风力发电机变桨系统方案

合集下载

SL1500风电机组变桨系统 ppt课件

SL1500风电机组变桨系统  ppt课件

16
伺服电机
带位置反馈和电热调节器 相关参数:1.5MW 功率: 4.8kW 额定扭矩:23Nm 额定转速:2000rpm
ppt课件
17
制动器
当制动器供电时,叶片能够向两个方向运行; 当制动器断电时,叶片只能向顺桨的方向运动, 不能向工作位置运动。1.5MW变桨制动器都是单向 的,工作时,一直供电,双方向都能运动,只有 出现紧急情况才断电,限制一个方向运动。
变桨限ppt课位件撞块
24
当叶片变桨趋 于顺桨位置时,顺 桨接近撞块就会运 行到接近开关上方, 接近开关接受信号 后会传递给变桨系 统,提示叶片已经 处于顺桨位置。
ppt课变件 (顺)桨接近撞块
25
顺桨接近撞块和变桨限位撞块的基本维护
a.检查变桨接近开关的清洁度,以保证能够 正常接受信号。
b.检查易损件缓冲块,做到及时更换。 c.检查各撞块螺栓的紧固。
ppt课件
4
二、变桨系统工作示意图
变桨调节范围
风向
顺桨位置
极限工作位置
变桨驱动装置
ppt课件
变桨齿轮边缘
5
顺桨位置
停机
启动
变桨保护
满发
ppt课件
6
工作位置
1.5MW轮毂装置示意图
导流帽
轮毂
极限工作位置撞块
轮毂变 桨控制 柜
变桨限 位撞块
轮毂罩 分隔壁
极限工作位置 开关
变桨制动器
ppt课件
缓冲器 变桨接 近开关
ppt课件28Fra bibliotek1.5MW变桨调节范围
ppt课件
29
ppt课件
30
置撞块、接近开关、限位开关、缓冲器
ppt课件

变桨系统原理及维护方案

变桨系统原理及维护方案

1.5MW风力发电机组变桨系统原理及维护国电联合动力技术有限公司培训中心(内部资料严禁外泄)UP77/82 风电机组变桨控制及维护目录1、变桨系统控制原理2、变桨系统简介3、变桨系统故障及处理4、LUST与SSB变桨系统的异同5、变桨系统维护定桨失速风机与变桨变速风机之比较定桨失速型风电机组发电量随着风速的提高而增长,在额定风速下达到满发,但风速若再增加,机组出力反而下降很快,叶片呈现失速特性。

优点:机械结构简单,易于制造;控制原理简单,运行可靠性高。

缺点:额定风速高,风轮转换效率低;电能质量差,对电网影响大;叶片复杂,重量大,不适合制造大风机变桨变速型风电机组风机的每个叶片可跟随风速变化独立同步的变化桨距角,控制机组在任何转速下始终工作在最佳状态,额定风速得以有效降低,提高了低风速下机组的发电能力;当风速继续提高时,功率曲线能够维持恒定,有效地提高了风轮的转换效率。

优点:发电效率高,超出定桨机组10%以上;电能质量提高,电网兼容性好;高风速时停机并顺桨,降低载荷,保护机组安全;叶片相对简单,重量轻,利于制造大型兆瓦级风机缺点:变桨机械、电气和控制系统复杂,运行维护难度大。

变桨距双馈变速恒频风力发电机组成为当前国内兆瓦级风力发电机组的主流。

变桨系统组成部分简介变桨控制系统简介✓主控制柜✓轴柜✓蓄电池柜✓驱动电机✓减速齿轮箱✓变桨轴承✓限位开关✓编码器▪变桨主控柜变桨轴柜▪蓄电池柜▪电机编码器GM 400绝对值编码器共10根线,引入变桨控制柜,需按线号及颜色接入变桨控制柜端子排上。

▪限位开关变桨系统工作流程:●机组主控通过滑环传输的控制指令;●将变桨命令分配至三个轴柜;●轴柜通过各自独立整流装置同步变换直流来驱动电机;●通过减速齿轮箱传递扭矩至变桨齿轮带动每个叶片旋转至精准的角度;●将该叶片角度值反馈至机组主控系统变桨系统控制原理风机不同运行状态下的变桨控制1、静止——起动状态2、起动——加速状态3、加速——风机并网状态3.1、低于额定功率下发电运行3.2 达到额定功率后维持满发状态运行4、运行——停机状态1、静止——起动状态下的变桨调节桨距角调节至50°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至3 r/s(低速轴)2、起动——加速状态下的变桨调节桨距角在(50 °,0°)范围内调节迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;目标:叶轮转速升至10 r/s(低速轴)3、加速——并网发电状态下的变桨调节3.1 低于额定功率下的变桨调节桨距角在维持0°迎风;开桨速度不能超过2 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;变频系统通过转矩控制达到最大风能利用系数, 目标:叶轮转速升至17.5 r/s(低速轴)3.2 达到额定功率后维持满发状态运行桨距角在(90 °,0°)范围内调节;开桨速度不能超过5 ° /s;顺桨速度不能超过5° /s;变桨加速度不能超过20 ° /s²;通过变桨控制使机组保持额定输出功率不变,目标:叶轮转速保持17.5 r/s(低速轴)4、运行——停机状态4.1 正常停机叶片正常顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为5° /s;叶轮空转,机械刹车不动作;4.2 快速停机叶片快速顺桨至89°;变桨主控柜的顺桨命令通过轴柜执行;顺桨速度控制为7° /s;叶轮空转,机械刹车不动作;4.3 紧急停机叶片紧急顺桨至91°或96 °限位开关;紧急顺桨命令通过蓄电池柜执行;顺桨速度不受控制;叶轮转速低于5 r/s后,液压机械刹车抱闸,将叶轮转速降至为零;独立变桨:三个叶片通过各自的轴柜和蓄电池柜实现开桨和顺桨的同步调节;如果某一个驱动器发生故障,另两个驱动器依然可以安全地使风机顺桨并安全停机。

变桨安装调试系统及其操作方法

变桨安装调试系统及其操作方法

下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!变桨安装调试系统是一种用于风力发电机变桨系统安装和调试的工具。

