计算理论导引习题答案

合集下载

计算理论导引习题答案

计算理论导引习题答案

什么是时间复杂度?请举例说 明。
时间复杂度是评价算法执行时 间快慢的一个指标,通常用大O 表示法来表示。例如,对于一 个简单的顺序查找算法,其时 间复杂度为O(n),表示随着问 题规模n的增加,算法的执行时 间线性增长。
计算模型习题答案详解
习题1
解释图灵机的基本原理和工作过程。
答案
图灵机是一种理论上的计算模型,由一条无限长的纸带和一个读写头组成。读写头可以读取、写入和移动纸带上 的符号,根据当前状态和读取的符号来决定下一步的动作和状态转移。图灵机的工作过程可以模拟任何计算机程 序的执行过程。
RAM模型的扩展与优化
包括引入并行计算、分布式计算等概念,以 提高RAM模型的计算能力和效率。
其他计算模型
量子计算模型
利用量子力学原理进行计算的模型,具有在某些特定 问题上比传统计算机更高的计算效率。
生物计算模型
模拟生物体内信息处理过程的计算模型,如神经网络、 基因算法等。
光计算模型
利用光学原理进行计算的模型,具有高速并行处理和 低能耗等优点。
形式语言与自动机习题答案详解
习题1
解释什么是形式语言,并给出其定义和性质 。
答案
形式语言是பைடு நூலகம்于描述计算机程序的语法和语 义的一种数学工具。它由一组符号和一组规 则组成,可以表示各种不同类型的数据结构 和算法。形式语言具有确定性、封闭性和可 计算性等性质,这些性质使得我们可以对计
算机程序进行精确的描述和分析。
Python语言基础 掌握Python语言的基本语法、数 据类型、控制结构、函数等,以 及常用的Python库和框架。
其他编程语言 了解其他常见的编程语言,如C#、 JavaScript、Go等,以及它们的 特点和应用场景。

计算理论习题解答

计算理论习题解答

计算理论习题解答练习1.1 图给出两台DFA M 1和M 2的状态图. 回答下述有关问题.a. M 1的起始状态是q 1b. M 1的接受状态集是{q 2}c. M 2的起始状态是q 1d. M 2的接受状态集是{q 1,q 4}e. 对输入aabb,M 1经过的状态序列是q 1,q 2,q 3,q 1,q 1f. M 1接受字符串aabb 吗?否g. M 2接受字符串ε吗?是1.2 给出练习2.1中画出的机器M 1和M 2的形式描述.M 1=(Q 1,Σ,δ1,q 1,F 1) 其中 1) Q 1={q 1,q 2,q 3,}; 2) Σ={a,b}; 3为:415) F 1={q 2}M 2=(Q 2,Σ,δ2,q 2,F 2) 其中 1) Q 2={q 1,q 2,q 3,q 4}; 2) Σ={a,b}; 3)δ为:32是起始状态 4) F 2={q 1,q 4}1.3 DFA M 的形式描述为 ( {q 1,q 2,q 3,q 4,q 5},{u,d},δ,q 3,{q 3}),其中δ在表2-3中给出。

试画出此机器的状态图。

d1.6 画出识别下述语言的DFA 的状态图。

a){w | w 从1开始以0结束}b){w | w 至少有3个1}c) {w | w 含有子串0101}d) {w | w 的长度不小于3,且第三个符号为0}e) {w | w 从0开始且为奇长度,或从1开始且为偶长度}f) {w | w 不含子串110}0,1g) {w | w 的长度不超过5}h){w | w 是除11和111以外的任何字符}i){w | w 的奇位置均为1}j) {w | w 至少含有2个0,且至多含有1个1} k) {ε,0}l) {w | w 含有偶数个0,或恰好两个1}m) 空集 n) 除空串外的所有字符串1.7 给出识别下述语言的NFA ,且要求符合规定的状态数。

0,10,11a. {w | w以00结束},三个状态b. 语言{w | w含有子串0101,即对某个x和y,w=x0101y},5个状态.c. 语言{w | w含有偶数个0或恰好两个1},6个状态。

计算理论导引习题答案[第2版]CHAP5new

计算理论导引习题答案[第2版]CHAP5new

5.1 证明EQ CFG 是不可判定的。

解:只须证明ALL CFG ≤m EQ CFG 即可。

构造CFG G 1,使L(G 1)=∑*。

设计从ALL CFG 到EQ CFG 的归约函数如下: F=“对于输入<G >,其中G 是CFG :1)输出<G ,G 1>。

”若<G >ALL CFG ,则<G ,G 1>EQ CFG 。

若<G >ALL CFG ,则<G , G 1>EQ CFG 。

F 将ALL CFG 归约到EQ CFG 即ALL CFG ≤m EQ CFG∵ALL CFG 是不可判定的,∴EQ CFG 是不可判定的。

5.2证明EQ CFG 是补图灵可识别的。

证明:注意到A CFG ={<G,w>|G 是能派生串w 的CFG}是可判定的。

构造如下TM : F=“输入<G ,H>,其中G ,H 是CFG ,1) 对于字符串S 1, S 2,,重复如下步骤。

2) 检测S i 是否可以由G 和H 派生。

3) 若G 和H 中有一个能派生w ,而另一个不能,则接受。

”F 识别EQ CFG 的补。

5.3 略。

5.4 如果A m B 且B 是正则语言,这是否蕴涵着A 也是正则语言?为什么? 解:否。

例如:对非正则语言A={0n 1n |n 0}和正则语言B={0},可以构造一个可计算函数f 使得:f(w)=⎩⎨⎧≠=n n nn 10w 1,10w 0, 于是w A f(w)B,故A m B 。

