占空间的大小叫做物体的体积。

(就是看物体含有多少个体积单位)2、常用的体积单位有:立方米(m3)、立方分米(dm3)、立方厘米(cm3)①棱长是1 cm的正方体,体积是1 cm3②棱长是1 dm的正方体,体积是1 dm3③棱长是1 m的正方体,体积是1 m3相邻两个体积单位之间的进率是1000长方体的体积= 长×宽×高V=abh 长= 体积÷宽÷高a=V÷b÷h宽= 体积÷长÷高b=V÷a÷h 高= 体积÷长÷宽h= V÷a÷b正方体的体积= 棱长×棱长×棱长V=a×a×a =a³体积通用公式:体积=底面积×高 V=sh3、容积: 容器所能容纳物体的体积,叫做它的容积。

4、容积单位有: 升(L )、 毫升(mL ) 1 L = 1000 mL5、容积单位和体积单位的关系: 1 L = 1 dm 3 1 mL = 1 cm 36、容积的计算: 长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。

(所以物体的体积大于它的容积)。

7、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

8、排水法:(计算不规则物体的体积)9、把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

10、a 3读作“a 的立方”表示3个a 相乘,(即a ·a ·a )【体积单位换算】 高级单位(大) 低级单位(小)低级单位(小) 高级单位(大)进率: 1立方米=1000立方分米 1立方米 =1000000立方厘米1立方分米=1000立方厘米 1升=1000毫升 1立方厘米=1毫升1立方分米=1升 ; 1平方米=100平方分米 1平方米 =10000平方厘米 1平方分米=100平方厘米 1平方千米=100公顷=1000000平方米 ;被浸没物体的体积等于上升那部分水的体积 ① 容器的底面积×上升那部分水的高度。

计算方法 ② 放入物体后的体积—原来水的体积×进率 ÷进率1米=10分米1米=100厘米1分米=10厘米1千米=1000米第二章因数与倍数一、因数与倍数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。

只能说谁是谁的因数,谁是谁的倍数。

不能说是谁是因数,谁是倍数。

【知识点2】倍数因数只考虑正数。

小数、分数等不讨论倍数、因数的问题。

【知识点3】没有前提条件确定倍数与因数:例如:36的因数有()。

一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。

例如:7的倍数()。

一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。

【知识点4】有前提条件的情况下确定倍数与因数例如:25以内5的倍数有(5、10、15、20、25 )。

特别注意前提条件是25以内!例如:5、1、20、35、40、10、140、2以上各数中,是20的因数的数有();是20的倍数的数有();既是20的倍数又是20的因数的数有()。

【知识点5】关于倍数因数的一些概念性问题1、一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。

2、一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。

3、1是任一自然数(0除外)的因数。

也是任一自然数(0除外)的最小因数。

4、一个数的因数最少有1个,这个数是1。

除1以外的任何整数至少有两个因数(0除外)。

5、一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。

6、一个数的最小倍数=一个数的最大因数=这个数二、2,3,5的倍数的特征【知识点1】2、3、5的倍数特征1、个位上是0,2,4,6,8的数都是2的倍数。

例如:202、480、304,都能被2整除。

2、个位上是0或5的数,是5的倍数。

例如:5、30、405都能被5整除。

3、一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。

例如:12、108、204都能被3整除。

4、个位上是0的数既是2的倍数又是5的倍数。

例如:80、20、70、130等。

5、个位上是0且各位数字的和是3的倍数,那么这个数既是2的倍数又是3和5的倍数。

例如:120、90、180、270等。

6、自然数按能否被2 整除的特征可分为奇数和偶数。

也就是说是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

(因此在自然数中,除了奇数就是偶数)7、偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数偶数+奇数=奇数偶数-奇数=奇数偶数×奇数=偶数奇数+奇数=偶数奇数-偶数=奇数奇数×奇数=奇数奇数-奇数=偶数【知识点2】一些特殊数的倍数的特征1、一个数各位数上的和能被9整除,这个数就是9的倍数。

但是,能被3整除的数不一定能被9整除;能被9整除的数一定能被3整除。

2、一个数的末两位数能被4整除,这个数就是4的倍数。

例如:16、404、1256都是4的倍数。

3、如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数4、如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数三、质数和合数【知识点1】质数和合数的相关定义1、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)2、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

3、1不是质数也不是合数。

4、100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

共25个。

5、除2以外所有的质数都是奇数。

除2以外任意两个质数的和都是偶数6、最小的质数是2,最小的合数是4质数×质数=合数合数×合数=合数质数×合数=合数【知识点2】分解质因数(相加和相乘)把一个合数分成几个质数相乘的形式,叫做分解质因数。

例如15=3×5,3和5 叫做15的质因数。

42=(2)+(40)=(3)+(39)=(5)+(37)××√。

相关文档
最新文档