2019-2020年中考数学试题(版)(最新整理)
2019-2020数学中考试题(含答案)
2019-2020数学中考试题(含答案) 一、选择题1.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=kx(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.4C.3D.62.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1B.0C.1或﹣1D.2或03.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.44.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形5.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5B.3C.4D.4.56.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°7.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac < 8.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠ 9.下列各曲线中表示y 是x 的函数的是( ) A . B . C . D .10.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .5 11.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .10C .211D .4312.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE<15°,∠C 的度数为整数,则∠C 的度数为_____.14.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.16.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.17.使分式的值为0,这时x=_____.18.正六边形的边长为8cm ,则它的面积为____cm 2.19.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .20.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____. 三、解答题21.计算:103212sin45(2π)-+--+-o .22.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?23.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E .请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A ,小江抓着风筝线的一端站在D 处,他从牵引端E 测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC =30米)的居民楼顶B 处测得风筝A 的仰角是45°,已知小江与居民楼的距离CD =40米,牵引端距地面高度DE =1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D 【解析】分析:设点A的坐标为(m,km),则根据矩形的面积与性质得出矩形中心的纵坐标为2km,求出中心的横坐标为m+6mk,根据中心在反比例函数y=kx上,可得出结果.详解:设点A的坐标为(m,km),∵矩形ABCD的面积为12,∴121212m BCkAB km===,∴矩形ABCD的对称中心的坐标为(m+6mk,2km),∵对称中心在反比例函数上,∴(m+6mk)×2km=k,解方程得k=6,故选D.点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.2.A解析:A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 4.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B .【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.5.B解析:B【解析】【分析】【详解】解:∵∠ACB =90°,∠ABC =60°,∴∠A =30°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD , ∴BD =AD =6, ∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B . 6.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB ∥CD ,∴∠BAD=∠D=40°.故选D .7.A解析:A【解析】【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答.【详解】解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.8.B解析:B【解析】【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,()()2134204mm ∆=----⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,()()2134204mm ∆=----⨯≥, 解得m ≤52且m ≠2. 故选B .9.D解析:D【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .10.C解析:C【解析】分析:延长GH 交AD 于点P ,先证△APH ≌△FGH 得AP=GF=1,GH=PH=12PG ,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH 交AD 于点P ,∵四边形ABCD 和四边形CEFG 都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD ∥GF ,∴∠GFH=∠PAH ,又∵H 是AF 的中点,∴AH=FH ,在△APH 和△FGH 中,∵PAH GFH AH FH AHP FHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH ≌△FGH (ASA ),∴AP=GF=1,GH=PH=12PG , ∴PD=AD ﹣AP=1,∵CG=2、CD=1,∴DG=1, 则GH=12PG=122, 故选:C . 点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.11.C解析:C【解析】【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出2OG ==,证出EOG ∆是等腰直角三角形,得出45,OEG OE ∠=︒==30OEF ∠=︒,由直角三角形的性质得出12OF OE ==DF = 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,2OG ==,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,OE ==∵75DEB ∠=︒,∴30OEF ∠=︒,∴122OF OE ==, 在Rt ODF ∆中,2213211DF OD OF =-=-=, ∴2211CD DF ==;故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.12.D解析:D【解析】【分析】首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键. 二、填空题13.36°或37°【解析】分析:先过E 作EG ∥AB 根据平行线的性质可得∠AEF=∠BAE+∠DFE 再设∠CEF=x 则∠AEC=2x 根据6°<∠BAE <15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.详解:如图,过E 作EG ∥AB ,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线l=225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.17.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD3【解析】【分析】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15 xy=⎧⎨=⎩【解析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.13【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式11213=+-=111313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.23.人民英雄纪念碑MN 的高度约为36.5米.【解析】【分析】在Rt△MED 中,由∠MDE=45°知ME =DE ,据此设ME =DE =x ,则EC =x+15,在Rt△MEC 中,由ME =EC•tan∠MCE 知x≈0.7(x+15),解之求得x 的值,根据MN =ME+EN 可得答案.【详解】由题意得四边形ABDC 、ACEN 是矩形,∴EN=AC =1.5,AB =CD =15,在Rt△MED 中,∠MED=90°,∠MDE=45°,∴ME=DE ,设ME =DE =x ,则EC =x+15,在Rt△MEC 中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN 的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.24.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.25.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.。
2019-2020中考数学试卷附答案
2019-2020中考数学试卷附答案一、选择题1.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a在同一平面直角坐标系中的图象可能是( )A .B .C .D .2.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为12,则C 点坐标为( )A .(6,4)B .(6,2)C .(4,4)D .(8,4) 3.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或04.如图,⊙O 的半径为5,AB 为弦,点C 为»AB 的中点,若∠ABC=30°,则弦AB 的长为( )A .12B .5C 53D .35.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD.若34∠=︒,则BDCB∠的度数是()A.68︒B.112︒C.124︒D.146︒6.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y=ax2+bx+c的开口向下;③二次函数y=ax2+bx+c的对称轴在y轴的左侧;④不等式4a+2b+c>0一定成立.A.①②B.①③C.①④D.③④7.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是30 8.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是()A.1B.2C.3D.49.已知直线y=kx﹣2经过点(3,1),则这条直线还经过下面哪个点()A.(2,0)B.(0,2)C.(1,3)D.(3,﹣1)=,连接AM、10.如图,在平行四边形ABCD中,M、N是BD上两点,BM DNMC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠11.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7 B .6+a >b+6C .55ab >D .-3a >-3b12.8×200=x+40 解得:x=120答:商品进价为120元. 故选:B . 【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.14.已知62x =+,那么222x x -的值是_____.15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 16.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2. 17.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生. 18.使分式的值为0,这时x=_____.19.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.(问题背景)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F 分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.(探索延伸)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.22.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.654 3.53 2.5210.5000.55 1.2 1.58 1.0 2.473 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.24.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A 型车2015年6月份销售总额为3.2万元,今年经过改造升级后A 型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A 型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A 型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A 型车和B 型车共50辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多? A 、B 两种型号车的进货和销售价格如下表:A 型车B 型车 进货价格(元/辆) 1100 1400销售价格(元/辆)今年的销售价格240025.解方程:3x x ﹣1x=1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先根据抛物线y=ax 2-2x 过原点排除A ,再由反比例函数图象确定ab 的符号,再由a 、b 的符号和抛物线对称轴确定抛物线与直线y=bx+a 的位置关系,进而得解. 【详解】∵当x=0时,y=ax 2-2x=0,即抛物线y=ax 2-2x 经过原点,故A 错误; ∵反比例函数y=的图象在第一、三象限,∴ab >0,即a 、b 同号,当a <0时,抛物线y=ax 2-2x 的对称轴x=<0,对称轴在y 轴左边,故D 错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.A解析:A【解析】【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 ADBG=,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴13 OA OB=∴0A1 4OA3= +解得:OA=2,∴OB=6,∴C点坐标为:(6,4),故选A.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.3.A解析:A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为»AB的中点,∴OC⊥AB,53在Rt△OAE中,∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.5.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.6.C解析:C 【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2ba,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确. 故选:C.7.B解析:B 【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A 不正确; 该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B 正确; 该组数据的极差是100-10=90,故极差是90不是20,所以选项C 不正确; 该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D 不正确. 故选B .点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.8.C解析:C 【解析】 【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确; ②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确; ③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确. 故选C .解析:A 【解析】 【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案. 【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2, 解得k =1, ∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件. 故选A . 【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.10.A解析:A 【解析】 【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形. 【详解】∵四边形ABCD 是平行四边形, ∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =, ∴OB BM OD DN -=-,即OM ON =, ∴四边形AMCN 是平行四边形,∵12OM AC =,∴MN AC =,∴四边形AMCN 是矩形. 故选:A . 【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.11.