3.3二元一次方程组及其解法例题与讲解(2013-2014学年沪科版七年级上)

合集下载

沪科版七年级数学上册优秀教学案例:3.3二元一次方程组及其解法(3课时)

沪科版七年级数学上册优秀教学案例:3.3二元一次方程组及其解法(3课时)
2.采用自评、互评、师评等多种评价方式,对学生的学习成果进行客观评价,提高学生的评价能力。
3.关注学生的个体差异,对不同层次的学生给予不同的评价,使每个学生在评价中都能感受到成功的喜悦。
在教学过程中,我将密切关注学生的学习情况,根据学生的反馈及时调整教学策略,确保每个学生都能在课堂上充分发挥自己的潜能。同时,注重培养学生的人文素养,让数学教学充满人性化的温度。
在教学过程中,我将以人性化的语言,关注学生的个体差异,充分调动学生的积极性,让每个学生在课堂上都能充分参与、尽情表达,从而提高他们的数学素养。
三、教学策略
(一)情景创设
1.生活情境:以现实生活中的人物、事件、场景为背景,设计富有生活气息的二元一次方程组问题,让学生感受到数学与生活的紧密联系。
2.故事情境:通过生动有趣的故事,引出二元一次方程组的问题,激发学生的学习兴趣。
五、案例亮点
1.情境创设:本节课通过生活情境、故事情境和竞赛情境的创设,使学生充分感受到数学与生活的紧密联系,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向:本节课以问题为导向,设计具有挑战性的问题,引导学生独立思考、主动探究,培养学生的问题解决能力和批判性思维。
3.小组合作:本节课充分利用小组合作学习,让学生在讨论中思考、在思考中讨论,提高学生的合作能力和思维品质,培养学生的团队精神和集体荣誉感。
沪科版七年级数学上册优秀教学案例:3.3二元一次方程组及其解法(3课时)
一、案例背景
沪科版七年级数学上册“3.3二元一次方程组及其解法”是学生在掌握了二元一次方程的基础上进一步探究的知识点,是初中学段数学的重要内容,也是学生学习初中数学的关键所在。在实际教学中,我发现许多学生在学习这一部分内容时存在一定的困难,主要表现在对二元一次方程组的理解不够深入,解法运用不够熟练。为了帮助学生更好地理解和掌握这一部分内容,我设计了本节课的教学案例。

