磁共振血管成像技术ppt课件
合集下载
磁共振特殊成像技术ppt课件

血流的信号比较复杂,与周围静止组织相比,血流可表现为高信号、等信号或低信号,取决于血流形式、血流方向、血流速度、脉冲序列及其成像参数等。
血管内血液流体因质子群发生移动,影响MR信号强弱变化,与周围固体组织相比显示不同的MR信号特征。 层流—血流质点与血管长轴呈平行运动,靠血管壁近质点流动速度慢,越向中心流速越快。层流血液使信号减弱。 湍流(涡流)—血液在血管内不沿血管直线运动,向其他方向不规则迅速流动,引起质子群去相位移动,产生流空效应使血管呈低信号。血液通过狭窄处后在血流两侧形成旋涡状运动。
基本原理: 使用强度相同、持续时间相等的极性相反的两个梯度(流动编码梯度) 静止组织,净相位改变为零,无信号 流动组织,由于相位漂移,产生一个净相位,有信号 减影技术
二、相位对比MRA (Phase contrast,PC)
PC序列及作用 2D-PC 时间短:空间分辨力低,常用于3D-PC的流速预测,可反应血流的流速及方向,进行血流方向和流速定量分析
TOF(Time of Flight)时空飞逝法 通过血液流入流动相关增强效应,静止组织信号弱,相对流动血液信号对比增强而获得 TOF MRA的对比主要依赖于血管进入的角度一般要求扫描层面垂直于血管走向
2DTOF ─ 是逐层的进行激励和图像数据采集,然后将整个感兴趣区以一连续多层方式进行图像数据重建和处理的方法。 2D TOF MRA的层厚限制了投影影像的空间分辨率,这种血管成像不适合细小血管的显示。为了保证一条血管在不同层面始终具有流入效应,不会出现血管衔接不吻合,选择扫描参数时,必须采用最短的TR、TE,及最小的采集次数,以缩短扫描时间。
2D-TOF 因层面较厚、空间分辨率差,对弯曲血管亦产生信号丢失, 3D-TOF成像面薄,空间分辨率高,对弯曲血管信号丢失少,更适合小血管、弯曲血管检查。 相同容积2D-TOF较3D-TOF 成像时间短
血管内血液流体因质子群发生移动,影响MR信号强弱变化,与周围固体组织相比显示不同的MR信号特征。 层流—血流质点与血管长轴呈平行运动,靠血管壁近质点流动速度慢,越向中心流速越快。层流血液使信号减弱。 湍流(涡流)—血液在血管内不沿血管直线运动,向其他方向不规则迅速流动,引起质子群去相位移动,产生流空效应使血管呈低信号。血液通过狭窄处后在血流两侧形成旋涡状运动。
基本原理: 使用强度相同、持续时间相等的极性相反的两个梯度(流动编码梯度) 静止组织,净相位改变为零,无信号 流动组织,由于相位漂移,产生一个净相位,有信号 减影技术
二、相位对比MRA (Phase contrast,PC)
PC序列及作用 2D-PC 时间短:空间分辨力低,常用于3D-PC的流速预测,可反应血流的流速及方向,进行血流方向和流速定量分析
TOF(Time of Flight)时空飞逝法 通过血液流入流动相关增强效应,静止组织信号弱,相对流动血液信号对比增强而获得 TOF MRA的对比主要依赖于血管进入的角度一般要求扫描层面垂直于血管走向
2DTOF ─ 是逐层的进行激励和图像数据采集,然后将整个感兴趣区以一连续多层方式进行图像数据重建和处理的方法。 2D TOF MRA的层厚限制了投影影像的空间分辨率,这种血管成像不适合细小血管的显示。为了保证一条血管在不同层面始终具有流入效应,不会出现血管衔接不吻合,选择扫描参数时,必须采用最短的TR、TE,及最小的采集次数,以缩短扫描时间。
2D-TOF 因层面较厚、空间分辨率差,对弯曲血管亦产生信号丢失, 3D-TOF成像面薄,空间分辨率高,对弯曲血管信号丢失少,更适合小血管、弯曲血管检查。 相同容积2D-TOF较3D-TOF 成像时间短