风力发电机的变桨系统是控制叶片角度以适应风力变化的重要组成部分。

变桨系统设计范文

变桨系统设计范文

变桨系统设计范文变桨系统是风力发电机组中的重要组成部分,主要用于调整风机叶片的角度,以便在不同的风速下最大限度地捕捉风能并转化为机械能。

本文将基于风力发电机组的工作原理、变桨系统的组成部分、工作原理和常见的设计参数等方面,对变桨系统进行详细阐述。

一、工作原理:风力发电机组由风机、变桨系统、发电机和控制系统等组成。

当风速增加时,风机的旋转速度也会增加,这会引起超速现象,对风机和发电机造成损害。

为了防止超速,就需要通过变桨系统来调整风机叶片的角度,以控制风机的旋转速度。

变桨系统的工作原理是利用控制器对风机叶片的角度进行调整。

当风速低于额定风速时,控制器会将风机叶片调整为最佳角度,以利用最小风速来产生最大的风能;当风速超过额定风速时,控制器会自动将风机叶片调整为零角度,以保护风机和发电机。

二、组成部分:变桨系统主要由叶片、叶片安装结构、执行机构、传感器和控制器等组成。

1.叶片:叶片是最重要的组成部分,常见的叶片材料有玻璃钢、碳纤维等,具有轻量化、高强度和耐腐蚀等特点。

2.叶片安装结构:用于将叶片连接到轴上,并提供角度调整的功能。

常见的叶片安装结构包括铰链机构和驱动机构。

3.执行机构:用于提供叶片角度调整的能力。

常见的执行机构有液压系统和电动机系统。

液压系统由液压泵、液压缸、液压油管等组成,通过控制液压油的流量和压力来实现叶片角度的调整;电动机系统由电动机、减速器、转动机构等组成,通过电动机的旋转来实现叶片角度的调整。

4.传感器:用于监测风速、叶片角度和负荷等参数。

常见的传感器有风速传感器、角度传感器和负荷传感器。

5.控制器:根据传感器的反馈信号,对叶片角度进行控制和调整。

常见的控制器有微机控制器和可编程逻辑控制器。

三、设计参数:设计一个合理的变桨系统需要考虑以下参数:1.风速范围:考虑所处地区的风能资源,确定变桨系统能够适应的风速范围。

通常将设计风速和额定风速作为参数进行设计。

2.负荷和效率:考虑发电机的额定负荷和发电效率,确定叶片角度的调整范围和步长。

风力发电机组变桨控制系统设计

风力发电机组变桨控制系统设计

风力发电机组变桨控制系统设计摘要:随着“低碳”这个名词走进人们的生活,大家对可再生能源的关注度日益增大。

随着煤、石油的大量开采,能源问题引起了世界各个国家的警惕,可再生洁净能源尤其风能开始受到人们的重视,风力发电得到了飞速发展,风力发电机在结构和控制都在逐渐完善,变桨距风力发电机组占着主导地位并将慢慢取代定桨距风力发电机组"。

本文主要研究了风电机组变桨距机构。

关键词:风力发电;变桨控制;定量控制1、绪论1.1研究背景,目的及意义1.1.1研究背景大规模利用风能等可再生能源已成为世界各国应对气候环境变化的重要议题。

从十六世纪人类利用风能抽水碾磨到二十世纪利用风能发电,从单桨叶风力发电机组到多桨叶风力发电机组,从垂直轴风力机到1957年第一台200kW水平轴并网风力发电机组的诞生,人类开发利用风能的技术取得了长足的进步。

目前,风力发电技术相对成熟,具备了大规模商业开发的条件,因此受到各国的普遍重视,已经逐步发展成为成熟的产业l。

截止到2010年底,世界各国风力发电机组装机总容量已超过196,630MW,是2000年的12倍。

十年来,全球风力发电的年平均增长率一直保持在29%左右,2010年仅新增装机容量就达37,580MW。

在风能资源开发技术方面,使国内风力发电机组的设计、制造和技术管理运营达到国际水平。

为此,国家积极出台多项可再生能源法,为发展风力发电等新能源提供了政策上的保障。

当前,发展风电的趋势已势不可挡,风电产业正在迎接一个新的发展时期。

目前风力发电技术的主要发展方向是,研究如何提高风力发电机组单机的装机容量、机组的发电效率和系统的可靠运行等几方面。

随着机组单机容量的不断增大,对风力发电系统变桨、变速调节技术,因其在不同风况时能够获得更高的风能转换效率,可以更好的稳定系统能量输出,且摆脱并网要求对机组的转速限制,因而逐渐占据了风力发电的主导地位。

1.1.2研究目的和意义为了在发展中既能提高经济效益,又能降低单位千瓦成本,风力发电机组单机容量正向着大型化的方向改进。

风力发电机组变桨系统的优化设计

风力发电机组变桨系统的优化设计

风力发电机组变桨系统的优化设计一、引言风力发电是一种清洁、可再生的能源,受到越来越多国家的重视和广泛应用。

在风力发电站中,风力发电机组的变桨系统是其中一个重要部分,它负责调整叶片的角度来适应不同的风速和风向,以获取最大的风能转换效率。

本文将针对风力发电机组的变桨系统进行优化设计,以实现更高的发电效率。

二、变桨系统的工作原理风力发电机组的顶部装有三个或更多的叶片,在风的作用下转动。

为了在不同的风速和风向下都能高效转换风能,变桨系统起到重要作用。

变桨系统通常由电机、控制器和叶片构成,通过控制器感知风速、方向的变化,然后通过电机调整叶片的角度来获得最佳的风能转换效率。

三、优化设计方案1. 变桨系统感知风速和风向的精准度为了获得最佳的发电效率,变桨系统需要精确感知风速和风向的变化。

目前常用的风速传感器包括热线式、超声波式和激光式等。

优化设计中,可以选择合适的传感器,提高其精准度和可靠性,以确保系统能够准确感知风速和风向的变化。

2. 变桨系统叶片的材料选择和结构设计叶片的材料和结构对风能转换效率有着重要影响。

在优化设计中,可以选择轻量化材料和优化的叶片结构,以减小叶片的质量和空气阻力,提高风能的转换效率。

3. 变桨系统的控制策略变桨系统的控制策略直接影响到发电效率。

一种常见的控制策略是根据风速和风向的变化来调整叶片的角度,使其始终能够处于最佳的风能转换状态。

在优化设计中,可以改进控制器的算法和响应速度,提高系统的控制精度和响应性能。

4. 变桨系统的安全性设计在风力发电站中,变桨系统需要能够在恶劣的天气条件下工作,并保持良好的可靠性和安全性。

在优化设计中,需要考虑系统的抗风性能和抗冰性能,确保系统能够正常工作并不会受到外部环境的影响。

5. 变桨系统的维护和保养优化设计还需要考虑到变桨系统的维护和保养成本。

设计合理的结构和材料,以降低维护和保养的频率和成本,并提高系统的可靠性和寿命。

四、优化设计的效益通过对风力发电机组的变桨系统进行优化设计,可以实现以下几方面的效益:1. 提高发电效率优化设计可以使变桨系统更加灵敏和准确地感知风速和风向的变化,并通过调整叶片的角度来获得最佳的风能转换效率,从而提高发电效率。