沪科版七年级数学上册复习资料-二元一次方程组及其解法例题与解析

沪科版七年级数学上册复习资料-二元一次方程组及其解法例题与解析

3.3 二元一次方程组及其解法1.二元一次方程组 (1)二元一次方程含有两个未知数的一次方程叫做二元一次方程,如5x +3y =34就是二元一次方程. 注意:“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.不要把2xy +2=4,2x +y =5误当成二元一次方程,实际上2xy +2=4含未知数的项的次数是2,而2x+y =5中2x不是整式,我们将会在后面的学习中遇到它.(2)二元一次方程组①联立在一起的几个方程,称为方程组.②由两个二元一次方程联立起来得到的方程组叫做二元一次方程组.实际上,在二元一次方程组中,两个方程中可以有方程是一元一次方程,方程的个数也可以超过两个,同一个字母必须代表同一数值,这样才能组合在一起.如下列方程组都是二元一次方程组:⎩⎪⎨⎪⎧x +5y =1,y -3=0,⎩⎪⎨⎪⎧x =2,y =-3,⎩⎪⎨⎪⎧x -y =1,x +3y =9,2x -y =4.【例1-1】 下列方程中,是二元一次方程的个数是( ). ①2x +3y =5;②xy =1;③3x -y2=1;④2⎝ ⎛⎭⎪⎫m -23+1=14m -2;⑤1-2m 3=n ; ⑥1-23m =n ;⑦y =2x -3;⑧s =12vt.A .1B .2C .3D .4解析:题中①③⑤⑦都含有两个未知数,并且含未知数的项的次数是1,因此它们4个是二元一次方程,②含未知数的项的次数是2,④是一元一次方程,⑥不是整式方程,⑧含有3个未知数,因此它们都不是二元一次方程,故应选D.答案:D【例1-2】 下列方程组中,不是二元一次方程组的是( ).A .⎩⎪⎨⎪⎧x =2y +1,3x -4z =6B .⎩⎪⎨⎪⎧x -y =1,x +y =4C .⎩⎪⎨⎪⎧x +y =5,x =5D .⎩⎪⎨⎪⎧x 2+y2=2y ,y =23x解析:本题应根据二元一次方程组定义来判断,选项A 中每一个方程虽然都是一次方程,但是未知数的个数有三个,故否定A ;选项B ,D 只含有两个未知数且都是一次方程,符合二元一次方程组的定义,故都是二元一次方程组;选项C 中的第二个方程虽然是一元一次方程,但方程组中的第一个方程是二元一次方程,故它们也能组成二元一次方程组.所以不是二元一次方程组的是A.答案:A2.二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.如⎩⎪⎨⎪⎧x =12,y =5既是方程x +y =17的解又是方程5x +3y =75的解,这时我们就说⎩⎪⎨⎪⎧x =12,y =5是二元一次方程组⎩⎪⎨⎪⎧x +y =17,5x +3y =75的解.谈重点 理解二元一次方程组的解(1)二元一次方程组的解实质上是组成方程组的每个二元一次方程的公共解,也就是说,方程组的解一定是组成此方程组的每个方程的解,而组成此方程组的每个方程的解却不一定是方程组的解.(2)二元一次方程的解是一对数值,必须用大括号合在一起.【例2】 二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解是( ).A.⎩⎪⎨⎪⎧ x =1y =6B.⎩⎪⎨⎪⎧ x =-1y =4C.⎩⎪⎨⎪⎧ x =-3y =2D.⎩⎪⎨⎪⎧x =3y =2解析:选项A ,将⎩⎪⎨⎪⎧x =1,y =6代入方程①,左边=2×1+6=8,右边=2,左边≠右边,所以⎩⎪⎨⎪⎧x =1,y =6不是方程组的解;选项B ,将⎩⎪⎨⎪⎧x =-1,y =4代入方程①得,左边=2×(-1)+6=4,右边=4,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程①的解,将⎩⎪⎨⎪⎧x =-1,y =4代入方程②得,左边=-(-1)+4=5,右边=5,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程②的解,所以⎩⎪⎨⎪⎧x =-1,y =4是二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解;按照以上方法对选项C ,D 加以判断,都不是方程组的解,故应选B.答案:B 3.代入消元法 (1)消元思想二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程.这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入消元法的概念从二元一次方程组的一个方程中求出某一个未知数的表达式(即将一个未知数用含另一未知数的式子表示出来),再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.解技巧 用代入法解二元一次方程组(1)用代入法解方程组一般将系数较小的方程变形,且用系数较大的未知数表示系数较小的未知数.(2)当方程组中有一个方程的某一个未知数的系数绝对值是1或有一个方程的常数项是0时,一般用代入法来解.(3)用代入消元法解二元一次方程组的步骤①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式;②将y =ax +b (或x =ay +b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入y =ax +b (或x =ay +b )中,求y (或x )的值; ⑤用“{”联立两个未知数的值,得到方程组的解. 谈重点 运用代入法需注意的问题运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.【例3-1】 已知方程x -2y =6,用x 表示y ,则y =__________;用y 表示x ,则x =__________.解析:(1)因为x -2y =6,移项,得x -6=2y ,两边都除以2,得12x -3=y ,即y =12x-3;(2)因为x -2y =6,移项,得x =6+2y .答案:12x -3 6+2y【例3-2】 解方程组⎩⎪⎨⎪⎧3x -5y =6,①x +4y =-15.②分析:观察方程组中的每个方程,发现第二个方程中的x 的系数为1,所以选择将其变形,用含y 的代数式表示x ,得x =-15-4y ,然后把x =-15-4y 代入第一个方程,求出y 的值,再把y 的值代入变形后的方程x =-15-4y 中,求出x 的值.解:由②,得x =-15-4y ,③ 把③代入①,得3(-15-4y )-5y =6, 解得y =-3,把y =-3代入③,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-3.4.加减消元法 (1)加减消元法的概念两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,消去一个未知数的方法,叫做加减消元法,简称加减法.(2)用加减法解二元一次方程组的一般步骤用加减消元法解二元一次方程组的基本思路仍然是“消元”.第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.析规律 解二元一次方程组的方法(1)当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. (2)通过两个方程相减消去未知数比通过两个方程相加消去未知数更易出错,所以一般是将两个方程中同一个未知数的系数化成互为相反数,然后相加消去一个未知数.【例4】 解方程组:⎩⎪⎨⎪⎧3x +2y =5,①2x -y =8.②分析:经观察发现,①和②中y 的系数是倍数关系,若将方程②×2,可使两个方程中y 的系数互为相反数,再将两方程相加,便可消去y ,只剩关于x 的方程,问题便很容易解决了.解:将方程②×2,得 4x -2y =16,③ ③+①,得 7x =21, 解得x =3. 把x =3代入②,得 2×3-y =8,y =-2.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-2.5.解二元一次方程组的策略解二元一次方程组的关键就在于将“二元”转化为“一元”,如何消元,要根据系数特点合理选择使用代入消元法和加减消元法.解二元一次方程组,关键要在根本上把握方程组的系数特点,若遇到不能直接看出系数特点的,应该先化简,化简后系数的特点比较明显.对于不能直接运用消元法的方程组,应通过观察,找到一个系数较小的,利用等式性质,通过扩大相应倍数变成具有相同系数或互为相反数的系数,然后再使用加减法来解决问题.(1)对于一般形式的二元一次方程组,用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程;④方程组中某一未知数的系数成整数倍,选择小系数方程.(2)对于一般形式的二元一次方程组,用加减消元法求解关键是选择消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择系数是1或-1的未知数;②若未知数系数都不是1或-1,选系数的绝对值较小的未知数;③选方程组中系数成整数倍的未知数.【例5-1】 解方程组:⎩⎪⎨⎪⎧3x -1y +5,5y -13x +5.分析:通过观察,发现方程组比较复杂,因此应先化简,方程组中的两个方程化为⎩⎪⎨⎪⎧3x -y =8,5y -3x =20,通过观察决定使用加减法来解.解二元一次方程组往往需要对原方程组变形,在移项时要特别注意符号的改变.解:原方程组化简,得⎩⎪⎨⎪⎧3x -y =8,①5y -3x =20.②①+②,得4y =28,y =7.把y =7代入①得3x -7=8,解得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =7.【例5-2】 解方程组:⎩⎪⎨⎪⎧53x +47y =112,①47x +53y =88.②分析:本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x ,y 的系数都是100、常数项是200的方程100x +100y =200,两边都除以100,得x +y =2,而此方程x +y =2与方程组中的①和②都同解.这样,用这个方程与原方程组中任何一个方程组成方程组,此时求解就使问题变得比较简单了.解:①+②,得100x +100y =200, 化简,得x +y =2, ③于是原方程变为⎩⎪⎨⎪⎧53x +47y =112,①x +y =2,③由③,得x =2-y , ④把④代入①,得53(2-y )+47y =112, 106-53y +47y =112,-6y =6,所以y =-1. 把y =-1代入④,得x =3,所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =-1.6.构造二元一次方程组解题 常见的考查方式有:(1)已知二元一次方程组的解,求方程中的待定系数的值.我们知道使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.解决此类问题的方法通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.例如⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧x +y =a ,x -y =b 的解,把⎩⎪⎨⎪⎧x =1,y =1代入方程组可得a =2,b=0.(2)学习了二元一次方程组后,同学们应从前面所学的内容中挖掘涉及二元一次方程组的隐含条件,构造二元一次方程组解决许多问题,从而达到既沟通了知识之间的内在联系,又提高了同学们分析问题和解决问题的能力的目的.如同类项的概念等,解答此类题目的关键是真正理解概念,利用概念中的相关词语列出关系式.(3)同解问题,两个方程组的解相同,其实就是说这两个方程组的解是这两个方程组中四个二元一次方程的公共解.解技巧 用整体代入法解二元一次方程组当我们把二元一次方程组的解代入原方程后,通常得到关于未知系数的新的方程组,但有时可以不解方程组,整体代入求解.【例6-1】 已知2ay +3b 3x和-3a 2x b 8-2y 是同类项,则x =__________,y =__________.解析:根据同类项的定义可知,若2a y +3b 3x和-3a 2x b 8-2y 是同类项,则必有y +3=2x ,3x=8-2y ,将这两个二元一次方程合在一起组成方程组⎩⎪⎨⎪⎧2x =y +3,3x =8-2y ,即可求出x =2,y =1. 答案:2 1【例6-2】 已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2xm -1y =2,nx +y =1的解,则m +n 的值是__________.解析:因为⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2x m -1y =2,①的解,nx +y =1②所以⎩⎪⎨⎪⎧ x =2,y =1同时满足方程①和方程②,将⎩⎪⎨⎪⎧x =2,y =1分别代入方程①和方程②,可得⎩⎪⎨⎪⎧4+m -1=2,③2n +1=1.④由③和④可分别求出m ,n 的值为⎩⎪⎨⎪⎧m =-1,n =0.所以m +n =-1+0=-1. 答案:-1【例6-3】 已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b的值.解:解方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解这个方程组,得⎩⎪⎨⎪⎧a =52,b =1.7.求二元一次方程的正整数解任何一个二元一次方程都有无数组解,但是二元一次方程的整数解是有限的. 一般应用二元一次方程解决实际问题时所列出的二元一次方程的解应当是有限的.因为我们必须保证其解有意义.析规律 注重实际问题中的隐含条件生活中的实际问题常隐含着一个条件:(1)数量的取值为正整数;(2)最终的答案可能不止一个,只要符合条件即可.【例7】 甲种书每本3元,乙种书每本5元,38元可买两种书各几本? 分析:先根据题意列出二元一次方程,再求其正整数解. 解:设甲种书买x 本,乙种书买y 本,根据题意得 3x +5y =38(x ,y 都是正整数). 用含y 的代数式表示x 为x =38-5y3,当y =1时,x =11; 当y =4时,x =6; 当y =7时,x =1. 原方程所有的正整数解为⎩⎪⎨⎪⎧x =1,y =7,⎩⎪⎨⎪⎧x =6,y =4,⎩⎪⎨⎪⎧x =11,y =1.答:甲、乙两种书可分别买1本和7本或6本和4本或11本和1本. 8.列方程组解决实际问题(1)解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是一个或几个,正确的列出一个(或几个)方程,再组成方程组.(2)列方程组解应用题,常遇到隐含的等量关系,如:和、差、倍、分问题;行程问题;调配问题;工程问题;浓度问题;形积问题等等.我们在列方程(组)解应用题时,要注意充分挖掘这些关系.【例8】 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2 280名学生就餐.求1个大餐厅、1个小餐厅分别可供多少名学生就餐?解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,则根据题意,得⎩⎪⎨⎪⎧x +2y =1 680,2x +y =2 280.解这个方程组,得⎩⎪⎨⎪⎧x =960,y =360.答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.。

沪科版-数学-七年级上册-3.3 二元一次方程组及其解法第3课时 课件

沪科版-数学-七年级上册-3.3 二元一次方程组及其解法第3课时 课件
3.3 二元一次方程组及其解法第3课时
你能用代入法解下列方程组吗?
解方程组
2x 4 y 14