5.5 证明A TM 不可映射规约到E TM 。

证明:反证法假设A TM m E TM , 则有TM m TM E A ≤。

而A TM 的补不是图灵可识别的,从而可知E TM 的补也不是图灵可识别的。

下面构造一个识别E TM 的补的图灵机S :S=“输入<M>,M 是TM,1) 对i=1,2,…重复下一步。

2) 对S 1,S 2,…,S i 模拟M 运行i 步,若有接受,则接受。

计算理论习题答案CHAP2new

计算理论习题答案CHAP2new

计算理论习题答案CHAP2new2.2 a. 利⽤语⾔A={a m b n c n | m,n ≥0}和A={a n b n c m | m,n ≥0}以及例3.20,证明上下⽂⽆关语⾔在交的运算下不封闭。

b. 利⽤(a)和DeMorgan 律(定理1.10),证明上下⽂⽆关语⾔在补运算下不封闭。

证明:a.先说明A,B 均为上下⽂⽆关⽂法,对A 构造CFG C 1S →aS|T|ε T →bTc|ε对B,构造CFG C 2S →Sc|R|ε R →aRb由此知 A,B 均为上下⽂⽆关语⾔。

但是由例3.20, A ∩B={a nb nc n|n ≥0}不是上下⽂⽆关语⾔,所以上下⽂⽆关语⾔在交的运算下不封闭。

b.⽤反证法。

假设CFL 在补运算下封闭,则对于(a)中上下⽂⽆关语⾔A,B ,A ,B也为CFL ,且CFL 对并运算封闭,所以B A ?也为CFL ,进⽽知道BA ?为CFL ,由DeMorgan 定律B A ?=A ∩B ,由此A ∩B 是CFL,这与(a)的结论⽭盾,所以CFL 对补运算不封闭。

2.4和2.5 给出产⽣下述语⾔的上下⽂⽆关⽂法和PDA ,其中字母表∑={0,1}。

a. {w | w ⾄少含有3个1}S →A1A1A1A A →0A|1A|ε0, ε→εb. {w | w 以相同的符号开始和结束}S →0A0|1A1 A →0A|1A|εc. {w | w 的长度为奇数}S →0A|1A A →0B|1B|ε B →0A|1Ad. {w | w 的长度为奇数且正中间的符号为0}S →0S0|1S1|0S1|1S0|0e. {w | w 中1⽐0多}S →A1A0,ε→ε 0,ε→ε 1,ε→ε 0,ε→ε 0,ε→0 0,0→εA →0A1|1A0|1A|AA|εf. {w | w=w R }S →0S0|1S1|1|0g. 空集S →S2.6 给出产⽣下述语⾔的上下⽂⽆关⽂法:a .字母表{a,b}上a 的个数是b 的个数的两倍的所有字符串组成的集合。

计算理论复习课2习题---答案

计算理论复习课2习题---答案

第三章 上下文无关语言与下推自动机a. {w | w 至少含有3个1} S →A1A1A1A A →0A|1A|εb. {w | w 以相同的符号开始和结束}S →0A0|1A1 A →0A|1A|εc. {w | w 的长度为奇数}0, ε→ε0,ε→ε 0,ε→ε1,ε→ε0,ε→εS →0A|1A A →0B|1B|ε B →0A|1Ad.{w | w 的长度为奇数且正中间的符号为0} S →0S0|1S1|0S1|1S0|0e.{w | wS →A1AA →0A1|1A0|1A|AA|εf.{w | w=w R }S →0S0|1S1|1|0g.空集 S →S3.6 给出产生下述语言的上下文无关文法: a . 字母表{a,b}上a 的个数是b 的个数的两倍的所有字符串组成的集合。

S →bSaSaS|aSbSaS|aSaSbS|εb .语言{a n b n |n ≥0}的补集。

见问题3.25中的CFG: S →aSb|bY|Ta T →aT|bT|εc .{w#x | w, x ∈{0,1}*且w R 是x 的子串}。

S →UV0,ε→0,0→0,ε→1,0→0,1→0,ε→0,0→U→0U0|1U1|WW→W1|W0|#V→0V|1V|εd.{x1#x2#⋯#x k|k≥1, 每一个x i∈{a,b}* , 且存在i和j使得x i=x j R}。

S→UVWU→A|εA→aA|bA|#A|#V→aVa|bVb|#B|#B→aB|bB|#B|#W→B|ε3.14解:添加新起始变元S0, 去掉B→εS0→A S0→AA→BAB|B|εA→BAB|AB|BA|B|εB→00|εB→00去掉A→ε, 去掉A→BS0→A S0→AA→BAB|AB|BA|B|BB A→BAB|AB|BA|00|BBB→00 B→00去掉S0→A, 添加新变元S0→BAB|AB|BA|00|BB S0→VB|AB|BA|UU|BBA→BAB|AB|BA|00|BB A→VB|AB|BA|UU|BBB→00 B→UUV→BAU→03.15 证明上下文无关语言类在并,连接和星号三种正则运算下封闭---答案。

计算方法引论课后答案

计算方法引论课后答案

计算方法引论课后答案第一章误差1.什么是模型误差,什么是方法误差?例如,将地球近似看为一个标准球体,利用公式 $A=4\pi r$ 计算其表面积,这个近似看为球体的过程产生的误差即为模型误差。