变桨系统原理及维护

变桨系统原理及维护

变桨系统原理及维护一、变桨系统原理变桨系统是风能发电机组的关键部件之一,主要负责控制风轮桨叶的角度,以实现最佳风能转换效率。

其主要原理如下:1.控制原理:变桨系统通过感知风速、桨叶角度和发电机输出功率等参数,并根据实时监测的风速变化情况来控制桨叶的角度调整,以使风轮桨叶能够始终迎向风速的最佳方向。

2.传动原理:变桨系统通过主轴和传动电机等组件完成角度调整。

其中,主轴连接了风轮和齿轮箱,通过传动电机以及相应的齿轮传动机构控制风轮桨叶的角度调整。

3.控制模式:一般来说,变桨系统可以采用定角控制模式和变角控制模式。

定角控制模式适用于大部分工况,根据实时风速的大小选择恰当的桨叶角度。

而变角控制模式则可以在遇到特定工况时,根据不同的发电机输出功率等参数来调整桨叶角度。

4.安全保护机制:变桨系统还需要具备一定的安全保护机制,以应对突发情况。

比如,当变桨控制系统出现故障时,可以自动切断桨叶的调整功能,确保风轮系统的稳定运行。

二、变桨系统维护为确保变桨系统的正常运行和延长其使用寿命,需要进行定期的维护和保养。

下面是一些常见的维护措施:1.日常巡检:定期对变桨系统进行巡视,检查主轴、传动电机以及传动装置的工作情况。

特别要关注是否存在松动、磨损或损坏等问题,并及时进行维修或更换。

2.清洁保养:通过对变桨系统的清洁保养,去除积灰、杂物等异物,防止其对系统的正常运行产生影响。

3.润滑维护:应定期对润滑系统进行检查,确保润滑油的质量符合要求,并及时更换润滑油,以保持传动装置的正常运转。

4.故障排除:一旦发现变桨系统出现异常情况,应及时排除故障。

对于无法解决的故障,应请专业维修人员进行处理。

5.数据分析:通过对变桨系统监测数据的分析,可以及时发现潜在的问题和异常,对系统进行精确的调整和维护。

综上所述,变桨系统的原理是通过感知风速和发电机输出功率等参数,控制风轮桨叶角度的调整,以实现最佳风能转换效率。

为保证变桨系统的正常运行和延长使用寿命,需要定期进行维护和保养,包括日常巡检、清洁保养、润滑维护、故障排除和数据分析等措施。

变桨距风力发电机组控制系统方案

变桨距风力发电机组控制系统方案

研究的主要内容
1. 风力机组的特点及运行过程 2.变桨距控制系统 3.控制系统的执行机构 4.变桨距风力发电机组的模型 5. 对风力发电技术的展望
控制系统的执行机构 本系统采用的是电动变桨距机构,电动变桨距机 构可采用伺服电机对每个桨叶进行单独调节。伺 服电机通过主动齿轮与桨叶轮毂内齿圈相啮合, 直接对桨叶的节距角进行控制。位移传感器采集 桨叶节距角的变化从而构成闭环控制。在系统出 现故障或控制电源断电时,电机由蓄电池等储能 装置供电将桨叶调为顺桨位置。
变桨距风力发电机组控制系统的 研究
付冬梅
研究的主要内容
1. 风力机组的特点及运行过程 2.变桨距控制系统 3.控制系统的执行机构 4. 变桨距风力发电机组的模型 5.对风力发电技术的展望
变桨距风力发电机组的特点
1.机组的特点
1
改善机组的受力, 优化功率输出 (与发电机转差 率调节配合) .
2
比定桨距风力机 额定风速低、效 率高;且不存在 高于额定风速的 功率下降问题 .
变桨距控制系统
3.变桨距控制
额定功率 风速
+
-
功率 控制器A
+ -
+ -
变桨 执行器 桨距角
变距 机构
风轮 系统
传动 系统
发电机
滤波器
风速信号 转速
同步转速
-
P
功率给定
+
S
+
-
功率 控制器B
转子电流 执行器
发电功率
b、功率控制器A并网后执行变桨到最大攻角,低于额定功率(额定风速)时控制 器输出饱和,攻角最大;高于额定风速后进入恒功率控制;引入风速前馈通道, 超过额定风速后,当风速变化时起到快速补偿作用。 c、功率控制器B低于额定风速调节转差率“实现”最佳叶尖速比调节,即风速增 加转差率增大;高于额定风速时配合功率控制器 A维持功率恒定。原理是风速出 现波动时,由于变桨调节的滞后使驱动功率发生波动,调节转差率(转子电流) 使机组转速变化而维持功率恒定,利用风轮储存和释放能量维持输入与输出功率 的平衡。