如果不用代2入x 消+33元yy=法121,你2 有没有②其
它更简单的消元方法呢?你还有其它不同的代入法吗?
解法1:由①得,x
14
4y 2
7
2y
代人方程②,消去x.
解法2:把2x看作一个整体,由①得: 2x 1144-4y4 y ,
【解析】在这个方程组中,直接将两个方程相加 或相减,都不能消去未知数x或y,怎么办?我们 可以对其中一个(或两个)方程进行变形,使得 这个方程组中x或y的系数相等或互为相反数,再 来求解.
解法一 (消去x)
解:将①×2,得
8x+2y=28. ③
②-③,得
y=2.
把y=2代入①,得
4x+2=14
x=3
所以
x
y
= =
3, 2.
解法二(消去y),请同学们自己完成.
一.填空题:
1.已知方程组
x+3y=17 两个方程 2x-3y=6
只要两边 分别相加 就可以消去未知数 y
2.已知方程组 25x-7y=16 两个方程
25x+6y=10 只要两边 分别相减 就可以消去未知数 x
二.选择题
1. 用加减法解方程组 6x+7y=-19① 应用(B)
7x-4y=4

3x-2

解: ①-②,得
解: ①-②,得
2x=4-4,
-2x=12
x=0
7x-4y=4 5x-4y=-4 解 ①-②,得
2x=4+4, x=4
x =-6

沪科版七年级上册数学二元一次方程组及其解法例题与解析

沪科版七年级上册数学二元一次方程组及其解法例题与解析

3.3 二元一次方程组及其解法1.二元一次方程组 (1)二元一次方程含有两个未知数的一次方程叫做二元一次方程,如5x +3y =34就是二元一次方程. 注意:“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.不要把2xy +2=4,2x +y =5误当成二元一次方程,实际上2xy +2=4含未知数的项的次数是2,而2x+y =5中2x不是整式,我们将会在后面的学习中遇到它.(2)二元一次方程组①联立在一起的几个方程,称为方程组.②由两个二元一次方程联立起来得到的方程组叫做二元一次方程组.实际上,在二元一次方程组中,两个方程中可以有方程是一元一次方程,方程的个数也可以超过两个,同一个字母必须代表同一数值,这样才能组合在一起.如下列方程组都是二元一次方程组:⎩⎪⎨⎪⎧x +5y =1,y -3=0,⎩⎪⎨⎪⎧x =2,y =-3,⎩⎪⎨⎪⎧x -y =1,x +3y =9,2x -y =4.【例1-1】 下列方程中,是二元一次方程的个数是( ). ①2x +3y =5;②xy =1;③3x -y2=1;④2⎝ ⎛⎭⎪⎫m -23+1=14m -2;⑤1-2m 3=n ; ⑥1-23m =n ;⑦y =2x -3;⑧s =12vt.A .1B .2C .3D .4解析:题中①③⑤⑦都含有两个未知数,并且含未知数的项的次数是1,因此它们4个是二元一次方程,②含未知数的项的次数是2,④是一元一次方程,⑥不是整式方程,⑧含有3个未知数,因此它们都不是二元一次方程,故应选D.答案:D【例1-2】 下列方程组中,不是二元一次方程组的是( ).A .⎩⎪⎨⎪⎧x =2y +1,3x -4z =6B .⎩⎪⎨⎪⎧x -y =1,x +y =4C .⎩⎪⎨⎪⎧x +y =5,x =5D .⎩⎪⎨⎪⎧x 2+y2=2y ,y =23x解析:本题应根据二元一次方程组定义来判断,选项A 中每一个方程虽然都是一次方程,但是未知数的个数有三个,故否定A ;选项B ,D 只含有两个未知数且都是一次方程,符合二元一次方程组的定义,故都是二元一次方程组;选项C 中的第二个方程虽然是一元一次方程,但方程组中的第一个方程是二元一次方程,故它们也能组成二元一次方程组.所以不是二元一次方程组的是A.答案:A2.二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.如⎩⎪⎨⎪⎧x =12,y =5既是方程x +y =17的解又是方程5x +3y =75的解,这时我们就说⎩⎪⎨⎪⎧x =12,y =5是二元一次方程组⎩⎪⎨⎪⎧x +y =17,5x +3y =75的解.谈重点 理解二元一次方程组的解(1)二元一次方程组的解实质上是组成方程组的每个二元一次方程的公共解,也就是说,方程组的解一定是组成此方程组的每个方程的解,而组成此方程组的每个方程的解却不一定是方程组的解.(2)二元一次方程的解是一对数值,必须用大括号合在一起.【例2】 二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解是( ).A.⎩⎪⎨⎪⎧ x =1y =6B.⎩⎪⎨⎪⎧ x =-1y =4C.⎩⎪⎨⎪⎧ x =-3y =2D.⎩⎪⎨⎪⎧x =3y =2解析:选项A ,将⎩⎪⎨⎪⎧x =1,y =6代入方程①,左边=2×1+6=8,右边=2,左边≠右边,所以⎩⎪⎨⎪⎧x =1,y =6不是方程组的解;选项B ,将⎩⎪⎨⎪⎧x =-1,y =4代入方程①得,左边=2×(-1)+6=4,右边=4,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程①的解,将⎩⎪⎨⎪⎧x =-1,y =4代入方程②得,左边=-(-1)+4=5,右边=5,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程②的解,所以⎩⎪⎨⎪⎧x =-1,y =4是二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解;按照以上方法对选项C ,D 加以判断,都不是方程组的解,故应选B.答案:B 3.代入消元法 (1)消元思想二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程.这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入消元法的概念从二元一次方程组的一个方程中求出某一个未知数的表达式(即将一个未知数用含另一未知数的式子表示出来),再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.解技巧 用代入法解二元一次方程组(1)用代入法解方程组一般将系数较小的方程变形,且用系数较大的未知数表示系数较小的未知数.(2)当方程组中有一个方程的某一个未知数的系数绝对值是1或有一个方程的常数项是0时,一般用代入法来解.(3)用代入消元法解二元一次方程组的步骤①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式;②将y =ax +b (或x =ay +b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入y =ax +b (或x =ay +b )中,求y (或x )的值; ⑤用“{”联立两个未知数的值,得到方程组的解. 谈重点 运用代入法需注意的问题运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.【例3-1】 已知方程x -2y =6,用x 表示y ,则y =__________;用y 表示x ,则x =__________.解析:(1)因为x -2y =6,移项,得x -6=2y ,两边都除以2,得12x -3=y ,即y =12x-3;(2)因为x -2y =6,移项,得x =6+2y .答案:12x -3 6+2y【例3-2】 解方程组⎩⎪⎨⎪⎧3x -5y =6,①x +4y =-15.②分析:观察方程组中的每个方程,发现第二个方程中的x 的系数为1,所以选择将其变形,用含y 的代数式表示x ,得x =-15-4y ,然后把x =-15-4y 代入第一个方程,求出y 的值,再把y 的值代入变形后的方程x =-15-4y 中,求出x 的值.解:由②,得x =-15-4y ,③ 把③代入①,得3(-15-4y )-5y =6, 解得y =-3,把y =-3代入③,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-3.4.加减消元法 (1)加减消元法的概念两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,消去一个未知数的方法,叫做加减消元法,简称加减法.(2)用加减法解二元一次方程组的一般步骤用加减消元法解二元一次方程组的基本思路仍然是“消元”.第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.析规律 解二元一次方程组的方法(1)当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. (2)通过两个方程相减消去未知数比通过两个方程相加消去未知数更易出错,所以一般是将两个方程中同一个未知数的系数化成互为相反数,然后相加消去一个未知数.【例4】 解方程组:⎩⎪⎨⎪⎧3x +2y =5,①2x -y =8.②分析:经观察发现,①和②中y 的系数是倍数关系,若将方程②×2,可使两个方程中y 的系数互为相反数,再将两方程相加,便可消去y ,只剩关于x 的方程,问题便很容易解决了.解:将方程②×2,得 4x -2y =16,③ ③+①,得 7x =21, 解得x =3. 把x =3代入②,得 2×3-y =8,y =-2.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-2.5.解二元一次方程组的策略解二元一次方程组的关键就在于将“二元”转化为“一元”,如何消元,要根据系数特点合理选择使用代入消元法和加减消元法.解二元一次方程组,关键要在根本上把握方程组的系数特点,若遇到不能直接看出系数特点的,应该先化简,化简后系数的特点比较明显.对于不能直接运用消元法的方程组,应通过观察,找到一个系数较小的,利用等式性质,通过扩大相应倍数变成具有相同系数或互为相反数的系数,然后再使用加减法来解决问题.(1)对于一般形式的二元一次方程组,用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程;④方程组中某一未知数的系数成整数倍,选择小系数方程.(2)对于一般形式的二元一次方程组,用加减消元法求解关键是选择消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择系数是1或-1的未知数;②若未知数系数都不是1或-1,选系数的绝对值较小的未知数;③选方程组中系数成整数倍的未知数.【例5-1】 解方程组:⎩⎪⎨⎪⎧3x -1y +5,5y -13x +5.分析:通过观察,发现方程组比较复杂,因此应先化简,方程组中的两个方程化为⎩⎪⎨⎪⎧3x -y =8,5y -3x =20,通过观察决定使用加减法来解.解二元一次方程组往往需要对原方程组变形,在移项时要特别注意符号的改变.解:原方程组化简,得⎩⎪⎨⎪⎧3x -y =8,①5y -3x =20.②①+②,得4y =28,y =7.把y =7代入①得3x -7=8,解得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =7.【例5-2】 解方程组:⎩⎪⎨⎪⎧53x +47y =112,①47x +53y =88.②分析:本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x ,y 的系数都是100、常数项是200的方程100x +100y =200,两边都除以100,得x +y =2,而此方程x +y =2与方程组中的①和②都同解.这样,用这个方程与原方程组中任何一个方程组成方程组,此时求解就使问题变得比较简单了.解:①+②,得100x +100y =200, 化简,得x +y =2, ③于是原方程变为⎩⎪⎨⎪⎧53x +47y =112,①x +y =2,③由③,得x =2-y , ④把④代入①,得53(2-y )+47y =112, 106-53y +47y =112,-6y =6,所以y =-1. 把y =-1代入④,得x =3,所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =-1.6.构造二元一次方程组解题常见的考查方式有:(1)已知二元一次方程组的解,求方程中的待定系数的值.我们知道使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.解决此类问题的方法通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.例如⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧x +y =a ,x -y =b的解,把⎩⎪⎨⎪⎧x =1,y =1代入方程组可得a =2,b=0.(2)学习了二元一次方程组后,同学们应从前面所学的内容中挖掘涉及二元一次方程组的隐含条件,构造二元一次方程组解决许多问题,从而达到既沟通了知识之间的内在联系,又提高了同学们分析问题和解决问题的能力的目的.如同类项的概念等,解答此类题目的关键是真正理解概念,利用概念中的相关词语列出关系式.(3)同解问题,两个方程组的解相同,其实就是说这两个方程组的解是这两个方程组中四个二元一次方程的公共解.解技巧 用整体代入法解二元一次方程组当我们把二元一次方程组的解代入原方程后,通常得到关于未知系数的新的方程组,但有时可以不解方程组,整体代入求解.【例6-1】 已知2ay +3b 3x和-3a 2x b 8-2y 是同类项,则x =__________,y =__________.解析:根据同类项的定义可知,若2a y +3b 3x和-3a 2x b 8-2y 是同类项,则必有y +3=2x ,3x=8-2y ,将这两个二元一次方程合在一起组成方程组⎩⎪⎨⎪⎧2x =y +3,3x =8-2y ,即可求出x =2,y =1. 答案:2 1【例6-2】 已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2xm -1y =2,nx +y =1的解,则m +n 的值是__________.解析:因为⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧2xm -1y =2,①的解,nx +y =1②所以⎩⎪⎨⎪⎧x =2,y =1同时满足方程①和方程②,将⎩⎪⎨⎪⎧x =2,y =1分别代入方程①和方程②,可得⎩⎪⎨⎪⎧4+m -1=2,③2n +1=1.④由③和④可分别求出m ,n 的值为⎩⎪⎨⎪⎧m =-1,n =0.所以m +n =-1+0=-1. 答案:-1【例6-3】 已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b的值.解:解方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解这个方程组,得⎩⎪⎨⎪⎧a =52,b =1.7.求二元一次方程的正整数解任何一个二元一次方程都有无数组解,但是二元一次方程的整数解是有限的. 一般应用二元一次方程解决实际问题时所列出的二元一次方程的解应当是有限的.因为我们必须保证其解有意义.析规律 注重实际问题中的隐含条件生活中的实际问题常隐含着一个条件:(1)数量的取值为正整数;(2)最终的答案可能不止一个,只要符合条件即可.【例7】 甲种书每本3元,乙种书每本5元,38元可买两种书各几本? 分析:先根据题意列出二元一次方程,再求其正整数解. 解:设甲种书买x 本,乙种书买y 本,根据题意得 3x +5y =38(x ,y 都是正整数). 用含y 的代数式表示x 为x =38-5y3,当y =1时,x =11; 当y =4时,x =6; 当y =7时,x =1. 原方程所有的正整数解为⎩⎪⎨⎪⎧x =1,y =7,⎩⎪⎨⎪⎧x =6,y =4,⎩⎪⎨⎪⎧x =11,y =1.答:甲、乙两种书可分别买1本和7本或6本和4本或11本和1本. 8.列方程组解决实际问题(1)解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是一个或几个,正确的列出一个(或几个)方程,再组成方程组.(2)列方程组解应用题,常遇到隐含的等量关系,如:和、差、倍、分问题;行程问题;调配问题;工程问题;浓度问题;形积问题等等.我们在列方程(组)解应用题时,要注意充分挖掘这些关系.【例8】 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2 280名学生就餐.求1个大餐厅、1个小餐厅分别可供多少名学生就餐?解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,则根据题意,得⎩⎪⎨⎪⎧x +2y =1 680,2x +y =2 280.解这个方程组,得⎩⎪⎨⎪⎧x =960,y =360.答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.。

