发电机保护简介
发电机各种保护方法
(一)发电机保护配置原则:大型机组造价昂贵,在系统中作用重要,一旦发生故障,不仅危及机组,而且严重影响系统安全运行,酿成巨大经济损失和恶劣社会影响,因此在考虑其继电保护的总体配置时,应辨证权衡,力求合理,完善和可靠,着眼点既要将机组损害降至最低,又要避免不必要的突然停机,以确保系统安全运行。
发电机保护总结分类介绍:反应各种类型的短路故障,这些故障可造成机组的直接损坏,有主保护和异常运行保护之分:(I)短路保护:包括:发电机差动保护;定子匝间短路;定子接地保护;转子接地保护;后备保护:阻抗保护:用作发电机及变压器内部相间短路的后备保护负序电流保护:能反映机组三相不对称运行时出现的负序分量,主要作为发变组二相短路时的后备保护(2)异常运行保护:反应各种可能给机组造成危害的异常工况,这些工况不会很快造成机组的直接破坏,装设专用保护;a.定子过负荷保护;b.转子表层负序过负荷保护;c.失磁保护;d.失步保护;e.过励磁保护;f.过电压保护;g∙低频保护;h.逆功率保护;I意外加电压保护J发电机断水保护(3)大机组造价昂贵,结构复杂,故障造成的损失巨大。
大机组在系统中很重要,突然切除,给系统造成交大的扰动。
考虑保护总体配置时,要求:a.内部故障缩小保护死区,最大限度缩小故障破坏范围;b.尽可能避免不必要的突然停机,对某些异常工况采用自动处理;当发生短路保护时,当做发电机跳闸,立即停机处理。
当发生异常运行时,需针对异常参数,及时调整,否则做发电机跳闸,停机处理后重新启动机组(三)一般典型的有:1)发电机定子过负荷事故原因:1发电机某一相负荷过大发电机外部的不对称短路事故现象:1发电机三相电流不对称,某一相电流过大,可能超过额定值;2.转子温度升高;3.引起“发电机不对称过负荷”动作,保护信号灯亮;4.DCS报警窗口”发电机不对称过负荷”光字亮。
事故处理方法:1减少有功负荷,使负荷最大相电流不超过发电机的额定电流;2.监视转子温升情况。
第六讲 发电机保护
3U0>
&
TV断线
t
出口
信号 中性点零序电压
3U0>
t
信号
出口
机端TV开口三角
> 3U 0
&
中性点零序电压
t
> 3U 0
&
10
TV断线信号
2)发电机三次谐波电压式定子接地保护
三次谐波电压式定子接地保护范围是:反映发电机中性点向机内20%左右定子 绕组或机端附近定子绕组单相接地故障,与零序基波电压式定子接地保护联合构成 100%的定子接地保护。 三次谐波电压式定子接地保护,按比较发电机中性点及机端三次谐波电压的大小和相 位构成。其交流接入回路如下。
保护的反时限特性曲线由三部分构成:上限短延时、反时限及 下限长延时。其特性曲线如下。
I
I up
t
K1 I2 K 2
IS I g1
0 t up
ts t
逻辑框图 发电机反时限对称过负荷保护的逻辑框图如下。 Ig1、t11—定时限动作电流、时间;Is、ts—下限电流、 长延时; Iup、tup—上限电流、时间
阻抗型失磁保护的逻辑框图如下:
信号
Uh< Ug < Z g<
& & &
1.5
t3
出口 信号 出口
t4
信号
TVg断线
+ & &
t1
t2
Vfd<
出口 信号 出口 信号
P>
t5
出口
失磁保护动作过程:
当发电机失磁导致机端低电压动作时,经延时t4发出信号并 作用于出口(如切换励磁或切换厂用电源等措施); 当发电机失磁导致机组功率超过整定值时,经延时t5发出信 号并作用于出口(如降出力); 当发电机失磁并导致系统低电压动作时,经延时t3发出信号 并作用于跳闸; 当发电机失磁阻抗元件满足,或同时转子低电压也满足时, 经t1延时或t2延时发出信号并作用于出口(如解列灭磁)。
发电机的保护
危害:故障点的电弧烧坏铁芯,匝间或相间短路造成发电 机严重损坏。
规程规定: 当接地电流大于5A时,装设作用于跳闸的单相接地保护。 接地电流小于5A时,装设作用于信号的接地保护。 大型发电机的铁芯结构复杂,检修困难,为此大型发电机 的接地电流应限制在一个较小数值:小于1.0—1.5A,因此, 一般将大型发电机的中性点经消弧线圈接地,使接地电流补 偿到1.5A以下,其接地保护作用于信号。
接地故障时的零序电流和零序电压的特点: 零序电压(故障点处):
故障点离中性点越远,零序电压越高。 零序电流:
外部接地时,流过机端的零序电流为发电机零序电 容电流;
内部故障时,流过机端的零序电流为发电机电压网 络中所有其它元件的零序电容电流之和。
1、反应零序电流的发电机定子绕组单相接地保护:
原理图:
3、不正常运行状态: 由外部短路引起的定子绕组过电流 由于过负荷引起的三相对称过负荷 由外部不对称短路或不对称负荷引起的发电机负序过电流 或负序过负荷 由于突然甩负荷引起的定子绕组过电压 由于励磁回路故障或强行励磁时间过长引起的转子绕组过 负荷 由于气轮机主汽门突然关闭引起的发电机逆功率运行 由于励磁系统故障或自动灭磁开关误跳闸引起的发电机励 磁电流急剧下降或消失
XJ
BCJ
SJ
LJ
ZJ
LP
由过流保护电流继电器
动作原理:a:外部故障时:来
常闭接点打开,切断SJ线圈回路,保证不跳闸; ZJ
常开接点闭合,短接LJ线圈使LJ不动。 b:内部故障时:
LJ动作,ZJ常开接点闭合,接通SJ线圈,经整定延 时发出信号、跳开发电机断路器和灭磁开关。