风力发电机的变桨控制系统设计与优化

风力发电机的变桨控制系统设计与优化

风力发电机的变桨控制系统设计与优化一、引言随着对清洁能源需求的增加,风力发电作为一种可再生的能源方式受到了广泛的关注和利用。

而风力发电机作为风能转化为电能的核心装置,其性能和效率的优化对于提高风力发电的利用率至关重要。

其中,变桨控制系统作为风力发电机的控制核心,对风力发电机的性能优化具有重要的意义。

二、风力发电机的工作原理风力发电机通过捕捉风能并将其转化为机械能,再通过发电机将机械能转化为电能。

为了捕捉更多的风能,风力发电机通常采用可变桨叶的设计,通过改变桨叶的角度来适应不同风速条件。

在变桨控制系统的作用下,风力发电机可以在不同的风速下实现最佳的功率输出。

三、风力发电机变桨控制系统的功能风力发电机变桨控制系统主要具有以下几个功能:1. 风向判断:通过传感器实时感知风向,并及时调整桨叶角度。

这样可以使得风力发电机始终面向风,最大程度地捕捉风能。

2. 风速检测:通过传感器实时感知风速,并根据不同的风速条件调整桨叶角度。

低风速下,将桨叶角度设定为较小值,以保证风力发电机的起动性能;高风速下,将桨叶角度设定为较大值,以避免超速运行。

3. 桨叶角度调整:根据风速检测结果,自动调整桨叶角度。

通过控制桨叶角度,使得风力发电机在不同的风速下能够实现最佳的功率输出。

4. 系统安全保护:当风力发电机出现异常情况时,变桨控制系统能够及时发出警报并采取相应的保护措施,以避免设备损坏或人身伤害。

四、风力发电机变桨控制系统设计原则在设计风力发电机变桨控制系统时,应考虑以下几个原则:1. 稳定性:变桨控制系统应具有良好的稳定性,能够在不同的工况下保持正常运行,并能够抵抗外界干扰。

2. 灵活性:变桨控制系统应具有良好的灵活性,能够根据不同的风速条件及时调整桨叶角度,以实现最佳的功率输出。

3. 可靠性:变桨控制系统应具有良好的可靠性,能够在长时间运行中保持正常工作,并能够自动检测和修复故障。

4. 高效性:变桨控制系统应具有高效的控制算法,能够以最快的响应速度进行桨叶角度调整,并尽量减少能耗。

风力发电机变桨系统方案

风力发电机变桨系统方案

风力发电机变桨系统摘要:变浆系统是风力发电机的重要组成部分,本文围绕风力发电机变浆系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。

关键词:变桨系统;构成;作用;保护种类;故障分析1 综述变桨系统的所有部件都安装在轮毂上。

风机正常运行时所有部件都随轮毂以一定的速度旋转。

变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。

风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。

变桨驱动系统通过一个小齿轮与变桨轴承齿啮合联动。

风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。

任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。

变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。

此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。

由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。

每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承齿旁,它通过一个小齿轮与变桨轴承齿啮合联动记录变桨角度。

风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。

2 变浆系统的作用根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。

风力发电变桨控制系统设计研究

风力发电变桨控制系统设计研究

风力发电变桨控制系统设计研究风力发电是一种利用风能将风能转化为电能的技术。

在风力发电过程中,变桨控制系统是一个非常重要的组成部分,它的设计和研究对于风力发电的效率和可靠性至关重要。

变桨控制系统的主要功能是根据风力大小和风向变化情况来控制风力发电机的桨叶角度,以获得最佳的能量转化效率。

变桨控制系统需要根据风力的实时测量数据来进行桨叶的角度调整,以确保风力发电机在不同的风速条件下能够始终工作在最佳状态。

在变桨控制系统的设计过程中,需要考虑以下几个方面:1.传感器选择和位置安装:为了准确测量风力的大小和方向,需要选择合适的传感器,并将其安装在合适的位置。

传感器的选择和位置安装是变桨控制系统设计的重要环节,它对于系统的准确性和可靠性有着至关重要的影响。

2.数据采集和处理:变桨控制系统需要实时采集和处理风力传感器的数据,并根据这些数据来调整桨叶的角度。

数据采集和处理过程需要高速、高精度的硬件和软件支持,以确保数据的实时性和准确性。

3.控制算法设计:控制算法的设计是变桨控制系统设计的核心环节。

控制算法需要根据实时的风力数据来决定桨叶的调整角度,以实现最佳的能量转化效率。

控制算法设计需要考虑风力的大小、风向的变化以及系统的动态响应能力等因素,以确保系统能够稳定工作并且具有较好的抗干扰能力。

4.系统建模和仿真:在变桨控制系统设计的过程中,建立系统的数学模型是非常重要的。

系统建模可以帮助我们理解系统的工作原理和动态特性,并根据模型进行仿真和优化设计。

系统建模和仿真可以有效减少实际试验的成本和风险,并帮助我们更好地了解系统的性能和可靠性。

总之,风力发电变桨控制系统的设计和研究对于提高风力发电的效率和可靠性具有重要的意义。

在设计过程中,需要考虑传感器选择和位置安装、数据采集和处理、控制算法设计以及系统建模和仿真等方面的问题。

通过合理的设计和研究,可以提高风力发电的效率和可靠性,进一步推动可再生能源的发展。

风力发电机组变桨系统分析

风力发电机组变桨系统分析

目录摘要: (1)一、变桨系统论述 (1)(一)变桨距机构 (1)(二)电动变桨距系统 (2)1. 机械部分 (3)2. 气动制动 (4)二、变桨系统 (4)(一)变桨系统的作用 (4)1. 功率调节作用 (4)2. 气动刹车作用 (4)(二)变桨系统在轮毂内的拓扑结构与接线图 (6)三、变桨传感部分 (8)(一)旋转编码器 (8)(二)接近开关 (9)四、变桨距角的调节 (10)(一)变桨距部分 (10)(二)伺服驱动部分 (11)总结 (13)参考文献: (13)致谢 (14)风力发电机组変桨系统分析摘要:风能是一种清洁而安全的能源,在自然界中可以不断生成并有规律得到补充,所以风能资源的特点十分明显,其开发利用的潜力巨大。

本文对大型的兆瓦级风力发电机变桨系统做简单的介绍。

变速恒频技术于20世纪90年代开始兴起,其中较为成功的有丹麦VESTAS的V39/V42-600KW机组和美国的Zand的Z-40-600KW机组。

变速恒频风力发电机组风轮转速随着风速的变化而变化,可以更有效地利用风能,并且通过变速恒频技术可得到恒定频率的电能。

变速恒频机组的显著优点已得到风力机生产厂和研究机构的普遍承认,将成为未来的主流机型。

但变速恒频风力机组仅通过电机自身调节要达到减小风速波动冲击的目的是很困难的,因为自然界中风速瞬息万变,特别是在额定风速以上工况,风力机有可能受到很大的静态或动态冲击。