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 12.无二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos ∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC ∴cos ∠OCB=故答案为【点睛】解析:2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =2OC BC ==.故答案为2. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】将所给等式变形为x =【详解】∵x =,∴x -=∴(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.15π【解析】【分析】设圆锥母线长为l 根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到解析:28【解析】【分析】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.18.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法19.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-2∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.【问题背景】:EF=BE+FD;【探索延伸】:结论EF=BE+DF仍然成立,见解析;【学以致用】:5.【解析】【分析】[问题背景]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[探索延伸]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[学以致用]过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【详解】[问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点睛】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.22.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,,故答案为:,.(2)①当时,,当时,,故答案为2,6.②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为.性质2:函数图象在第一象限,随的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)24.(1)2000;(2)A型车17辆,B型车33辆【解析】试题分析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.考点:(1)一次函数的应用;(2)分式方程25.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键.。
2019-2020年中考数学试卷及解析.docx
2019-2020 年中考数学试卷及解析一、选择题(本题有8 小题,每小题 3 分,共 24 分)1.- 3 的是【】1A . 3B .- 3C.- 3D. 32.下列形中,既是称形,又是中心称形的是【】A .平行四形B .等三角形C.等腰梯形3.今年我市参加中考的人数大有41300 人,将 41300 用科学数法表示【D .正方形】A . 413× 102B. 41.3× 103C. 4.13× 1044.已知⊙ O1、⊙ O2的半径分3cm、 5cm,且它的心距系是【】8cm,⊙D. 0.413× 103O1与⊙ O2的位置关A .外切B.相交C.内切 D .内含5.如是由几个相同的小立方搭成的几何体的三,几个几何体的小立方的个数是【】A . 4 个B. 5 个C. 6 个D. 7 个6.将抛物 y= x2+ 1 先向左平移 2 个位,再向下平移 3 个位,那么所得抛物的函数关系式是【】A . y= ( x+ 2) 2+ 2B. y= ( x+ 2) 2- 2C. y= ( x-2) 2+ 2D. y= ( x- 2) 2- 27.某校在开展“ 心捐助”的活中,初三一班六名同学捐款的数分:8, 10,10, 4, 8,10( 位:元 ) ,数据的众数是【】A . 10B .9C. 8D. 43= 3+ 5, 33= 7+ 9+ 11,8.大于 1 的正整数 m 的三次可“分裂”成若干个奇数的和,如243= 13+ 15+ 17+ 19,⋯若 m3分裂后,其中有一个奇数是2013 , m 的是【】A . 43B .44C. 45 D .46二、填空题(本大题共10 小题,每小题 3 分,共 30 分)9.州市某天的最高气温是6℃,最低气温是- 2℃,那么当天的日温差是.10.一个角是 38 度,它的余角是度.11.已知 2a- 3b2= 5, 10- 2a+ 3b2的是.12.已知梯形的中位是4cm,下底是 5cm,它的上底是cm.13.在平面直角坐系中,点P( m, m- 2) 在第一象限内, m 的取范是.14.如, PA、 PB 是⊙ O 的切,切点分A、 B 两点,点 C 在⊙ O 上,如果∠ ACB= 70°,那么∠ P 的度数是.AB= 2,则 tan ∠DCF 的15.如图,将矩形 ABCD 沿 CE 折叠,点 B 恰好落在边 AD 的 F 处.若 BC3 值是 .16.如图,线段 AB 的长为等腰直角三角形△ ACD2,C 为 AB 上一个动点,分别以和△ BCE ,那么 DE 长的最小值是AC 、BC为斜边在.AB 的同侧作两个17 .已知一个圆锥的母线长为 10cm ,将侧面展开后所得扇形的圆心角是144 °,则这个圆锥的底面圆的半径是 cm .18k经过 Rt △ OMN 斜边上的点 A ,与直角边 MN 相交于点 B ,已知 OA = 2AN ,.如图, 双曲线 y = x△OAB 的面积为 5,则 k 的值是 .三、解答题(本大题共有10 小题,共 96 分)19 . ( 1) 计算:- ( - 1)2 + ( - 2012) 0;3( 2) 因式分 解: m n - 9mn .920 a - 1 ÷ a 2- 1a 值代入计算..先化简: 1-2 ,再选取一个合适的aa + 2a21.扬州市中小学全面开展“体艺 2+ 1”活动,某校根据学校实际,决定开设 A :篮球, B :乒乓球, C :声乐, D :健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:( 1)这次被调查的学生共有人.( 2)请你将统计图 1 补充完整.( 3)统计图 2 中 D 项目对应的扇形的圆心角是度.( 4)已知该校学生2400 人,请根据调查结果估计该校最喜欢乒乓球的学生人数.22.一个不透明的布袋里装有4 个大小,质地都相同的乒乓球,球面上分别标有数字1,- 2, 3,-4,小明先从布袋中随机摸出一个球 ( 不放回去 ) ,再从剩下的 3 个球中随机摸出第二个乒乓球.( 1)共有种可能的结果.( 2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图,在四边形ABCD 中, AB=BC ,∠ ABC=∠ CDA = 90°,BE ⊥AD ,垂足为 E.求证: BE= DE.24.为了改善生态环境,防止水土流失,某村计划在荒坡上种480 棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前 4 天完成任务,原计划每天种多少棵树?325.如图,一艘巡逻艇航行至海面 B 处时,得知正北方向上距 B 处 20 海里的 C 处有一渔船发生故障,就立即指挥港口 A 处的救援艇前往 C 处营救.已知 C 处位于 A 处的北偏东45°的方向上,港口 A 位于 B 的北偏西30°的方向上.求A、 C 之间的距离 ( 结果精确到0.1 海里,参考数据:2≈ 1.41,3≈ 1.73) .26.如图, AB 是⊙ O 的直径, C 是⊙ O 上一点, AD 垂直于过点 C 的切线,垂足为 D .( 1) 求证: AC 平分 BAD ;( 2) 若 AC= 2 5, CD=2,求⊙ O 的直径.27.已知抛物线y= ax2+ bx+ c 经过 A( -1, 0) 、B( 3,0) 、C( 0,3) 三点,直线l 是抛物线的对称轴.( 1)求抛物线的函数关系式;( 2)设点 P 是直线 l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;( 3)在直线 l 上是否存在点 M,使△ MAC 为等腰三角形?若存在,直接写出所有符合条件的点 M 的坐标;若不存在,请说明理由.28.如图 1,在平面直角坐标系中,矩形OABC 的顶点 O 在坐标原点,顶点A、 C 分别在 x 轴、 y 轴的正半轴上,且OA =2, OC= 1,矩形对角线AC、 OB 相交于 E,过点 E 的直线与边OA、BC 分别相交于点G、 H.( 1) ①直接写出点 E 的坐标:;②求证:AG=CH.( 2)如图 2,以 O 为圆心, OC 为半径的圆弧交OA 与 D,若直线 GH 与弧 CD 所在的圆相切于矩形内一点 F,求直线 GH 的函数关系式.( 3)在 ( 2 ) 的结论下,梯形 ABHG 的内部有一点P,当⊙ P 与 HG、 GA、 AB 都相切时,求⊙ P 的半径.一、选择题( 本题有8 小题,每小题参考答案3 分,共 24 分 )1. ( 2012?扬州 ) - 3 的绝对值是 ( A. 3B.- 3)C.-3D.考点:绝对值。
2019-2020中考数学试题含答案
2019-2020中考数学试题含答案一、选择题1.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.2.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.43.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数4.如图,⊙O的半径为5,AB为弦,点C为»AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C53D.35.-2的相反数是()A.2B.12C.-12D.不存在6.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩8.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A .B .C .D .9.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内»OB上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3210.如果关于x 的分式方程11222axx x-+=--有整数解,且关于x的不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩的解集为x>4,那么符合条件的所有整数a的值之和是()A.7B.8C.4D.511.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)12.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.二、填空题13.如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.14.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为___.15.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.16.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.17.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧»BC的长为 cm.18.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.19.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____. 20.分解因式:2x2﹣18=_____.三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?22.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)23.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 24.如图1,在直角坐标系中,一次函数的图象l 与y 轴交于点A (0 , 2),与一次函数y =x ﹣3的图象l 交于点E (m ,﹣5).(1)m=__________;(2)直线l 与x 轴交于点B ,直线l 与y 轴交于点C ,求四边形OBEC 的面积; (3)如图2,已知矩形MNPQ ,PQ =2,NP =1,M (a ,1),矩形MNPQ 的边PQ 在x 轴上平移,若矩形MNPQ 与直线l 或l 有交点,直接写出a 的取值范围_____________________________25.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意;故选B .【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 3.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 4.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为»AB的中点,∴OC⊥AB,53在Rt△OAE中,∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.5.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 7.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.8.B解析:B【解析】【分析】若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b (k≠0)的图象为一条直线,当k >0,图象过第一、三象限;当k <0,图象过第二、四象限;直线与y 轴的交点坐标为(0,b ).9.C解析:C【解析】【分析】先根据圆内接四边形的性质求出∠OAB 的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO 的度数,根据直角三角形的性质即可得出AB 的长,进而得出结论.【详解】解:∵四边形ABMO 是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵∠AOB=90°,∴AB 是⊙C 的直径,∴∠ABO=90°-∠BAO=90°-60°=30°,∵点A 的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C 的半径长=3,故选:C【点睛】本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.10.C解析:C【解析】【分析】解关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可.【详解】 由分式方程11222ax x x -+=--可得1﹣ax+2(x ﹣2)=﹣1 解得x =22a-, ∵关于x 的分式方程11222ax x x -+=--有整数解,且a 为整数 ∴a =0、3、4关于x的不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩整理得4x ax>⎧⎨>⎩∵不等式组322(1)x ax x-⎧>⎪⎨⎪+<-⎩的解集为x>4∴a≤4于是符合条件的所有整数a的值之和为:0+3+4=7故选C.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.11.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.12.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.二、填空题13.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角解析:33【解析】试题解析:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=2222-=-=.6333BD AB【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.15.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C 关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 16.15π【解析】【分析】设圆锥母线长为l 根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l ,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l ,∵r=3,h=4,∴母线5=,∴S 侧=12×2πr×5=12×2π×3×5=15π, 故答案为15π. 【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.【解析】根据切线的性质可得出OB ⊥AB 从而求出∠BOA 的度数利用弦BC ∥AO 及OB=OC 可得出∠BOC 的度数代入弧长公式即可得出∵直线AB 是⊙O 的切线∴OB ⊥AB (切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB ⊥AB ,从而求出∠BOA 的度数,利用弦BC ∥AO ,及OB=OC 可得出∠BOC 的度数,代入弧长公式即可得出∵直线AB 是⊙O 的切线,∴OB ⊥AB (切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC ∥AO ,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC ,∴△OBC 是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O 的半径为6cm ,∴劣弧»BC 的长=606=2180ππ⋅⋅(cm ).18.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.19.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.20.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x 2﹣9)=2(x +3)(x ﹣3),故答案为:2(x +3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.123米.【解析】【分析】在Rt △ABC 中,利用tan BC CAB AB∠=即可求解. 【详解】解:∵CD ∥AB ,∴∠CAB=∠DCA=39°.在Rt △ABC 中,∠ABC=90°, tan BC CAB AB ∠=. ∴100123tan 0.81BC AB CAB ==≈∠. 答:A 、B 两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.23.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可. 【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.24.(1)-2;(2);(3)≤a≤或3≤a≤6. 【解析】【分析】(1)根据点E 在一次函数图象上,可求出m 的值;(2)利用待定系数法即可求出直线l 1的函数解析式,得出点B 、C 的坐标,利用S 四边形OBEC =S △OBE +S △OCE 即可得解;(3)分别求出矩形MNPQ 在平移过程中,当点Q 在l 1上、点N 在l 1上、点Q 在l 2上、点N 在l 2上时a 的值,即可得解.【详解】解:(1)∵点E (m ,−5)在一次函数y =x−3图象上,∴m−3=−5,∴m =−2;(2)设直线l 1的表达式为y =kx +b (k≠0),∵直线l 1过点A (0,2)和E (−2,−5),∴ ,解得,∴直线l 1的表达式为y =x +2,当y =x +2=0时,x=∴B 点坐标为(,0),C 点坐标为(0,−3),∴S 四边形OBEC =S △OBE +S △OCE =××5+×2×3=;(3)当矩形MNPQ 的顶点Q 在l 1上时,a 的值为;矩形MNPQ 向右平移,当点N 在l 1上时,x +2=1,解得x =,即点N (,1), ∴a 的值为+2=;矩形MNPQ 继续向右平移,当点Q 在l 2上时,a 的值为3,矩形MNPQ 继续向右平移,当点N 在l 2上时,x−3=1,解得x =4,即点N (4,1), ∴a 的值为4+2=6, 综上所述,当≤a≤或3≤a≤6时,矩形MNPQ 与直线l 1或l 2有交点. 【点睛】本题主要考查求一次函数解析式,两条直线相交、图形的平移等知识的综合应用,在解决第(3)小题时,只要求出各临界点时a 的值,就可以得到a 的取值范围.25.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】 ()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-; (2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- m m 2=-. 【点睛】本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.。