2、反应零序电压的发电机定子绕组单相接地保护: 对于发电机-变压器组,接地电容电流较小,一般装
发电机保护常识知识点总结
发电机保护常识知识点总结发电机保护常识知识点总结发电机作为电力系统的重要组成部分,起着将机械能转化为电能的关键作用。
为了确保发电机的正常工作和延长其使用寿命,发电机保护显得尤为重要。
以下是一些关于发电机保护的常识知识点的总结。
一、过电压保护过电压是指发电机的电压超过额定值的情况。
过电压不仅会对发电机本身造成损坏,还会对连接在发电站和变电站的其他设备造成损害。
发电机过电压的原因可以是系统故障、电源切换、过电流、电网故障等。
针对过电压,常见的保护方式有电压继电器和电压保护装置。
电压继电器主要用于监测发电机的电压,当电压超过设定值时,电压继电器会触发相应的保护动作,例如切断电源或引导过电压。
电压保护装置可以检测到发电机输出电压超过限定值的情况,并及时采取措施来保护发电机。
例如,可以通过投入空载运行的变压器来降低发电机的电压。
二、过电流保护过电流是指发电机的电流超过额定值的情况。
过电流可能会在发电机负荷过重、短路故障、绝缘损坏等情况下发生。
过电流保护的目的是保护发电机和电力系统中的其他设备,防止过电流引发故障和损坏。
常见的过电流保护方式包括电流继电器和差动保护。
电流继电器使用电流互感器来监测发电机的电流。
当电流超过设定值时,电流继电器会发送信号触发保护动作,例如切断电源或引导过电流。
差动保护比电流继电器更为精确,它可以同时检测到发电机的输入和输出电流的差异。
如果差异超过设定值,差动保护将触发相应的保护动作。
三、频率保护频率是发电机运转状态的一个重要指标。
频率变化可能是由于发电机负荷突变、电网故障、发电机转速变化等原因引起的。
频率过高或过低都可能对发电机和连接设备造成损坏。
频率保护的主要目的是监测发电机频率的变化并触发相应的保护动作。
常见的频率保护装置有频率继电器和频率保护装置。
频率继电器通过监测发电机的输出频率来保护发电机。
一旦频率超出设定范围,频率继电器会触发保护动作。
频率保护装置可以通过调整发电机与电网之间的连接方式来稳定频率。
发电机及主保护简介.
发电机及主保护简介发电机是汽轮发电机组三大重要组成部分之一。
一、发电机工作原理:在定子铁芯槽内沿定子铁芯内圆,每相隔120º分别安放着放有A、B、C三相并且线圈匝数相等的线圈,转子上有励磁绕组(也称转子绕组)R-L。
通过电刷和滑环的滑动接触,将励磁系统产生的直流电引入转子励磁绕组,产生稳恒的磁场。
当发电机转子被汽轮机转子带动以n1(3000转每分钟)速旋转时,定子绕组(也称电枢绕组)不断地切割磁力线,在定子线圈中产生感应电动势(感应电压),发电机和外面线路上的负载连接后输出电压。
二、发动机的结构组成:发电机通常由定子、转子、端盖及轴承等部件构成。
发电机定子的组成:发电机定子主要由机座、定子铁芯、定子绕组、端盖等部分组成。
1)机座与端盖:机座是用钢板焊成的壳体结构,它的作用主要是支持和固定定子铁芯和定子绕组。
此外,机座可以防止氢气泄漏和承受住氢气的爆炸力。
在机壳和定子铁芯之间的空间是发电机通风(氢气)系统的一部分。
由于发电机定子采用径向通风,将机壳和铁芯背部之间的空间沿轴向分隔成若干段,每段形成一个环形小风室,各小风室相互交替分为进风区和出风区。
这些小室用管子相互连通,并能交替进行通风。
氢气交替地通过铁芯的外侧和内侧,再集中起来通过冷却器,从而有效地防止热应力和局部过热。
端盖是发电机密封的一个组成部分,为了安装、检修、拆装方便,端盖由水平分开的上、下两半构成,并设有端盖轴承。
在端盖的合缝面上还设有密封沟,沟内充以密封胶以保证良好的气密。
2)定子铁芯:定子铁芯是构成发电机磁路和固定定子绕组的重要部件。
为了减少铁芯的磁滞和涡流损耗,定子铁芯采用导磁率高、损耗小、厚度为0.5mm的优质冷轧硅钢片冲制而成。
每层硅钢片由数张扇形片组成一个圆形,每张扇形片都涂了耐高温的无机绝缘漆。
冲片上冲有嵌放线圈的下线槽及放置槽楔用的鸽尾槽。
扇形冲片利用定子定位筋定位,通过球墨铸铁压圈施压,夹紧成一个刚性圆柱形铁芯,用定位筋固定在内机座上。
发电机保护现象、处理
发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。
(1)纵联差动保护:为定子绕组及其引出线的相间短路保护。
(2)横联差动保护:为定子绕组一相匝间短路保护。
只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。
(3)单相接地保护:为发电机定子绕组的单相接地保护。
(4)励磁回路接地保护:为励磁回路的接地故障保护。
(5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。
(6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。
中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。
(7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。
(8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。