但是变桨风机不会产生此类情况,变桨距是指大型风力发电机安装在轮毂上的叶片借助控制技术和动力系统改变桨距角的大小从而改变叶片气动特性,使桨叶和整机的受力状况大为改善。

近年来,电动变桨距系统越来越多的应用到风力发电机组当中,直驱型风力发电机组为变桨距调节型风机,叶片在运行期间,它会在风速变化的时候绕其径向轴转动。

因此,在整个风速范围内可能具有几乎最佳的桨距角和较低的切入风速,在高风速下,改变桨距角以减少功角,从而减小了在叶片上的气动力。

海上风力发电的变桨系统设计与优化

海上风力发电的变桨系统设计与优化

海上风力发电的变桨系统设计与优化引言:在当今全球能源危机日益严峻的背景下,清洁能源的开发和利用变得尤为重要。

作为可再生能源的重要组成部分,风能被广泛认可为一种绿色、可持续的能源来源。

而海上风力发电作为风能开发的重要领域,具有更大的潜力和更可靠的风能资源。

本文将着重讨论海上风力发电的变桨系统设计和优化。

一、海上风力发电简介海上风力发电是将风能转化为电能的一种方法,在海洋上利用风能资源进行发电。

相比陆地风电,海上风力发电具有更稳定的风能资源和更大的潜力。

目前,海上风力发电已经在部分地区得到广泛应用,但还需要进一步改进和优化系统设计,以提高发电效率和可靠性。

二、变桨系统的作用变桨系统是海上风力发电站的关键组成部分之一,主要用于控制风机桨叶的角度,以调整风机受风面积。

通过变桨系统的控制,可以使风机在不同风速下保持在最佳转速范围内,从而实现最大的发电效率。

三、变桨系统的设计要求1. 高可靠性和稳定性:海上风力发电站的运行环境复杂恶劣,系统设计需要考虑强风和海浪的影响,确保系统的可靠性和稳定性,减少故障率和维护成本。

2. 高效转动机构:提高转动机构的效率,减少能量损失。

合理选择传动装置和轴承,降低能量消耗和摩擦损失。

3. 精确的控制系统:变桨系统需具备灵敏的控制系统,及时响应各种风速变化,实现桨叶角度的精确调整,以保持最佳发电效率。

4. 结构轻量化:海上风力发电站的变桨系统需要在满足强度要求的前提下尽可能减轻重量,以减少海上安装和维护的困难。

四、变桨系统的优化方向1. 材料选择与结构设计:通过合理的材料选择和结构设计,可以实现变桨系统的轻量化和强度提升。

例如,使用高强度、耐腐蚀的材料,结构设计中采用可靠的连接方式和抗风压设计等。

2. 传动机构优化:传动机构的设计对变桨系统的效率和可靠性至关重要。

合理选择传动装置、减小传动摩擦和能量损失,以提高转动效率和延长传动装置寿命。

3. 控制系统优化:控制系统的优化主要包括控制算法的改进和系统稳定性的提升。

风电机组变桨系统介绍

风电机组变桨系统介绍
(2)总装厂已经对此问题进行 整改,并升级工艺文件,后续 从总装出货的轮毂及变桨柜, 此电缆已经全部按照新的 工艺文件进行安装、固定。
二、常见问题、解决方案及工作成果
3、变桨驱动器OK信号丢失
如东32#,16#机组,通过对两台机组的故障文件分析发现,导致 叶片不能完成收桨的故障原因相同——变桨驱动器检测到电机加速 度异常。 变桨驱动器通过采集编码器的增量通道信号来检测变桨电机的速 度。 通过复位将叶片收回的事实表明编码器没有损坏,造成变桨驱动 器检测到电机加速度异常的原因可能是增量编码器通道受干扰导 致的。
二、常见问题、解决方案及工作成果
5、变桨柜内干燥剂问题 问题描述: 变桨柜内存在袋装颗粒干燥剂,机组吊装时这样的干燥剂在
运行的过程极易破损,颗粒撒落到变桨柜内,可能导致变桨系统 Q1断路器卡死、手动/自动旋钮失灵、柜内循环风扇被卡死等情况。
二、常见问题、解决方案及工作成果
5、变桨柜内干燥剂问题
解决方案及工作成果 : (1)机组吊装时,要求必须取出变桨柜内的干燥剂,工程技术部 完善吊装工艺文件。 (2)变桨柜内干燥剂使用固态干燥剂,取代颗粒干燥剂,由总装 工艺人员配合对此干燥剂进行更换。
一、变桨调试中需要注意的地方
5、叶片变桨时,人员需要知道叶片转动的方向,方向不能变反, 还要注意接近开关和限位开关的位置,防止器件被撞坏。 6、调试限位开关时,既要保证限位开关触发,也要保证限位开关 冲过挡块斜坡后触头不被撞坏,限位开关的高度要合适。 7、变桨调试时,如果发现柜体内部有杂质或出现凝露、水珠,此 时禁止对变桨柜进行上电调试操作,必须清理杂质或烘干柜体。 8、超级电容电压大于35V时,运行驱动器复位。 9、目前2.5变桨柜配变桨电机为8.6KW。当标准变桨柜配置6KW 变桨电机系统,则驱动器刷入的参数版本为:20130408 ending version。

