六年级奥数培训教材
小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
六年级奥数培训教材
六年级奥数培训教材目录第一章数与代数第一讲比较大小第二章实践与应用(一)第一讲行程问题(一)第二讲行程问题(二)第三讲行程问题(三)第四讲流水行船问题第三章空间与图形第一讲表面积、体积(一)第二讲表面积、体积(二)第四章数论与整除第一讲应用同余解题第五章应用(二)第一讲“牛吃草”问题第二讲不定方程第三讲比例(补充)第六章组合与推理第一讲最大、最小问题第二讲乘法和加法原理第三讲抽屉原理(一)第四讲抽屉原理(二)第五讲逻辑推理(一)第六讲逻辑推理(二)第其讲对策问题第一章 数与代数 第一讲 比较大小【专题导引】我们已经掌握了基本的比较整数、小数、分数大小的方法。
本周将进一步研究如何比较一些较复杂的数或式子的值的大小。
解答这种类型的题目,需要将原题进行各种形式的转化,再利用一些不等式的性质进行推理判断。
如:a>b>0,那么a 2>b 2;如果a>b>0,那么ba b a ;如果11 >1,b>0,那么a>b 等等。
比较大小时,如果要比较的分数都接近1时,可先用1减去原分数,再根据被减数相等(都是1),减数越小,差越大的道理判断原分数的大小。
如果两个数的倒数接近,可以先用1分别除以这两个数。
再根据被除数相等,商越小,除数越大的道理判断原数的大小。
除了将比较大小转化为比差、比商等形式外,还常常要根据算式的特点将它作适当的变形后再进行判断。
【典型例题】【例1】比较888889888884777778777773和的大小。
【试一试】1、比较666663666661777777777775和的大小。
2、将9998988987987798769876698765,,,按从小到大的顺序排列出来。
【例2】比较1111111111111111和哪个分数大?【试一试】 1、比较166331666333==B A 和的大小。
2、比较888888887444444443222222221111111110和的大小。
小学六年级奥数教材(上册)
第一讲工程问题第一讲工程问题工程问题是应用题中的一种类型.在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量).这三个量之间有下述一些关系式:工作效率×工作时间=工作总量,工作总量÷工作时间=工作效率,工作总量÷工作效率=工作时间.为叙述方便,把这三个量简称工量、工时和工效.例1 一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?答:甲、乙、丙三队合作需10天完成.说明:我们通常把工量“一项工程”看成一个单位.这样,工效就用工例2 师徒二人合作生产一批零件,6天可以完成任务.师傅先做5天批零件各需几天?工效和.要求每人单独做各需几天,首先要求出各自的工效,关键在于把师傅先做5天,接着徒弟做3天转化为师徒二人合作3天,师傅再做2天.答:如果单独做,师傅需10天,徒弟需15天.例3 一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?分析解答工程问题时,除了用一般的算术方法解答外,还可以根据题目的条件,找到等量关系,列方程解题。
解:设甲做了x天.那么,两边同乘36,得到:3x+40-4x=36,x=4.答:甲做了4天.例4 一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?分析设一件工作为单位“1”.甲做6小时,乙再做12小时完成或者甲先做8小时,乙再做6小时都可完成,用图表示它们的关系如下:由图不难看出甲2小时工作量=乙6小时工作量,∴甲1小时工作量=乙3小时工作量.可用代换方法求解问题.解:若由乙单独做共需几小时:6×3+12=30(小时).第一讲工程问题若由甲单独做需几小时:8+6÷3=10(小时).甲先做3小时后乙接着做还需几小时:(10-3)× 3=21(小时).答:乙还需21小时完成.例5 筑路队预计30天修一条公路.先由18人修12天只完成全部工程之几(即一人的工效).解:①1人1天完成全部工程的几分之几(即一人的工效):②剩余工作量若要提前6天完成共需多少人:=36(人).③需增加几人:第一讲工程问题36-18=18(人).答:还要增加18人.例6 蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小时.排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水,进水,排水…的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确到分钟)分析与解答①在解答“水管注水”问题时,会出现一个进水管,一个出水管的情况.若进水管、出水管同时开放,则积满水的时间=1÷(进水管工效-出水管工效),排空水的时间=1÷(出水管工效-进水管工效).②这道应用题是分析推理与计算相结合的题目.根据已知条件推出水池好排完.一半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?分析这道题是工程问题与分数应用题的复合题.解题时先要分别求出甲、乙工作效率,再把余下的工作量转化为占单位“1”(总工作量)的几分之几?第一讲工程问题如果二人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵?分析求这批树一共多少棵,必须找出与36棵所对应的甲、乙工效=4∶3,所以甲与乙的工效比是3∶4.这个间接条件一旦揭示出来,问题就得到解决了.甲与乙的时间比是4∶3.工作总量一定,工作效率和工作时间成反比例,所以甲与乙的工效比是时间比的反比,为3∶4.答:这批树一共252棵.例9 加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,第一讲工程问题个零件,求这批零件共多少个?分析欲求这批零件共多少个,由题中条件只需知道甲、乙二人每天共做多少个即可,然后这就转化为求甲、乙两人单独做各需多少天,有了这个结论后,只需算出3个零件相当于总数的几分之几即可.由条件知甲做16甲单独做所用天数可求出,那么乙单独做所用天数也就迎刃而解.解:甲、乙合作12天,完成了总工程的几分之几?甲1天能完成全工程的几分之几?乙1天可完成全工程的几分之几?这批零件共多少个?答:这批零件共360个.第一讲工程问题例10 一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?分析要求共用多少小时?可以设想把这些小时重新分配:甲做1小时,乙做1小时,它们相当于合作1小时,也即是每2小时,相当于合做1小时.这样先大致算一下一共进行了多少个这样的2小时,余下部分问题就好解决了.解:①若甲、乙两人合作共需多少小时?②甲、乙两人各单独做7小时后,还剩多少?④共用了多少小时?