(9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。
(10)失步保护:反应大型发电机与系统振荡过程的失步保护。
(11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。
发电机保护简介1、发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
发电机的保护原理的介绍
• •
•
低电压元件的作用在于区别是过负荷还是由于故障引起 的过电流。 B 复合电压启动的过电流保护。 复合电压启动是指负序电压和单元件相间电压共同启动 过电流保护。 发电机复合电压过流保护的整定 2. 发电机定子接地保护
• •
• •
• •
Байду номын сангаас
发电机定子接地的危害 当发电机定子绕组与铁芯间的绝缘损坏将引起定子绕组的单相接地短 路。如果发电机的中性点是绝缘不接地的,此时接地点的接地电流是发电 机电压系统的电容电流。 该电流较大时非但会烧伤定子绕组的绝缘还会烧损铁芯,甚至会将多 层铁芯叠片烧接在一起在故障点形成涡流,使铁芯进一步加速熔化,导致 铁芯严重损伤 。
/
•
其电流取自发电机中性点或机端的电流互感器,电压取 自机端电压互感器的相间电压,在发电机并网前发生故障时, 保护装置也能动作。 在发电机发生过负荷时,过电流元件可能动作,但因这 时低电压元件不动作,保护被闭锁。 发电机的后备保护方式
•
•
•
发电机的后备保护主要有低阻抗保护、低电压启动的过 电流保护、复合电压启动的过电流保护等。 A 低电压启动的过电流保护。 发电机低压启动的过流保护的电流继电器,接在发电机 中性点侧三相星形连接的电流互感器上,电压继电器接在发 电机出口端电压互感器的相间电压上,在发电机投入前发生 故障时,保护也能动作。
•
•
为确保发电机的安全,不应使发电机的单相接地短路发展成相间短路 或匝间短路,因此应该使单相接地故障处不产生电弧或者使接地电弧瞬间 熄灭。这个不产生电弧的最大接地电流被定义为发电机单相接地的安全电 流,该电流与发电机的额定电压有关。 当单相接地电流小于安全电流时,定子接地保护动作后只发信号而不 跳闸。调度人员应转移负荷、平稳停机,以免再发生另一点接地形成很大 的短路电流而烧坏发电机。当单相接地电流大于安全电流时,定子接地保 护应动作于跳闸。
发电机保护类型及原理介绍
3.保护的整定原则 动作电流
Iop (0.2 ~ 0.3)Ig.n
需增设 0.5~1 秒的延时, 以躲过转子回路的瞬时两点接地故障。
(二) 纵向零序电压原理的匝间短路保护
适用于中性点侧没有6个或4个引出端子的 发电机定子匝间短路。
该保护利用发电机定子绕组发生匝间短路 时,机端三相对发电机中性点出现的零序电压 而构成。
对发电机并未造成直接危害。
1.1正常时 正极对地电压
U
E R2 E R2R2 2
负极对地电压
U
E 2
加在绝缘介质上的电压为励磁电压的一半。
1.2一点接地时
设:正极接地, U ,0 U E
则:另一端对地电压上升为E,如某点绝缘比较薄弱,则有可 能被击穿,造成两点接地故障。
转子绕阻绝缘破坏的故障形式及其危害
一、发电机相间短路的纵联差动保护
作用: 反映发电机定子绕组及其引出线相间短路 故障的主保护 发电机纵差保护的接线方式 完全纵差动保护 不完全纵差动保护
发电机完全纵差保护和不完全纵差保护均是比较 发电机两侧同相电流的大小和相位而构成
发电机完全纵差动保护
●
G
●
● ●
图9—1 发电机纵差保护原理接线示意图
2.保护的原理分析
1)当定子绕组的同分支匝间短路时:
2)定子绕组不同分支间发生短路时:
3)保护的接线
2
跳闸
t
图9-6 单元件式横联差保护原理接线图 1-三次谐波滤过器;2-横差保护
4)评价:
保护接线较简单,灵敏度较高。
保护存在死区:当 很小时或者不同分 支间的短路匝数相同时, 保护不能动作。
电桥式转子两点接地保护
RL’
电力系统发电机保护
电力系统发电机保护在电力系统中,发电机作为重要的电源设备之一,起着稳定供电和保障电力系统正常运行的关键作用。
然而,由于各种原因,如过载、短路、电压异常等,发电机可能面临着各种潜在的故障风险,因此必须有有效的保护措施。
本文将介绍电力系统发电机的保护原则、保护装置以及常见的保护方案。
一、发电机保护原则1. 过载保护过载是指发电机承受超过其额定容量的电流。
过载会导致发电机绕组温升过高,损坏绝缘材料,甚至引发火灾。
因此,过载保护是发电机保护的最基本原则。
发电机的过载保护通常通过测量发电机的电流来实现,一旦电流超过设定值,保护装置将切断发电机的供电。
2. 短路保护发电机的短路保护是为了防止短路故障导致电流暴增,损坏发电机绕组。
短路保护通常包括发电机内部和外部的短路保护。
内部短路保护主要是针对发电机绕组内部出现短路故障,外部短路保护主要是针对发电机输出线路与其他系统组件之间出现短路故障。
常用的短路保护装置有熔断器、断路器等。
3. 低电压保护低电压是指发电机输出电压低于其额定值的情况。
低电压可能导致电力系统无法正常运行,影响供电可靠性。
因此,保护装置需要对低电压进行监测,并在低电压出现时采取相应的措施,如切断发电机的供电或通过其他方式提高输出电压。