在计算过程中,要用到 $\pi$,我们利用无穷乘积公式计算 $\pi$ 的值:pi=2\cdot\frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\f rac{4}{5}\cdot\frac{6}{5}\cdot\frac{6}{7}\cdot\frac{8}{7}\cdot\ frac{8}{9}\cdot\cdots我们取前9项的乘积作为 $\pi$ 的近似值,得$\pi\approx3.xxxxxxxx5$。

这个去掉 $\pi$ 的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也称为截断误差。

2.按照四舍五入的原则,将下列各数舍成五位有效数字:816.956,76.000,.322,501.235,.182,130.015,236.23.解:816.96,76.000,.501.24,.130.02,236.23.3.下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字?81.897,0.008,136.320,050.180.解:五位,三位,六位,四位。

4.若 $1/4$ 用 0.25 表示,问有多少位有效数字?解:两位。

5.若 $a=1.1062$,$b=0.947$,是经过舍入后得到的近似值,问:$a+b$,$a\times b$ 各有几位有效数字?已知 $da<\frac{1}{2}\cdot10^{-4}$,$db<\frac{1}{2}\cdot10^{-3}$,又 $a+b=0.\times10$。

begin{aligned}d(a+b)&=da+db\leq da+db=\frac{1}{2}\cdot10^{-4}+\frac{1}{2}\cdot10^{-3}=0.55\times10^{-3}<\frac{1}{2}\cdot10^{-2}end{aligned}所以 $a+b$ 有三位有效数字;因为 $a\timesb=0.xxxxxxxx\times10$。

计算理论导引习题答案

计算理论导引习题答案

当j≠0,uxz=0p1p-i#0p-j1p不在该语言中 当j=0,uvvxyyz中左侧的长度大于右侧,也不 再该语言中。
因此该语言不是上下文无关的
2){t1#t2##tk|k2,ti{a,b}*,且存在ij使得 ti=tj}。 令S=apbp#apbp,p为泵长度
三、完成下述操作
1.给出识别语言(01001010)*的NFA;
0
0
0,1
1 q0
1 q1
1 q2
q3
3){w|w含有子串0101};
1
0,1
0 q0
1 q1
0
q2
q3
1
q4
0
0
2. 写出下述语言的正则表达式。 1){w|w不含子串110}; (0∪10)*1* 2){w|w的长度不超过5}; ε∪∑∪∑∑∪∑∑∑∪∑∑∑∑∪∑∑∑∑∑ 3){w|w是除11和111外的任意串}; ε∪0∑*∪10 ∑*∪110 ∑*∪ 111 ∑ ∑*
ε ε
0
ε
1
q2
q3
q4
q5
ε
ε
q0
q1
ε
q6
0
ε q7
0
q8
q9
ε
1
q10
q11
ε
q12 0
q13 ε
1 q14
ε q15
0 q16
q17
ε
2.下面是一个识别语言M2={0i1j2k |i,j,k≥0 且i=j
或 i=k} 的PDA M2的状态图,请将此PDA转换为
CFG。
1,0->ε
2,ε->ε
3. 设集合T={0,1},用T中元素构造序列,最多 可构造( D )条序列。 A、1 B、 2 C、3 D、无穷 4. DFA和NFA的区别在于( A )。 A、两者的转移函数的值域不同 B、NFA能够识别的语言DFA不一定能够识别 C、DFA能够识别的语言NFA不一定能够识别 D、NFA比DFA多拥有一个栈

计算机科学导论第2版答案

计算机科学导论第2版答案

第1章概述习题(答案)一.选择题1. D2. B3. CD4. C5. ABC6. A7. B8. B9. ABCD 10. ABCDE二.简答题1.什么是计算机系统?计算机系统是一种能够按照事先存储的程序,自动、高速地对数据进行输入、处理、输出和存储的系统,由计算机硬件系统和计算机软件系统两大部分组成。

2.请解释冯•诺依曼所提出的“存储程序”概念。

把程序和数据都以二进制的形式统一存放在存储器中,由机器自动执行。

不同的程序解决不同的问题,实现了计算机通用计算的功能。

3.控制器的主要功能是什么?控制器基本功能就是从内存中取出指令和执行指令,即控制器按程序计数器指出的指令地址从内存中取出该指令进行译码,然后根据该指令功能向有关部件发出控制命令,执行该指令。

另外,控制器在工作过程中,还要接受各部件反馈回来的信息。

4.简述CPU和主机的概念。

通常把运算器、控制器做在一个大规模集成电路块上称为中央处理器,又称CPU(Central Processing Unit)。

通常把内存储器、运算器和控制器合称为计算机主机,也可以说主机是由CPU与内存储器组成的,而主机以外的装置称为外部设备,外部设备包括输入/输出设备,外存储器等。

5.什么是计算机软件?计算机软件的分类有哪些?软件是指用来指挥计算机运行的各种程序的总和以及开发、使用和维护这些程序所需的技术文档。

计算机软件系统分为系统软件和应用软件。

计算机系统软件由操作系统、语言处理系统、以及各种软件工具等组成,指挥、控制计算机硬件系统按照预定的程序运行、工作,从而达到预定的目标。

应用软件是用户利用计算机软、硬件资源为解决各类应用问题而编写的软件,包括用户程序及其说明性文件资料。

6.计算机有哪些主要的特点?(1)运算速度快、精度高计算机的字长越长,其精度越高,现在世界上最快的计算机每秒可以运算几十万亿次以上。

一般计算机可以有十几位甚至几十位(二进制)有效数字,计算精度可由千分之几到百万分之几,是任何计算工具所望尘莫及的。

自动机理论、语言和计算导论课后习题答案(中文版)