风力发电机组变桨系统设计与控制

风力发电机组变桨系统设计与控制

风力发电机组变桨系统设计与控制近年来,随着全球能源危机的爆发以及对环境保护的重视,风力发电作为一种可再生的清洁能源正日益受到广泛关注。

风力发电机组的变桨系统是其中一个重要的组成部分,它通过调整桨叶的角度来控制风机的转速和输出功率,以实现最佳风能利用率。

本文将详细介绍风力发电机组变桨系统的设计原理和控制策略。

首先,风力发电机组的变桨系统设计需要考虑多个因素。

其中包括风速、风向、风场条件以及机组的工作状况等。

在设计变桨系统时,需要确定合适的桨叶数目、桨叶形状、桨叶材料以及桨叶安装方式等。

同时,还需要考虑叶片的结构强度以及在高风速情况下的耐用性。

这些设计要素将直接影响到风机的性能和寿命。

其次,风力发电机组的变桨系统需要采用合适的控制策略来实现最佳风能利用效率。

一般来说,风机的控制策略可以分为两种类型:定常控制和非定常控制。

定常控制是基于恒定的控制策略,根据风场条件和机组负荷,设定固定的桨叶角度来实现最佳功率输出。

非定常控制则是基于实时测量的风速和机组运行状态,动态调整桨叶角度来实现最佳风能利用效率。

根据不同的需求和场地条件,可以选择合适的控制策略。

在风力发电机组变桨系统的实际控制中,通常采用闭环控制的方式。

这意味着需要传感器来实时测量风速、机组运行状态以及环境参数,并将这些数据反馈给控制系统。

控制系统会根据这些反馈数据,不断调整桨叶角度,以实现最佳风能利用效率。

同时,还需要考虑到系统的安全性和鲁棒性,以应对突发情况和异常工况。

除了设计和控制策略,风力发电机组变桨系统还需要考虑到系统的维护和保养。

定期的维护和保养可以延长系统的寿命并提高系统的性能。

在维护和保养过程中,需要检查桨叶的磨损情况、润滑系统的工作状态以及传感器的准确性等。

同时,还需要定期进行系统的校准和参数调整,以保证系统的稳定性和准确性。

尽管风力发电机组变桨系统的设计和控制存在一定的挑战和难点,但通过合理的设计和有效的控制策略,可以实现风能资源的最佳利用。

风电变桨系统项目实施方案

风电变桨系统项目实施方案

第一章概况一、项目投资单位(一)公司名称xxx科技发展公司(二)公司简介企业“以客户为中心”的服务理念,基于特征对用户群进行划分,从而有针对性地打造满足不同用户群多样化用能需求的客户服务体系。

海上风电具有风资源丰富,发电小时数高,靠近负荷中心便于消纳等特点。

我国海上风电技术可开发量较大,5-25米水深、50米高度可开发容量约为2亿千瓦;5-50米水深、70米高度可开发量约为5亿千瓦。

根据《风电发展“十三五”规划》,到2020年,我国海上风电开工建设规模目标为1,000万千瓦(10,000MW),累计并网容量目标为500万千瓦(5,000MW)以上。

其中,江苏、浙江、福建、广东等省的海上风电建设规模均要达到百万千瓦以上。

目前,国内风电整机供应商已开始投入海上风电机组的研发与运行,力图攻克技术难题,降低成本,相关政府部门海上风电项目上网电价的政策优惠及相关管理办法也已相继出台,进一步明确了海上风电发展方向。

海上风电将成为未来我国风电行业的发展新趋势和新的行业增长点。

风电成为我国新增电力装机的重要组成部分。

“十二五”期间,我国风电新增装机容量连续五年领跑全球,累计新增9800万千瓦,占同期全国新增装机总量的18%,在电源结构中的比重逐年提高。

中东部和南方地区的风电开发建设取得积极成效。

到2015年底,全国风电并网装机达到1.29亿千瓦,年发电量1863亿千瓦时,占全国总发电量的3.3%,比2010年提高2.1个百分点。

风电已成为我国继煤电、水电之后的第三大电源。

电力行业是关系国计民生的基础性支柱产业,与国民经济发展息息相关。

当前我国经济持续稳定发展,工业化进程稳步推进,对电力的需求必然日益增长。

因此,我国中长期电力需求形势乐观,电力行业将持续保持较高的景气程度水平。

上一年度,xxx投资公司实现营业收入8999.92万元,同比增长12.45%(996.63万元)。

其中,主营业业务风电变桨系统生产及销售收入为8439.05万元,占营业总收入的93.77%。

风力发电机组变桨系统设计原理解析

风力发电机组变桨系统设计原理解析

风力发电机组变桨系统设计原理解析风力发电机组是一种利用风能转化为电能的装置,其中变桨系统是其重要组成部分。

本文将从设计原理的角度对风力发电机组变桨系统进行深入解析。

一、风力发电机组概述风力发电机组是利用风能转动叶片,通过传动系统驱动发电机发电的设备。

其工作原理是当风速达到一定程度时,叶片受到风的作用而转动,进而带动转子旋转,驱动发电机发电。

而变桨系统则在风力发电机组运行过程中起着至关重要的作用。

二、变桨系统功能风力发电机组在运行过程中,受到风速的影响较大。

为了更好地利用风能,确保发电机组的稳定性和安全性,变桨系统被设计为一个关键的控制系统。

其主要功能包括:1. 调节叶片角度,使风力发电机组在不同风速下的转速和输出功率保持在合适的范围内;2. 在风速发生突变或超出限定范围时,自动调整叶片角度,保障风力发电机组的安全运行;3. 提高风力发电机组的整体效率,最大限度地利用风能资源。