4. 过频保护和过速保护过频和过速是指发电机输出频率和转速超过其额定值。
过频和过速可能导致发电机旋转部件破裂,机械损坏,甚至引发设备事故。
因此,需要采取相应的过频保护和过速保护措施,如安装速度开关、频率继电器等。
二、发电机保护装置1. 发电机差动保护装置发电机差动保护装置是一种常用的发电机保护装置,通过测量发电机输入和输出侧的电流,实现对发电机的保护。
当输入电流和输出电流存在差异时,差动保护装置将切断发电机的供电,以保护发电机不受损坏。
2. 频率保护装置频率保护装置用于监测发电机的输出频率,一旦频率超过或低于设定值,保护装置将采取相应的保护措施,避免发电机因频率异常而受损。
发电机的主要保护
发电机的主要保护1. 继电保护及自动装置的一般规定继电保护及自动装置是保证电网运行。
保护电气设备的主要装置,保护装置使用不当或不正确动作将会引起事故或事故扩大,损坏电气设备甚至整个电力系统瓦解。
1)继电保护盘的前后,都应有明显的设备名称,盘上的继电器、压板和试验部件及端子排都应有明显的标志名称,投入运行前由继保人员负责做好。
2)任何情况下,设备不容许无保护运行,若开关改非自动,应在有关调度和本厂领导同意下情况方可短时停用其中一部分保护。
3)继电保护和自动装置的投入、停用、试验或更改定值,如由系统调度管理的设备,则应按调度命令执行;如由本厂管理的设备,则应按值长命令执行。
4)运行人员一般只进行投入,切除装置的压板、控制开关(切换开关)和操作控制电源的操作,在事故处理或发生异常情况时,可以在查明图纸的情况下进行必要的处理,并做好必要记录。
5)运行人员处的继电保护图纸应经常保持正确完整。
当继电保护回路接线变动后,检修人员应及时送交异动报告和修改底图。
2.继电保护及自动装置的维护与管理1).值班人员在接班时,应巡视保护装置,并检查以下项目:(1)继电保护及自动装置罩壳是否完好,无过热、水蒸汽、异声等不正常现象。
(2)继电保护及自动装置信号应指示正确。
(3)继电保护及自动装置的运行方式,出口压板等应符合被保护设备的当时运行方式,(4)所有保护装置应保持清洁,做保护装置清洁工作时,要小心谨慎,对保护装置不可敲击,并注意固定不可靠的电阻,灯座,小线等。
(5)监视直流母线电压在220V左右,以防止因直流电压不正常而使保护装置拒动或误动作。
监视直流系统绝缘正常,以防止因系统绝缘降低或直流接地造成保护装置误动作(6)开关跳、合闸回路应良好(跳闸灯亮代表合闸回路正常,合闸灯亮代表跳闸回路正常;跳、合闸灯同时亮或不亮代表回路不正常)。
2).系统发生异常或事故时,值班人员应进行下列工作:(1)立即检查保护装置有无动作,哪些保护动作信号有指示。
发电机保护
1 发电机差动保护发电机差动保护作为发电机定子绕组及出线的相间短路故障的主保护。
保护采用比率制动原理。
为防止TA断线差动误动,任一相电流互感器断线,均应能闭锁差动,TA断线功能应设置开关,使其能投能退。
发电机差动瞬时动作于全停。
2 发电机变压器组差动保护发变组差动作为发变组及其引出线范围内短路故障的主保护。
保护采用二次谐波电流制动原理。
为防止TA断线差动误动,任一相电流互感器断线,均应能闭锁差动,TA断线功能应设置开关,使其能投能退。
保护瞬时动作于全停。
3 发电机横差保护发电机横差保护作为发电机定子绕组匝间短路故障的主保护,保护动作于全停。
本保护只有一组CT,两屏需共用此CT电流。
判据1(无制动特性):Iop(横差电流) Iget动作电流整定值4 发电机失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
该保护由阻抗元件、UL -P元件、UL<元件及机端电压等元件通过一定的逻辑关系构成,。
失磁保护电流、电压取自发电机机端。
保护t1动作于信号,t2、t3动作于解列或程序跳闸。
5 发电机过电压保护发电机过电压保护作为发电机定子绕组的异常过电压保护并由主变高压侧断路器辅助接点(常开)闭锁,并网前投入,并网后退出。
发电机过电压经延时动作于全停。
6 发电机基波定子接地保护发电机定子接地保护作为发电机定子绕组单相接地故障的保护。
保护由反应定子中性点基波零序电压判据(保护95%)构成,基波零序电压定子接地保护带时限动作于信号和程序跳闸。
7 转子一点、两点接地保护采用乒乓式原理构成,一点接地保护延时动作于信号;一点接地后启动两点接地,两点接地保护延时动作于全停。
8 逆功率保护作为系统向发电机倒送有功,发电机变电动机运行异常工况的保护。
由灵敏的功率元件构成。
保护设二段延时,t1发信号,t2动作于程序跳闸。
9低阻抗保护采用偏移阻抗特性,经延时动作于解列灭磁。
设有PT断线闭锁及过电流闭锁。
10 负序过流保护负序过流保护作为发电机不对称故障的保护。
发电机保护配置与原理简介
XJ Group Corporation
二、保护配置
2.6、间隙零序保护 作为不接地运行变压器Yn侧接地短路的后备保护,由间 隙零序电流元件和零序过电压元件组成,经短延时动作于 程序跳闸或全停。 2.7、转子绕组过负荷保护 转子绕组励磁电流过负荷或短路过流的后备保护,定时 限或反时限动作于程序跳闸。
XJ Group Corporation
三、保护原理