习题一习题一1.一项工程,甲单独做12天可以完成.如果甲单独做3天,余下工作由乙去做,乙再用6天可以做完.问若甲单独做6天,余下工作乙要做几天?2.一条水渠,甲乙两队合挖30天完工.现在合挖12天后,剩下的由乙队挖,又用24天挖完.这条水渠由乙单独挖,需要多少天?3.客车与货车同时从甲、乙两站相对开出,经2小时24分钟相遇,相遇时客车比货车多行9.6千米.已知客车从甲站到乙站行4小时30分钟,求客车与货车的速度各是多少?4.水箱上装有甲、乙两个注水管.单开甲管20分钟可以注满全箱.现满水箱?5.一项工程,甲、乙单独做分别需要18天和27天.如果甲做若干天后,乙接着做,共用20天完成.求甲乙完成工作量之比.7.做一批儿童玩具.甲组单独做10天完成,乙组单独做12天完成,丙组每天可生产64 件.如果让甲、乙两组合作4天,则还有256件没完成.现在决定三个组合做这批玩具,需要多少天完成?习题一解答习题一解答②余下工作乙几天完成?答:余下工作乙要4天完成.答:乙队单独挖需40天完成.=32(千米/小时).答:客车与货车的速度分别为每小时32千米和28千米.答:单开乙管需30分钟注满水箱.5.解:设甲先做x天,乙做(20-x)天.20-x=20-14=6.答:甲乙完成工作量之比是7∶2.②甲乙工作时间比:3∶2,工效比为2∶3.答:单独做甲需18天,乙需12天.7.解法1:①要加工儿童玩具多少件?②丙组单独做需要几天?960÷64=15(天).③甲乙丙三组合作,共需几天?答:三组合作做这批儿童玩具要4天完成.解法2:甲、乙两组合作4天后,所剩没有完成的256件,由丙组完成,需:256÷64=4(天).答:甲、乙、丙三组合作这批儿童玩具要4天完成.第二讲比和比例第二讲比和比例在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关.在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断.成正比或反比的量中都有两种相关联的量.一种量(记作x)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k).在判断变量x与y是否成正、反比例时,我们要紧紧抓住这个不变量k.如成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例.下面我们从最基本的判断两种量是否成比例的例题开始.例1 下列各题中的两种量是否成比例?成什么比例?①速度一定,路程与时间.②路程一定,速度与时间.③路程一定,已走的路程与未走的路程.④总时间一定,要制造的零件总数和制造每个零件所用的时间.⑤总产量一定,亩产量和播种面积.⑥整除情况下被除数一定,除数和商.⑦同时同地,竿高和影长.⑧半径一定,圆心角的度数和扇形面积.⑨两个齿轮啮合转动时转速和齿数.⑩圆的半径和面积.(11)长方体体积一定,底面积和高.第二讲比和比例(12)正方形的边长和它的面积.(13)乘公共汽车的站数和票价.(14)房间面积一定,每块地板砖的面积与用砖的块数.(15)汽车行驶时每公里的耗油量一定,所行驶的距离和耗油总量.分析以上每题都是两种相关联的量,一种量变化,另一种量也随着变化,那么怎样来确定这两种量成哪种比例或不成比例呢?关键是能否把两个两种形式,或只能写出加减法关系,那么这两种量就不成比例.例如①×零件数=总时间,总时间一定,制造每个零件用的时间与要制造的零件总数成反比例.③路程一定,已走的路程和未走的路程是加减法关系,不成比例.解:成正比例的有:①、⑦、⑧、(15)成反比例的有:②、④、⑤、⑥、⑨、(11)、(14)不成比例的有:③、⑩、(12)、(13).例2 一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?分析要求此人走完全程用了多少时间,必须根据已知条件先求出此人走上坡路用了多少时间,必须知道走上坡路的速度(题中每小时行3千米)和上坡路的路程,已知全程60千米,又知道上坡、平路、下坡三段路程比是1∶2∶3,就可以求出上坡路的路程.解:上坡路的路程:走上坡路用的时间:第二讲比和比例上坡路所用时间与全程所用时间比:走完全程所用时间:例3 一块合金内铜和锌的比是2∶3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?分析要求新合金内铜和锌的比,必须分别求出新合金内铜和锌各自的重量.应该注意到铜和锌的比是2∶3时,合金的重量不是36克,而是(36-6)克.铜的重量始终没有变.解:铜和锌的比是2∶3时,合金重量:36-6=30(克).铜的重量:新合金中锌的重量:36-12=24(克).新合金内铜和锌的比:12∶24=1∶2.第二讲比和比例答:新合金内铜和锌的比是1∶2.例4 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?工作量与工作效率成正比例.解法1:设师傅加工x个,徒弟加工(168-x)个.5x=168×9-9x,14x=168×9,x=108.168-x=168-108=60(个).答:师傅加工108个,徒弟加工60个.第二讲比和比例=60(个),(徒弟).考方法可求出两人各用了多少分钟.然后用师、徒每分钟各自的效率,分别乘以540就是各自加工零件的个数.解法4:按比例分配做:第二讲比和比例例5 洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?分析这是一道比例应用题,工效和工时是变量,不变量是计划生产5天后剩下的台数.从工效看,有原来的效率1600÷20=80台/天,又有提高后的效率80×(1+25%)=100台/天.从时间看,有原来计划的天数,要求效率提高后还需要的天数.根据工效和工时成反比例的关系,得:提高后的效率×所需天数=剩下的台数.解法1:设完成计划还需x天.1600÷20×(1+25%)×x=1600-1600÷20×580×1.25×x=1600-400100x=1200x=12.答:完成计划还需12天.解法2:此题还可以转化成正比例.根据实际效率是原来效率的1+25因为工效和工时成反比例,所以实际与原来所需时间的比是4∶5,如果设实际还需要x天,原来计划的天数是20-5=15天,根据实际与原来时间的比等于实际天数与原来天数的比,可以用正比例解答.设完成计划还需x天.第二讲比和比例5x=60,x=12.解法3:(按工程问题解)设完成计划还需x天.例6 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:解法1:BC的长:182÷13=14(厘米),BD的长:14+13=27(厘米),从图中看出AB长就是原长方形的宽,AD与AB的比是14∶5,AB与BD的比是5∶(14-5)=5∶9,第二讲比和比例原长方形面积是42×15=630(平方厘米).答:原长方形面积是630平方厘米.解法2:设原长方形长为14x,宽为5x.