沪科版七年级数学上册二元一次方程组及其解法课件(共18张)

沪科版七年级数学上册二元一次方程组及其解法课件(共18张)
3x-2y=9 ②
解:
①×2,得:
4x+6y=38

②×3,得:
9x-6y=27 ④
加减法消元时,先 要把相同未知数的系数 化 把x=5代入①,得:
y=3 ∴原方程组的解是 x=5
y=3
课堂小结
用加减法解二元一次方程组的步骤:
(1).利用等式性质把一个或两个方程的两边都 乘以适当的数,变换两个方程的某一个未知数 的系数,使其绝对值相等;
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7
解得 t = 0.5 所以这个方程组的解是
t 0.5 u
(2)
a 2b 3 a 3b 4
① ②
解:②-①, 得 b=1
把b= 1 代入①得 a+2×1=3
解得
a= 1
a 1 所以这个方程组的解是 b 1
例1、用加减法解二元一次方程组
利用相反数相加消去一个未知数
① 左边 +左边 ② = ①右边 + ② 右边
5x+6y +(5x-6y)=81 + 9
10x=90 把x=9代入① y=6
X=9,
{5x +6y =81 ① 5x -6y =9 ②
再视察上面方程组中方程(1)与方程(2),又可以发 现什么?
利用相同数相减消去一个未知数
(2).把变换系数后的两个方程的两边分别相加或相 减,消去一个未知数,得一元一次方程;
(3).解这个一元一次方程,求得一个未知数的值 ;
(4).把所求的这个未知的值代入方程组中较为简 便的一个方程,求出另一个未知数,从而得到方 程的解 .
1、 用加减法解下列方程时,你认为先消哪个未知

数学沪科版七年级(上册)3.3二元一次方程组(共21张PPT)

数学沪科版七年级(上册)3.3二元一次方程组(共21张PPT)
3.3 二元一次方程组(1)
一切问题都可以转化为
数学问题,一切数学问题都
可以转化为代数问题,而一
切代数问题又都可以转化为
方程问题。因此,一旦掌握
了方程问题,一切问题便迎
刃而解。
法国著名的数学家·笛卡尔
—笛卡尔
动手操作 画一个周长为20cm的长方形,并标出它的
长与宽各是多少.
3.5cm 6.5cm
(4) 6x- 1 y=1;是; 2
(5) xy+y=7 ; 不是,最高项的次数为2;
1
(6) 2x+ y
=3 ;不是,方程左边的式子不是整式.
问题5:你能仿照一元一次方程的解给二元一次 方程的解下个定义吗?
使二元一次方程左右两边相等的两个未知数的 值,叫做二元一次方程的解。
问题6:如何解二元一次方程?以x+y=10为例说明.
y
3z
5
不是
x 2
(3)
y
1