静稳阻抗:当电功角等于90°的静稳极限所对应的静 稳极限(等无功)阻抗圆。特性圆如图。 整定动作圆: Z j0.5( X X ) j0.5( X X )e j 2
set d st d st
jXΒιβλιοθήκη 圆心: j 0.5( X d X st )
一、主接线
二、保护配置
保护配置配置原则: 1、遵循法规《继电保护和安全自动装置技术规程》及设 备主接线的要求; 2、强化主保护简化后备保护。
XJ Group Corporation
二、保护配置
1、主保护 1.1、发电机差动保护 定子绕组及引线相间短路保护,瞬时动作于停机. 1.2、发电机匝间保护 定子绕组匝间短路或定子开焊事故保护,瞬时动作于停机。 A、单元件横差保护 发电机中性点侧有六个或四个引出端子的机组应优先考虑装设 单元件横差保护。 B、故障分量负序功率方向匝间保护 电流取自中性点侧时,只能反应绕组匝间短路和机端开焊事故 电流取自机端时,不仅能反应绕组匝间短路和机端开焊事故, 也能反应绕组相间短路,成为第二套不同判据的相间短路主保护
XJ Group Corporation
二、保护配置
1.8、变压器瓦斯/压力释放保护 变压器内部绕组各种短路故障的非电量主保护,是第二 套不同原理判据的主保护,瞬时动作于全停。 1.9、转子一点接地保护 理论上讲转子发生一点接地故障对机组无伤害,但可怕 的是两点接地短路故障。新《规程》不要求装设两点接地 保护是基于系统容量足够大,可以随时停一台或两台机组 对系统无影响,和没有更好更可靠的两点接地保护装置。 新《规程》要求大型机组配置一点接地保护。保护经延 时动作于信号或程序跳闸。
发电机保护
发电机保护1、发电机差动保护:发电机差动保护是发电机相间短路的主保护。
根据接入发电机中性点电流的份额即接入全部中性点电流或只取一部分电流接入,可分为完全纵差保护和不完全纵差保护。
另外,根据算法不同,可以构成比率制动特性差动保护和标积制动式差动保护。
不完全纵差保护,适用于每相定子绕组为多分支的大型发电机。
它除了能反应发电机相间短路故障,尚能反应定子线棒开焊及分支匝间短路。
可根据机组结构、容量及有关特点,合理地选用发电机纵差保护的类型(完全纵差、不完全纵差、比率制动式或标积制动式)。
当采用完全纵差时,机端和中性点的电流互感器,应选用同型号、同变比的;当采用不完全纵差时,机端和中性点电流互感器仍可采用同型号、同变比的,但要引入平衡系数调平衡。
TA二次回路开路会引起高电压的危险,特别是大型发电机组,建议采用TA断线不闭锁差动保护方案。
发电机差动保护,动作于全停。
2、发电机横差:发电机横差保护,是发电机定子绕组匝间短路(同分支匝间短路及同相不同分支之间的匝间短路)、线棒开焊的主保护,也能保护定子绕组相间短路。
分单元件横差保护(又称高灵敏度横差保护)和裂相横差保护两种。
单元件横差保护,适用于每相定子绕组为多分支,且有两个或两个以上中性点引出的发电机,保护用TA的变比,按确保区内故障时TA的动稳定及热稳定来选择。
裂相横差保护,又称三元件横差保护,实际上是分相横差保护,其实质是将每相定子绕组的分支回路分成两组,并通过两组TA将各组分支电流之和,反极性引到保护装置中计算差流。
当差流大于整定值时,保护动作。
保护的动作特性,可采用比率制动特性,也可采用标积制动特性。
裂相横差保护可采用同型号、同变比的电流互感器,且要求各TA 的暂态特性要好。
每相定子绕组分支数为奇数时,由于两组TA所匝链的分支数不同,需引入平衡系数。
发电机横差保护,动作于全停。
3、发电机匝间保护:本保护不仅作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。
电力系统主设备保护之发电机保护
电力系统主设备保护之发电机保护1. 引言发电机作为电力系统中最重要的主设备之一,对电力系统的稳定运行起着至关重要的作用。
然而,发电机在运行过程中会面临各种各样的故障和异常情况,如过载、短路、超励、欠励等。
为了保证发电机的安全运行、延长发电机的使用寿命,必须对发电机进行全面有效的保护。
本文将介绍发电机保护的基本原理、保护措施以及保护装置的选型和调试等内容。
2. 发电机保护原理发电机保护的基本原理是通过对发电机的各项参数进行监测和测量,当发生故障或异常情况时,及时采取保护措施,保护发电机不受损害。
发电机保护通常包括以下几个方面:2.1 过载保护过载是指发电机长时间工作在超过额定负载的状态下,会引起发电机温升过高,甚至损坏绕组绝缘。
因此,在发电机的过载保护中,需要根据发电机的额定功率和额定电流进行合理的设置。
2.2 短路保护短路是指发电机绕组中的两个或多个相之间或相与地之间发生直接接触,产生大电流,会导致发电机绕组烧坏。
短路保护的主要目的是在发生短路时,迅速切断故障电路,防止发电机受损。
2.3 欠电压保护欠电压是指发电机输出电压低于额定值的状态,可能是由于系统故障或负荷过重引起。
欠电压保护的作用是及时检测到发电机输出电压的异常,保护发电机免受继续运行在低电压状态下的风险。
2.4 过热保护过热是指发电机运行过程中绕组温度升高超过正常范围,会对绕组绝缘造成损坏,甚至引发火灾。
过热保护的措施包括对发电机绕组温度进行实时监测,并在温度超限时采取相应的保护措施。
2.5 欠频和超频保护欠频是指发电机输出频率低于额定值,超频则相反。
欠频和超频保护的目的是保护发电机,防止在频率异常情况下继续运行,导致发电机受损。