由图分析得方程(14x-13)× 13-5x×13=182,9x=27,x=3.则原长方形面积(14×3)×(5×3)=630(平方厘米).例4、例5、例6是综合性较强的题,介绍了几种不同解法.要求大家从不同角度、综合、灵活运用所学知识,多角度去思考解答应用题,从而提高自己思维判断能力.习题二习题二1.一块长方形的地,长和宽的比是3∶2,长比宽多24米,这块地的面积是多少平方米?2.一块长方形的地,长和宽的比是3∶2,长方形的周长是120米,求这块地的面积?3.水果店运来橘子、苹果共96筐,橘子和苹果筐数的比是5∶3,求橘子、苹果各是多少筐?4.化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25%,照这样计算,剩下的任务还需多少天完成?5.小强买了一件上衣和两条裤子,小明买了同样价钱的上衣和裤子各一件,他们用去钱数的比是4∶3,已知一件上衣7元,求一条裤子多少元?页,这时已读的页数与剩下页数的比是3∶7,小刚再读多少页就能读完这本书?7.甲、乙两车由A、B两地同时出发相向而行,甲乙两车速度比是2∶8.“长江”号轮船第一次顺流航行21公里又逆流航行4公里,第二次在同一河流中顺流航行12公里,逆流航行7公里,结果两次所用的时间相等.求顺水船速与逆水船速的比.习题二解答习题二解答2.120÷2=60(米),36×24=864(平方米).3.5+3=8,4.设剩下的任务还需x天完成.25%x=75%×5,x=15.习题二解答5.设一件上衣与一条裤子的价钱之比是1∶x,则小强和小明用去钱数的比是:3(1+2x)=4(1+x),3+6x=4+4x,2x=1,7.设乙车行完全程用x小时.8.顺水船速∶逆水船速=(21-12)∶(7-4)=3∶1.第三讲分数、百分数应用题(一)第三讲分数、百分数应用题(一)分数、百分数应用题是小学数学的重要内容,也是小学数学重点和难点之一.一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律.因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带来一定困难.为了学好分数、百分数应用题的解法必须做好以下几方面工作.①具备整数应用题的解题能力.解答整数应用题的基础知识,如概念、性质、法则、公式等仍广泛用于分数、百分数应用题.②在理解、掌握分数的意义和性质的前提下灵活运用.③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件.它可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理.④学会多角度、多侧面思考问题的方法.分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路.例1 (1)本月用水量比上月节约7%,可以联想到哪些关系?①上月用水量与单位“1”的关系.②本月节约用水量与上月用水量的7%的关系.③本月用水量与上月用水量的(1-7%)的关系.(2)蓝墨水比红墨水多20%,可以联想到哪些关系?①红墨水与单位“1”的关系.②蓝墨水比红墨水多出的量与红墨水的20%的关系.③蓝墨水与红墨水的(1+20%)的关系.(3)已看的页数比未看的页数多15%,可以联想哪些关系?第三讲分数、百分数应用题(一)①未看的页数与单位“1”的关系.②已看的与未看的页数的差与未看页数的15%的关系.③已看的页数与未看的页数的(1+15%)的关系.是多少页?分析每天看15页,4天看了15×4=60页.解题的关键是要找出解:①看了多少页?15×4=60(页).②看了全书的几分之几?③这本书有多少页?答:这本故事书是150页.事书分析要想求这本书共有多少页,需要找条件里的多21页,少6页,剩下172页所对应的百分率.也就是说,要从这三个量里找出一个能明确占全书的几分之几的量.画线段图:答:这本故事书共有264页.例4 惠华百货商场运到一批春秋西服,按原(出厂)价加上运费、营知售价是123元,求出厂价多少元?于123元,相当如上图可以得出解答:答:春秋西服每套出厂价是108元.其余部分时,又刚好装满6筐,求共收西红柿多少千克?率”的关系已经直接对应,求每筐的千克数的条件完全具备.解:其余部分是总千克数的几分之几:克,收完与百分西红柿总数共装了多少筐:每筐是多少千克:共收西红柿多少千克:综合算式:答:共收西红柿384千克.解法2:(以下列式由学生自己理解)答:共收西红柿384千克.水泥没运走.这批水泥共是多少吨?分析上图中有3个相对各自讨论范围内的单位“1”(“全部”、“余下”、“又余第三讲分数、百分数应用题(一)下”).依据逆向思路可以得出,最后剩下的15吨对应的是下”的吨数90吨(即“余下”含义中的1个单位是90吨).这90吨恰是“全例7 某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他秒?分析与解答这是一个追及问题,因此求追上所花时间必须求出相距距离及它们速度差.相距距离是因为车上之人与小偷反向走了10秒钟产生的.而速度差是易求的.所以追上所花时间是答:追上小偷要110秒.例8 A有若干本书,B借走一半加一本,剩下的书,C借走一半加两本,再剩下的书,D第三讲分数、百分数应用题(一)借走一半加3本,最后A还有2本书,问A原有多少本书.答:A原有50本书.解法2:用倒推法解.分析A剩下的2本应是C借走后剩下的一半差3本,所以C借走后还综合算式:答:A原有50本书.习题三习题三比苹果少1440千克,运来橘子多少千克?2.有两袋米,甲袋比乙袋少18千克.如果再从甲袋倒入乙袋6千克,3.一本书,已看了130页,剩下的准备8天看完.如果每天看的页数苹果?每天各吃了几个苹果?5.古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年.再活十二分之一脸上长起了细细的胡须,他结了婚还没有孩子,又度过了七分之一.再过了五年,他幸福地得到了一个儿子.可这孩子光辉灿烂的寿命只有他父亲的一半.儿子死后,老人在悲痛中活了四年,也结束了尘世的生涯”.你能根据这段话推算出丢番图活了多少岁?多少岁结的婚吗?6.一瓶酒精,当用去酒精的一半后,连瓶共重700克;如只用去酒精多少台?习题三解答习题三解答1.①苹果重量占总重量的几分之几?③总重量是多少千克?④运来橘子多少千克?2.①倒米后甲袋比乙袋少多少千克?18+6×2=30(千克).②倒米后甲袋比乙袋少几分之几?③倒米后乙袋有米多少千克?习题三解答④原来乙袋有米多少千克?80-6=74(千克).⑤原来甲袋有米多少千克?74-18=56(千克).4.共买苹果:习题三解答=605(台).第四讲分数、百分数应用题(二)第四讲分数、百分数应用题(二)在解题过程中,除了要利用上一讲中所说的一些技巧和方法(如画线段示意图等)之外,还要注意在解题过程中量的转化.例如,在解题过程的不同阶段,有时需把不同的量看成单位1,即要把单位1进行“转化”;有时,在解题过程中需把相等的量看成完全一样,即其中之一可“转化”为另一.