自动机理论、语言和计算导论课后习题答案(中文版)

Solutions for Section 2.2Exercise 2.2.1(a)States correspond to the eight combinations of switch positions, and also must indicate whether the previous roll came out at D, i.e., whether the previous input was accepted. Let 0 represent a position to the left (as in the diagram) and 1 a position to the right. Each state can be represented by a sequence of three 0's or 1's, representing the directions of the three switches, in order from left to right. We follow these three bits by either a indicating it is an accepting state or r, indicating rejection. Of the 16 possible states, it turns out that only 13 are accessible from the initial state, 000r. Here is the transition table:杠杆可能出现8种情况,影响着最终状态。

并且也要说明,前面一个大理石球是否从D滚出,也就是说,前一个输入是否被接受。

令0 代表向左方的状态(如图表),1 代表向右方。

这三个杠杆的每一个状态都可以用三个数(0或1)组成的序列表示。

这个序列后面跟着字母a或者r。

计算理论课后习题答案

计算理论课后习题答案

x(x∈∑*∧ ((δ(p,x)∈F∧δ(q,x)F)∨(δ(p,x)F∧δ(q,x)∈F)))
x(x∈∑*,使得δ(p,x)与δ(q,x)恰有一个在F中 )
如果p̷q, 称p与q是可区分的。判断p̷q是比较容易 的。
4.判断可区分状态对的算法
引理2-1 设M=(K,∑,δ,q0,F)是DFA,则状态对(p,q)是可区分 的(即p̷q),当且仅当在下面算法中(p,q)格写上×。 begin 1.for p∈F,q∈K-F, do 给(p,q)格写×;
δ’([q1,q2,…,qi],a)=[p1,p2,…,pj] 当且仅当
δ({q1,q2,…,qi},a)={p1,p2,…,pj}
q0’=[p] , K’和F’以后确定。
δ0 1
δ’:
p {p,q} {p}
0
1
q {r } {r}
[p] [p,q
[p]
[p,q] ][p,q,r]
[p,r
[p,r] [p,q,s]
计算理论课后习题答案
本课件仅供大家学习学习 学习完毕请自觉删除
谢谢 本课件仅供大家学习学习
学习完毕请自觉删除 谢谢
2.设计下列各文法G,使得它们分别是: (1)G是个上下文无关文法,且
L(G)={aibj ck ∣ i,j,k≥1}。 (2)G是个正规文法,且
L(G)={aibj ck ∣ i,j,k≥1}。 (3)G是个上下文无关文法,且
L(G)={ wwR∣w∈{0,1}+ }。其中wR是w的逆转, 例 如w=001, 则wR=100. 解:设计一个文法G要验证: 凡是符合要求的句子G都能产生出来; G产生出来的所有句子都是符合要求的。 (1) G=({S,A,B,C},{a,b,c},P,S) P: S→ABC , A→aA|a, B→bB|b,C→cC|c

计导习题答案1

计导习题答案1

计算机科学与导论-思想与方法习题答案习题一1.1简述计算学科的定义及其根本问题。

答:计算学科是对描述和变换信息的算法过程进行的系统研究,包括理论、分析、设计、效率、实现和应用等。

学科的根本问题是:什么能被(有效地)自动进行。

1.2简述计算学科专业名称的演变。

答:计算学科专业名称主要包括:计算机科学、信息系统、软件工程、计算机工程、和信息技术。

1962年,美国普渡大学开设了最早的“计算机科学”学位课程。

当时,在美国的一些高校还开设有与计算相关的两给学位课程:电子工程和信息系统。

而在我国,早在1956年,就开设了“计算装置与仪器”专业。

20世纪70年代,在美国,“计算机工程”(也被称为“计算机系统工程”)从电子工程学科中脱离出来,成为一个独立的二级学科,并被人们所接受。

随着软件规模及其复杂度的增加,制造可靠软件的困难越来越大,出现了所谓的软件危机;针对这种情况,1968年秋,北大西洋公约组织(NA TO)在当时的联邦德国召开了一次会议,提出了软件工程的概念。

20世纪70年代未、80年代初,在一些计算机科学专业的学位课程中,引入了软件工程的内容,然而,这些内容,只能让学生了解软件工程,却不能使学生明白如何成为一名软件工程师。

于是,人们开始构建单独的软件工程学位课程。

20世纪80年代,英国和澳大利亚,最早开设了“软件工程”这样的学位课程。

20世纪90年代,计算机已成为公司各级人员使用的基本工具,而计算机网络则成为公司信息的中枢,人们相信它有助于提高生产力,而原有的学术学位课程并不能满足社会的需求,于是,在美国等西方国家,不少大学相继开设了“信息系统”、“信息技术”等学位课程。

至此,需要指出的是,即使在美国,5个分支学科(专业)同时在一所大学开设的情况也是不多的,更多的高校仍然是以传统的“计算机科学”为主;在我国,则是以“计算机科学与技术”为主。

1.3简述计算学科主要专业培养的不同。

答:对计算学科五个主要专业的培养侧重点简述如下。

计算理论导引测验0602(部分答案)

计算理论导引测验0602(部分答案)

一、单项选择题(每空2分,本题共20分)1.集合A DFA={<B,w>|B是DFA,w是串,B接受w}可用来(A)。

A、描述“DFA B 是否接受输入w”这一问题B、解决“P=NP?”问题C、计算语言A DFA时间复杂度D、计算语言A DFA的空间复杂度2.一个集合在条件( D )下是可数的。