(4)
x
1 y
2
不是
x y 0
问题10:什么叫二元一次方程组的解呢?
使二元一次方程组中每个方程都成立的两 个未知数的值,叫做二元一次方程组的解。 这 个解就是它们的公共解。
练一练
的1解.判?断下列各对值是不是二元一次方程组2xx1
y

y
7
x 1
x 2
x 6 y 4 是x+y=10的一个yc解m。
xcm
问题7:你能说说一元一次方程和二元一次方程的 区别与联系吗?
区别
一元一次方程 含有一个未知
数,有唯一解
二元一次方程 含有两个未知
数,有无数个解
联系

沪科版七年级数学上册3.3 第1课时 二元一次方程与二元一次方程组

沪科版七年级数学上册3.3 第1课时 二元一次方程与二元一次方程组
有两个一次方程组成的含有两个未知数的方程组 叫做二元一次方程组.
注意
1.二元一次方程是整式方程;所含未知数有2个, 所含未知数项的最高次数是“1”,这里要特别 注意项的次数. 2.二元一次方程组中,两个方程都是一次的, 方程组中含有两个未知数.
练一练
请问下列方程组是二元一次方程组吗? 三个未知数
例2 下列方程组是二元一次方程组的是( C)
A.
xy 1, x y
1
B.
x x
z y
1, 1
C.
x 2
y 2
1,
x y 1
x y 1,
D.
1 x
y
1
紧扣相关概念
二 列二元一次方程组
解:设鸡有x只,兔有y只.根据头数、脚数 可得二元一次方程组:
x y 35, 2x 4y 94.
归纳总结
x-y=2
x+y=45
x+1=2(y-1) 2x+y=60
上面所列方程各含有几个未知数?
含有未知数的项的次数是多少?
2个未知数 次数是1
定义:
含有两个未知数,并且所含未知数的项的次数 都是1的方程叫做二元一次方程.
比一比
都是含未知数的等式方程
x + 15 = 60
x + y = 45.
只含有1个未知(元), 未知数的次数为1;
方法归纳:根据实际情境列二元一次方程组, 一般要根据题目中的数量关系,选择两个未知 数,将题中给出的数量关系表示成含有两个未 知数的等式.
练习:设适当的未知数,列二元一次方程组. 1.植树节这天有20位同学共种了52棵树苗,其中 男生每人种3棵,女生每人种2棵,请问男生、女 生各有多少人?
解:设男生x人,女生y人 根据题意可得方程组为:

上海沪科版初中数学七年级上册3.3 第2课时 用代入法解二元一次方程组ppt课件

上海沪科版初中数学七年级上册3.3 第2课时 用代入法解二元一次方程组ppt课件

2x+y 40 40 40 … 40 … 40
不难发现x=18,y=4既是 x+y=22的解,也是2x+y=40
的解,也就是说它是这两个方程的公共解,我们把
它们叫做方程组 x+y=22 的解. 2x+y=40
x=18 记作:
y=4
使二元一次方程组中每个方程都成立的两个未
知数的值,叫做二元一次方程组的解.
x y 22; 2x y 40.
昨天,我们8个 人去红山公园玩, 买门票花了34元
每张成人票 5 元, 每张儿童票 3 元,
问题2:他们到底去了几个 成人,几个儿童呢? 设他们中有x个成人,y个 儿童.根据题意得:
x y 8; 5x 3y 34.
讲授新课
一 二元一次方程(组)的解
合作探究
有哪些值满足方程x+y=22且符合问题的实际意义?
x 0 1 2 … 18 … 22
y 22 21 20 … 4 … 0
x+y 22 22 22 … 22 … 22
x+y=22
使二元一次方程左右两边相等的一组未知数的值,
叫做这个二元一次方程的一个解
x=2
通常记作: y=20
······
若不考虑实际意义你还能再找出几个方程的解吗?
x y 20, ① 2x y 35 ②
由①得
y=20-x . ③
将③代入②,得 2x+20-x=35 .
解得
x=15.

x=15代入③得y=5.则这个方程组的解是xy
15, 5
当堂练习
x y 4
1.二元一次方程组
x
y
2
的解是(

数学沪科七年级上册3.3 二元一次方程组及其解法【课件】 (共22张PPT)

数学沪科七年级上册3.3 二元一次方程组及其解法【课件】 (共22张PPT)

.
探究新知
例1
解方程组:൝43������������
− +
������ = 5 2������ = 11
① ②
解:由①得,y=3x-5. ③
把③代入②得,4x+2(3x-5)=11.
解得,������
=
21 .
10
把������
=
2110代入③得,������
=
3
×
21 10

5
解得,������ = 31
第3章 ·一次方程与方程组
3.3 二元一次方程组及其解法
情境引入
问题:你能根据题意列出方程吗? 小丽母亲的生日到了,小丽打算买一束康乃馨送给母亲,这束康乃馨由红色和粉 色康乃馨组成. 问题一:小丽买了红色和粉色康乃馨共16枝,若设红色康乃馨有x枝,粉色康乃 馨有y枝,那么可得方程__������_+___������__=__���_������_���__. 问题二:小丽一共花了10元钱,已知红色康乃馨0.7元一枝,粉色康乃馨0.5元一 枝,若设红色康乃馨有x枝,粉色康乃馨有y枝,那么可得方程_������_���_��� _+__���_������_���_=__���_���_������_���_���.
解:设鸡有x只,兔有y只,根据题意可得ቊ2������������
+ +
4y���=��� =3594.
探究新知 2. 二元一次方程组的有关概念. 问题:这个方程组有什么特点?
这个方程组中含有两个未知数,且含未知数的项的次数都是一次. 二元一次方程组的定义: 方程组中含有两个未知数,且含未知数的项的次数都是一次的方程组,叫做 二元一次方程组.

沪科版七年级上册二元一次方程组及其解法课件

沪科版七年级上册二元一次方程组及其解法课件
这个二元一次方程组的解.
例如
x = 5, 就是二元一次方程组
y = 3.
x +Y= 8, 的解.
5X+3y = 34.
随堂练习
1、下面4组数值中,哪些是二元一次方程 2x+y=10的解?
(1)
x y
= =
-2 6 (2)
x y
= =
3 4
(3)
x y
= =
4(4) 3
x y
= =
6 -2
2、二元一次方程组
想一想:上面我们所列方程各含有几个未知数?含未 知数的次数是多少?与一元一次方程比较有什么不 同?
X-Y=2 X+1=2(Y-1) . X+Y=100 X+2Y=160. X+Y=8 5X+3Y=34
➢的含方有程两~叫~~个~做~~未二~~知~元~~数~一,并次且方所程含.未知数的**项****的****次****数****都****是****1*
你还能找到其他 x 、 y 值合适方程x + y = 8吗? 这样的X和Y组合多吗?
(2)X = 5,y = 3合适方程5x + 3y = 34吗? x = 2,y = 8呢?这样的X和Y组合多吗? (3)你能找到一组 x , y 的值同时合适方程
X+Y=8和5X+3Y=34吗? X=5,Y=3
➢ 合适一个二元一次方程的一组未知数的
值,叫做这个二元一次方程的一个解.
x = 6,
如X=6,Y=2是方程X+Y=8的一个解,记作
y = 2.
同样,
x = 5,
也是方程X+Y=8的一个解 .
y=3
满足方程x + y = 8的值还有那些什么?