通过这样的转化,往往能使解题思路清晰,计算简便.几?而问题“女工人数比男工人数少几分之几”是把男工人数看作单位“1”.解答这题必须转化单位“1”.说明:“1”倍量的转换引起了“百分率”的转化,其规律是,甲数是第四讲分数、百分数应用题(二)修路程的比是4∶3,还剩50O米没修,这条路全长多少米?分析此题条件中既有百分率又有比,可以把比转化成百分率,按分数应用题解答.第二天与第一天所修路程的比是4∶3.即第二天修的占4份,第一天米相对应的百分率,进而求出全长有多少米.=1200(米).答:全长是1200米.求两个班各分到多少皮球?相等,单位“1”不一致,因此一班与二班分到的皮球之间缺乏统一的倍数关系,率”转化,才能做此题.二班的球数相当于一班的几分之几.总球数120就和两个班的百分率之和相对应,求出一班分到多少皮球.二班分到的球占一班的几分之几:二班分到多少皮球:120-72=48(个).答:一班分到72个皮球,二班分到48个皮球.倍题,就可求出二班分到多少球.一班分到的占二班几分之几:二班分到多少球:一班分到多少球:120-48=72(个).一班与二班分到皮球数的比:问两班第四讲分数、百分数应用题(二)各多少人?画出线段图:由量、百分率的对应就不难求出甲班人数了.乙班人数:84-40=44(人).答:甲班有40人,乙班有44人.例5 加工一批零件,甲乙二人合作需12天完成;现由甲先工作3天,这批零件共有多少个?分析解答此题要用条件转化法,即把“甲工作3天,乙工作2天”,转化为“二人合作第四讲分数、百分数应用题(二)2天,再由甲独干一天”,问题便可以得到解决.件所对应的百分率,求出这批零件有多少个.解:甲每天完成这批零件的几分之几:乙每天完成这批零件的几分之几:这批零件共有多少个:答:这批零件共有240个.第四讲分数、百分数应用题(二)分析题目中除全厂外,还有两个单位“1”:一个是一车间,另一个是二车间.可以通过转化的思路,统一到一车间.找到三车间的156人相当于一车间的几分之几,从而先求出一车间的人数,由于一车间人数占全厂的25%,从而直接求出全厂的人数,这样可无需求出二车间的具体人数.解:二车间人数是一车间的几分之几:三车间的人数是一车间的几分之几:一车间有多少人:答:这个服装厂全厂共有600人.全厂共有多少人:150÷25%=600(人).综合算式:习题四习题四2.修路队修一条1800米的路,前5天完成了全长的25%,照这样计算,把这条水渠还要多少天?3.甲、乙两车分别从A、B两地同时相对开出,经4小时相遇,相遇后各自继续前进,又经过3小时,甲车到达B地,乙车离A地还有70千米,求A、B两地相距多少千米?4.哥哥和弟弟共有人民币10.8元,哥哥用去自己钱数的75%,弟弟用去自己钱数的80%,两人所剩的钱正好相等,哥哥原来有多少钱?5.一项工程,甲、乙两队合作可30天完成,甲队独做24天后,甲、乙两队又合作了12 天,然后甲调走,乙又做了15天才完成了全部的工程,甲队若单独做这项工程需几天完成?6.甲、乙两台抽水机共同工作10小时,可以把整池水抽完,如果甲台两台抽水机单独抽各需几小时?7.二年级两个班共有学生90人,其中少先队员有71人,又知一班少少人?习题四解答习题四解答甲班:120-24=96(棵)2.解法1:1800×(1-25%)÷(1800×25%÷5)=15(天).解法2:1800÷(1800×25%÷5)-5=15(天).解法3:1÷(25%÷5)-5=15(天).解法4:5×[(1-25%)÷25%]=15(天).4.解法2:1-75%=25%,1-80%=20%,(1÷25%)∶(1÷20%)=4∶5,10.8÷(4+5)×4=4.8(元).习题四解答二班人数:90-48=42(人).第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=6a2,V正方体=a3.例1有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为2a2平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+2a2=240,可知,a2=25,故a=5(厘米).又因为2a2+4ah=190,。
【最新】小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学六年级奥数经典讲义(全套36讲)
第一讲循环小数与分数第二讲和差倍分问题第三讲行程问题第五讲质数与合数第六讲工程问题第七讲牛吃草问题第八讲包含与排除第九讲整数的拆分第十讲逻辑推理第十一讲通分与裂项第十二讲几何综合第十三讲植树问题第十五讲余数问题第十六讲直线面积第十七讲圆与扇形第十八讲数列与数表综合第十九讲数字迷综合第二十讲计数综合第二十一讲行程与工程第二十二讲复杂工程问题第二十三讲运用比例求解行程问题第二十四讲应用题综合第二十五讲数论综合2第二十六讲进位制问题第二十七讲取整问题第二十八讲数论综合3第二十九讲数论综合4第三十讲几何综合2第三十一讲图形变换第三十二讲勾股定理第三十三讲计数综合第三十四讲最值问题第三十五讲构造与论证1第三十六讲构造与论证2第一讲循环小数与分数循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?【分析与解】17=0.142857 ,27=0.285714 ,37=0.428571 ,47=0.571428 ,57=0.714285 , 67=0.857142. 因此,真分数7a化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以7a =0..857142 ,即a =6.评注:7a的特殊性,循环节中数字不变,且顺序不变,只是开始循环的这个数有所变化.2.某学生将1.23乘以一个数a 时,把1.23 误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【分析与解】 由题意得:1.23 a -1.23a =0.3,即:0.003 a =0.3,所以有:3390010a =.解得a = 90,所以1.23a =1.23 × 90=123290-×90=11190× 90=111.3.计算:0.1+0.125+0.3+0.16,结果保留三位小数. 【分析与解】 方法一:0.1+0.125+0.3+0.16≈-0.1111+0.1250+0.3333+0.1666=0.7359≈0.736方法二:0.1+0.125+0.3+0.16113159899011118853720.7361=+++=+== ≈0.7364.