3. 发电机保护措施为了保护发电机,通常采用以下几种保护措施:3.1 主保护及备用保护发电机通常配备有主保护和备用保护,以确保在主保护失效时,备用保护能及时接管保护功能。
这样可以避免因保护装置失效而导致发电机受损。
发电机的保护原理的介绍
当发电机内部或输出线路发生短路故障时 ,断路器能够迅速切断电流,防止短路电 流对发电机和线路造成进一步损坏。
熔断器
熔断器是一种利用熔融金属断开 电路的开关装置,主要用于发电
机的短路和过载保护。
当发电机或线路发生短路或过载 故障时,熔断器内部的熔丝会因 过热而熔断,从而切断电流,防
止故障扩大。
熔断器具有低成本、简单可靠的 特点,广泛应用于低压配电系统
网络化保护
基于网络的保护策略
通过网络将发电机与其它相关设备连接起来,实现信息共享和协 同保护,提高保护的可靠性和快速性。
分布式保护
通过网络将发电机的各个保护单元连接起来,实现分布式保护,提 高保护的灵活性和可靠性。
实时数据传输
通过网络实时传输发电机运行数据,方便远程监控和诊断,提高维 护效率。
智能化保护
发电机的保护原理概述
保护原理
发电机的保护原理主要是通过监测发电机的运行状态和异常 情况,及时采取相应的保护措施,防止发电机及其相关设备 发生损坏或故障扩大,保障电力系统的安全稳定运行。
主要保护方式
主要包括差动保护、过流保护、过压保护、欠压保护、接地 保护等。
02
发电机保护的基本原理
过电流保护
当发电机电流超过设定值时,过 电流保护装置会立即动作,切断 发电机与系统的连接,以防止发
电机过载受损。
过电流保护通常采用电流继电器 或断路器来实现,可以根据实际
情况选择合适的保护装置。
为了避免误动作,过电流保护通 常具有时限特性,即只有在持续 超过设定值一段时间后才会动作。
欠电流保护
当发电机电流低于设定值时, 欠电流保护装置会触发,以防 止发电机因过低的电流而受损。
欠电流保护通常采用欠电流继 电器或欠电压继电器来实现, 可以根据实际情况选择合适的 保护装置。
发电机保护原理
发电机保护原理
发电机保护原理是为了保护发电机免受损坏,并确保其安全运行。
以下是发电机保护的主要原理:
1. 过电流保护:通过监测发电机额定电流和短路电流来判断是否存在过电流情况。
一旦检测到过电流,保护系统将立即切断电源,防止发电机受到损害。
2. 过载保护:发电机的额定负载能力是有限的,当负荷超过额定值时,过载保护系统将启动,以避免发电机超负荷运行。
3. 过压保护:发电机工作时,电压波动可能会导致过电压情况。
过压保护系统会监测发电机输出电压,一旦检测到过压,保护系统将采取措施降低电压,以保护发电机。
4. 低压保护:发电机输出电压过低可能会导致设备故障。
低压保护系统会监测发电机输出电压,一旦检测到低压,保护系统将立即调整电压或停电,以防止发电机损坏。
5. 频率保护:发电机输出频率过高或过低都可能会导致设备故障。
频率保护系统会监测发电机输出频率,并在异常情况下采取相应的措施,以确保发电机的正常运行。
6. 温度保护:过高的温度可能会引起发电机内部部件的损坏。
温度保护系统会监测发电机的温度,并在温度超过安全范围时采取措施,如降低负载或自动停机,以防止发电机受损。
7. 短路保护:发电机输出电路中的短路可能会导致设备受损。
短路保护系统会监测电路的电流和电压,一旦检测到短路,保护系统将切断电源,以保护发电机。
总结起来,发电机保护原理主要是通过监测和反馈控制,及时发现并处理发电机可能面临的故障情况,从而确保发电机的安全、稳定运行。
发电机保护
发电机保护第一节 基本概念一 发电机发电机的作用是将汽轮机或水轮机输出的机械能变换成电能。
1 主要构成发电机主要由定子和转子两部分构成。
在定子与转子间留有适当的间隙,通常将该间隙称作为气隙。
极对数为1的三相交流同步发电机的结构示意图如图1所示。
在定子铁芯上设置有槽,每个定子槽分上槽和下槽,上槽及下槽中设置有定子绕组。
每台发电机的定子绕组为三相对称式绕组,如图1中的a-x 、b-y 、c-z 所示。
所谓三相对称绕组是指三个绕组(即a-x 、b-y 、c-z )的匝数相等,其空间分布相对位置相距1200。
在定子铁芯的上槽与下槽之间设置有屏蔽层。
在转子铁芯上也有槽,槽内设置有转子绕组(如图1中的W -j 所示)。
图1 三相同步交流发电机结构示意图为提高发电机的单机容量及降低铁芯及绕组的温度,各种发电机均设置有冷却系统。
小型发电机一般采用空气冷却方式,也有采用氢冷式;对于大型汽轮发电机,通常采用水内冷及氢冷方式。
2 作用原理在转子绕组中(图1中的W -j )通入直流,产生一恒定磁场(其两极极性分别为N -S )。
发电机转子由汽轮机或水轮机拖着旋转,恒定磁场变成旋转磁场(通常称之气隙磁场)。
转子旋转磁场切割定子绕组,必将在定子绕组产生感应电势。
由于转子磁场在气隙中按正弦分布,而转子以恒定速度旋转,从而使定子绕组中的感应电势按正弦波规律变化。
发电机并网运行时,定子绕组中出现感应电流,向系统输出电能。
3 发电机的额定转速转子磁场旋转时,每转过一对磁极,定子绕组中的电势便历经一个周期。
因此,定子绕组中电势的频率可由每秒钟转过磁极的极对数来表示。
设发电机的极对数(即一个N 、一个S )为P ,每分钟的转速为n ,则频率 转速 (1)汽轮发电机的极对数P =1,当电网的频率f =50赫时,n =3000转/分。