磁共振成像基本知识PPT课件

波谱成像(Spectroscopic Imaging):通过分析组 织中的化学成分来提供分子层面的信息,有助于肿瘤 和代谢性疾病的诊断。
靶向成像(Targeted Imaging):通过使用特异性 标记的分子探针,对特定分子或细胞进行成像,为个 性化医疗和精准诊断提供了可能。
04 磁共振成像应用
医学诊断
成本与普及
磁共振成像设备成本较高,限制了其 在基层医疗机构的普及。未来需要降 低设备成本,提高可及性。
磁敏感加权成像(Susceptibility Weighted Imaging, SWI):利用组织磁敏感性 的差异进行成像,能够显示脑部微出血、铁沉积等病理变化。
分子成像技术
化学交换饱和转移成像(Chemical Exchange Saturation Transfer, CEST):利用特定频率的射频 脉冲来检测组织中特定化学物质的变化,对肿瘤和炎 症等疾病的诊断具有潜在价值。
。
快速扫描技术
研究更快的扫描序列和算法,缩短 成像时间,提高检查效率,减轻患 者长时间处于扫描腔内的压力。
多模态成像融合
结合磁共振成像与其他影像技术( 如CT、PET等),实现多模态成像 融合,提供更全面的医学影像信息 。
新应用活动和功能连接,深入 了解神经系统和认知科学领域。
磁共振成像的优势与局限性
高软组织分辨率
MRI对软组织结构有高分辨率,能够清晰显示脑、关节、肌 肉等组织的细微结构。
无骨伪影干扰
MRI不受骨骼的影响,能够清晰显示周围软组织的结构。
磁共振成像的优势与局限性
01
02
03
检查时间长
由于MRI需要采集大量数 据,检查时间相对较长。
金属植入物限制
磁共振血管成像MRAppt课件

颈内动脉
大脑中动脉
大脑前动脉 后交通动脉
颈内动脉1 颈外动脉2 颈内静脉4
大脑前动脉6 大脑中动脉7 大脑后动脉8 额叶前内侧支9 横窦11 乙状窦12
上矢状窦13 大脑大静脉14 基底动脉15 距状沟动脉21 椎动脉22 中央前沟动脉23
颈内动脉1
后交通动脉3 大脑前动脉6 大脑中动脉7 大脑后动脉8 额叶前内侧支9 小脑上动脉10 横窦11 上矢状窦13 基底动脉15 直窦16
MRA在脑血管中的应用
颈内动脉
• 颈内动脉起自颈总动脉,经颈动脉管入颅,向前 穿海绵窦至视交叉外侧。主要分支有: ①眼动脉, 发自颈内动脉,经视神经管入眶。 ②后交通动脉, 向后行,与大脑后动脉吻合。 ③脉络膜前动脉, 向后内行,进入侧脑室脉络丛。 ④大脑前动脉, 在视神经上方向前进入大脑纵裂与对侧同名动脉 借前交通支相连,沿胼胝体沟向后行。主要供应 顶枕沟以前的大脑半球内侧面和上外侧面的上部 及部分间脑。 ⑤大脑中动脉,是颈内动脉的延续, 沿外侧沟向后上行走,沿途发出的分支有豆纹动 脉(分布于纹状体和内囊)、额顶升动脉(分布 于额叶和顶叶前部)等。
脑底动脉环
• 大脑动脉环(willis环、脑底动脉环)位于脑底、 蝶鞍上方。由前交通动脉、两侧大脑前动脉、颈 内动脉的终支、后交通动脉和大脑后动脉吻合而 成,围绕在视交叉、灰结节和乳头体周围,是一 种代偿的潜在装置。其中,前交通动脉为沟通左、 右颈内动脉的血管,后交通动脉则为沟通颈内动 脉和椎动脉的血管。当动脉环的某一处发育不良 或阻断时,可在一定程度上通过大脑动脉环使血 液重新分配和代偿,以维持脑的血液供应。
磁共振血管成像(MRA) Willis环的 :旋转从侧位片 (MIP)。 1, 椎动脉. 2, 颈内动脉. 3, 大脑中动脉. 4, 大脑前动脉. 5, 大脑后动脉. 6, 基底动脉。