A、该集合为无限集合B、组成该集合的元素是实数C、该集合的规模大于自然数集合的规模D、该集合是一个有限的集合3.对于一个语言( D )的说法是正确的。

A、它是一个序列B、它是一个简单串或复杂串C、在集合并运算下它是封闭的D、不是所有的语言都能被图灵机识别4.如果A≤m B且B是可判定的,则(A)。

A、A也是可判定的B、A不一定是可判定C、A是不可判定的D、A可判定否与B无关5.若一个图灵机M时间复杂度为2n3+6n+7。

则其渐进时间复杂度为( C )。

A、O(2n3+6n+7)B、O(2n3+6n)C、O(n3)D、o(n3)6. 时间复杂性类TIME(t(n))是( C )。

A、时间复杂度为t(n)的图灵机集合B、时间复杂度为O(t(n))的图灵机集合C、由O(t(n))时间的图灵机判定的所有语言的集合D、由o(t(n))时间的图灵机判定的所有语言的集合7.当(A)时,P=NP。

A、语言B是NP完全的且B∈PB、计算速度快到一定峰值时C、计算机内存达到无限D、计算机性价比很高时8. 如果A是NP-完全的,则( C )。

A、一定存在一个B∈NP且B不能多项式时间规约到AB、A不一定属于NPC、A一定属于NPD、若A∈P,则P≠NP9. 对于SAT问题( C )的说法是对的。

A、SAT问题不能用线性空间算法解决B、SAT∉PSPACEC、SAT∈PSPACED、SAT∉NP10.如果B是PSPACE完全的,则(C)。

A、B∉NPSPACEB、B∈PC、B∈PSPACED、B一定是NP完全的二、综合应用题(10分+10分+10分+10分+10分,本题共50分)1.将一个DFA与一个正则表达式是否等价问题用一个语言来描述,然后,证明该语言是1可判定的。

计算理论导引习题答案[第2版]CHAP8new

计算理论导引习题答案[第2版]CHAP8new

8.1 证明对于任意函数f:N N,其中f(n)n,不论用单带TM模型还是用两带只读输入TM模型,所定义的空间复杂性类SPACE(f(n))总是相同的。

证明:为区别,记单带TM模型在f(n)空间内能判定的语言类为SPACE1(f(n)), 而记双带只读输入TM模型在f(n)空间内能判定的语言类为SPACE2(f(n))。

该题要证明的是SPACE1(f(n))=SPACE2(f(n))。

首先SPACE1(f(n))SPACE2(f(n))。

这是因为设A SPACE1(f(n)),且设M设在f(n)空间内判定A的单带TM,如下构造双带TM只读输入TM N。

N=“对于输入串w:1)将w复制到工作带上。

2)在工作带上模拟M,直到停机。

3)若M接受,则接受;否则,拒绝。

”N在f(n)空间内运行,L(N)=L(M)=A,所以A SPACE2(f(n))。

首先SPACE2(f(n))SPACE1(f(n))。

设A SPACE2(f(n)),且N 为在f(n)空间内判定A的双带只读输入TM。

按照用单带TM模拟多带TM的常规方式构造M:M=“对于输入串w:1)初始化工作带为#w1’w2…w n#’.其中以’标记N的两个读写头。

2)模拟N运行直到停机。

每一步模拟,要两次扫描带子。

第一次扫描确定读写头下符号,第二次扫描根据N的转移函数完成改写和移动读写头的工作。

3)若N接受,则接受;否则,拒绝。

”L(M)=L(N)=A。

由于f(n)n,M的运行空间是f(n)+n+2=O(f(n))。

8.3 考虑广义地理学游戏,其中起始节点就是又无源箭头指入的节点。

选手I有必胜策略吗?选手II呢?给出理由。

1 2 34 5 6I II I II I Winner2 3 6 I4 5 6 II由表上来看选手II有必胜策略I2II4(不能选3)I5II6(不能选2)I。

8.4 证明PSPACE在并、补和星号运算下封闭。

证明:(1) 并:对任意L1, L2PSPACE,设有n a空间图灵机M1和n b空间图灵机M2判定它们,且c=max{a,b}。

计算方法引论课后答案.

计算方法引论课后答案.