对于水轮发电机,其极对数较多,故允许其转速转低,当P =4时,水轮机的转速n=750转/分,当极对数P =24时,其转速为125转/分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。
静稳阻抗判据在失磁后静稳边界时动作。
TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A<Ia<Iset(电流门坎)时判为TV二次回路断线,将失磁保护闭锁。
│Ua+Ub+Uc-3U0│≥Uset用于判别TV单相或两相断线,低压判据判断三相失压。
在电力系统短路或短路切除等非失磁因素引起系统振荡时,保护采取措施闭锁Ufd(P),可防止保护误出口。
励磁低电压Ufd(P)判据动作后经t1(2s)发出失磁信号。
励磁低电压Ufd(P)判据、静稳阻抗判据均满足且无TV二次回路断线时经t2(6s)发出跳闸指令。
励磁低电压Ufd(P)判据、静稳阻抗、系统低电压判据均满足且无TV二次回路断线时经t3(1s)发出跳闸指令。
2.发电机过激磁保护过激磁保护是反应发电机因频率降低或者电压过高引起铁芯工作磁密过高的保护。
过激磁保护分高、低两段定值,低定值经固定延时5s发出信号和降低励磁电压(降低励磁电压、励磁电流的功能暂未用),高定值经反时限动作于解列灭磁。
反时限延时上限为5秒,下限为200秒。
3.发电机定子接地保护发电机定子接地保护作为发电机定子单相接地故障保护,由基波零序电压部分和三次谐波电压两部分组成,基波零序电压保护机端至机尾95%区域的定子绕组单相接地故障,由反映发电机机端零序电压原理构成,经时限t1(3s)动作于解列灭磁;三次谐波电压保护机尾至机端30%区域的定子绕组单相接地故障,由发电机中性点和机端三次谐波原理构成,经时限t2(5s)动作于信号。
二者组成100%的定子接地保护。
保护设有PT断线闭锁。
4.发电机定子匝间保护保护由纵向零序电压和故障分量负序方向判据构成,设置PT断线闭锁措施,作为发电机内部匝间、相间短路以及定子绕组开焊的主保护。
故障分量负序方向判据通过检测流出发电机的负序功率实现。
纵向零序电压判据通过检测中性点与发电机中性点直接相连且不接地的3P开口三角绕组所输出的纵向3U0实现。
保护动作于全停。
5.失步保护保护采用三阻抗元件,通过阻抗的轨迹变化来检测滑极次数并确定振荡中心的位置。
在短路故障、系统振荡、电压回路断线等情况下,保护不误动作。
保护一般动作于信号;当振荡中心在发电机-变压器组内部,保护I段启动经t1(0.5s)发跳闸命令, 动作于解列灭磁;当振荡中心在发电机-变压器组外部,保护II段启动经t2(2s)发信号。
保护装设有电流闭锁装置,用以保证在断路器断开时电流不超过断路器额定失步开断电流。
6.低频累加保护低频累加保护反应系统频率降低对汽轮机影响的累积效应,保护由灵敏的频率继电器和计数器组成,经出口断路器辅助接点闭锁(即发电机退出运行时低频累加保护也退出运行),累计系统频率低于频率定值47.5Hz的时间,当累计时间达到整定值3000秒时,经延时30秒动作于发信号。
装置在运行时可实时监视:定值,频率f及累计时间的显示。
7.发变组差动保护变压器差动保护及高变差动保护是被保护元件内部相间短路故障的主保护,采用比率制动式原理。
区外故障时可靠地躲过各侧CT特性不一致所产生的不平衡电流,区内故障保护灵敏地动作。
为避免在变压器励磁涌流作用下保护误动,保护采用二次谐波闭锁。
保护设有不经二次谐波闭锁差流速断功能,当差动电流达到整定值时瞬间切除故障。
保护具有CT断线闭锁功能(实际未用)。
CT断线判别与发电机差动保护相同。
8.励磁回路过负荷保护励磁回路过负荷保护用作转子励磁回路过流或过负荷的保护,接成三相式,由定时限和反时限两部分组成。
定时限部分动作电流按正常运行最大额定电流下能可靠返回的条件整定,经时限t1(5s)动作于信号和降低励磁电流(降低励磁电流的功能未用);反时限部分动作特性按发电机励磁绕组的过负荷能力确定,保护动作于解列灭磁,反时限上限为10秒。
9.发电机转子一点接地保护发电机转子一点接地保护用于反应发电机转子回路一点接地故障,保护采用乒乓式切换原理,轮流采样转子回路正、负极对地电压,通过求解两个不同的接地回路方程,实时计算转子接地电阻和接地位置。
保护经延时2秒动作于信号。
10.发电机对称过负荷保护保护装置由定时限和反时限两部分组成,定时限部分经时限5秒动作于信号。
反时限动作特性按发电机承受过负荷电流的能力确定,动作于解列。
保护装置能反应发电机定子的热积累过程。
11.发电机负序过负荷保护保护装置由定时限和反时限两部分组成,定时限动作电流按躲过发电机长期允许的负序电流值和躲过最大负荷下负序电流滤过器不平衡的电流值整定,经时限3秒动作于信号。
反时限动作特性按发电机承受负序电流的能力确定,动作于解列灭磁。
保护装置能反应发电机转子的热积累过程。
12.发电机断水保护保护用于反应发电机冷却水中断故障,由热工提供的断水接点构成,保护动作于信号和解列灭磁。
13.发电机过电压在发电机并网前,如机端电压达到1.3倍额定值时,发电机过电压经延时0.5秒动作于解列灭磁。
当发电机并网后,自动退出此保护。