三、变桨系统设计原理1. 变桨系统传动机构变桨系统的传动机构通常由变桨电机、减速器和转动叶片的机械结构组成。

变桨电机通过减速器驱动叶片转动,控制叶片的角度。

减速器的设计是为了将电机高速输出的转矩通过减速装置转化为叶片所需要的低速高转矩输出。

2. 变桨系统控制原理变桨系统的控制原理主要包括两种方式:定时控制和传感器反馈控制。

定时控制是通过风力发电机组的控制系统按照预设的时间对叶片进行角度调整;传感器反馈控制则是通过传感器实时监测风速和叶片位置,根据监测数据对叶片的角度进行调整。

3. 变桨系统安全保护为了保证风力发电机组的运行安全,变桨系统还配备有多种安全保护装置。

例如,当风力发电机组运行中出现极端状况时,比如风速过大或传感器失效等,变桨系统会自动切断电源,避免事故的发生。

四、变桨系统的发展趋势随着风力发电技术的不断发展,变桨系统也在不断创新和完善。

未来的风力发电机组变桨系统将更加智能化、自动化和高效化。

例如,采用先进的控制算法和传感技术,实现对叶片角度的精准控制,提高风力发电机组的发电效率。

变桨系统设计范文

变桨系统设计范文

变桨系统设计范文变桨系统是风力发电机组的重要组成部分,它能够根据风速的变化自动调整桨叶角度,以优化风能的转化效率。

本文将介绍一个基于传感器和控制器的变桨系统设计方案。

1.引言变桨系统是风力发电机组的核心部件之一,通过调整桨叶角度,使其能够在不同风速下获取最大的风能,实现风力发电的最优效果。

传统的变桨系统多采用机械传动方式,但这种方式需要频繁的维护和调整,并且效率较低。

为了提高风力发电的效率和可靠性,现代变桨系统大多采用传感器和控制器的方式,实现自动化调整和控制。

2.传感器的选择和布置变桨系统主要依赖于风速传感器和桨叶位置传感器来获取相关的参数。

首先,风速传感器应该能够精确地测量风速,并具有较高的可靠性和稳定性。

在选择传感器时,需要考虑到其动态响应能力和测量范围,以确保在不同风速下都能准确测量。

其次,桨叶位置传感器应该能够准确地捕捉到桨叶的位置,并及时反馈给控制器。

传感器的布置应该能够覆盖到所有的桨叶,以确保整个系统的稳定性和可靠性。

3.控制器的设计控制器是变桨系统的核心,它通过接收传感器反馈的参数,计算出最优的桨叶角度,并控制桨叶的调整。

控制器的设计需要考虑到以下几个方面。

首先,需要选择合适的控制算法,以使得系统能够在不同的风速下快速而稳定地响应。

常用的控制算法有PID控制和模糊控制。

其次,需要选择合适的控制器硬件,以保证控制器具有足够的计算能力和稳定性。

最后,控制器还应该具备故障诊断和容错能力,能够及时检测和处理系统故障,保证风力发电机组的正常运行。

4.电动机和传动系统的设计通过控制器的信号,变桨系统将调整桨叶角度。

为了实现桨叶角度的调整,需要选择合适的电动机和传动系统。

电动机应该具有足够的转矩和速度调节范围,以满足不同风速下的调整需求。

传动系统应该具有足够的刚性和精度,以确保桨叶角度的准确调整。

5.故障检测和维护为了确保变桨系统的稳定性和可靠性,需要设计相应的故障检测和维护功能。

系统应该能够检测到传感器和控制器的故障,并进行相应的报警和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电机变桨系统摘要:变浆系统是风力发电机的重要组成部分,本文围绕风力发电机变浆系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。

关键词:变桨系统;构成;作用;保护种类;故障分析1 综述变桨系统的所有部件都安装在轮毂上。

风机正常运行时所有部件都随轮毂以一定的速度旋转。

变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。

风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。

变桨驱动系统通过一个小齿轮与变桨轴承齿啮合联动。

风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。

任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。

变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。

此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。

由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。

每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承齿旁,它通过一个小齿轮与变桨轴承齿啮合联动记录变桨角度。

风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。

2 变浆系统的作用根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。

3 主要部件组成4变桨系统各部件的连接框图图 1:各部件间连接框图变桨中央控制箱执行轮毂的轴控箱和位于机舱的机舱控制柜之间的连接工作。

变桨中央控制箱与机舱控制柜的连接通过滑环实现。

通过滑环机舱控制柜向变桨中央控制柜提供电能和控制信号。

另外风机控制系统和变桨控制器之间用于数据交换的 Profibus-DP 的连接也通过这个滑环实现。

变桨控制器位于变桨中央控制箱,用于控制叶片的位置。

另外,三个电池箱的电池组的充电过程由安装在变桨中央控制箱的中央充电单元控制。

4.1 中控箱图 2:中控箱4.2 轴控箱在变桨系统有三个轴控箱,每个叶片分配一个轴控箱。

箱的变流器控制变桨电机速度和方向。

图 3:轴控箱4.3 电池箱和轴控箱一样,每个叶片分配一个电池箱。

在供电故障或 EFC 信号(紧急顺桨控制信号)复位的情况下,电池供电控制每个叶片转动到顺桨位置。

图 4:电池箱4.4 变桨电机变桨电机是直流电机,正常情况下电机受轴控箱变流器控制转动,紧急顺桨时电池供电电机动作。

图 5:变桨电机4.5 冗余编码器图 6:冗余编码器4.6 限位开关每个叶片对应两个限位开关:91度限位开关和96度限位开关。

96度限位开关作为冗余开关使用。

图 7:限位开关4.7 各部件间连接电缆变桨中央控制箱、轴控箱、电池箱、变桨电机、冗余编码器和限位开关之间通过电缆进行连接。

为了防止连接电缆时产生混乱,电缆有各自的编号。

5 变桨系统的保护种类位置反馈故障保护:为了验证冗余编码器的可利用性及测量精度,将每个叶片配置的两个编码器采集到的桨距角信号进行实时比较,冗余编码器完好的条件是两者之间角度偏差小于2°;所有叶片在91°与95°位置各安装一个限位开关,在0°方向均不安装限位开关,叶片当前桨距角是否小于0°,由两个传感器测量结果经过换算确定。

除系统掉电外,当下列任何一种故障情况发生时,所有轴柜的硬件系统应保证三个叶片以10°/s的速度向90°方向顺桨,与风向平行,风机停止转动:任意轴柜的从站与PLC主站之间的通讯总线出现故障,由轮毂急停、塔基急停、机舱急停、震动检测、主轴超速、偏航限位开关串联组成的风机安全链以及与安全链串联的两个叶轮锁定信号断开(24V DC信号);无论任何一个编码器出现故障,还是同一叶片的两个编码器测量结果偏差超过规定的门限值;任何叶片桨距角在变桨过程中两两偏差超过2°;构成安全链、释放回路中的硬件系统出现故障;任意系统急停指令。

变桨调节模式时,预防桨距角超过限位开关的措施:91°限位开关;到达限位开关时,变桨电机刹车抱闸;轴柜逆变器的释放信号及变桨速度命令无效,同样会使变桨电机静止。

变桨电机刹车抱闸的条件:轴柜变桨调节方式处于自动模式下,桨距角超过91°限位开关位置;轴柜上控制开关断开;电网掉电且后备电电源输出电压低于其最低允许工作电压;控制电路器件损坏。