计算⽅法引论课后答案.第⼀章误差1. 试举例,说明什么是模型误差,什么是⽅法误差.解: 例如,把地球近似看为⼀个标准球体,利⽤公式24A r π=计算其表⾯积,这个近似看为球体的过程产⽣的误差即为模型误差.在计算过程中,要⽤到π,我们利⽤⽆穷乘积公式计算π的值:12222...q q π=?其中112,3,...n q q n +?=??==?? 我们取前9项的乘积作为π的近似值,得3.141587725...π≈这个去掉π的⽆穷乘积公式中第9项后的部分产⽣的误差就是⽅法误差,也成为截断误差.2. 按照四舍五⼊的原则,将下列各数舍成五位有效数字:816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五⼊原则得到的近似数,它们各有⼏位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位三位六位四位4. 若1/4⽤0.25表⽰,问有多少位有效数字? 解: 两位5. 若 1.1062,0.947a b ==,是经过舍⼊后得到的近似值,问:,a b a b +?各有⼏位有效数字?解: 已知4311d 10,d 1022a b --()433211110100.551010222d a b da db da db ----+=+≤+=?+?=?所以a b +有三位有效数字;因为0.1047571410a b ?=?,()43321110.94710 1.1062100.600451010222所以a b ?有三位有效数字.6. 设120.9863,0.0062y y ==,是经过舍⼊后作为12,x x 的近似值.求1211,y y 的计算值与真值的相对误差限及12y y ?与真值的相对误差限. 解: 已知-4-41112221211d ,d ,d =10,d 1022x y x x y x x x =+=+?=?, ()44111111110d d 12dr dr 0.50100.9863x xx x x y --==≈=≈? ???;()42222222110d d 12dr dr 0.81100.0062x xx x x y --==≈=≈? ???;()()()4221212dr dr dr 0.50100.81100.8210x x x x ---?=+≈?+?≈?.7. 正⽅形的边长约为100cm,应该怎样测量,才能使其⾯积的误差不超过1cm 2.解: 设正⽅形⾯积为S,边长为a,则S=a 2.所以要使:2d d 2d 1s a a a ==≤,则要求211d 0.5102200a a -≤==?.所以边长的误差不能超过20.510-?cm.8. ⽤观测恒星的⽅法求得某地维度为4502'''o(读到秒),试问:计算sin ?将有多⼤误差?解: ()()1d sin cos d cos 45022*''?'''==o.9 . 真空中⾃由落体运动距离s 与时间的关系由公式212s gt =确定,g 是重⼒加速度.现在假设g 是准确的,⽽对t 的测量有0.1s ±的误差,证明t 增加时,距离的绝对误差增加⽽相对误差却减⼩.证明: 因为:221d d d d d d d ;2.122s gt t gt t t s gt gt t s s t gt ??d s 与t 成正⽐,d s s与t 成反⽐,所以当d t 固定的时候, t 增加时,距离的绝对误差增加⽽相对误差却减⼩.10. 设0x >,x 的相对误差为δ,求ln x 的绝对误差. 解: 已知d x x δ=,所以ln x 的绝对误差()d d ln x x x δ==.11. 设x 的相对误差为%α,求nx 的相对误差.解: 1d d d %n n n n x nx x n xn x x xα-===.12. 计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何? 解: 已知34 3V R π=,设()d dr R R a R ==,则要使得 ()()3d dr dln d ln 3d ln 3d ln 3dr 31%V V V R R R R a V ========,则11%3a =?.第⼆章插值法与数值微分1.设y =在100,121,144x =三处的值是很容易求得的,试以这三个点建⽴y =的⼆次插值多项式,,且给出误差估计.⽤其中的任意两点,构造线性插值函数,⽤得到的三个线性插值函数,,并分析其结果不同的原因.解: 已知012012100,121,144;10,11,12x x x y y y ======,建⽴⼆次Lagrange 插值函数可得:()()()()21211441001441011100121100144121100121144121100 12144121144100x x x x L x x x ----= +------+--()211510.7228L ≈=.误差()()()()()()2012012,,,,3!f R x x x x x x x x x x ξξξ'''=---∈,所以20.00065550.001631R <<利⽤前两个节点建⽴线性插值函数可得:()()()()()11211001011100121121100x x L x --=+--()111510.7143L ≈=.利⽤后两个节点建⽴线性插值可得:()()()()()11441211112121144144121x x L x --=+--()111510.7391L ≈=.利⽤前后两个节点建⽴线性插值可得:()()()()()21441001012100144144100x x L x --=+()111510.6818L ≈=.,⼆次插值⽐线性插值效果好,利⽤前两个节点的线性插值⽐其他两个线性插值效果好.此说明,⼆次插值⽐线性插值效果好,插⽐外插效果好.2. 利⽤(2.9)式证明()()()0121001max ,8x x x x x R x f x x x x ≤≤-''≤≤≤证明: 由(2.9)式()()()()0101,2!f R x x x x x x x ξξ''=--<<当01x x x <<时,()()01max x x x f f x ξ≤≤''''≤,()()()01201101max 4x x x x x x x x x ≤≤--≤- 所以()()()0121001max ,8x x x x x R x f x x x x ≤≤-''≤≤≤3. 若()0,1,...,j x n 为互异节点,且有()()()()()()()()()011011............j j n j jj j j j j n x x x x x x x x l x xx x x x x x x -+-+----=证明()0,0,1,...,nk kj j j x l x xk n =≡=∑证明: 由于() 1 ;0 .j i ij i j l x i j δ=?==?≠? 且()0nk j j j x l x =∑和kx都为k 次多项式,⽽且在k+1个不同的节点处的函数值都相同0,1,...,k n =, 所以马上有()0,0,1,...,nk kj j j x l x xk n =≡=∑.4. 设给出sin x 在[],ππ-上的数值表,⽤⼆次插值进⾏计算,若希望截断误差⼩于5 10-,问函数表的步长最⼤能取多少? 解: 记插值函数为p(x),则()()()()()11sin sin 3!i i i x p x x x x x x x ξ-+'''-=--- 所以()()()()11cos max sin 3!i i i x x p x x x x x x ππξ-+-≤≤--=---()()()[]3112,0,2i g x th h t t t t -+=--∈⼜()()()[]12,0,2t t t t t ?=--∈的最⼤值为10.3849??= ?,所以有 350.3849max sin 106x x p h ππ--≤≤-≤< 所以 0.0538h ≤.5. ⽤拉格朗⽇插值和⽜顿插值找经过点()()()()3,1,0,2,3,2,6,10---的三次插值公式. 解: Lagrange 插值函数:()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()12302330101020310121301301223202123303132 31033101622731033 .2781/5x x x x x x x x x x x x L x y y x x x x x x x x x x x x x x x x x x x x x x x x y y x x x x x x x x x x x x x x x x x x x x x x x x ------= +------------++--------+--=++-+-++⽜顿插值: ⾸先计算差商3 10 2 13 2 1.333 0.38896 104 0.8889 0.1420-----()()()()()3130.38893 1.142033.N x x x x x x x =-++-+++-也可以利⽤等距节点构造,⾸先计算差分。