计算:0.010.120.230.340.780.89+++++ 【分析与解】 方法一:0.010.120.230.340.780.89+++++ =1121232343787898909090909090-----+++++ =11121317181909090909090+++++ =21690=2.4方法二:0.010.120.230.340.780.89+++++ =0+0.1+0.2+0.3+0.7+0.8+(0.010.020.030.040.080.09+++++ ) =2.1+0.01×(1+2+3+4+8+9) =2.1+190×27 =2.1+0.3 =2.4方法三:如下式, 0.011111… 0.122222... 0.233333... 0.344444...(1+2+3+4+8+9=27) 0.788888...+0.899999... 2.399997...注意到,百万分位的7是因为没有进位造成,而实际情况应该是2.399999…=2.39 =2.4.评注:0.9=99=1 ,0.09 =919010=.5.将循环小数0.027与0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【分析与解】0.×0.179672=27179672117967248560.00485699999999937999999999999⨯=⨯== 循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l 位是5.这样四舍五入后第100位为9.6.将下列分数约成最简分数:166********66666666664【分析与解】 找规律:161644=,16616644=,1666166644= ,166661666644=,…所以1666666666666666666664=14评注:类似问题还有38538853888538888538888888885234 (29729972999729999729999999997)+⨯+⨯+⨯++.7.将下列算式的计算结果写成带分数:0.523659119⨯⨯【分析与解】0.523659119⨯⨯=11859119⨯=1(1)119-×59=59-59119=58601198.计算:744808333÷2193425909÷11855635255【分析与解】 744808333÷2193425909÷11855635255=62811259093525583332193453811⨯⨯ =373997131993564111136412119973331993⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=7523⨯⨯=5569.计算:1111111 81282545081016203240648128 ++++++【分析与解】原式1111111 81288128406420321016508254 =++++++2111118128406420321016508254 =+++++ 1111114064406420321016508254 =+++++ 11111203220321016508254=++++111110161016508254=+++111508508254=++11254254=+1127=10.计算:153219(4.85 3.6 6.153) 5.5 1.75(1) 4185321⎡⎤⨯÷-+⨯+-⨯+⎢⎥⎣⎦【分析与解】原式=1757193.6(4.851 6.15)5.5443421⨯⨯-++-⨯-⨯=135193.610 5.5412+⨯⨯+-=9+5.5-4.5 =1011.计算: 41.2×8.1+11×194+537×0.19【分析与解】原式=412×0.81+11×9.25+0.19×(412+125) =412×(0.81+0.19)+11×9.25+0.19×125 =412+11×8+11×1.25+19×1.25=412+88+1.25×30=500+37.5=537.512.计算:2255 (97)() 7979+÷+【分析与解】原式=656555 ()() 7979+÷+=[]555513()()137979⨯+÷+=13.计算:12324648127142113526104122072135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯【分析与解】 原式=33333333123(1247)1232135(1247)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯14.(1)已知等式0.126×79+1235×□-6310÷25=10.08,那么口所代表的数是多少? (2)设上题答案为a .在算式(1993.81+a )×○的○内,填入一个适当的一位自然数,使乘积的个位数字达到最小值.问○内所填的数字是多少? 【分析与解】 (1)设口所代表的数是x ,0.126×79+1235x -6310÷25=10.08,解得:x =0.03,即口所代表的数是0.03.(2)设○内所填的数字是y ,(1993.81+O.03)×y =1993.84×y ,有当y 为8时1993.84×y =1993.84×8=15050.94,所以○内所填的数字是8.15.求下述算式计算结果的整数部分:111111()38523571113+++++⨯ 【分析与解】原式=111111(38538538538538538523571113⨯+⨯+⨯+⨯+⨯+⨯≈192.5+128.3+77+55+35+29.6=517.4 所以原式的整数部分是517.第二讲 和差倍分问题各种具有和差倍分关系的综合应用题,重点是包含分数的问题.基本的解题方法是将已知条件用恰当形式写出或变形,并结合起来进行比较而求出相关的量,其中要注意单位“1”的恰当选取.1.有甲、乙两个数,如果把甲数的小数点向左移两位,就是乙数的18,那么甲数是乙数的多少倍?【分析与解】甲数的小数点向左移动两位,则甲数缩小到原来的1100,设这时的甲数为“1”,则乙数为1×8=8,那么原来的甲数=l×100=100,则甲数是乙数的100÷8=12.5倍.2.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25.如果把这三堆棋子集中在一起,那么白子占全部棋子的几分之几?【分析与解】如下表所示:设全部黑子为“5”份,则第三堆里的黑子为“2”份,那么剩下的黑子占5-2=“3”份,而第一堆里的黑子和第二堆里的白子一样多,将第一堆黑子和第二堆白子调换,则第二堆全部为黑子.所以第二堆棋子总数为“3”份,三堆棋子总数为3×3=“9”份,其中黑子占“5”份,则白子占剩下的9-5=“4”份,那么白子占全部棋子的4÷9=49.3.甲、乙两厂共同完成一批机床的生产任务,已知甲厂比乙厂少生产8台机床,并且甲厂的生产量是乙厂的1213,那么甲、乙两厂一共生产了机床多少台?【分析与解】因为甲厂生产的是乙厂的1213,也就是甲厂为12份,乙厂为13份,那么甲厂比乙厂少1份=8台.总共=8×(12+13)=200台.4.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,那么一张门票降价多少元?