2019-2020年中考试 数学试题 含答案
2019-2020年中考试 数学试题 含答案一.选择题(本大题共12小题,每小题5分,共60分。
) 1. 在ABC ∆中,,75,45,300===C A AB 则BC =( )A .33-B .2C .2D .33+ 2. △ABC 中,若2cos c a B =,则△ABC 的形状为( ) A .直角三角形B .等腰三角形C .等边三角形D .锐角三角形3. ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则c o s B =( ) A .14B.4C .34D.34.ABC ∆中,,A B C 的对边分别是,,a b c ,面积2224a b c S +-=,则C 的大小是( )A . 030 B . 045 C . 090 D .0135 5.已知等差数列}{n a 满足,20153=+a a ,则17S 等于( ) A .90B .95C .170D .3406.等比数列{n a }中,a 3=7,前3项之和S 3=21, 则公比q 的值为( ) A .-21 B .1或-21 C .1或-1 D . 17.已知正项等比数列{m a }中,1a ,321,22a a 成等差数列,则91078a a a a +=+( )A .1B.3-C .1+D .3+8. 数列{}n a 满足122,1,a a ==并且1111(2)n n n n n n n n a a a an a a a a -+-+⋅⋅=≥--,则数列{}n a 的第100项为( )A .10012 B .5012 C .1100 D .1509.过两点A (2,)m -,B (m ,4)的直线倾斜角是045,则m 的值是( ) A .1- B . 3 C . 1 D .3-10.已知点),(n m P 是直线052=++y x 上的任意一点,则22n m +的最小值为( ) A .5 B .10C .5D . 1011.如果b a >>0且0>+b a ,那么以下不等式正确的个数是( ) ①22b a > ②ba 11> ③ 23ab a < ④ 32b b a < A .1 B .2 C .3 D .412. 设变量x 、y 满足1,0,220,x y x y x y +≥⎧⎪-≥⎨⎪--≥⎩则目标函数z=2x +y 的最小值为( )A .32B .2C .4D . 6二.填空题(本大题共4小题,每小题5分,共20分。
2019-2020年中考数学试题含答案
第一卷(选择题,共2页,满分30分)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的). 1、计算:0)1(1---的结果正确..的是 A .0 B .1 C .2 D .2- 2、如图,在△ABC 中,D 、E分别是AB 、AC 的中点, 若DE=5,则BC=A .6B .8C .10D .12 3、如图,已知A B ∥CD, 则图中与∠1互补的角有 A .2个 B .3 个 C .4 个 D .5个4、不等式组⎩⎨⎧≥+<-0302x x 的解集在数轴上正确..表示的是 5、如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的 村民在公路的旁边建三个加工厂 A 、B 、D ,已知 AB=BC=CD=DA=5公里,村庄C 到公路1l 的距离为4 公里,则村庄C 到公路2l 的距离是A .3公里B .4公里第3题图 第2题图2l 1l第5题图C .5公里D .6公里 6、若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 A .2->m B.2-<m C.2>m D.2<m 7、如图,⊙1o 、⊙2o 相内切于点A ,其半径分别是8和4,将⊙2o 沿直线1o 2o 平移至两圆相外切时,则点2o 移动的长度是 A .4 B .8 C .16 D .8 或16 8、如图,已知:9045<<A ,则下列各式成立的是 A .sinA=cosA B .sinA>cosA C .sinA>tanA D .sinA<cosA 9、对于实数a 、b ,给出以下三个判断: ①若b a =,则b a =.②若b a <,则 b a <.③若b a -=,则 22)(b a =-.其中正确的判断的个数是A .3B .2C .1D .0 10、如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是A .π2B .2π C .π21D .π2茂名市2011年初中毕业生学业水平考试与高中阶段学校招生考试数 学 试 卷题 号 二(11~15)三(16~18)四(19~20)五六合 计 21 22 23 24 25 得 分 评卷人第8题图第7题图第10题图第二卷(非选择题,共8页,满分90分)二、细心填一填(本大题共5小题,每小题3分,共15分.请你把答案填在横线的上方).11、若一组数据 1,1,2,3,x 的平均数是3,则这组数据的众数是 . 12、已知:一个正数的两个平方根分别是22-a 和4-a ,则a的值是 .13、如图,在高出海平面100米的悬崖顶A 处,观测海平面上一艘小船B ,并测得它的俯角为45°,则船与观测者之间的水平距离BC= 米.14、如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E= 度. 15、给出下列命题:命题1.点(1,1)是双曲线xy 1=与抛物线2x y =的一个交点. 命题2.点(1,2)是双曲线xy 2=与抛物线22x y =的一个交 点. 命题3.点(1,3)是双曲线xy 3=与抛物线23x y =的一个交点.……请你观察上面的命题,猜想出命题n (n 是正整数):三、用心做一做 (本大题共3小题,每小题7分,共21分).16、化简:⑴、)212(8-⨯ (3分) ⑵、22)()(y x y x --+ (4分) 解: 解:17、解分式方程:x x x 221232=+-.解:第13题图第14题图18、画图题:(1)如图,将△ABC绕点O顺时针旋转180°后得到△111C B A .请你画 出旋转后的△111C B A ; (3分)(2)请你画出下面“蒙古包”的左视图.... (4分)四、沉着冷静,缜密思考(本大题共2小题,每小题7分,共14分).19、从甲学校到乙学校有1A 、2A 、3A 三条线路,从乙学校到丙学校有1B 、2B 二条线路. (1)利用树状图或列表的方法表示从甲学校到丙学校的线路中所有可能出现的结果;(4分)(2)小张任意走了一条从甲学校到丙学校的线路,求小张恰好经过了1B 线路的概率是多少? (3分) 解:20、为了解某品牌电风扇销售量的情况,对某商场5月份该品牌甲、乙、丙三种型号的电风扇销售量进行统计,绘制如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:第18题图(2) 画出它的左视图是第20题图1(1)该商场5月份售出这种品牌的电风扇共多少台? (2分)(2)若该商场计划订购这三种型号的电风扇共2000台,根据5月份销售量的情况,求该商场应订购丙种型号电风扇多少台比较合理?(5分)解:(本大题共3小题,每小题8分,共24分).21、(本题满分8分)某学校要印制一批《学生手册》,甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收2元印刷费,不收制版费.(1)分别写出甲、乙两厂的收费甲y(元) 、乙y(元)与印制数量x(本)之间的关系式;(4分) (2)问:该学校选择哪间印刷厂印制《学生手册》比较合算?请说明理由.(4分) 解:第20题图222、(本题满分8分)如图,在等腰△ABC 中,点D 、E 分别是两腰AC 、BC 上的点,连接AE 、BD 相交于点O ,∠1=∠2.(1)求证:OD=OE ; (3分) (2)求证:四边形AB ED 是等腰梯形; (3分) (3)若AB=3DE, △DCE 的面积为2, 求四边形ABED 的面积.(2分) 证明:第22题图23、(本题满分8分)某养鸡场计划购买甲、乙两种小鸡苗共2 000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.(1)若购买这批小鸡苗共用了4 500元,求甲、乙两种小鸡苗各购买了多少只?(2分)(2)若购买这批小鸡苗的钱不超过4 700元,问应选购甲种小鸡苗至少多少只?(3分)(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?(3分)解:2小题,每小题8分,共16分).24、(本题满分8分)O(0,0),与x轴相交于点A(5,0),过点A的直线AB与y轴的正半轴交于点B,与⊙P交于点C.(1)已知AC=3,求点B的坐标;(4分)(2)若AC=a, D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为1O,函数xky 的图象经过点1O,求k的值(用含a的代数式表示).(4分)解:第24题图χy第24题备用图χy25、(本题满分8分)xoy 中,已知抛物线经过点A(0,4),B(1,0),C (5,0),抛物线对称轴l 与x 轴相交于点M .(1)求抛物线的解析式和对称轴; (3分) (2)设点P 为抛物线(5>x )上的一点,若以A 、O 、M 、P 为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出....点P 的坐标; (2分) (3)连接AC .探索:在直线AC 下方的抛物线上是否存在一点N ,使△NAC 的面积最大?若存在,请你求出点N 的坐标;若不存在,请你说明理由. (3分) 解:茂名市2011年初中毕业生学业水平考试与高中阶段学校招生考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可根据试题的主要内容,并参照评分标准制定相应的评分细则后评卷。
2019-2020年中考数学试题及答案(word版)
绝密 ★启用前2019-2020 年中考数学试题及答案( word 版)注意事项:1.本试卷考试时间为 120 分钟,试卷满分 150 分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分. 3.答题前,务必将自己的姓名、准考证号用 0.5 毫米黑色墨水签字笔填写在试卷及答题卡上.、选择题(本大题共有8小题,每小题 3 分,共 24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.20100 的值是4.以下图形中,既是轴对称图形,又是中心对称图形的是增大而减小的函数有8.填在下面各正方形中的四个数之间都有相同的规律,根据此规律, m 的值是A .38B .52C .66D .74、填空题(本大题共有 10小题,每小题 3分,共 30 分.不需写出解答过程,请将答案直 接写在答题卡相应位置上)A .2010B . 0C .1D .- 1 12.- 2 的相反数是1 A .2 B .- 1 C .-2 D .2 3.下列四个几何体中,主视图、左视图、俯视图完全相同的是 A .圆锥B .圆柱C .球D .三棱柱 5. 6. A .5 B .6 C . 等腰梯形 D .平行四边形 B . (a b) 2 a 2 b 2 D . 10 4 6 a 10÷a 4= a 两条对角线 AC = 6, BD =8,则此菱形 C . 8 D .10 7. 给出下列四个函数:① y x ;② y x ;③ 2 ;④ y x 2 . x 0 时, y 随A .1 个B .2 个C .3 个D .4 个0 4 20 842 6 24 22 4 8 46 44 6 6 m 1 如图所示,在菱形 ABCD 中, 的边长为 A .等边三角形 B .矩形 下列说法或运算正确的是 A .1.0× 102 有3 个有效数字 2 3 5 D 第 6 题)9. 4 的算术平方根是▲ .10.使x 2 有意义的 x 的取值范围是▲实数 a 、 b 在数轴上对应点的位置如图所示, 则 a ▲ b (填“ ”、“ ”或“ ”) .(第 II 题) 2因式分解: 2a 2 4a ▲ .不透明的袋子中装有 4个红球、 3 个黄球和 5个蓝球,每个球除颜色不同外其它都相同, 从中任意摸出一个球,则摸出 ▲ 球的可能性最大.12 名学生参加江苏省初中英语听力口语自动化考试成绩如下: 28, 21,26,30,28,27,30,30,18, 28,30,25.这组数据的众数为 ▲ .写出图象经过点 (1,- 1)的一个函数关系式 ▲ . 已知圆锥的底面半径为 3,侧面积为 15 ,则这个圆锥的高为 ▲ . 小明尝试着将矩形纸片 ABCD (如图①, AD>CD )沿过 A 点的直线折叠,使得 B 点落 在 AD 边上的点 F 处,折痕为 AE (如图②);再沿过 D 点的直线折叠,使得 C 点落在点落在 AE 边上的点 M 处,折痕为 DG (如图③).如果第二次解答题(本大题共有 10小题,共 96 分.请在答题卡指定区域内作答, 解答时应写出文字说明、证明过程或演算步骤)(本题满分 8 分)计算:2) (a 2 1)÷(1 a II) a(本题满分 8 分)如图, A 、B 两个转盘分别被平均分成三个、四个扇形,分别转动 A 盘、B 盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一 次,直到指针指向一个数字所在的区域为止. 请用列表或画树状图的方3II 3 (13) 1 cos3011. 12. 13. 14. 15.16.17.18. 三、19. 20. DA 边上的点 N 处, E折叠后, M 点正好在∠ NDG 的平分线上, 那么矩形如图, A 、B 是双曲线 y= x k (k>0) 上的点, 分别是 a 、2a ,线段 AB 的延长线交 x 轴于点 k= ▲ .①ABCD长与宽的比值A C , B若停止后指针所指区域内的数字之和小于6 的概率.法,求两个转盘A B本题满分 8分)上海世博园开放后, 前往参观的人非常多. 5 月中旬的一天某一时段, 随机调查了部分入园游客, 统计了他们进园前等候检票的时间, 并绘制成如下图表. 表 中“ 10~20”表示等候检票的时间大于或等于 10min 而小于 20min ,其它类同.1)这里采用的调查方式是 ▲ ;2)求表中 a 、b 、c 的值,并请补全频数分布直方图;3)在调查人数里,等候时间少于 40min 的有 ▲ 人;22.(本题满分 8分)如图,在梯形 ABCD 中, AD ∥BC ,AB=CD=AD ,BD ⊥CD . ( 1)求 sin ∠DBC 的值;( 2)若 BC 长度为 4cm ,求梯形 ABCD 的面积.23.(本题满分 10 分)某校九年级两个班各为玉树地震灾区捐款 1800 元.已知 2班比 1 班人均捐款多 4元,2 班的人数比 1班的人数少 10%.请你根据上述信息,就这两个班 级的“人数”或“人均捐款”提出一个用分式方.程...解决的问题,并写出解题过程.24.(本题满分 10 分)图中的小方格都是边长为 1的正方形,△ ABC 的顶点和 O点都在正 方形的顶点上.( 1)以点 O 为位似中心,在方格图中将△ ABC 放大为原来的 2 倍,得到△A ′B ′C ′;(2)△ A ′B ′C ′绕点 B ′顺时针旋转 90 ,画出旋转后得到的△ A ″B ′C″,21. ▲ ~ ▲ min . 时间分段 /min 频数 /人数 频率10~20 8 0.20020~3014 a 30~4010 0.250 40~50b 0.125 50~603 0.075 合计c 1.000 4)此次调查中,中位数所在的时间段是并求边 A′B′在旋转过程中扫过的图形面积.25.(本题满分 10 分)如图所示,小杨在广场上的 A 处正面观测一座楼房墙上的广告屏幕,测得屏幕下端 D 处的仰角为 30o,然后他正对大楼方向前进 5m 到达 B 处,又测得该屏幕上端 C 处的仰角为 45o.若该楼高为 26.65m ,小杨的眼睛离地面 1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离( 3 ≈1.732,结果精确到0.1m).26.(本题满分 10 分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的 15%.根据相关信息解决下列问题:( 1)降价前,甲乙两种药品每盒的出厂价格之和为6.6 元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的 5 倍少 2.2 元,乙种药品每盒的零售价格是出厂价格的 6 倍,两种药品每盒的零售价格之和为 33.8 元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒 8元和 5 元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价 15%、对乙种药品每盒加价 10%后零售给患者.