自动机理论、语言和计算导论课后习题答案(中文版)

自动机理论、语言和计算导论课后习题答案(中文版)

自动机理论、语言和计算导论课后习题答案(中文版)Solutions for Section 2.2Exercise 2.2.1(a)States correspond to the eight combinations of switch positions, and also must indicate whether the previous roll came out at D, i.e., whether the previous input was accepted. Let 0 represent a position to the left (as in the diagram) and 1 a position to the right. Each state can be represented by a sequence of three 0's or 1's, representing the directions of the three switches, in order from left to right. We follow these three bits by eithera indicating it is an accepting state or r, indicating rejection. Of the16 possible states, it turns out that only 13 are accessible from the initial state, 000r. Here is the transition table: 杠杆可能出现8种情况,影响着最终状态。

并且也要说明,前面一个大理石球是否从D滚出,也就是说,前一个输入是否被接受。

令0 代表向左方的状态(如图表),1 代表向右方。

这三个杠杆的每一个状态都可以用三个数(0或1)组成的序列表示。

计导课后习题参考答案((精品)

计导课后习题参考答案((精品)

第3章数的表示一、复习题1.如何把十进制数转换成二进制数?答:除2逆向取余。

2.如何把二进制数转换成十进制数?答:将每个二进制位乘以它的位权,将所有结果相加得到对应的十进制数。

3.在二进制系统中,每一位是哪一个数的幂?答:2。

4.在十进制系统中,每一位是哪个数的幂?答:10。

5.表示有符号整数有哪三种方法?答:(1)符号加绝对值(原码)(2)二进制反码(3)二进制补码6.最大的无符号整数的含义是什么?答:计算机中分配用于保存无符号整数的二进制位数所确定的最大无符号整数,最大无符号整数取决于计算机中分配用于保存无符号整数的二进制位数N,无符号整数范围:0~ (2N-1)。

7.位数分配指什么?答:用以表示整数的二进制位数.8.为什么不可以将十进制数256存储在8位存储单元中?答:八位存储单元最大存储到255,存储256会产生溢出。

9.试述无符号整数的两种用途?答:(1)计数。

计数时,不需要负数,可以从0或1开始。

(2)寻址。

因为地址是从0开始到整个存储器的总字节数的正数。

10.将十进制数130以符号加绝对值表示法存储在8位存储单元中会怎样?答:会溢出。

因为符号加绝对值表示法在八位存储单元中存储数据的的范围是:-127到+127. 11.分析比较正整数在符号加绝对值、二进制反码、二进制补码三种表示法中的异同。

答:没有不同。

12.分析比较负整数在符号加绝对值、二进制反码、二进制补码三种表示法中的异同。

答:相同点:最左边的位定义的都是符号。

如果为0,则表示正数,如果为1,则表示负数。

不同点:首先将整数的绝对值转换成二进制数,若是负数,符号加绝对值是将最左边的位置1,其余不变;反码是将所有二进制位中的0变为1。

即按位取反。

补码是最右边连续的0和首次出现的1保持不变,其余位逐位取反。

13.分析比较0在符号加绝对值,二进制反码,二进制补码三种表示方法中的异同。

答:符号加绝对值:有两个0,正0(00000000)和负0(10000000)二进制反码:有两个0,正0(00000000)和负0(11111111)二进制补码:只有一个0(00000000)14. 分析比较符号加绝对值,二进制反码,二进制补码三种表示方法中可以表示的数的范围。

计算方法引论徐萃薇课后题答案

计算方法引论徐萃薇课后题答案

计算方法引论徐萃薇课后题答案徐萃薇(Xu Cuiwei)教授向学生们提出了一个有关计算方法的练习题,这里是课后习题的答案:题目一:定义“计算方法”计算方法是一种数值解决问题的方法,用计算机或者类比设备来完成一系列计算过程,以解决由某一特定问题及其变体而产生的一系列更复杂问题。

它是一种能用有限的资源(如时间、空间、技术等)产生正确结果的计算机程序,他可以安排合理的步骤,使用易于操作的方法来解决指定的问题。

题目二:分析计算方法的优缺点优点:1. 计算方法基于数理模型的明确理论,可以更好地解决问题;2. 相较于其他方法,它使用更简单的计算机程序来实现更复杂的功能;3. 它可以把不容易解决的问题转变为容易解决的形式,这将有助于系统更好地管理和管理空间。

缺点:1. 计算方法有一定的局限性,不一定适用于所有的情景;2. 数学建模常常非常耗时,而且可能有很多假设和过程;3. 数学建模的结果可能有很多偏差,可能不切实际。

题目三:对于复杂问题,需要用到哪些计算方法对于复杂问题,可以用到多种方法来解决,如:1. 动态规划法(DP):动态规划法可以用来解决最优化问题,如旅行商问题、背包问题等。