【分析与解】设原来人数为“1”,则现在有1+0.5=1.5.原来收入为l×15=15,降价后收人为15×(1+15)=18元,那么降价后门票为18÷1.5=12元,则一张门票降价15-12=3元.5.李刚给军属王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块.这时,已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【分析与解】已经运来的是没有运来的57,则运来的是5份,没有运来的是7份,也就是运来的占总数的512.则共有50÷(512-38)=1200块,还剩下1200×712=700块.6.有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样长的一段以后,发现短纸带剩下的长度是长纸带剩下的长度的813.问剪下的一段长多少厘米?【分析与解】方法一:开始时,两条纸带的长度差为21-13=8厘米.因为两条纸带都剪去同样长度,所以两条纸带前后的长度差不变.设剪后短纸带长度为“8”份,长纸带即为“13”份,那么它们的差为13-8=5份,则每份为8÷5=1.6(厘米).所以,剪后短纸带长为1.6×8=12.8(厘米),于是剪去13-12.8=O.2(厘米).方法二:设剪下x厘米,则1382113xx-=-,交叉相乘得:13×(13-x)=8×(21-x),解得x=0.2,即剪下的一段长0.2厘米.7.为挖通300米长的隧道,甲、乙两个施工队分别从隧道两端同时相对施工.第一天甲、乙两队各掘进了10米,从第二天起,甲队每天的工作效率总是前一天的2倍,乙队每天的工作效率总是前一天的l 12倍.那么,两队挖通这条隧道需要多少天?【分析与解】如下表所示:天数工作量1 2 3 4 5甲10 20 40 80 160乙10 15 22.5 33.75 50.625 当天工作量20 35 62.5 113.75 210.625已完成工作量20 55 117.5 231.25 441.375 说明在第五天没有全天干活,则第四天干完以后剩下:300-231.25=68.75米,那么共用时间为4+68.75÷210.625=4110 337天.8.有一块菜地和一块麦地.菜地的一半和麦地的三分之一放在一起是13公顷.麦地的一半和菜地的三分之一放在一起是12公顷.那么菜地是多少公顷?【分析与解】如下表所示:菜地12麦地13⇒13公顷菜地3 麦地2 ⇒78公顷菜地2 麦地3 ⇒72公顷菜地13麦地12⇒12公顷即5倍菜地公顷数+5倍麦地公顷数=78+72=150,所以菜地与麦地共有150÷5=30(公顷).而菜地减去麦地,为78-72=6(公顷),所以菜地有(30+6)÷2=18(公顷).9.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的3 5和30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【分析与解】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份-15棵,则一份为(1500-30+15)÷(2+2+5)=165棵,有:杨树=5×165=825棵;柳树=165×2+30=360棵;槐树=165×2-15=315棵.10.师徒二人共同加工170个零件,师傅加工零件个数的13比徒弟加工零件个数的14还多10个.那么,徒弟一共加工了多少个零件?【分析与解】我们用“师”表示师傅加工的零件个数,“徒”表示徒弟加工的零件个数,有:1 3“师”-14“徒”=10,4“师”- 3“徒”=120,而4“师”+4“徒”=170×4=680.那么有7“徒”=680-120=560,“徒”=80,徒弟一共加工了80个零件.11. 一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的11 2倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地,其他人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天.那么这批工人共有多少名?【分析与解】设甲工地的工作量为“1.5”,则乙工地的工作量为“1”.甲乙上午33134=+11134=+下午7121-712=512于是甲工地一整天平均用了这批工人的372()24123+÷=,乙工地一整天平均用了这批工人的1-21 33 =.这批工人的23完成了“1.5”的工作量,那么13的这批工人完成1.5÷2=“0.75”的工作量,于是乙工地还剩下1-0.75=“0.25”的工作量,这“0.25”的工作量需要4人工作1天.而甲、乙工地的工作量为1.5+1=2.5,那么需2.5÷0.25× 4=40人工作1天.所以原来这批工人共有40-4=36人.12.有一个分数,如果分子加1,这个分数就等于12;如果分母加1,这个分数就等于13.问原来的分数是多少?【分析与解】如果分子加1,则分数为12,设这时的分数为:2xx,则原来的分数为12xx-,分母加1后为:11213xx-=+,交叉相乘得:3(x-1)=2x+1,解得x=4,则原分数为38.13.图2-1是某市的园林规划图,其中草地占正方形的34,竹林占圆形的67,正方形和圆形的公共部分是水池.已知竹林的面积比草地的面积大450平方米.问水池的面积是多少平方米?【分析与解】因为水池是正方形的14,是圆的17,则正方形是水池的4倍,圆是水池的7倍,相差7-4=3倍,差450平方米,则水池=450÷3=150平方米.14.唐僧师徒四人吃了许多馒头,唐僧和猪八戒共吃了总数的12,唐僧和沙僧共吃了总数的13,唐僧和孙悟空共吃了总数的14.那么唐僧吃了总数的几分之几?【分析与解】唐+猪=12、唐+沙=13、唐+孙=14.(两边同时加减)唐+猪+唐+沙+唐+孙=2唐+(唐+猪+沙+孙)=2唐+1=12+13+14=1112.则:2唐=112,唐=124.唐僧吃了总数的124.15.小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要多少分钟?【分析与解】方法一:先估算出大致所需时间,然后再进行调整.因为小李、小张的工作效率大致相等,那么完成时小李完成300÷2=150个零件左右;小李完成150个零件需要150÷3×4=200分钟;在200分钟左右,198分钟是5.5的整数倍,此时乙生产198÷5.5×4=144个零件,并且刚休息完,所以在2分钟后,即200分钟时完成144+2=146个零件;那么在200分钟时,小李、小张共生产150+146=296个零件,还剩下4个零件未完成,所以再需2分钟,小李生产2个零件,小张生产2个零件,正好完成.所以共需202分钟才能完成.方法二:把休息时间包括进去,小李每4分钟做3个,小张每5.5分钟做4个.