沪科版数学七年级上册二元一次方程组及其解法课件

沪科版数学七年级上册二元一次方程组及其解法课件

有相同的解,求a和b的值.
解:由① ④得
5x 2 y 24 2x 5 y 18
解得
x y
4 2

x y
4 2
代入②
③得
4a 2b 14 4a 2b 10
解得
a b
3 1
【触类旁通】
方程组
3x 5y 2x 3y
m2 m
① ②
的解也是方
程 x y 8 的解,求m的值.
解:①×2 得:6x 10y 2m 4 ③
x y 60 5x y 100
① ②
② ① 得 4x 40 x 10
把 x 10 代入 ① 得 y 50
x 10
y
50
【练习】
5x y 2x y 125 ①
0.1
0.2
解方程组: x y 4
23 3

分析:方程②容易变形,本题的难点在于方程①如何化
简,方程①带有分母,而且分母还是小数,如何正确地 去分母呢?
15× x 2 + 15×2y 3 =2×15
3
5
5(x 2)+ (3 2y 3)=30
3x 9 2y 10 42
5x 10 6y 9 30
3x 2y 23 ③
5x 6y 49 ④
x
x
2
3 2
y5 7 3
2y 3 2
① ②
3
5
3x 2y 23 ③
5x 6y 49 ④
1.甲、乙两地相距4km,以各自的速度同时出发.如果 同向而行,甲2h追上乙;如果相向而行,两人0.5h后 相遇.试问两人的速度各是多少? 2.甲、乙两人都从A地到B地,甲步行,乙骑自行车, 如果甲先走6千米乙再动身,则乙走34小时后恰好与 甲同时到达B地;如果甲先走1小时,那么乙用12小时 可追上甲,求两人的速度及A,B两地间的距离.

上海沪科版初中数学七年级上册3.3 第3课时 用加减法解二元一次方程组2

上海沪科版初中数学七年级上册3.3 第3课时  用加减法解二元一次方程组2

上海沪科版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!上海沪科版初中数学和你一起共同进步学业有成!3.3 二元一次方程组及其解法第3课时 用加减法二元一次方程组【知识目标】使学生正确掌握用加减法解二元一次方程组的方法。

【情感目标】使学生理解加减消元法的基本思想所体现的“化未知为已知”的化归思想方法。

【教学重点】掌握用加减消元法解二元一次方程组的方法【教学难点】明确用加减法解元一次方程组的关键是必须使用权两个方程中同一个未知数的系数的绝对值相等【教学过程】 一、想一想怎样解下面的二元一次方程组呢? 3x+5y=21 ① 2x -5y= -11②(分四人小组讨论,教师巡回听讲,然后请三位同学到黑板上板演) 三位同学那位的解法简单呢? 我们发现此题的解题方法有三种,1、把②式转化为 x=形式然后代入①,就是我们已经熟悉的代入消元法了。

2115 y 2、把②式转化为5y=2x+11,然后把5y 看成是一个整体,就可以直接代入①5y-5y 3、因为5y 和-5y 是互为相反数,那么我们考虑是否可以把①+② 我们知道两个方程相加,可以得到 5x=10x=2将x=2代入①,得 6+5y=21y=3所以方程组的解是 x=2y=3 (注意方程组的解要用大括号括起来)下面我们能否用类似的方法解决下面问题呢?例3解方程组 2x-5y=7 ①2x+3y= -1 ②解:②-①,得 8y= - 8y= - 1将y= - 1代入①,得2x+5=7x=1所以原方程组是 x=1y= -1例4解方程组 2x+3y=12 ①3x+4y=17 ②解:①×3, 得6x+9y=36 ③②×2,得6x+8y==34 ④③-④,得y=2将y=2代入①,得x=3所以原方程组的解是 x=3y=2二、议一议从上面的问题中我们可以得到什么启发呢?我们可以得到解方程组的基本思路?解方程的主要步骤有哪些?1、对某些二元一次方程组可通过方程两边分别相加(减),消去其中一个未知数,得到一个一元一次方程,从而求出它的解,这就是本节课解方程组的基本思路。

沪科版七年级数学上册《3.3二元一次方程及其解法(四)》课件

沪科版七年级数学上册《3.3二元一次方程及其解法(四)》课件
1.用代入法、加减法解方程组的基本思路、 具体步骤各是什么?
2.用代入法、加减法解题时各注意些什么?
3.解方程组 2x-3y=5 2x-2y=-2
4x-2y=39 3x-4y=18
例4 解方程组 2(x-150)=5(3y+50 ① 10%x+6%y=8.5% ×800 ②
想一想:此题的两个方程有什么特点:
2.若 m n 5 2m 3n 52 0
求 (m n)2
我认为人生最美好的主旨和人类生活最 幸福的结果,无过于学习了。
——— 巴尔扎克
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午12时53分21.11.812:53November 8, 2021
• 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观 察是思考和识记之母。”2021年11月8日星期一12时53分44秒12:53:448 November 2021
特点: 有括号、且①式x,y在等式的两
边、有百分号、式子比较复杂。
想一想:此题的解题方法有哪些困难:
应该怎样解决这些困难? (1)方程①要去括号、移项。
(2)方程②要先化百分数为分数,再去 分母。
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.
2、化简过程不写在题目中,在草稿纸上写。 (化简包括:去分母、去括号、移项、合并 同类型等。) 3、各个系数要化简成整数最好。

沪科版七年级上册数学3.二元一次方程组的解法——代入消元法课件

沪科版七年级上册数学3.二元一次方程组的解法——代入消元法课件
当x=y+2时,求x+y=4中未知数y的值?X的值呢?
(把x=y+2代入即可) 思考3:
当x-y=2时,求x+y=4中未知数y的值?X的值呢?
(由x-y=2得x=y+2,把x=y+2代入即可)
思考4:
如何求二元一次方程组
x +y = 45 2x + y = 60
① ②
中x,y的值?
解方程组 x +y = 45 ①(Leabharlann )3x 2 y 10,(4)
2x y 0;
3m 4n 7, 9m 10n 23 0;
x y 35,
(5) 2x 4 y 94;
通过本节课的研究,学习,你有哪些收获? 一种思想: 消 元 一种方法: 代入法 (变、代、求、写)
课下思考2:是否有其它方法到达消元的目的?
1.使方程组2a+3b =4和3a-b=-5同时成立的a,b的值分
课堂思考2: 如何检验二元一次方程组解的是否正确?
1.方程x+4y=15用含y的代数式表示x为( C )
A.x=4y+15
B.x=-15+4y
C. x=15-4y D.x=-4y-15
2.将y=-2x-4代入3x-y=5可得( B )
A.3x-(2x+4)=5 B. 3x-(-2x-4)=5
C.3x+2x-4=5
§3.3.2 二元一次方程组
及其解法
(第2课时 代入消元法)
问题1:你认识它吗?2xxyy4650
① ②
问题2:如何求得这个二元一次方程 组的解呢?
原题: 当a=4时,求ax-2=6中未知数x的值?
(把a=4代入即可)

沪科版七年级上册数学第三章3.3二元一次方程组的解法(2-3)(课件)

沪科版七年级上册数学第三章3.3二元一次方程组的解法(2-3)(课件)

3.用加减消元法解方程组 ?2 y ? 3x ? 1

??3x ? 5y ? ? 4 ②
①-②得( )
A.2y=1 B.5y=4
C.7y=5 D.-3y=-3
4.用加减消元法解方程组
?2x? 3y ? 5 ①
? ?
x
?
3y
?
7

正确的方法是( )
A.①+②得2x=5
B.①+②得3x=12
C.①+②得3x+7=5
把x=5代入①,得 3×5+2y=23
解这个方程得
y=4
像这种把方 程两边分别加 减,消去一个 未知数的方法 叫加减消元法, 简称加减法。
所以 X=5 Y=4
一、解下列方程组:
x+y=45

1.
x+2y=60 ②
7m+3n=11 ① 2.
2m–3n=7 ②
3.
? ? ?
x x
? ?
2y 3y
? ?
(2)5瓶苹果汁的售价 + 2瓶橙汁的售价 =33
解:设每瓶苹果汁是 x元,每瓶橙汁售价是 y元. 3x+2y=23
列方程为 5x+2y=33
引导观察 只要将方程组的两边分别相减,就可化二元
为一元,从而也能达到消元的目的。
解方程组{ 3x+2y=23