图8:变浆机构机械连接电机变桨距控制机构可对每个桨叶采用一个伺服电机进行单独调节,如图8所示。

伺服电机通过主动齿轮与桨叶轮毅齿圈相啮合,直接对桨叶的节距角进行控制。

位移传感器采集桨叶节距角的变化与电机形成闭环PID负反馈控制。

在系统出现故障,控制电源断电时,桨叶控制电机由蓄电池供电,将桨叶调节为顺桨位置,实现叶轮停转。

6 变桨系统故障分析6.1变桨控制系统常见故障原因及处理方法6.1.1变桨角度有差异叶片1变桨角度有差异叶片2变桨角度有差异叶片3变桨角度有差异原因:变桨电机上的旋转编码器(A编码器)得到的叶片角度将与叶片角度计数器(B编码器)得到的叶片角度作对比,两者不能相差太大,相差太大将报错。

处理方法:1.由于B编码器是机械凸轮结构,与叶片的变桨齿轮啮合,精度不高且会不断磨损,在有大晃动时有可能产生较大偏差,因此先复位,排除故障的偶然因素;2.如果反复报这个故障,进轮毂检查A、B编码器,检查的步骤是先看编码器接线与插头,若插头松动,拧紧后可以手动变桨观察编码器数值的变化是否一致,若有数值不变或无规律变化,检查线是否有断线的情况。

编码器接线机械强度相对低,在轮毂旋转时,在离心力的作用下,有可能与插针松脱,或者线芯在半断半合的状态,这时虽然可复位,但转速一高,松动达到一定程度信号就失去了,因此可用手摇动线和插头,若发现在晃动中显示数值在跳变,可拔下插头用万用表测通断,有不通的和时通时断的,要处理,可重做插针或接线,如不好处理直接更换新线。

排除这两点说明编码器本体可能损坏,更换即可。

由于B编码器的凸轮结构脆弱,多次发生凸轮打碎,因此对凸轮也应做检查。

6.1.2叶片没有到达限位开关动作设定值原因:叶片设定在91°触发限位开关,若触发时角度与91°有一定偏差会报此故障。

处理方法:检查叶片实际位置。

限位开关长时间运行后会松动,导致撞限位时的角度偏大,此时需要一人进入叶片,一人在中控器上微调叶片角度,观察到达限位的角度,然后参考这个角度将限位开关位置重新调整至刚好能触发时,在中控器上将角度清回91°。

限位开关是由螺栓拧紧固定在轮毂上,调整时需要2把小活扳手或者8mm叉扳。

6.1.3某个桨叶91°或95°触发有时候是误触发,复位即可,如果复位不了,进入轮毂检查,有垃圾卡主限位开关,造成限位开关提前触发,或者91度限位开关接线或者本身损坏失效,导致95°限位开关触发。

叶片1限位开关动作叶片2限位开关动作叶片3限位开关动作原因:叶片到达91°触发限位开关,但复位时叶片无法动作或脱离限位开关。

处理方法:首先手动变桨将桨叶脱离后尝试复位,若叶片没有动作,有可能的原因有:①机舱柜的手动变桨信号无法传给中控器;可在机舱柜中将141端子和140端子下方进线短接后手动变桨②检查轴控柜开关是否有可能因过流跳开,若有合上开关后将桨叶调至90°即可复位③轴控箱控制桨叶变将的6K1接触器损坏,检查如损坏更换,同时检查其他电器元件是否有损坏。

6.1.4 变桨电机温度高变桨电机1温度高变桨电机2温度高变桨电机3温度高变桨电机1电流超过最大值变桨电机2电流超过最大值变桨电机3电流超过最大值原因:温度过高多数由于线圈发热引起,有可能是电机部短路或外载负荷太大所致,而过流也引起温度升高。

处理方法:先检查可能引起故障的外部原因:变桨齿轮箱卡瑟、变桨齿轮夹有异物;再检查因电气回路导致的原因,常见的是变桨电机的电器刹车没有打开,可检查电气刹车回路有无断线、接触器有无卡瑟等。

排除了外部故障再检查电机部是否绝缘老化或被破坏导致短路。

6.1.5变浆控制通讯故障原因:轮毂控制器与主控器之间的通讯中断,在轮毂中控柜中控器无故障的前提下,主要故障围是信号线,从机舱柜到滑环,由滑环进入轮毂这一回路出现干扰、断线、航空插头损坏、滑环接触不良、通讯模块损坏等。

处理方法:用万用表测量中控器进线端电压为230v左右,出线端电压为24v左右,说明中控器无故障,继续检查,将机舱柜侧轮毂通讯线拔出,红白线、绿白线,将红白线接地,轮毂侧万用表一支表笔接地,如有电阻说明导通,无断路,有断路启用备用线,若故障依然存在,继续检查滑环,我场风机绝大多数变桨通讯故障都由滑环引起。

齿轮箱漏油严重时造成滑环进油,油附着在滑环与插针之间形成油膜,起绝缘作用,导致变桨通讯信号时断时续,冬季油变粘着,变桨通讯故障更为常见。

一般清洗滑环后故障可消除,但此方法治标不治本,从根源上解决的方法是解决齿轮箱漏油问题。

滑环造成的变桨通讯还有可能有插针损坏、固定不稳等原因引起,若滑环没有问题,得将轮毂端接线脱开与滑环端进线进行校线,校线的目的是检查线路有无接错、短接、破皮、接地等现象。

滑环座要随主轴一起旋转,里面的线容易与滑环座摩擦导致破皮接地,也能引起变桨故障。

6.1.6变桨错误原因:变桨控制器部发出的故障,变桨控制器OK信号中断,可能是变桨控制器故障,或者信号输出有问题。

处理方法:此故障一般与其他变桨故障一起发生,当中控器故障无法控制变桨时,PITCH CONTROLLER OK信号为0,可进入轮毂检查中控器是否损坏,一般中控器故障,会导致无法手动变桨,若可以手动变桨,则检查信号输出的线路是否有虚接、断线等,前面提到的滑环问题也能引起此故障。

6.1.7变桨失效原因:当风轮转动时,机舱柜控制器要根据转速调整变桨位置使风轮按定值转动,若此传输错误或延迟300ms不能给变桨控制器传达动作指令,则为了避免超速会报错停机。

处理方法:机舱柜控制器的信号无法传给变桨控制器主要由信号故障引起,影响这个信号的主要是信号线和滑环,检查信号端子有无电压,有电压则控制器将变桨信号发出,继续查机舱柜到滑环部分,若无故障继续检查滑环,再检查滑环到轮毂,分段检查逐步排查故障。

相关文档
最新文档