则在44分钟内小李做了:44÷4×3=33个,小张做了:44÷5.5×4=32个,他们一共做了:33+32=65个.300÷65=4……40,也就是他们共同做了4个44分钟即:44×4=176分钟后,还剩下40个零件没有做完.而22=4+4+4+4+4+2=5.5×4,所以22分钟内小李做了:3+3+3+3+3+2=17个,小张做了:4×2=16个,那么还剩下:40-17-16=7个,4分钟内小李做3个,小张做4个,共做4+3=7个,即这40个零件还需要26分钟.所以共用时间:44×4+26=202分钟.第三讲行程问题(1)涉及分数的行程问题.顺水速度、逆水速度与流速的关系,以及与此相关的问题.环形道路上的行程问题.解题时要注意发挥图示的辅助作用,有时宜恰当选择运动过程中的关键点分段加以考虑.1.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间260,现在从甲到乙花费了时间1÷55=155千米,所以从乙地返回到甲地时所需的时间只能是211 605566-=.即如果他想按时返回甲地,他应以每小时66千米的速度往回开.2.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶1O 分钟.那么小张驾驶的摩托车减速是在他出发后的多少小时?【分析与解】 汽车从甲地到乙地的行驶时问为100÷80=1.25小时=1小时15分钟,加上中途停驶的10分钟,共用时1小时25分钟.而小张先小李1小时出发,但却同时到达,所以小张从甲到乙共用了2小时25分钟,即2最小时.以下给出两种解法:方法一:设小张驾驶的摩托车减速是在他出发后x 小时,有50×x +40×5210012x ⎛⎫-= ⎪⎝⎭,解得13x =. 所以小张驾驶的摩托车减速是在他出发后13小时. 方法二:如果全程以每小时50千米的速度行驶,需100÷50=2小时的时间,全程以每小时40千米的速度行驶,需100÷40=2.5小时.依据鸡兔同笼的思想知,小张以每小时50千米的速度行驶了52.521122.526-=-的路程,即行驶了10015010063⨯=千米的路程,距出发5015033÷=小时.3. 一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?【分析与解】 我们知道顺风速度=无风速度+风速,逆风速度=无风速度-风速. 有顺风时速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒. 则无风速度=2顺风速度+逆风速度=982+7=米/秒 所以无风的时候跑100米,需100÷8=12.5秒.124.一条小河流过A ,B, C 三镇.A,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A,B 两镇间的距离是多少千米?【分析与解】 如下画出示意图,有A →B 段顺水的速度为11+1.5=12.5千米/小时, 有B →C 段顺水的速度为3.5+1.5=5千米/小时. 而从A →C 全程的行驶时间为8-1=7小时. 设AB 长x 千米,有50712.55x x -+=,解得x =25. 所以A,B 两镇间的距离是25千米.5.一条大河有A,B 两个港口,水由A 流向B,水流速度是每小时4千米.甲、乙两船同时由A 向B 行驶,各自不停地在A,B 之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米.已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A 处同时开始出发的那一次)的地点相距40千米,求A,B 两个港口之间的距离.【分析与解】 设AB 两地的路程为单位“1”,则:甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次同向相遇时,甲、乙两人的路程差为2n ;甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次相向相遇时,甲、乙两人的路程和为2n ;甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次同向相遇时,甲、乙两人的路程差为(2n -1);甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次相向相遇时,甲、乙两人的路程和为(2n -1).有甲船的顺水速度为32千米/小时,逆水速度为24千米/小时, 乙船的顺水速度为24千米/小时,逆水速度为16千米/小时. 两船第二次迎面相遇时,它们的路程和为“4”;甲船第二次追上乙船时,它们的路程差为“4”.(一)第二次迎面相遇时,一定是甲走了2~3个AB 长度,乙走了2~1个AB 长度,设甲走了2+x 个AB 的长度,则乙走了2-x 个AB 的长度,有11322432x ++=112416x -+,解得13x =,即第二次迎面相遇的地点距A 点13AB 的距离.(二)①第二次甲追上乙时,有甲行走2y z +(y 为整数,z ≤1)个AB 的长度,则乙行走了24y z -+个AB 的长度,有322432y y z ++=22241624y y z --++,化简得320y z +=,显然无法满足y 为整数,z ≤1;②第二次甲追上乙时,有甲行走21y z ++(y 为整数,z ≤1)个AB 的长度,则乙行走了23y z -+个AB 的长度,有1322424y y z +++=12241616y y z--++,化简有3213y z +=,有0.5z =,4y =. 即第二次甲追上乙时的地点距B 点12AB 的距离,那么距A 也是12AB 的距离.所以,题中两次相遇点的距离为(111236⎛⎫-= ⎪⎝⎭AB ,为40千米,所以AB 全长为240千米.6.甲、乙两船分别在一条河的A ,B 两地同时相向而行,甲顺流而下,乙逆流而上.相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B 地、乙到达A 地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米.如果从第一次相遇到第二次相遇的时间相隔为1小时20分,那么河水的流速为每小时多少千米? 【分析与解】 因为甲、乙第一次相遇时行驶的路程相等,所以有甲、乙同时刻各自到达B 、A 两地.接着两船再分别从B 、A 两地往AB 中间行驶.所以在第二次相遇前始终是一船逆流、一船顺流,那么它们的速度和始终等于它们在静水中的速度和.有:甲静水速度+水速=乙静水速度-水速.还有从开始到甲第一次到达B 地,乙第一次到达A 地之前,两船在河流中的速度相等.所以甲船比乙船少行驶的1000米是在甲、乙各自返航时产生的.甲乙返航时,有甲在河流中行驶的速度为:甲静水速度-水速,乙在河流中的速度为:乙静水速度+水速.它们的速度差为4倍水速.从第一次相遇到第二次相遇,两船共行驶了2AB 的路程,而从返航到第二次相遇两船共行驶了AB 的路程,需时间80÷2=40分钟. 