5x+2y=33

解: ②- ①,得 2x=10 x=5
D.先将②变为x-3y=7③,再①-③得x=-2
5.解二元一次方程组
X+2z=9 ①
(1)
3x-z=-1 ②
x+4y=2 ①

上海沪科版初中数学七年级上册3.3 第2课时 用代入法解二元一次方程组

上海沪科版初中数学七年级上册3.3 第2课时  用代入法解二元一次方程组
(1)取一根绳子测量教室的长度,若把绳子折成 5 等份来测量,绳子多 1 米;若把绳子 折成 4 等份来测量,绳子多 3 米,问绳子和教室各有多长?
(2)为了庆祝中国足球队勇夺亚州杯亚军,曙光体育器材厂赠送一批足球给希望中 学足球队.若足球队每人领一个则少 6 个球;若每两人领一个则余 6 个球.问这批足球 共有多少个?小明领到足球后十分高兴,就仔细研究起足球上的黑白块,结果发现,黑 块是五边形,白块是六边形,黑白相间在球体上(如图 8-2-1),黑块共 12 块,问白块 有几块?
古希腊著名数学家欧几里得是欧几里得几何学的创始人,现在中、小学里学的几何
TB:小初高题库
上海沪科版初中数学
学,基本上还是欧几里得几何学体系.下面这道题还与他有关呢! 驴子和骡子一同走,它们负担着不同袋数的货物,但每袋货物都是一样重的.驴子抱
怨包担太重.“你抱怨啥呢?”骡子说,“如果你给我一袋,那我所负担的就是你的两倍, 如果我给你一袋,我们的负担恰恰相等.”驴子和骡子各负担着几袋货物? 请你也来解解大数学家的这道题.
3x ay 16,
x 7,
9.(创新题)如果关于
x,y
的二元一次方程组
2x
by
15
的解是
y
1.
,求关于
x,y 的方程组的解:
3(x y) a(x y) 16, (1) 2(x y) b(x y) 15;
(2)
(3x(x222y)y) b3
a 3
y
y
16, 15.
x 2 y 0, 10.(1)解方程组 3x 2 y 8;
相信自己,就能走向成功的第一步 教师不光要传授知识,还要告诉学生学会生活。数学思维
可以让他们更理性地看待人生
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 二元一次方程组及其解法1.二元一次方程组 (1)二元一次方程含有两个未知数的一次方程叫做二元一次方程,如5x +3y =34就是二元一次方程. 注意:“一次”指的是含未知数的项的次数,而不是指某个未知数的次数.不要把2xy+2=4,2x +y =5误当成二元一次方程,实际上2xy +2=4含未知数的项的次数是2,而2x +y =5中2x不是整式,我们将会在后面的学习中遇到它.(2)二元一次方程组①联立在一起的几个方程,称为方程组.②由两个二元一次方程联立起来得到的方程组叫做二元一次方程组.实际上,在二元一次方程组中,两个方程中可以有方程是一元一次方程,方程的个数也可以超过两个,同一个字母必须代表同一数值,这样才能组合在一起.如下列方程组都是二元一次方程组:⎩⎪⎨⎪⎧ x +5y =1,y -3=0,⎩⎪⎨⎪⎧x =2,y =-3,⎩⎪⎨⎪⎧x -y =1,x +3y =9,2x -y =4.【例1-1】 下列方程中,是二元一次方程的个数是( ). ①2x +3y =5;②xy =1;③3x -y2=1;④2⎝⎛⎭⎫m -23+1=14m -2;⑤1-2m3=n ; ⑥1-23m =n ;⑦y =2x -3;⑧s =12vt.A .1B .2C .3D .4解析:题中①③⑤⑦都含有两个未知数,并且含未知数的项的次数是1,因此它们4个是二元一次方程,②含未知数的项的次数是2,④是一元一次方程,⑥不是整式方程,⑧含有3个未知数,因此它们都不是二元一次方程,故应选D.答案:D【例1-2】 下列方程组中,不是二元一次方程组的是( ).A .⎩⎪⎨⎪⎧ x =2y +1,3x -4z =6B .⎩⎪⎨⎪⎧x -y =1,x +y =4C .⎩⎪⎨⎪⎧x +y =5,x =5D .⎩⎨⎧x 2+y2=2y ,y =23x解析:本题应根据二元一次方程组定义来判断,选项A 中每一个方程虽然都是一次方程,但是未知数的个数有三个,故否定A ;选项B ,D 只含有两个未知数且都是一次方程,符合二元一次方程组的定义,故都是二元一次方程组;选项C 中的第二个方程虽然是一元一次方程,但方程组中的第一个方程是二元一次方程,故它们也能组成二元一次方程组.所以不是二元一次方程组的是A.答案:A2.二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.如⎩⎪⎨⎪⎧ x =12,y =5既是方程x +y =17的解又是方程5x +3y =75的解,这时我们就说⎩⎪⎨⎪⎧x =12,y =5是二元一次方程组⎩⎪⎨⎪⎧x +y =17,5x +3y =75的解.谈重点 理解二元一次方程组的解(1)二元一次方程组的解实质上是组成方程组的每个二元一次方程的公共解,也就是说,方程组的解一定是组成此方程组的每个方程的解,而组成此方程组的每个方程的解却不一定是方程组的解.(2)二元一次方程的解是一对数值,必须用大括号合在一起.【例2】 二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解是( ).A.⎩⎪⎨⎪⎧x =1y =6 B.⎩⎪⎨⎪⎧x =-1y =4 C.⎩⎪⎨⎪⎧ x =-3y =2D.⎩⎪⎨⎪⎧x =3y =2 解析:选项A ,将⎩⎪⎨⎪⎧x =1,y =6代入方程①,左边=2×1+6=8,右边=2,左边≠右边,所以⎩⎪⎨⎪⎧ x =1,y =6不是方程组的解;选项B ,将⎩⎪⎨⎪⎧x =-1,y =4代入方程①得,左边=2×(-1)+6=4,右边=4,左边=右边,所以⎩⎪⎨⎪⎧ x =-1,y =4是方程①的解,将⎩⎪⎨⎪⎧x =-1,y =4代入方程②得,左边=-(-1)+4=5,右边=5,左边=右边,所以⎩⎪⎨⎪⎧x =-1,y =4是方程②的解,所以⎩⎪⎨⎪⎧ x =-1,y =4是二元一次方程组⎩⎪⎨⎪⎧2x +y =2,①-x +y =5②的解;按照以上方法对选项C ,D 加以判断,都不是方程组的解,故应选B.答案:B3.代入消元法 (1)消元思想二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程.这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.(2)代入消元法的概念从二元一次方程组的一个方程中求出某一个未知数的表达式(即将一个未知数用含另一未知数的式子表示出来),再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.解技巧 用代入法解二元一次方程组(1)用代入法解方程组一般将系数较小的方程变形,且用系数较大的未知数表示系数较小的未知数.(2)当方程组中有一个方程的某一个未知数的系数绝对值是1或有一个方程的常数项是0时,一般用代入法来解.(3)用代入消元法解二元一次方程组的步骤①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式;②将y =ax +b (或x =ay +b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入y =ax +b (或x =ay +b )中,求y (或x )的值; ⑤用“{”联立两个未知数的值,得到方程组的解.谈重点 运用代入法需注意的问题运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.【例3-1】 已知方程x -2y =6,用x 表示y ,则y =__________;用y 表示x ,则x =__________.解析:(1)因为x -2y =6,移项,得x -6=2y ,两边都除以2,得12x -3=y ,即y =12x -3;(2)因为x -2y =6,移项,得x =6+2y .答案:12x -3 6+2y【例3-2】 解方程组⎩⎪⎨⎪⎧3x -5y =6,①x +4y =-15.②分析:观察方程组中的每个方程,发现第二个方程中的x 的系数为1,所以选择将其变形,用含y 的代数式表示x ,得x =-15-4y ,然后把x =-15-4y 代入第一个方程,求出y 的值,再把y 的值代入变形后的方程x =-15-4y 中,求出x 的值.解:由②,得x =-15-4y ,③把③代入①,得3(-15-4y )-5y =6, 解得y =-3,把y =-3代入③,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-3.4.加减消元法(1)加减消元法的概念两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,消去一个未知数的方法,叫做加减消元法,简称加减法.(2)用加减法解二元一次方程组的一般步骤用加减消元法解二元一次方程组的基本思路仍然是“消元”.