实际进药时,这两种药品均以每 10 盒为 1 箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共 100 箱,其中乙种药品不少于40 箱,销售这批药品的总利润不低于 900 元.请问购进时有哪几种搭配方案?27.(本题满分 12 分)如图 1 所示,在直角梯形 ABCD 中,AD∥BC,AB⊥BC,∠ DCB=75o,以 CD 为一边的等边△ DCE 的另一顶点 E 在腰 AB 上.1)求∠ AED 的度数;2)求证: AB=BC ;3)如图 2 所示,若 F 为线段 CD 上一点,∠FBC=30o.求F D C F的值.28.(本题满分 12分)已知:函数 y=ax2+x+1 的图象与 x轴只有一个公共点.(1)求这个函数关系式;(2)如图所示,设二次..函数 y=ax2+x+1 图象的顶点为 B,与 y轴的交点为 A,P为图象上的一点,若以线段 PB 为直径的圆与直线 AB相切于点 B,求 P 点的坐标;( 3)在(2)中,若圆与 x轴另一交点关于直线 PB的对称点为 M ,试探索点 M 是否在抛物线 y=ax2+x+1 上,若在抛物线上,求出 M 点的坐标;若不在,请说明理由.绝密★启用前盐城市二○一○年高中阶段教育招生统一考试数学试题参考答案及评分说明、选择题(每小题 3分,共24分)题号 1 2 3 4 5 6 7 8答案 C A C B D A C D、填空题(每小题 3 分,共 30分)解答题2)解:原式 =( a+1)( a-1) ÷a-1 aa-14 分) q9.2 11.<15.10. x≥ 212 y=-x 或 y=-x或 y=x2-2x,答案不唯一 16. 412. 2a(a-2) 13.蓝17. 2 18.14. 30 19.31)解:原式 =3+3-=6- 3⋯⋯⋯3 分)4 分)2 分)2=a +a20.解:解法一:画树状图和 3 4 5 64 5 6 7 5 6 7 8树状图正确6 分) P 和小于 6= 6128 分) 列表正确61 P 和小于 6= 12 =2 A 和 B6 分)8 分)21.解:( 1)抽样调查或抽查(填“抽样”也可以) 1 分)2) a=0.350; b= 5: c=40 ;频数分布直方图略 ⋯⋯⋯⋯⋯⋯⋯⋯⋯( 5分)3)32 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 6 分)4)20~30⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 8 分)22.解: (1)∵AD=AB ∴∠ ADB =∠ ABD∵AD ∥CB ∴∠ DBC = ∠ ADB =∠ ABD ⋯⋯⋯⋯⋯( 1分)∵在梯形 ABCD 中, AB=CD ,∴∠ ABD+∠DBC=∠C=2∠DBC∵ BD ⊥CD ∴3∠DBC=90o ∴∠ DBC =30o3 分) B1 ∴ sin ∠ 4 分) 2)过 D 作 DF ⊥BC 于 F ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 5 分)在 Rt △CDB 中, BD=BC ×cos ∠DBC =2 3 (cm ) ⋯⋯⋯⋯⋯⋯⋯( 6 分)在 Rt △BDF 中,DF=BD ×sin ∠DBC= 3 (cm ) ⋯⋯⋯⋯⋯⋯⋯( 7 分) ∴S 梯=21 (2+4) ·3 =3 3 (cm 2) 8 分)其它解法仿此得分)23.解法一:求两个班人均捐款各多少元? ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 设 1 班人均捐款 x 元,则 2 班人均捐款( x+4 )元,根据题意得 1800 1800 ·90%= ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分) 5 分) 解得 x=36 经检验 x=36 是原方程的根8 分) ∴ x+4=40 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 9 分) 答: 1班人均捐 36元, 2班人均捐 40元⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 10 分) 解法二:求两个班人数各多少人?⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)设 1 班有 x 人,则根据题意得1800 1800x +4=90x% ⋯⋯⋯⋯( 5 分) 解得 x=50 ,经检验x=50 是原方程的根⋯( 8 分) ∴90x % =45⋯⋯⋯⋯⋯( 9 分) 答: 1 班有 50 人,2 班有 45人 ⋯⋯⋯⋯( 10分) (不检验、不作答各扣 1分)24.解:( 1)见图中△ A ′B ′C ′ ⋯⋯⋯⋯⋯⋯( 4 分 (直接画出图形,不画辅助线不扣分)解法二:用列表第 22 题图) B C2)见图中△ A ″B ′C ″⋯⋯⋯⋯⋯ 直接画出图形,不画辅助线不扣分)90 2 2 1S=360 π 2(2+42)=4 π· 20=(5平π方单位 ) 25.解:设 AB 、CD 的延长线相交于点 E∵∠ CBE=45o CE ⊥ AE ∴ CE=BE ⋯⋯⋯∵ CE =26.65-1.65=25 ∴BE=25∴AE=AB+BE=30 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯在 Rt △ADE 中,∵∠ DAE =30o∴ DE=AE ×tan30 o =30 ×33=10 3 ⋯⋯⋯⋯⋯⋯⋯( 3 ∴CD=CE-DE=25-10 3 ≈ 25-10× 1.732=7.68 ≈7.7(m )⋯⋯⋯⋯⋯( 9 分) 答:广告屏幕上端与下端之间的距离约为 7.7m ⋯⋯⋯⋯⋯⋯⋯⋯( 10 分) 注:不作答不扣分)26.解:( 1)设甲种药品的出厂价格为每盒 x 元,乙种药品的出厂价格为每盒 y 元.则根据题意列方程组得: x y 6.6 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (2 分) 5x 2.26y 33.8解之得: x 3.6 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4 分)y35×3.6-2.2=18-2.2=15.8 (元) 6× 3=18(元) 答:降价前甲、乙两种药品每盒的零售价格分别是 15.8 元和 18元⋯⋯⋯⋯( 5 分) 2)设购进甲药品 x 箱(x 为非负整数),购进乙药品( 100-x )箱,则根据题意列不等式组得:8 15% 10x 5 10% 10(100 x) 900100 x 40 7则 x 可取: 58, 59, 60,此时 100-x 的值分别是: 42, 41, 40有 3 种方案供选择:第一种方案,甲药品购买 58 箱,乙药品购买 42 箱; 第二种方案,甲药品购买 59 箱,乙药品购买 41 箱; 第三种方案,甲药品购买 60箱,乙药品购买 40箱; ⋯⋯( 10分)(注:( 1)中不作答不扣分,( 2)中在方案不写或写错扣 1 分)27.解: (1)∵∠ BCD=75o ,AD ∥BC ∴∠ ADC =105o ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1分) 由等边△ DCE 可知:∠ CDE =60o ,故∠ ADE =45o由 AB ⊥BC ,AD ∥BC 可得:∠DAB=90o , ∴∠AED=45o ⋯⋯⋯⋯⋯⋯⋯ (3分)(2)方法一:由 (1)知:∠ AED=45o ,∴ AD =AE ,故点 A 在线段 DE的垂直平分线上.由△ DCE 是等边三角形得: CD=CE ,故点 C 也在线段 DE 的垂直平分线8 分)7分)解之得: 571x 60 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 8 分)10 分)7分)上.∴AC 就是线段 DE 的垂直平分线,即 AC ⊥DE⋯⋯⋯⋯⋯⋯⋯( 5分)连接 AC,∵∠ AED =45o,∴∠ BAC=45o,又 AB⊥BC ∴7 分)BA=BC.方法二:过 D 点作 DF ⊥BC,交 BC 于点⋯⋯⋯⋯⋯⋯( 4分)可证得:△ DFC ≌△ CBE 则DF=BC ⋯⋯⋯⋯⋯⋯⋯⋯(6分)从而: AB=CB ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 7 分)( 3)∵∠ FBC=30o,∴∠ ABF=60o 连接 AF ,BF、AD 的延长线相交于点G,∵∠ FBC=30o ,∠ DCB =75o ,∴∠ BFC=75o ,故BC=BF由(2)知: BA=BC ,故 BA=BF ,∵∠ ABF=60o ,∴ AB=BF =FA ,又∵ AD ∥BC ,AB ⊥BC ,∴∠ FAG=∠ G=30o ∴FG=FA= FB ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 10 分) ∵∠G=∠FBC=30o ,∠DFG=∠CFB ,FB=FG ∴△ BCF≌△ GDF ⋯⋯⋯⋯⋯⋯⋯⋯⋯( 11 分) ∴ DF=CF ,即点F 是线段 CD 的中点.(注 :如其它方法仿此得分 )28.解:(1)当a = 0时,y = x+1, 1 当 a ≠0时,△=1- 4a=0,a = , 4(2)设 P 为二次函数图象上的一点,过点 P作PC ⊥x 轴于点 C .2 ∵ y=ax 2+x+1 是二次函数, 由(1)知该函数关系式为:1 2 C y=4 x 2+x+1,则顶点为 B ( -2, 0),图象与 y 轴的交点 C 坐标为 A ( 0,1)⋯⋯⋯( 4 分)∵以 PB 为直径的圆与直线 AB 相切于点 B ∴PB ⊥AB 则∠ PBC=∠ BAO∴ Rt △PCB ∽ Rt △ BOA∴ PC BC,故 PC=2BC ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 5 分) OB AO设 P 点的坐标为 (x , y ) ,∵∠ ABO 是锐角,∠ PBA 是直角,∴∠ PBO 是钝角,∴ x<-2 ∴ BC=-2- x , PC=-4-2 x ,即 y=-4-2 x , P 点的坐标为 (x ,-4-2x ) ∵点 P 在二次函数 y=1 x 2+x+1的图象上,∴ -4-2x=1 x 2+x+1⋯⋯⋯⋯⋯⋯⋯( 6 分)44解之得: x 1=-2 , x 2=-10∵x<-2 ∴x=-10,∴ P 点的坐标为: (-10, 16)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 7 分)2(3)点 M 不在抛物线y=ax2+x+1 上⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(8 分) 由( 2)知: C 为圆与 x 轴的另一交点,连接 CM ,CM 与直线 PB 的DF FC=1 12 分) 图象与x 轴只有一个公共点 ∴函数的解析式为: y=x+1B (1分) 此时,图象与x 轴只有一个公共点. 1 D或 `y=14 x 2+x+1⋯⋯(3 分)交点为 Q,过点 M作 x 轴的垂线,垂足为 D,取 CD 的中点 E,连接 QE,则 CM⊥PB,且 CQ=MQ 1∴QE∥ MD,QE=2 MD,QE⊥CE∵CM⊥PB,QE⊥CE PC⊥x 轴∴∠ QCE=∠EQB=∠CPB1∴ tan∠ QCE= tan∠EQB= tan∠ CPB =28 16CE=2QE=2× 2BE=4BE,又 CB=8,故 BE=5, QE= 5∴Q 点的坐标为(-18,16)55可求得 M 点的坐标为(154,352)11 分)144 32 ≠25 5 ∴ C点关于直线 PB 的对称点2M 不在抛物线 y=ax +x+1 上⋯⋯⋯⋯⋯⋯⋯⋯12分)(其它解法,仿此得分)。
2019-2020数学中考试卷(带答案)
2019-2020数学中考试卷(带答案)一、选择题1.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.A .1B .2C .3D .4 2.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( )A .4B .3C .2D .13.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣14.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .55.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.56.如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为()A.3 B.23C.32D.67.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.89.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,1510.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.23π﹣23 B .13π﹣3 C .43π﹣23 D .43π﹣3 11.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠12.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b二、填空题13.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.14.若一个数的平方等于5,则这个数等于_____.15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.16.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= .17.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________. 18.使分式的值为0,这时x=_____.19.当m =____________时,解分式方程533x mx x-=--会出现增根. 20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明22.如图,AB 是半圆O 的直径,AD 为弦,∠DBC=∠A .(1)求证:BC 是半圆O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.23.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图: 等级 成绩(s ) 频数(人数) A 90<s≤100 4 B 80<s≤90 x C 70<s≤80 16 Ds≤706根据以上信息,解答以下问题: (1)表中的x= ;(2)扇形统计图中m= ,n= ,C 等级对应的扇形的圆心角为 度; (3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.24.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.25.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】由图像可知a >0,对称轴x=-2ba=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断. 【详解】解:∵抛物线开口向上, ∴a >0,∵抛物线的对称轴为直线x =﹣2ba=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方, ∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∵x =﹣1时,y =0, ∴a ﹣b +c =0,所以②错误; ∵b =﹣2a ,∴2a +b =0,所以③错误; ∵抛物线与x 轴有2个交点, ∴△=b 2﹣4ac >0,所以④正确. 故选B . 【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.2.A解析:A 【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6, 所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.3.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-g=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.4.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx =,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.5.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.6.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴== 故选:B . 【点睛】本题考查了矩形 的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM,7.D解析:D 【解析】 【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【详解】 ∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°, 故选D . 【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.B解析:B 【解析】 【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2, 解得,OA=4 ∴OD=OC-CD=3, ∵AO=OE,AD=DB, ∴BE=2OD=6 故选B 【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9.D解析:D 【解析】 【分析】【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .10.C解析:C 【解析】分析:连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 菱形ABCO ﹣S 扇形AOC 可得答案. 详解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2, ∴OB=OA=OC=2, 又四边形OABC 是菱形, ∴OB ⊥AC ,OD=12OB=1, 在Rt △COD 中利用勾股定理可知:22213-=,3∵sin ∠COD=3CD OC =∴∠COD=60°,∠AOC=2∠COD=120°, ∴S 菱形ABCO =12B×AC=12×2×33 S 扇形AOC =2120243603ππ⨯⨯=,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =4233π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π,有一定的难度.11.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.12.