2. 概率法:概率法可以跨越归纳和演绎,在可预期结果和把握风险方面有很大的优势。

3. 机器学习:机器学习可以帮助系统自动从数据中获取规律,从而有效地解决规模复杂的问题。

4. 启发式搜索:启发式搜索可以有效地模拟人类的求解思考方法,通过把问题分解为子问题,再变换为其他问题求解的方法,可以有效解决复杂的问题。

5. 分支定界法:分支定界法是一种能获得全局最优解的解决复杂问题的方法,它被广泛应用于思维密集型最优化问题。

总而言之,复杂问题可以用多种计算方法来解决。

正确使用和选择合适的方法是关键,从而能够获得更好的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 利用泵引理证明下述语言不是正则的。
1)A1={0n1n2n|n0};
假设A1是正则的,泵长度为p。
令S=0p1p2p 因为S是A1的成员,且S长度大于p, S可以分成S=xyz三个部分。根据条件三y中只 能包含0,而xyyz不是A1成员。所以A1不是正 则的
2)A2={www|w{a,b}*}
7. 在乔姆斯基范式中,每条规则的右部不允 许( A )。 A、出现起始变量 B、出现变量 C、出现终结符 D、出现2个变量
二、综合应用题
1.画出识别下述语言的DFA状态图,其中, 字母表为{0,1}。 1). {w|w从1开始且以0结束};
1
q0
1
q1
0
q2
1
2){w|w含有至少3个1};
0
假设A2是正则的,泵长度为p
令S=apbapbapb,S是A2成员,且S长度大于p,S 可以分成三部分S=xyz满足泵引理。根据条件 三y只包含a,xyyz不是A2成员,违反泵引理。 A2不是正则的
4.给出产生下述语言的上下文无关文法。 1){w|w至少包含3个1}; S->A1A1A1A A->A0|A1|ε 2){w|w以相同的符号开始和结束}; S->0A0|1A1|0|1 A->0A|1A|ε
0
0
0,1
1 q0
1 q1
1 q2
q3
3){w|w含有子串0101};
1
0,1
0 q0
1 q1
0
q2
q3
1
q4
0
0
2. 写出下述语言的正则表达式。 1){w|w不含子串110}; (0∪10)*1* 2){w|w的长度不超过5}; ε∪∑∪∑∑∪∑∑∑∪∑∑∑∑∪∑∑∑∑∑ 3){w|w是除11和111外的任意串}; ε∪0∑*∪10 ∑*∪110 ∑*∪ 111 ∑ ∑*
当j≠0,uxz=0p1p-i#0p-j1p不在该语言中 当j=0,uvvxyyz中左侧的长度大于右侧,也不 再该语言中。
因此该语言不是上下文无关的
2){t1#t2##tk|k2,ti{a,b}*,且存在ij使得 ti=tj}。 令S=apbp#apbp,p为泵长度
三、完成下述操作
1.给出识别语言(01001010)*的NFA;
计算理论导引习题
一、单项选择题
1. 给定两个集合S和U, SU那么,S的子集 可以是( A )。
A、 S幂集中的一个元素 B、S中的一个元素
C、 SU
D、 U-S
2. 关系和谓词的共同点是( D )。
A、都是集合
B、都是序列
C、都是笛卡尔积 D、都是函数且值域都是
{TRUE, FALSE}
3. 设集合T={0,1},用T中元素构造序列,最多 可构造( D )条序列。 A、1 B、 2 C、3 D、无穷 4. DFA和NFA的区别在于( A )。 A、两者的转移函数的值域不同 B、NFA能够识别的语言DFA不一定能够识别 C、DFA能够识别的语言NFA不一定能够识别 D、NFA比DFA多拥有一个栈
ε ε
0
ε
1
q2
q3
q4
q5
ε
ε
q0
q1
ε
q6
0
ε q7
0
q8
q9
ε
1
q10
q11
ε
q12 0
q13 ε
1 q14
ε q15
0 q16
q17
ε
2.下面是一个识别语言M2={0i1j2k |i,j,k≥0 且i=j
或 i=k} 的PDA M2的状态图,请将此PDA转换为
CFG。
1,0->ε
2,ε->ε
3){w|w的长度为奇数}; S->0A|1A A->0B|1B|ε B->0A|1A
5. 利用泵引理证明下述语言不是上下文无关 的。
1){w#t|w,t{a,b}*,且w是t的子串};
设该语言上下文无关,p为泵长度。取 S=0p1p#0p1p,由泵引理,S可以划分为uvxyz 五部分。因为S=uxz也在该语言中,所以vy不 包含#。vxy不落在#一边,否则两边长度不同。 则#∈x,则必存在不全为零的i,j使得vy=1i0j
q3
ε,$->ε
q4
0,ε->0
1,ε->ε
2,0->ε
ε,ε->$
ε,ε->ε
ε,ε->ε
ε,$->ε
q1
q2
q5
q6
q7
CFG G=(V, ∑,R,S)
V={A11,A12,A13,A14,…A88} ∑={0,1,2}
S=A18 R:
A18->A14A48 A14->0A231 A23->0A231|ε A48->A442|ε
A44->A442| ε A18->0A262|ε A26->0A262|A551 A55->A551|ε
5. 一个语言是正则的,当且仅当( C )。 A、可以用一个正则表达式计算它 B、可以用一个正则表达式接受它 C、可以用一个正则表达式描述它 D、可以用一个正则表达式识别它 6. 若一个语言A是非正则的,对于个给定的一 个泵长p,若存在一个串s=xyz,|s|p,则( C )。 A、xyyzA B、xzA C、|y|可能大于等于0 D、|xy|不可能小于等于p
相关文档
最新文档