第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.析规律 解二元一次方程组的方法(1)当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便. (2)通过两个方程相减消去未知数比通过两个方程相加消去未知数更易出错,所以一般是将两个方程中同一个未知数的系数化成互为相反数,然后相加消去一个未知数.【例4】 解方程组:⎩⎪⎨⎪⎧3x +2y =5,①2x -y =8.②分析:经观察发现,①和②中y 的系数是倍数关系,若将方程②×2,可使两个方程中y 的系数互为相反数,再将两方程相加,便可消去y ,只剩关于x 的方程,问题便很容易解决了.解:将方程②×2,得 4x -2y =16,③ ③+①,得 7x =21,解得x =3.把x =3代入②,得 2×3-y =8, y =-2.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-2.5.解二元一次方程组的策略解二元一次方程组的关键就在于将“二元”转化为“一元”,如何消元,要根据系数特点合理选择使用代入消元法和加减消元法.解二元一次方程组,关键要在根本上把握方程组的系数特点,若遇到不能直接看出系数特点的,应该先化简,化简后系数的特点比较明显.对于不能直接运用消元法的方程组,应通过观察,找到一个系数较小的,利用等式性质,通过扩大相应倍数变成具有相同系数或互为相反数的系数,然后再使用加减法来解决问题.(1)对于一般形式的二元一次方程组,用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程;④方程组中某一未知数的系数成整数倍,选择小系数方程.(2)对于一般形式的二元一次方程组,用加减消元法求解关键是选择消什么元,选取的恰当往往会使计算简单,而且不易出错.选取的原则是:①选择系数是1或-1的未知数;②若未知数系数都不是1或-1,选系数的绝对值较小的未知数;③选方程组中系数成整数倍的未知数.【例5-1】 解方程组:⎩⎪⎨⎪⎧3(x -1)=y +5,5(y -1)=3(x +5).分析:通过观察,发现方程组比较复杂,因此应先化简,方程组中的两个方程化为⎩⎪⎨⎪⎧3x -y =8,5y -3x =20,通过观察决定使用加减法来解.解二元一次方程组往往需要对原方程组变形,在移项时要特别注意符号的改变.解:原方程组化简,得 ⎩⎪⎨⎪⎧3x -y =8,①5y -3x =20.② ①+②,得4y =28,y =7.把y =7代入①得3x -7=8,解得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =7.【例5-2】 解方程组:⎩⎪⎨⎪⎧53x +47y =112,①47x +53y =88.②分析:本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x ,y 的系数都是100、常数项是200的方程100x +100y =200,两边都除以100,得x +y =2,而此方程x +y =2与方程组中的①和②都同解.这样,用这个方程与原方程组中任何一个方程组成方程组,此时求解就使问题变得比较简单了.解:①+②,得100x +100y =200, 化简,得x +y =2, ③于是原方程变为⎩⎪⎨⎪⎧53x +47y =112,①x +y =2,③由③,得x =2-y , ④把④代入①,得53(2-y )+47y =112,106-53y +47y =112,-6y =6,所以y =-1. 把y =-1代入④,得x =3,所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =-1.6.构造二元一次方程组解题 常见的考查方式有:(1)已知二元一次方程组的解,求方程中的待定系数的值.我们知道使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.解决此类问题的方法通常是把方程组的解代入原方程,即可通过变形求出未知系数的值.例如⎩⎪⎨⎪⎧ x =1,y =1是方程组⎩⎪⎨⎪⎧ x +y =a ,x -y =b 的解,把⎩⎪⎨⎪⎧x =1,y =1代入方程组可得a =2,b =0.(2)学习了二元一次方程组后,同学们应从前面所学的内容中挖掘涉及二元一次方程组的隐含条件,构造二元一次方程组解决许多问题,从而达到既沟通了知识之间的内在联系,又提高了同学们分析问题和解决问题的能力的目的.如同类项的概念等,解答此类题目的关键是真正理解概念,利用概念中的相关词语列出关系式.(3)同解问题,两个方程组的解相同,其实就是说这两个方程组的解是这两个方程组中四个二元一次方程的公共解.解技巧 用整体代入法解二元一次方程组 当我们把二元一次方程组的解代入原方程后,通常得到关于未知系数的新的方程组,但有时可以不解方程组,整体代入求解.【例6-1】 已知2a y +3b 3x 和-3a 2x b 8-2y 是同类项,则x =__________,y =__________.解析:根据同类项的定义可知,若2a y +3b 3x 和-3a 2x b 8-2y 是同类项,则必有y +3=2x ,3x=8-2y ,将这两个二元一次方程合在一起组成方程组⎩⎪⎨⎪⎧2x =y +3,3x =8-2y ,即可求出x =2,y =1. 答案:2 1【例6-2】 已知⎩⎪⎨⎪⎧ x =2,y =1是方程组⎩⎪⎨⎪⎧2x +(m -1)y =2,nx +y =1的解,则m +n 的值是__________.解析:因为⎩⎪⎨⎪⎧ x =2,y =1是方程组⎩⎪⎨⎪⎧2x +(m -1)y =2,①的解,nx +y =1②所以⎩⎪⎨⎪⎧x =2,y =1同时满足方程①和方程②,将⎩⎪⎨⎪⎧x =2,y =1分别代入方程①和方程②, 可得⎩⎪⎨⎪⎧4+m -1=2,③2n +1=1.④由③和④可分别求出m ,n 的值为⎩⎪⎨⎪⎧m =-1,n =0.所以m +n =-1+0=-1.答案:-1【例6-3】 已知方程组⎩⎪⎨⎪⎧ ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b 的值.解:解方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1得⎩⎪⎨⎪⎧ x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1 代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解这个方程组,得⎩⎪⎨⎪⎧a =52,b =1.7.求二元一次方程的正整数解任何一个二元一次方程都有无数组解,但是二元一次方程的整数解是有限的. 一般应用二元一次方程解决实际问题时所列出的二元一次方程的解应当是有限的.因为我们必须保证其解有意义.析规律 注重实际问题中的隐含条件生活中的实际问题常隐含着一个条件:(1)数量的取值为正整数;(2)最终的答案可能不止一个,只要符合条件即可.【例7】 甲种书每本3元,乙种书每本5元,38元可买两种书各几本? 分析:先根据题意列出二元一次方程,再求其正整数解. 解:设甲种书买x 本,乙种书买y 本,根据题意得 3x +5y =38(x ,y 都是正整数).用含y 的代数式表示x 为x =38-5y3,当y =1时,x =11; 当y =4时,x =6; 当y =7时,x =1.原方程所有的正整数解为 ⎩⎪⎨⎪⎧ x =1,y =7,⎩⎪⎨⎪⎧ x =6,y =4,⎩⎪⎨⎪⎧x =11,y =1. 答:甲、乙两种书可分别买1本和7本或6本和4本或11本和1本. 8.列方程组解决实际问题(1)解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是一个或几个,正确的列出一个(或几个)方程,再组成方程组.(2)列方程组解应用题,常遇到隐含的等量关系,如:和、差、倍、分问题;行程问题;调配问题;工程问题;浓度问题;形积问题等等.我们在列方程(组)解应用题时,要注意充分挖掘这些关系.【例8】 某高校共有5个大餐厅和2个小餐厅,经过测试:同时开放1个大餐厅、2个小餐厅,可供1 680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2 280名学生就餐.求1个大餐厅、1个小餐厅分别可供多少名学生就餐?解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,则根据题意,得⎩⎪⎨⎪⎧x +2y =1 680,2x +y =2 280. 解这个方程组,得⎩⎪⎨⎪⎧x =960,y =360.答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.。

相关文档
最新文档