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 二、填空题13.【解析】【分析】延长AD 和BC 交于点E 在直角△ABE 中利用三角函数求得BE 的长则EC 的长即可求得然后在直角△CDE 中利用三角函数的定义求解【详解】如图延长ADBC 相交于点E ∵∠B=90°∴∴BE=∴ 解析:65【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.14.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:5【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:5故答案为:5【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5 =,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.17.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.18.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法19.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为516. 三、解答题21.(1)见解析 (2) 12AD BC =,理由见解析. 【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC ,∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE ,∴∠DAE=∠DAC+∠CAE=12×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°,∴四边形ADCE 为矩形.(2)当12AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=12AD BC =Q ,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形. 【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.22.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.23.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14,故答案为14; (2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144;(3)列表如下:a 1和b 1的有2种结果, ∴恰好选取的是a 1和b 1的概率为21126=. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.24.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,剟剟. 当1017a 剟时, (ⅰ)当10a =时,10010801200b ⨯+…,∴52b …, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+…,∴54b …, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a …时,1001200a …,即成人门票至少需要1200元,不合题意,舍去. 当110a <…时,(ⅰ)当9a =时,100980601200b ⨯++…,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++…,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.25.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%;总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.。
2019-2020年中考数学试题及答案解析(WORD版)
2019-2020年中考数学试题及答案解析(WORD 版)一、选择题1.2A.2 B.2C.12D.12【答案】A.【解析】由绝对值的意义可得,答案为A 。
2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310 B.71.357310C.81.357310D.91.357310【答案】B.【解析】科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.13 573 000=71.357310;3.一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
4.如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35°【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻的两个内角之和,所以,75°=∠2+∠3,所以,∠3=40°,选C 。
5.下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形 B.平行四边形 C.正五边形 D.正三角形【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.2(4)x A.28xB.28xC.216xD.216x【答案】D.【解析】原式=22-4x ()=216x 7.在0,2,0(3),5这四个数中,最大的数是A.0B.2C.0(3)D.5【答案】B.【解析】(-3)0=1,所以,最大的数为2,选B 。
8.若关于x 的方程2904xx a有两个不相等的实数根,则实数a 的取值范围是A.2a ≥B.2a ≤ C.2a > D.2a <【答案】C.【解析】△=1-4(94a)>0,即1+4a -9>0,所以,2a >9.如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D. 【解析】显然弧长为BC +CD 的长,即为6,半径为3,则16392S 扇形.10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE=BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【答案】D.【解析】根据题意,有AE=BF=CG ,且正三角形ABC 的边长为2,故BE=CF=AG=2-x ;故△AEG 、△BEF 、△CFG 三个三角形全等.在△AEG 中,AE=x ,AG=2-x ,则S△AEG=12AE ×AG ×sinA=34x (2-x );故y=S△ABC-3S△AEG=3-334x (2-x )=34(3x 2 -6x+4).故可得其图象为二次函数,且开口向上,选D 。
2019-2020中考数学试题(附答案)
2019-2020中考数学试题(附答案) 一、选择题1.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=kx(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.4C.3D.62.下列计算正确的是()A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x53.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如图,下列关于物体的主视图画法正确的是()A.B.C.D.5.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°6.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .37.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=8.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .549.下列各式化简后的结果为32 的是( ) A .6B .12C .18D .3610.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)11.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=- D .244(2)(2)x x x x -+=+-12.cos45°的值等于( ) A 2B .1C 3D 2二、填空题13.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.14.分解因式:2x3﹣6x2+4x=__________.15.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx 在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.16.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.17.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)20.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.三、解答题21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.22.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且3D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43ABAC,DF+BF=8,如图2,求BF的长.23.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?24.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:设点A的坐标为(m,km),则根据矩形的面积与性质得出矩形中心的纵坐标为2km,求出中心的横坐标为m+6mk,根据中心在反比例函数y=kx上,可得出结果.详解:设点A的坐标为(m,km),∵矩形ABCD的面积为12,∴121212m BCkAB km===,∴矩形ABCD的对称中心的坐标为(m+6mk,2km),∵对称中心在反比例函数上,∴(m+6mk)×2km=k,解方程得k=6,故选D.点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.2.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.5.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.6.C解析:C【解析】【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB22=++=()22;211路径二:AB22=++=().21110<,∴蚂蚁爬行的最短路程为22.∵2210故选C.【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.7.A解析:A 【解析】 【分析】共有x 个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可. 【详解】解:设有x 个队参赛,根据题意,可列方程为:12x (x ﹣1)=36, 故选:A . 【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.8.B解析:B 【解析】 【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可. 【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.9.C解析:C 【解析】A 不能化简;BC ,故正确;D ,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.10.D解析:D 【解析】 【分析】 【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1). 故选:D11.C解析:C 【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误;B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.12.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45° 故选D .【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 二、填空题13.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 14.2x (x ﹣1)(x ﹣2)【解析】分析:首先提取公因式2x 再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x (x2﹣3x+2)=2x (x ﹣1)(x ﹣2)故答案为2x (x ﹣1)(x ﹣2)点解析:2x (x ﹣1)(x ﹣2).【解析】分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案.详解:2x 3﹣6x 2+4x=2x (x 2﹣3x+2)=2x (x ﹣1)(x ﹣2).故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E∴2x=x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1),∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴2222,OD OA OD =+=故答案为:2 2.【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 16.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V 甲==3m/s ,V 追==1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.17.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)C ;(2)①作图见解析;②35万户.【解析】【分析】(1)C 项涉及的范围更广;(2)①求出B ,D 的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A 、B 两种调查方式具有片面性,故C 比较合理;故答案为:C ;(2)①B :100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户), 所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD ,如图1,由已知得到∠BAD=∠CAD ,得到»»BDCD =,再由垂径定理得OD ⊥BC ,由于BC ∥EF ,则OD ⊥DF ,于是可得结论;(2)连结OB ,OD 交BC 于P ,作BH ⊥DF 于H ,如图1,先证明△OBD 为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt △DBP 中得到,PB=3,在Rt △DEP 中利用勾股定理可算出PE=2,由于OP ⊥BC ,则BP=CP=3,得到CE=1,由△BDE ∽△ACE ,得到AE 的长,再证明△ABE ∽△AFD ,可得DF=12,最后利用S 阴影部分=S △BDF ﹣S 弓形BD =S △BDF ﹣(S 扇形BOD ﹣S △BOD )进行计算;(3)连结CD ,如图2,由43AB AC =可设AB=4x ,AC=3x ,设BF=y ,由»»BD CD =得到CD=BD=△BFD ∽△CDA ,得到xy=4,再由△FDB ∽△FAD ,得到16﹣4y=xy ,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD ,如图1,∵AD 平分∠BAC 交⊙O 于D ,∴∠BAD=∠CAD ,∴»»BDCD =,∴OD ⊥BC , ∵BC ∥EF ,∴OD ⊥DF ,∴DF 为⊙O 的切线;(2)连结OB ,连结OD 交BC 于P ,作BH ⊥DF 于H ,如图1,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=12,在Rt △DEP 中,∵,,∴=2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=1,∴,∵BE ∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)23604π⨯⨯-+⨯=932π-;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即2323=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.23.(1)y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75x x x >⎧⎨⨯-+⨯⎩… 解得x≥50.由题意得w=8(75﹣x )+24x=16x+600.∵16>0,∴w 的值随x 的增大而增大.∴当x=50时,75﹣x=25,W 最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.24.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.25.(1)证明见解析;(3)DG=23. 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =,∴AF=AE•sin∠AEF=10×513=50 13,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·1813AB AF=⨯=,则DG=133033013 23⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。
2019-2020中考数学试卷带答案