磁共振血管成像MRA_图文

• 2、血流速度。速度快如大多数动脉特别是头颈部 动脉多三维,而血流速度慢的静脉多二维。
• 3、目标血管长度。短、小血管用三维,长度大的 血管如下肢血管用二维。临床:脑动脉----三维; 颈动脉---二维或三维;下肢----二维;静脉---二维 。
相位对比(phase contrast;PC):
• 相位对比(phase contrast;PC):应用快速扫描GE技术和 双极流动编码梯度脉冲,对成像层面内质子加一个先负后 正,大小相等,方向相反的脉冲,静止组织的横向磁矩亦 对应出现一个先负后正,大小相等,方向相反,对称性的 相位改变,将正负相位叠加,总的相位差为零,故静止组 织呈低或无信号;而血管内的血液由于流动,正负方向相 反的相位改变不同,迭加以后总的相位差大于零。
脉。 • 正确选择应用预置饱和技术,观察动脉血管,可
在扫描层块上方平行设置静脉预饱和带,观察静 脉血管,在扫描层块下方平行设置动脉预饱和带 。 • 亦可根据不同临床要求,分别设置单侧预饱和带 ,观察对侧动脉供血情况。
临床应用
• 1、血管走行。走行方向比较直如颈部和下肢血管 ----二维,而走行迂曲的血管如脑动脉则三维效果 好。
• 2D-TOF MRA每次只激发1个层面,层厚薄,流入血液均 未饱和,快慢流动均可获得较好的信号。
• 优点:1、背景抑制好;2、单层采集,层面内血流的 饱和现象较轻,有利于静脉等慢血流的显示。3、速度快 ,单层1-5s
• 3D-TOF MRA采用体积成像,慢速流动的无法在一个TR 时间内流出激发范围,在多次激发下产生流入饱和效应, 产生流入端强信号,流出端信号逐渐下降。
大脑大静脉17
磁共振血管成像(MRA)Willis环的 :旋转从侧位片 (MIP)。 1, 椎动脉. 2, 颈内动脉. 3, 基底动脉。 4, 大脑前动脉. 5, 大脑中动脉.
• 3、目标血管长度。短、小血管用三维,长度大的 血管如下肢血管用二维。临床:脑动脉----三维; 颈动脉---二维或三维;下肢----二维;静脉---二维 。
相位对比(phase contrast;PC):
• 相位对比(phase contrast;PC):应用快速扫描GE技术和 双极流动编码梯度脉冲,对成像层面内质子加一个先负后 正,大小相等,方向相反的脉冲,静止组织的横向磁矩亦 对应出现一个先负后正,大小相等,方向相反,对称性的 相位改变,将正负相位叠加,总的相位差为零,故静止组 织呈低或无信号;而血管内的血液由于流动,正负方向相 反的相位改变不同,迭加以后总的相位差大于零。
脉。 • 正确选择应用预置饱和技术,观察动脉血管,可
在扫描层块上方平行设置静脉预饱和带,观察静 脉血管,在扫描层块下方平行设置动脉预饱和带 。 • 亦可根据不同临床要求,分别设置单侧预饱和带 ,观察对侧动脉供血情况。
临床应用
• 1、血管走行。走行方向比较直如颈部和下肢血管 ----二维,而走行迂曲的血管如脑动脉则三维效果 好。
• 2D-TOF MRA每次只激发1个层面,层厚薄,流入血液均 未饱和,快慢流动均可获得较好的信号。
• 优点:1、背景抑制好;2、单层采集,层面内血流的 饱和现象较轻,有利于静脉等慢血流的显示。3、速度快 ,单层1-5s
• 3D-TOF MRA采用体积成像,慢速流动的无法在一个TR 时间内流出激发范围,在多次激发下产生流入饱和效应, 产生流入端强信号,流出端信号逐渐下降。
大脑大静脉17
磁共振血管成像(MRA)Willis环的 :旋转从侧位片 (MIP)。 1, 椎动脉. 2, 颈内动脉. 3, 基底动脉。 4, 大脑前动脉. 5, 大脑中动脉.