发电机-变压器组是否并网通过主变220KV侧开关辅助接点状态进行判别。
发电机保护功能及其原理一、基本概念发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是一个十分贵重的电器元件,因此,应该征各种不同的故障和不正常运行状态,装设性能完善的继电保护装置。
故障类型及不正常运行状态故障类型包括定子绕组相间短路、定子绕组一相的闸间短路、定子绕组单相接地、转子绕组一点接地或两点接地、转子励磁回路励磁电流消失不正常运行状态主要有:由于外部短路引起的定子绕组过电流;由于负荷等超过发电机额定容量而引起的三相对称过负荷;由于外部不对称短路或不对称负荷而引起的发电机负序过电流和过负荷;由于突然甩负荷引起的定子绕组过电压;由于励磁回路故障或强励时间过长而引起的转子绕组过负荷;由于汽轮机主气门突然关闭而引起的发电机逆功等。
二、发电机可能发生的故障和相应的保护装置定子绕组相间短路定子绕组相间短路会引起巨大的短路电流,严重烧坏发电机,需装设瞬时动作的纵联差动保护。
定子绕组的匝间短路定子绕组的匝间短路分为:同相同分支的匝间短路和同相异分支的匝间短路,同样会产生世大的短路电流而烧坏发电机,需要装设瞬时动作的专用的匝间短路保护。
定子绕组的单相接地定子绕组的单相接地是发电机易发生的一种故障。
通常是因绝缘破坏使其绕组对铁芯短接,虽然此种故障瞬时电流不大,但接地电流会引起电弧灼伤铁芯,同时破坏绕组的绝缘,有可能发展为匝间短路或相间短路。
因此,应装设灵敏的反映全部绕组任一点接地故障的100%定子绕组接地保护。
发电机转子绕组一点接地和两点接地转子绕组一点接地后虽对发电机运行无影响,但若再发生另一点接地,则转子绕组一部分被短接造成磁势不平衡而引起机组组剧烈振动,产生严重后果。
因此,需同时装设转子绕组一点接地保护和两点接地保护。
发电机失磁发电机失磁分为:完全失磁和部分失磁,是发电机的常见故障之一,失磁故障不仅对发电机造成危害,而且对系统安全也会造成严重影响,因此需装设失磁保护。
发电机的异常运行状态的危害不如发电机故障严重,但危及发电机的正常运行,特别是随着时间的增长,可能会发展成故障。
因此为防患于未然也要装设相应的保护。
定子绕组负荷不对称运行,会出现负序电流可能引发电机转子表层过热,XU装设定子绕组不对称负荷保护(转子表层过热保护)。
定子绕组对称过负荷,装设对称过负荷保护(一般采用反时限特性)。
转子绕组过负荷,装设转子绕组过负荷保护。
并列运行的发电机可能因机炉的保护动作等原因将主气阀关闭,从而导致逆功率运行,使汽轮机叶片与残留尾气剧烈磨擦过热而损坏汽轮机,因此要装设逆功率保护。
为防止过激磁引起发热而烧坏铁蕊,应装设过激磁保护。
因系统振荡而引起发电机失步异常运行,危及发电机和系统运行安全,要装设失步保护。
其他保护:定子绕组过电压、低频运行、非全相运行及与发电机运行直接有关的热工方面的保护,对水内冷发电机还应装设断水保护等。
另外,还应装设发电机的后备保护,如电流、电压保护、阻抗保护等。
三、发电机保护原理1、发电机相间短路的纵联差动保护发电机纵联差动保护的基本原理是比较发电机两侧电流的大小和相位,它是反映发电机及其引出线的相间短路故障。
2、发电机差动保护2.1 保护原理发电机差动保护是发电机内部相间短路故障的主保护,它反应发电机中性点和机端侧差动电流的大小,采用比率制动特性,动作判据如下:(1)式中:、分别为动作电流和制动电流,且有,;、分别为差动最小动作电流和制动特性的拐点电流值,拐点电流固定为,为发电机二次额定电流;为比率制动系数。
其中:、分别为发电机机端和中性点的电流相量,其正方向均为指向系统为正,也即两侧电流互感器(TA,以下同)为零度接线。
图5 带比率制动特性的发电机差动保护动作特性装置设置有差动TA断线判断功能,判据为有且只有一相的一侧(机端或中性点)电流为零,判为TA断线。
当检测出差动TA断线时,由控制字选择是否闭锁单相差动保护。
为了提高可靠性,当判为单相差动动作时,若有负序电压或电流较大时,开放差动保护。
为了在轻负荷下提前发现差动回路的异常,装置还具有差流越限功能,差流越限的定值固定为差动最小动作电流的80%,当判出差流越限且经过10s发差流越限告警信号。
2.2 启动为了保证差动保护的可靠性,一方面采用启动插件闭锁(C型和D型),另一方面结合后备电流有突变或后备电流越限以及差动电流辅助起动作为差动的综合启动方式。
2.3 说明机端和中性点电流互感器必须同型号、同变比,而且为零度接线。
2.4 发电机差动保护逻辑框图图6 发电机差动保护原理框图3、发电机变压器组差动保护3.1 保护原理发电机变压器组差动保护(简称大差)是发电机内部相间短路和变压器内部故障的主保护,它反应发电机中性点电流和主变高压侧电流,适用于发电机出口不带断路器的场合。
发变组差动保护包括差动速断、比率制动差动、差流越限、TA断线判别、涌流判别等模块。
比率制动特性动作判据如式(2)所示,比率制动特性如图(4)所示。
(2)式中:、分别为动作电流和制动电流,且有,;、分别为差动电流最小动作电流和制动特性的拐点电流值,拐点电流固定为,为主变高压侧二次额定电流;为比率制动系数。
其中:为经过平衡后的主变高压侧电流相量,为发电机中性点的电流相量,其正方向均为指向发变组为正,也即两侧电流互感器(TA,以下同)为180度接线。