2019-2020中考数学试卷带答案一、选择题1.如图所示,已知A (12,y 1),B(2,y 2)为反比例函数1y x =图像上的两点,动点P(x ,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .(12,0)B .(1,0)C .(32,0)D .(52,0) 2.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <33.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+9 4.下列运算正确的是( ) A .23a a a += B .()2236a a = C .623a a a ÷= D .34a a a ⋅=5.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B .C .D .6.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间7.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x =(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .48.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样9.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-10.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D .11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 12.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠二、填空题13.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.14.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.15.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.16.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)17.分式方程32x x 2--+22x-=1的解为________. 18.计算:82-=_______________.19.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.20.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.解分式方程:23211x x x +=+- 22.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明23.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A ,B ,C ,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.24.已知:如图,点E,A,C在同一条直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.25.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k bk b⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB的解析式是y=-x+52,当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.2.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.3.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.4.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C 、a 6÷a 2=a 4,故错误;D 、a·a 3=a 4,正确;故选:D .【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.5.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D6.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B .【点睛】是解题关键.7.C解析:C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.8.C解析:C【解析】试题分析:设商品原价为x ,表示出三家超市降价后的价格,然后比较即可得出答案. 解:设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ;乙超市售价为:x (1﹣15%)2=0.7225x ;丙超市售价为:x (1﹣30%)=70%x=0.7x ;故到丙超市合算.故选C .考点:列代数式.9.C解析:C【解析】【分析】【详解】∵A (﹣3,4),∴,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 10.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.11.D解析:D【解析】【分析】首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键. 12.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.二、填空题13.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理. 14.2【解析】【分析】设这个圆锥的底面圆的半径为R 根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R 由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R ,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R ,由题意: 2πR=1804180π⨯, 解得R=2.故答案为2. 15.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V 甲==3m/s ,V 追==1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.16.2m【解析】【分析】延长AD交BC的延长线于点E作DF⊥CE于点F解直角三角形求出EFCF即可解决问题【详解】延长AD交BC的延长线于点E作DF⊥CE于点F在△DCF中∵CD=4mDF:CF=1:3解析:2m.【解析】【分析】延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.【详解】延长AD交BC的延长线于点E,作DF⊥CE于点F.在△DCF中,∵CD=4m,DF:CF=1:,∴tan∠DCF=,∴∠DCF=30°,∠CDF=60°.∴DF=2(m),CF=2(m),在Rt△DEF中,因为∠DEF=50°,所以EF=≈1.67(m)∴BE=EF+FC+CB=1.67+2+5≈10.13(m),∴AB=BE•tan50°≈12.2(m),故答案为12.2m .【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.17.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.18.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键 2【解析】【分析】 82.【详解】82=222. 2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.19.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式 解析:14. 【解析】 【分析】【详解】 试题分析:画树状图如下:∴P (两次摸到同一个小球)=416=14.故答案为14. 考点:列表法与树状图法;概率公式.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形解析:43【解析】【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F Q 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =Q8BD ∴=又Q 8106BD BC CD ===,,∴△BDC是直角三角形,且=90BDC∠︒∴tanC=BDDC=86=43.故答案为:4 3 .三、解答题21.x=-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x+1)( x-1),化为整式方程求解,求出x的值后不要忘记检验.【详解】解:方程两边同时乘以(x+1)( x-1)得: 2x (x-1)+3(x+1)=2(x+1)( x-1)整理化简,得x=-5经检验,x=-5是原方程的根∴原方程的解为:x=-5.22.(1)见解析(2)12AD BC=,理由见解析.【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)由正方形ADCE的性质逆推得AD DC=,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=12×180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当12AD BC=时,四边形ADCE是一个正方形.理由:∵AB=AC , AD ⊥BC ,BD DC ∴=12AD BC =Q ,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形. 【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.23.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为16. 【解析】【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1的情况,再利用概率公式即可求得答案.【详解】(1)∵被调查的学生总人数为6÷15%=40人, ∴x=40﹣(4+16+6)=14,故答案为14; (2)∵m%=440×100%=10%,n%=1640×10%=40%, ∴m=10、n=40,C 等级对应的扇形的圆心角为360°×40%=144°,故答案为10、40、144; (3)列表如下:a 1和b 1的有2种结果,∴恰好选取的是a 1和b 1的概率为21126=. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.24.见解析【解析】【分析】首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.【详解】证明:∵AB∥CD,∴∠BAC=∠ECD,∵在△BAC和△ECD中,AB=EC,∠BAC=∠ECD ,AC=CD,∴△BAC≌△ECD(SAS).∴CB=ED.【点睛】本题考查了平行线的性质,全等三角形的判定和性质.25.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.。
2019-2020数学中考试卷含答案
2019-2020数学中考试卷含答案一、选择题1.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .2.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17C .平均数是2D .方差是23.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒ 4.函数21y x =-中的自变量x 的取值范围是( )A .x ≠12B .x ≥1C .x >12D .x ≥125.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .25B .4C .213D .4.86.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3) 7.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .88.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°9.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒10.如图,正比例函数1y=k x 与反比例函数2k y=x 的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1) 11.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .3 12.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( )A .1B .0,1C .1,2D .1,2,3 二、填空题13.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 14.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.15.不等式组3241112xx x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= . 16.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.17.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.18.当m =____________时,解分式方程533x m x x-=--会出现增根. 19.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 名市民,扇形统计图中,C 组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.计算:103212sin45(2π)-+--+-o .23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 25.解方程:3x x +﹣1x=1.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.2.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.3.B解析:B【解析】【分析】根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【详解】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,故选B.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.4.D解析:D【解析】【分析】由被开方数为非负数可行关于x 的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x ≥12, 故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负. 5.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.6.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一 条直线上,那么这两个图形叫做位似图形。
2019-2020年中考数学真题(含答案)
2019-2020年中考数学真题(含答案)一、选择题1.23(2)a a -=( )A.312a -B. 36a -C. 312aD. 26a 2. 已知某几何体的三视图(单位:cm )则该几何体的侧面积等于( )2cmA. 12πB. 15πC. 24πD. 30π3.在RT△ABC 中,已知∠C=90°,∠A=40°,BC=3,则AC=( )A. 3sin 40︒B. 3sin50︒C. 3tan 40︒D. 3tan50︒4.已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是( )A. a 是无理数B. a 是方程280x -=的解C. a 是8的算术平方根D. a 满足不等式组3040a a ->⎧⎨-<⎩5.下列命题中,正确的是( )A .梯形的对角线相等 B. 菱形的对角线不相等 C. 矩形的对角线不能互相垂直 D. 平行四边想的对角线可以互相垂直 6. 函数的自变量x 满足122x ≤≤时,函数值y 满足114y ≤≤,则这个函数可以是( ) A. 12y x =B. 2y x =C. 18y x= D. 8y x=7. 若241()142w a a+=--,则w=( ) A.2(2)a a +≠- B. 2(2)a a -+≠ C. 2(2)a a -≠ D. 2(2)a a --≠- 8. 已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图,由图得出如下四个结论:俯视图左视图①学校数量2007至2012年比2001至2006年更稳定; ②在校学生人数有两次连续下降,两次连续增长的变化过程; ③2009年的在校学生人数学校数量大于1000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年. 其中,正确的结论是( )A. ①②③④B. ①②③C. ①②③D.③④9.分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3倍数的概率等于( ) A.316B. C. 58 D. 131610.已知AD//BC ,AB ⊥AD ,点E 点F 分别在射线AD ,射线BC 上,E 与点B 关于AC 对称,点E 点F 关于BD 对称,AC 与BD 相交于点G 则( ) A. 1tan 2ADB +∠=B. 25BC CF =C. 22AEB DEF ∠+︒=∠D. 4cos 6AGB ∠= 二、填空题11. 2012年末统计,杭州市常住人口是880.2万人,用科学技术法表示为 .12. 已知直线//a b ,若∠1=40°50′,则∠2= .13. 设实数,x y 满足方程组143123x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,则x y += .14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .15.设抛物线(0)y ax bx c a =++≠过A (0,2), B (4,3),C 三点,其中点C 在直线2x =上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为 .16. 点A,B,C 都在半径为r 的圆上,直线AD ⊥直线BC ,垂足为D ,直线BE ⊥直线AC ,垂足为E ,直线AD 与BE 相交于点H ,若BH =,则∠ABC 所对的弧长等于 (长度单位). 三、解答题17. 一个布袋中装有只有颜色不同的(12)a a >个球,分别是2个白球,4个黑球,6个红球和b 个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整),请补全该统计图并求出ba的值。
2019-2020中考数学试卷(含答案)