磁共振血管成像技术

2D TOF
2D TOF的缺点:
- 对层面内的血流不敏感,可能会把层面内的血流模
拟为病变 - 由于采集的层面较薄且采用流动补偿技术,2D TOF
的最小TE值较长,因此对层面内的快速血流和紊流 不敏感,并可能过高估计血管狭窄
第十四页,共62页。
2D TOF
心电门控2D TOF
利用心电门控按心动周期的规律采集数据。
从而去除了SBA伪影
MOSTA
SLINKY
第二十六页,共62页。
SLINKY
SLINKY的主要应用:
SLINKY技术是目前头、颈部非增强MR血管成像,特 别是动脉成像的首选序列方法
SLINKY技术减少了MRA图像伪影,有较好的小血管显示, 并且有利于复杂血流的显示
可以进行大范围的血管成像
第二十七页,共62页。
第三十页,共62页。
几种TOF方法的比较
3D Acq. Flow Signal SNR CNR Resolution Imaging Time Volume Coverage SAR Artifact Application Credit
2D TOF no 5 1 3 1 5 5 5 2 27
3D TOF yes 1 5 1 5 4 1 1 3 21
第三十四页,共62页。
PC
血流相位与其速度相关: = vTA
PC图像能够反映血流的速度和方向信息
速度编码值(Venc):扫描前可根据所要观察的血流 的速度选择一个Venc值,使某种速度的血流产生的相 位差最大,则该速度的血流在图像上信号最高。
快血流速Venc约为80cm/s,中等速度Venc约40cm/s, 慢血流Venc约10cm/s。
电影2D PC能够用于流动定量分析
磁共振功能成像的临床应用PPT课件

磁共振功能成像的应用将促进医学影像学与其他学科的交叉融合, 推动医学领域的发展。
提高医疗服务水平
磁共振功能成像的应用将提高医疗服务的质量和效率,为患者提 供更好的医疗体验。
THANKS
感谢观看
磁共振功能成像的优势与局限性
优势
无创、无辐射损伤、多参数成像 、高软组织分辨率等。
局限性
检查费用较高、检查时间长、对 运动伪影敏感等。
03
磁共振功能成像在神经系统疾病中的
应用
脑肿瘤
总结词
磁共振功能成像在脑肿瘤的诊断、治疗和预后评估中具有重要作用。
详细描述
磁共振功能成像技术可以检测肿瘤的位置、大小和扩散情况,有助于医生制定 更精确的治疗计划。同时,通过观察肿瘤的代谢和血流情况,可以评估治疗效 果和预测复发风险。
该技术可以提供高分辨率、高对比度的图像,并且无辐射, 对人体无害。
临床应用的意义和价值
磁共振功能成像能够提供更深入的生理和病理生理信息,有助于疾病的早期诊断和 预后评估。
该技术能够检测到传统影像学检查难以发现的细微病变,提高诊断的准确性和可靠 性。
磁共振功能成像还可以用于监测治疗效果和评估病情进展,为临床医生制定治疗方 案提供重要依据。
分析和处理,提高诊断准确性和可靠性。
新型成像技术
02
研究和发展新的磁共振功能成像技术,如高分辨率成像、多模
态成像等,以满足临床对诊断和治疗的更高要求。
实时成像与导航技术
03
实现实时成像和导航技术,为手术和介入治疗提供更精确的定
位和导航信息。
在临床诊断和治疗中的作用与价值
01
02
03
精准诊断
磁共振功能成像能够提供 更精准的定位和定性信息, 有助于医生对疾病的早期 发现和准确诊断。
提高医疗服务水平
磁共振功能成像的应用将提高医疗服务的质量和效率,为患者提 供更好的医疗体验。
THANKS
感谢观看