2019-2020中考数学试卷(含答案)一、选择题1.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 2.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个3.2-的相反数是( )A .2-B .2C .12D .12- 4.如图,下列关于物体的主视图画法正确的是( )A .B .C .D .5.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32 C .m >﹣94 D .m >﹣94且m≠﹣346.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70° 7.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .868.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)9.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣23B .13π﹣3C .43π﹣23D .43π﹣3 10.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .11.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.10012.若0xy<,则2x y化简后为()A.x y-B.x y C.x y-D.x y--二、填空题13.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.14.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.15.如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.16.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.17.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.18.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____. 19.正六边形的边长为8cm,则它的面积为____cm2.20.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是三、解答题21.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.23.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=12.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.将A B C D,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A在甲组的概率是多少?(2)A B,都在甲组的概率是多少?25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质3.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .4.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.5.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.6.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.7.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.8.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.9.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=1, 在Rt △COD 中利用勾股定理可知:22213-=,3 ∵sin ∠COD= 3CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=12×2×33 S 扇形AOC =2120243603ππ⨯⨯=, 则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =4233π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π,有一定的难度. 10.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a =->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.11.B解析:B【解析】【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x 元,售价为每件0.8×200元,由题意得 12.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简. 解答【详解】y>0,∵xy<0,∴x<0,∴原式=-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义二、填空题13.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.14.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=解析:12【解析】【详解】解:设点A的坐标为(a,4a),则点B的坐标为(ak4,4a),∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,∵∠ACB=∠DCO,∴△ACB∽△DCO,∴AB AC2 DA CD1==,∵OD=a,则AB=2a,∴点B的横坐标是3a,∴3a=ak4,解得:k=12.故答案为12.15.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=O A=6∴OP=AB=3∴解析:22【解析】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.16.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.18.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.三、解答题21.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=22+=22FC FB+=5,34∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.22.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)23.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245-,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.24.(1)12(2)16【解析】解:所有可能出现的结果如下:(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162, A B ,都在甲组的概率=1625.(1)证明见解析;(3)DG=23. 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD ,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·181313AB AF=⨯=,则DG=133033013 23⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。
2019-2020数学中考试卷含答案
2019-2020数学中考试卷含答案一、选择题1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,02.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .184.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩5.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .6.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额 10 20 30 50 100 人数24531A .众数是100B .中位数是30C .极差是20D .平均数是307.下列计算正确的是( )A .a 2•a=a 2B .a 6÷a 2=a 3C .a 2b ﹣2ba 2=﹣a 2bD .(﹣32a )3=﹣398a8.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .9.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .1110.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF= 11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°12.8×200=x+40 解得:x=120答:商品进价为120元. 故选:B . 【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B重合,那么折痕长等于 cm.15.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是16.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).17.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.18.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.19.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.20.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.三、解答题21.2x =600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.22.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=V ,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题:(1)写出A,C两点的坐标;(2)画出△ABC关于原点O的中心对称图形△A1B1C1;(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.25.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.2.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.3.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.4.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.5.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.6.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.7.C解析:C【解析】【分析】根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D.【详解】A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=-a2b,符合题意;D、原式=-278a,不符合题意,故选C.【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.8.A解析:A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A.9.D解析:D【解析】【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】当x=2时,x2﹣5=22﹣5=﹣1,结果不大于1,代入x2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,代入x2﹣5=(﹣4)2﹣5=11,故选D.【点睛】本题考查了代数式求值,正确代入求值是解题的关键.10.A解析:A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE=.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.11.D解析:D【解析】题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.无二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.14.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换15.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.16.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 17.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.18.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.19.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3分析:由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.详解:过点P 做PE ⊥y 轴于点E ,∵四边形ABCD 为平行四边形∴AB=CD又∵BD ⊥x 轴∴ABDO 为矩形∴AB=DO∴S 矩形ABDO =S ▱ABCD =6∵P 为对角线交点,PE ⊥y 轴∴四边形PDOE 为矩形面积为3即DO•EO=3∴设P 点坐标为(x ,y )k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.20.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、解答题21.无22.(1)213y x x 222=--;(2)D 的坐标为1727,2⎛- ⎝⎭,1727,2⎛⎫+ ⎪ ⎪⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭.【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解.【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12 x 2﹣32x ﹣2. (2)当x =0时,y =12x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5.∵AC 2+BC 2=25=AB 2,∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC,∴△AD 1M 1∽△ACB.∵S △DBC =35S ABC ∆, ∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0),∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0),将B (4,0),C (0,﹣2)代入y =kx+c ,得:402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2),(),(1,﹣3)或(3,﹣2). (3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,设直线AC 的解析设为y =mx+n (m≠0),将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2.∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y x y x =-⎧⎪⎨=-⎪⎩ ,解得:4585xy⎧=⎪⎪⎨⎪=⎪⎩,∴点F1的坐标为(4 5,﹣85);②当点E不和点O重合时,在线段AB上取点E,使得EB=EC,过点E作EF2⊥BC于点F2,过点E作EF3⊥CE,交直线BC于点F3,则△CEF2∽△BAC∽△CF3E.∵EC=EB,EF2⊥BC于点F2,∴点F2为线段BC的中点,∴点F2的坐标为(2,﹣1);∵BC=25,∴CF2=12BC=5,EF2=12CF2=52,F2F3=12EF2=5,∴CF3=554.设点F3的坐标为(x,12x﹣2),∵CF3=554,点C的坐标为(0,﹣2),∴x2+[12x﹣2﹣(﹣2)]2=12516,解得:x1=﹣52(舍去),x2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣85),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D 且与直线BC 平行的直线的解析式;(3)分点E 与点O 重合及点E 与点O 不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F 的坐标.23.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.24.(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)见解析;(3)102π.【解析】【分析】(1)利用第二象限点的坐标特征写出A,C两点的坐标;(2)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2,然后描点得到△A2B2C2,再利用弧长公式计算点C旋转至C2经过的路径长.【详解】解:(1)A点坐标为(﹣4,1),C点坐标为(﹣1,1);(2)如图,△A1B1C1为所作;(3)如图,△A2B2C2为所作,OC2213+10,点C旋转至C29010π⋅⋅10π.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了弧长公式.25.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 1 1 2019-2020 年中考数学试题(word 版)一、选择题(本大题 8 小题,每小题 4 分,共 32 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(2010·汕头)-3 的相反数是( )A .3B .C .-3D . - 1332. 下列运算正确的是()A . 2a + 3b = 5ab 3B . 2(2a - b ) = 4a - b( )( )22( )2 2 2CD C . a + b a - b = a - bD . a + b= a + bB E3.(2010·汕头)如图,已知∠1 = 70º,如果 CD∥BE,那么∠B 的度数为( )A .70ºB .100ºC .110ºD .120º第 3 题图4.(2010·汕头)某学习小组 7 位同学,为玉树地重灾区捐款,捐款金额分别为 5 元,10 元,6 元,6 元,7 元,8 元,9 元,则这组数据的中位数与众数分别为( )A .6,6B .7,6C .7,8D .6,85.(2010·汕头)左下图为主视图方向的几何体,它的俯视图是()A. B . C . D .第 4 题图6.(2010·汕头)如图,把等腰直角△ABC 沿 BD 折叠,使点 A 落在边 B C 上的点 E 处。
下面结论错误的是( ) A .AB=BEB .AD=DCC .AD=DED .AD=EC7. (2010·汕头)已知方程 x 2 - 5x + 4 = 0 的两跟分别为⊙1 与⊙2 的半径,且 O 1O 2=3,那么两圆的位置关系是( ) A .相交B.外切C.内切D.相离8. (2010·汕头)已知一次函数 y = kx - 1的图像与反比例函数 y =标为(2,1),那么另一个交点的坐标是( )2 的图像的一个交点坐xA.(-2,1)B.(-1,-2)C.(2,-1)D.(-1,2)二、填空题(本大题 5 小题,每小题 4 分,共 20 分)请将下列各题的正确答案填写在答题卡相应的位置上.9.(2010·汕头)据中新网上海 6 月 1 日电: 世博会开园一个月来,客流平稳,累计至当晚 19 时,参观者已超过 8000000 人次.试用科学记数法表示 8000000=.主视方向2D CA BC 1D 1D C A BA 1B 1C10.(2010·汕头)分式方程2xx + 1= 1 的解 x = .A11.(2010·汕头)如图,已知 Rt △ABC 中,斜边 BC 上的高 AD =4,cosB = 4,则 AC =.5 BDC 第 11 题图12.(2010·汕头)某市 2007 年、2009 年商品房每平方米平均价格分别为 4000 元、5700 元,假设 2007 年后的两年内,商品房每平方米平均价格的年增长率都为 x .试列出关于 x 的方程: . 13.(2010·汕头)如图(1),已知小正方形 ABCD 的面积为 1,把它的各边延长一倍得到新正方形 A 1B 1C 1D 1;把正方形 A 1B 1C 1D 1 边长按原法延长一倍得到正方形 A 2B 2C 2D 2(如 图(2);以此下去···,则正方形 A 4B 4C 4D 4 的面积为 .2C 1D 1B 2 B 1D 2A 1第 13 题图(1)A 2第 13 题图(2)三、解答题(一)(本大题 5 小题,每小题 7 分,共 35 分) 14.(2010·汕头)计算: + (- 1) -1 - 2 cos 60︒ + (2-)0. 215.(2010·汕头)先化简,再求值: x 2+ 4x + 4 ÷ ( x + 22 + 2x ),其中 x = .16.(2010·汕头)如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,Rt △ABC 的顶点均在个点上,在建立平面直角坐标系后,点 A 的坐标为(-6,1),点 B 的坐标为(-3, 1),点 C 的坐标为(-3,3).(1) 将 Rt △ABC 沿 x 轴正方向平移 5 个单位得到 Rt △A 1B 1C 1,试在图上画出的图形 Rt △A 1B 1C 1,并写出点 A 1 的坐标; (2) 将原来的 Rt △ABC 绕点 B 顺时针旋转 90°得到 Rt △A 2B 2C 2,试在图上画出 Rt △A 2B 2C 2 的图形.第 13 题图4 x y CAB1-1O 1 xBOCDF 5 132 13217.(2010·汕头)如图,PA 与⊙O 相切于 A 点,弦 AB ⊥OP ,垂足为 C ,OP 与⊙O 相交于 D 点,已知 OA =2,OP =4.(1) 求∠POA 的度数; (2) 计算弦 AB 的长.AP第 14 题图18.(2010·汕头)分别把带有指针的圆形转盘 A 、B 分成 4 等份、3 等份的扇形区域,并在每一小区域内标上数字(如图所示).欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1) 试用列表或画树状图的方法,求欢欢获胜的概率; (2) 请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.转盘 A转盘 B第 16 题图19.(2010·汕头)已知二次函数 y = -x 2 + bx + c 的图象如图所示,它与 x 轴的一个交点坐 标为(-1,0),与 y 轴的交点坐标为(0,3). (1) 求出 b ,c 的值,并写出此二次函数的解析式;(2) 根据图象,写出函数值 y 为正数时,自变量 x 的取值范围.AEDCB第 17 题图第 18 题图y 3-1 O xG20.(2010·汕头)如图,分别以 Rt △ABC 的直角边 AC 及斜边 AB 向外作等边△ACD 、等边 △ABE .已知∠BAC =30º,EF ⊥AB ,垂足为 F ,连结 DF . (1) 试说明 AC =EF ; (2) 求证:四边形 ADFE 是平行四边形.21.(2010·汕头)某学校组织 340 名师生进行长途考察活动,带有行李 170 件,计划租用甲、乙两种型号的汽车 10 辆.经了解,甲车每辆最多能载 40 人和 16 件行李,乙车每辆最多能载 30 人和 20 件行李.( 1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆 2000 元,乙车的租金为每辆 1800 元,问哪种可行方案使租车费用最省?五、解答题(三)(本大题 3 小题,每小题 12 分,共 36 分) 22.(2010·汕头)已知两个全等的直角三角形纸片 ABC 、DEF ,如图(1)放置,点 B 、D 重合,点 F 在 BC 上,AB 与 EF 交于点 G .∠C =∠EFB =90º,∠E =∠ABC =30º,AB =DE =4. (1) 求证:△EGB 是等腰三角形; (2) 若纸片 DEF 不动,问△ABC 绕点 F 逆时针旋转最小 度时,四边形 ACDE 成为以 ED 为底的梯形(如图(2).求此梯形的高.EEAAG B F DCFB C第 20 题图(1)23.(2010·汕头)阅读下列材料:第 20 题图(2)M 11×2 =2×3 =3×4 =1 (1×2×3-0×1×2), 3 1 (2×3×4-1×2×3), 3 1 (3×4×5-2×3×4),3由以上三个等式相加,可得 1×2+2×3+3×4=1 ×3×4×5 = 20.3读完以上材料,请你计算下列各题: (1) 1×2+2×3+3×4+···+10×11(写出过程); (2) 1×2+2×3+3×4+···+n ×(n+ 1) = ; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 =.24.(2010·汕头)如图(1),(2)所示,矩形 ABCD 的边长 AB =6,BC =4,点 F 在 DC 上, DF =2.动点 M 、N 分别从点 D 、B 同时出发,沿射线 DA 、线段 BA 向点 A 的方向运动(点 M 可运动到 DA 的延长线上),当动点 N 运动到点 A 时,M 、N 两点同时停止运动.连接 FM 、FN ,当 F 、N 、M 不在同一直线时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点 M 、N 的速度都是 1 个单位/秒,M 、N 运动的时间为 x 秒.试解答下列问题:(1) 说明△FMN ∽△QWP ;(2) 设 0≤x ≤4(即 M 从 D 到 A 运动的时间段).试问 x 为何值时,△PWQ 为直角三角形?当 x 在何范围时,△PQW 不为直角三角形?(3) 问当 x 为何值时,线段 MN 最短?求此时 MN 的值.D注意事项: PF 2019-2020 年C中考数学试题(word D 版,含答F 案) CW P W1. 本卷为试题卷,考生解题作答必须在答题卷(答题卡)上,答案书写在答题卷(答题卡)Q 相应位置上A ,在试题卷N 、草稿纸上B 作答无效; A NB M Q2. 考试结束后,请将试题卷和答题卷(答题卡)一并交回.一、选择题(本第大2题2 题共图8 (个1小)题,每小题只有一个正确选项,第每小22题题3图分(,2)满分 24 分)1. ( 2013 云南普洱,1,3 分)-2 的绝对值是()A.2B.±2C. D. 12 2【答案】A2. ( 2013 云南普洱,2,3 分)如左下图所示几何体的主视图是()【答案】D3. ( 2013 云南普洱,3,3 分)下列运算正确的是( )A. x + 2x = 3x 2B. x 6 ÷ x 3 = x 2C. ( x 2) 3= x 5D. (- 3)0 = 1【答案】D4. ( 2013 云南普洱,4,3 分)方程 x 2 - 2x = 0 的解为( )1A. x 1 =1, x 2 =2B. x 1 =0, x 2 =1C. x 1 =0, x 2 =2D. x 1 = 2, x 2 =2【答案】C5. ( 2013 云南普洱,5,3 分)某县一周的最高气温如下表:星期 星期一 星期二 星期三 星期四 星期五 星期六 星期天 最高气温(℃)32323430343229这个县本周每天的最高气温的众数和中位数分别是( )A.32,32B.32,34C.34,34D.30,32【答案】A6. ( 2013 云南普洱,6,3 分)矩形 ABCD 的对角线AC 、BD 相交于点 O ,∠AOD=120°,AC=8, 则△ABO 的周长为()A.16B.12C.24D.20【答案】B7. ( 2013 云南普洱,7,3 分)如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的度数是 ()A.40°B. 50°C. 60°D.100°【答案】Bb 8. ( 2013 云南普洱,8,3 分)若 ab <0,则正比例函数 y=ax 和反比例函数 y= x系中的大致图象可能是( )在同一坐标4【答案】B二、填空题(本大题共 6 个小题,每小题 3 分,满分 18 分)9. ( 2013 云南普洱,9,3 分)太阳的半径约为 696000 千米,这个数据用科学记数法表示为千米.【答案】6.96×10510. ( 2013 云南普洱,10,3 分)计算: ( 1)-1 - =.2【答案】011. ( 2013 云南普洱,11,3 分)函数 y=【答案】x ≠21x - 2的自变量 x 的取值范围是 .12. ( 2013 云南普洱,12,3 分)如图,AB ⊥CD ,垂足为点 B ,EF 平分∠ABD ,则∠CBF 的度数为.【答案】45°13. ( 2013 云南普洱,13,3 分)用一个圆心角为 150°,半径为 2cm 的扇形作一个圆锥的侧面, 则这个圆锥的底面圆的半径为 cm .5 【答案】61 3 57914. ( 2013 云南普洱,14,3 分)观察下列一组数: 4 , ,, 9 16,2536,…,它们是按一定规律排列的,那么这一组数的第 n 个数是.2n -1 【答案】(n +1)2三、解答题(本大题共 9 个小题,满分 58 分)15. ( 2013 云南普洱,15,5 分)先化简,再求值:2a +2÷a2+ 2a +1-a ,其中a=2013.a a2 a +1【答案】解:2a +2 ÷a2+ 2a +1 - a 2(a +1)= ⋅a 2-a=2a-a2a -a =a +1a=a +1a a2 a +1 a (a +1)2 a +1 a +1 a +1当a=2013,原式=20132013 +1=2013.2014x - 3 316. ( 2013 云南普洱,16,5 分)解方程:【答案】解:两边同时乘以(x-2),得x-3+x-2= -3,解得x=1.检验:当x=1 时,x-2=1-2= -1≠0,∴原方程的解为x =1.+1 =x - 2 2 -x17.( 2013 云南普洱,17,6 分)如图,方格纸中的每个小方格都是边长为1 个单位的小正方形,每个小正方形的顶点称为格点.△ABC 的顶点都在格点上,建立平面直角坐标系后,点A、B、C 的坐标分别为(1,1),(4,2),(2,3).(提示:一定要用2B 铅笔作图)(1)画出△ABC 向左平移4 个单位,再向上平移1 个单位后得到的△A1B1C1;(2)画出△ABC 向关于原点O 对称的△A2B2C2;(3)以点A、A1、A2为顶点的三角形的面积为.【答案】(1)、(2)答案如图所示:⎨⎩(3)如图所示,以点 A 、A 1、A 2 为顶点的三角形的面积为:3⨯ 4-1⨯ 2 ⨯ 3 - 1 ⨯ 2 ⨯ 2 - 1⨯1⨯ 4 =12-3-2-2=5.2 2 218. ( 2013 云南普洱,18,6 分)如图,已知点 B 、E 、C 、F 在同一条直线上,BE=CF ,AB ∥DE ,∠A= ∠D .求证:AB=DE.【答案】证明:∵BE=CF ,∴BC=EF . ∵AB ∥DE ,∴∠B=∠DEF . 在△ABC 与△DEF 中,⎧∠A = ∠D ⎪∠B = ∠DEF , ⎪BC = EF∴△ABC≌△DEF(AAS),∴AB=DE.19.( 2013 云南普洱,19,7 分)我市某中学为了了解本校学生对普洱茶知识的了解程度,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在本次抽样调查中,共抽取了名学生.(2)在扇形统计图中,“不了解”部分所对应的圆心角的度数为.(3)补全条形统计图. (提示:一定要用2B 铅笔作图)(4)若该校有1860 名学生,根据调查结果,请估算出对普洱茶知识“了解一点”的学生人数. 【答案】解:(1)80;(2)36°;(3)补全条形图如下:(4) 80 -16 -880⨯1860 =1302.答:对普洱茶知识“了解一点”的学生人数为1302.20.( 2013 云南普洱,20,6 分)如图,有A、B 两个可以自由转动的转盘,指针固定不动,转盘各被等分成三个扇形,并分别标上-1,2,3 和-4,-6,8 这6 个数字.同时转动两个转盘各一次(指针落在等分线上时重转),转盘自由停止后,A 转盘中指针指向的数字记为x,B 转盘中指针指向的数字记为y,点Q 的坐标记为Q(x,y).(1)用列表法或树状图表示(x,y)所有可能出现的结果;(2)求出点Q (x,y)落在第四象限的概率.【答案】(1)列表如下:画树状图如下:(2)由(1)中的表格或树状图可知:点Q 出现的所有可能结果有9 种,位于第四象限的结果有2 种,2∴点Q (x,y)落在第四象限的概率为.921.( 2013 云南普洱,21,6 分)据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C 到公路的距离CD 为100 米,检测路段的起点A 位于点C 的南偏西60°方向上,终点B 位于点C 的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A 处行驶到B 处的时间2 3为4 秒.问此车是否超过了该路段16 米/秒的限制速度?(参考数据:≈1.4,≈1.7)3 ⎩【答案】解:由题意得在 Rt △BCD 中,∵∠BDC=90°,∠BCD=45°,CD=100 米,∴BD=CD=100 米.在 Rt △ACD 中,∵∠ADC=90°,∠ACD=60°,CD=100 米,∴AD=CD ·tan ∠ACD=100 (米).∴AB=AD-BD=100 70 ∴此车的速度为 4-100≈70(米).= 17.5 (米/秒). ∵17.5>16,∴此车超过了该路段 16 米/秒的限制速度.22. ( 2013 云南普洱,22,7 分)在茶节期间,某茶商订购了甲种茶叶 90 吨,乙种茶叶 80 吨,准备用 A 、B 两种型号的货车共 20 辆运往外地.已知 A 型货车每辆运费为 0.4 万元,B 型货车每辆运费为 0.6 万元.(1) 设 A 型货车安排 x 辆,总运费为 y 万元,写出 y 与 x 的函数关系式;(2) 若一辆 A 型货车可装甲种茶叶 6 吨,乙种茶叶 2 吨;一辆 B 型货车可装甲种茶叶 3 吨,乙种茶叶 7 吨.按此要求安排 A 、B 两种型号货车一次性运完这批茶叶,共有哪几种运输方案?(3) 说明哪种方案运费最少?最少运费是多少万元?【答案】解:(1)y =0.4x+0.6(20-x )= -0.2x+12(2)由题意得⎧6x + 3(20 - x ) ≥ 90 ⎨2x + 7(20 - x ) ≥ 80 , 解得 10≤x ≤12.又∵x 为正整数,∴x=10,11,12,3∴10-x=10,9,8 .∴有以下三种运输方案:①A 型货车10 辆,B 型货车10 辆;②A 型货车11 辆,B 型货车9 辆;③A 型货车12 辆,B 型货车8 辆.(3)∵方案①运费:10×0.4+10×0.6=10(万元);方案②运费:11×0.4+9×0.6=9.8(万元);方案③运费:12×0.4+8×0.6=9.6(万元).∴方案③运费最少,最少运费为9.6 万元.23.( 2013 云南普洱,23,10 分)如图,在平面直角坐标系中,抛物线y =-1x2+bx +c 经2过A(-2,0),C(4,0)两点,和y 轴相交于点B,连接AB、BC. (1)求抛物线的解析式(关系式).(2)在第一象限外,是否存在点E,使得以BC 为直角边的△BCE 和Rt△AOB 相似?若存在,请简要说明如何找到符合条件的点E,然后直接写出点E 的坐标,并判断是否有满足条件的点E 在抛物线上;若不存在,请说明理由.(3)在直线BC 上方的抛物线上,找一点D,使S△BCD:S△ABC=1:4,并求出此时点D 的坐标.【答案】解:(1)∵抛物线y =-1x2+bx +c 经过A(-2,0),C(4,0)两点,2⎧-1 ⨯(-2)2 + b ⨯(-2) + c = 0 ⎪ 2 ⎧b = 1 ⎨ 1 ,解得 ⎨c = 4. ⎪- ⨯ 42 + b ⨯ 4 + c = 0 ⎩ ⎩⎪ 2∴抛物线的解析式为 y = - 1x 2 + x + 4 . 2(2) 在第一象限外存在点 E ,使得以 BC 为直角边的△BCE 和 Rt △AOB 相似.①当 BC 为斜边时,△BOC 即为所找的△BCE 是直角三角形,但是它与 Rt △AOB 不相似;②当 BC 为直角边时,若点 B 为直角顶点,则点 E 的坐标为(-8,-4),此时点 E 不在抛物线上;若点 B 为直角顶点,则点 E 的坐标为(-4,-8),此时点 E 在抛物线上.1(3) ∵S △ABC = 1 ⨯ 6 ⨯ 4 = 12 ,S △BCD :S △ABC =1:4, 2 1 ∴S △BCD = 4 S △ABC = ⨯12 = 3 . 4 如图所示,设在直线 BC 上方的抛物线上,找一点 D 的坐标为(x , - 1x 2 + x + 4 ),作 DE ⊥x 2轴于点 E ,则S △BCD =S 梯形 BOED +S △DCE -S △BOC= 1⨯(- 1 x 2 + x + 4 + 4) ⨯ x + 1 ⨯(4 - x ) ⨯(- 1 x 2 + x + 4) - 1 ⨯ 4 ⨯ 4 = 3 . 2 2 2 2 2∴即x2- 4x + 3 = 0 ,解得x1=1,x2=3.9 ∴点D 的坐标为(1,25)或(3,).2“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。