磁共振功能成像的优势与局限性
优势
无创、无辐射损伤、多参数成像 、高软组织分辨率等。
局限性
检查费用较高、检查时间长、对 运动伪影敏感等。
03
磁共振功能成像在神经系统疾病中的
应用
脑肿瘤
总结词
磁共振功能成像在脑肿瘤的诊断、治疗和预后评估中具有重要作用。
详细描述
磁共振功能成像技术可以检测肿瘤的位置、大小和扩散情况,有助于医生制定 更精确的治疗计划。同时,通过观察肿瘤的代谢和血流情况,可以评估治疗效 果和预测复发风险。
该技术可以提供高分辨率、高对比度的图像,并且无辐射, 对人体无害。
临床应用的意义和价值
磁共振功能成像能够提供更深入的生理和病理生理信息,有助于疾病的早期诊断和 预后评估。
该技术能够检测到传统影像学检查难以发现的细微病变,提高诊断的准确性和可靠 性。
磁共振功能成像还可以用于监测治疗效果和评估病情进展,为临床医生制定治疗方 案提供重要依据。
分析和处理,提高诊断准确性和可靠性。
新型成像技术
02
研究和发展新的磁共振功能成像技术,如高分辨率成像、多模
态成像等,以满足临床对诊断和治疗的更高要求。
实时成像与导航技术
03
实现实时成像和导航技术,为手术和介入治疗提供更精确的定
位和导航信息。
在临床诊断和治疗中的作用与价值
01
02
03
精准诊断
磁共振功能成像能够提供 更精准的定位和定性信息, 有助于医生对疾病的早期 发现和准确诊断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
3
TOF
当 流动血液保持在 同一层块(或层面) 的时间较长时,被多 次射频激发也会产生 饱和效应
TOF血管的信号强度 与层块(或层面)厚 度、血管流速以及脉 冲序列的TR有关
当 v=THK/TR 时信号 最强,或者说当血流 流至d=v TR成像厚度 时信号最强
Partially Saturated Spins
.
21
MOTSA
.
22
SLINKY
SLINKY的采集方式: SLINKY是在MOTSA的基础上发展而来,也使用多
个薄层块3D采集 SLINKY沿Z-轴以连续kz的方式采集,但在层面内相
位 方 向 以 间 隔 的 部 分 的 kY 方 式 采 集 , 在 Nz×Ny/n×TR的时间间隔沿Z-轴以一个层厚的空间 步幅移动采集 MOTSA是以连续kz和连续ky的方式采集,层块采集 中在Nz×Ny×TR的时间间隔,沿Z-轴以大约一个层 块的空间步幅移动采集
TONE技术用以减少在3D TOF成像中血流信号从 成像容积进入端到出口端逐渐降低的现象
但TONE不能去除慢血流最终被饱和的趋势,而且 只能对一个方向的血流起作用
.
11
3D TOF
3D TOF的主要应用:
脑部AVM,Willis环以及动脉瘤 颅内颈部血管
不能应用慢血流,及血管与背景之间对比差的区域
.
15
2D TOF
2D TOF的主要应用:
慢速血流,及血管与背景之间对比差的区域 特别适用于盆腔和下肢血管 脑部静脉 颈动脉分叉、颈部静脉以及基底动脉 2D TOF在有运动伪影的区域比较成功,每层
2~5秒,在腹部可行屏气扫描
.
16
2D TOF
.
17
2D TOF
2D TOF
.
Gated 2D TOF
Saturated Static Tissue
Slab
THK
•
Fresh Inflow
d=v TR
.
4
TOF
▪ 血流速度越快,其信号越强 ▪ 层块(或层面)越薄,穿越层块时的饱和越
少,血管信号越强 ▪ 脉冲序列的TR越短,静态组织被抑制得越好
.
5
TOF
TOF血管成像的辅助技术:
– 流动补偿技术(Flow Compensation, FC) – 预饱和技术 (Pre-saturation) – 磁化传递技术(Magnetization Transfer,MT) – 对比剂 – 脂肪抑制
18
TOF
2D TOF和3D TOF的比较:
- 对慢血流的敏感性 - 对血流方向的敏感性 - 分辨力和信噪比 - 湍流信号丢失 - 对病人运动的敏感性 - 对血管壁的描述
.
19
MOTSA
MOTSA的采集方式:MOTSA结合2D TOF和3D
TOF两种方法,连续采集多个重叠的薄3D层块
MOTSA的优点:
窄以及迂曲多变的血管
3D TOF的缺点:
血流不够快时,可在流出层块远端之前产生饱和, 因此不适合慢血流成像,也不适于大范围血管成像
.
10
3D TOF
TONE技术:
TONE(Tilted optimized nonselective excitation)技 术也称“ramp pulse’技术,在血流穿过成像容积过 程中逐渐增大序列的翻转角
slab acquisition, MOTSA) – 滑动间隔ky采集(sliding interleaved ky,SLINKY)
.
8
3D TOF
3D TOF的采集方式:同时采集1个层块(slab) 或1个容积(volume)
.
9
3D TOF
3D TOF的优点:
- 具有很高的分辨率、较高的信噪比和对比噪声比 - TE值较短,可减少失相位,能较准确地评价血管狭
.
12
2D TOF
2D TOF的采集方式:以连续(sequential)方 式,依次采集薄的二维层面(single slice)
2D TOF的优点:
- 在TR之间血流只穿行1个层面的短距离,血流不
易饱和 - 对慢血流和中等流速血流相对敏感 - 可以对大范围血管成像
.
13
2D TOF
2D TOF的缺点: - 对层面内的血流不敏感,可能会把层面内的血流模
.
6
TOF
影响TOF血管对比的成像参数:
– 重复时间TR – 翻转角FA – 回波时间TE – 成像容积大小 – 像素大小 – 层面方向 (当血流垂直于层面时,血流与静态组织
之间的对比最大)
.
7
TOF
TOF血管成像的方法:
– 三维单层块采集(3D TOF) – 二维单层面采集(2D TOF ) – 多个重叠薄层块采集(multiple verlapped thin
拟为病变 - 由于采集的层面较薄且采用流动补偿技术,2D TOF
的最小TE值较长,因此对层面内的快速血流和紊流 不敏感,并可能过高估计血管狭窄
.
14
2D TOF
心电门控2D TOF
利用心电门控按心动周期的规律采集数据。 一般在心脏收缩期血流速度最快时采集填充K-空间中
央的数据,在其它时刻采集K-空间外围的数据。 用于搏动血流(主动脉分叉、髂动脉等)的伪影。
磁共振血管成像技术
天津第一中心医院放射科 倪红艳 祁 吉
.
1Leabharlann Outline目前常用的几种磁共振血管成像技术: • 时间飞越法(Time of Flight, TOF)MRA • 相位对比法(Phase Contrast, PC)MRA • 对比剂增强法(Contrast Enhanced MRA,
CE-MRA)
.
2
TOF
TOF 血 管 成 像 的 机 理 : 采 用 “ 流 动 相 关 增 强”
(flow-related enhancement) 机制
– 静态组织在短TR脉冲序列的连续多次激发下, 达到很大程度的饱和,信号非常低。
– 来自被激发层面以外的流动自旋,未经受过射 频脉冲的激发,保持完整的纵向磁化,产生很 强的信号,与静态组织形成强烈对比。
- MOTSA层块很薄,血液穿过它时很少饱和 - 可在大的血管成像范围内提供高对比和高分辨率
.
20
MOTSA
MOTSA的缺点
MOTSA的层块相接处有一条穿过血管的暗线,即 层块边缘伪影(SBA)
层块需要重叠,以减少SBA,因此成像时间较长 MOTSA采用TONE射频激励以补偿层块边缘处的
流动信号饱和,但是仅能部分校正层块边缘伪影