有4倍水速=401000150060⎛⎫÷=⎪⎝⎭,有水速=375米/小时=0.375千米/小时. 即河水的流速为每小时0.375千米.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟? 【分析与解】 甲行走45分钟,再行走70-45=25分钟即可走完一圈.而甲行走45分钟,乙行走45分钟也能走完一圈.所以甲行走25分钟的路程相当于乙行走45分钟的路程. 甲行走一圈需70分钟,所以乙需70÷25×45=126分钟.即乙走一圈的时间是126分钟.8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.9.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的23.甲跑第二圈时速度比第一圈提高了13;乙跑第二圈时速度提高了15.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米? 【分析与解】设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为125. 如下图,第一次相遇地点逆时针方向距出发点35的跑道长度. 有甲回到出发点时,乙才跑了23的跑道长度.在乙接下来跑了13跑道的距离时,甲以“4”的速度跑了122433÷⨯=圈.所以还剩下13的跑道长度,甲以4的速度,乙以125的速度相对而跑,所以乙跑了112124355⎡⎤⎛⎫⨯÷+ ⎪⎢⎥⎝⎭⎣⎦18=圈.也就是第二次相遇点逆时针方向距出发点18圈.即第一次相遇点与第二次相遇点相差31195840-=圈, 所以,这条椭圆形跑道的长度为1919040040÷=米.10.如图3-2,在400米的环形跑道上,A,B 两点相距100米.甲、乙两人分别从A ,B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么甲追上乙需要时间是多少秒?【分析与解】 如果甲、乙均不休息,那么甲追上乙的时间为100÷(5-4)=100秒. 此时甲跑了100×5=500米,乙跑了100×4=400米.而实际上甲跑500米,所需的时间为100+4×10=140秒,所以140~150秒时甲都在逆时针距A 点500处.而乙跑400米所需的时间为100+3×10=130秒,所以130~140秒时乙走在逆时针距B点400处.显然从开始计算140秒时,甲、乙在同一地点,即甲追上乙需要时间是140秒.11.周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米? 【分析与解】 如下图,记甲乙相遇点为C.当甲跑了AC 的路程时,乙跑了BC 的路程;而当甲跑了400米时,乙跑了2BC 的路程. 由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A 点所需时间的12. 即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A ,乙到达B 时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l 圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.12.如图3-3,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【分析与解】 开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为 13、所以最少要追至只相差13,即至少要追上29-13=16米. 甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面 的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=23秒. 所以经过16+23=1623秒后甲第一次看见乙.13.如图3-4,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?【分析与解】 如下图,甲、乙只可能在大跑道上相遇.并且只能在AB 顺时针的半跑道上.易知小跑道AB 逆时针路程为100,顺时针路程为200,大跑道上AB 的顺、逆时针路程均是200米.我们将甲、乙的行程状况分析清楚.当甲第一次到达B 时,乙还没有到达B 点,所以第一次相遇一定在逆时针的BA 某处.而当乙第一次到达B 点时,所需时间为200÷4=50秒,此时甲跑了50×6=300米,在B 点300-200=100米处.乙跑出小跑道到达A 需100÷4=25秒,则甲又跑了25×6=150米,在A 点左边(100+150)-200=50米处.所以当甲到达B 处时,乙还未到B 处,那么甲必定能在B 点右边某处与乙第二次相遇. 从乙再次到达A 处开始计算,还需(400-50)÷(6+4)=35秒,甲、乙第二次相遇,此时甲共跑了50+25+35=110秒.所以,从开始到甲、乙第二次相遇甲共跑了110×6=660米.14.如图3-5,正方形ABCD 是一条环形公路.已知汽车在AB 上时速是90千米,在BC 上的时速是120千米,在CD 上的时速是60千米,在DA 上的时速是80千米.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 的中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇.问A 至N 的距离除以N 至B 的距离所得到的商是多少?【分析与解】 如下图,设甲始终顺时针运动,乙始终逆时针运动,并设正方形ABCD 的边长为单位“1”.有甲从P 到达AB 中点O 所需时间为608090PD DA AO ++10.5608090PD =++. 乙从P 到达AB 中点O 所需时间为6012090PC BC BO ++10.56012090PD =++. 有甲、乙同时从P 点出发,则在AB 的中点O 相遇,所以有:16080PD +=160120PC +且有PD=DC-PC=1-PC,代入有116080PC -+160120PC =+,解得PC=58. 所以PM=MC=516,DP=38.现在甲、乙同时从PC 的中点出发,相遇在N 点,设AN 的距离为x .有甲从M 到达N 点所需时间为608090MD DA AN ++351816608090x+=++; 乙从M 到达N 点所需时间为6012090MC CB BN ++511166012090x-=++. 有351816608090x +++511166012090x -=++,解得132x =.即AN=132. 所以AN ÷BN 1313232=÷131=15.如图3-6,8时10分,有甲、乙两人以相同的速度分别从相距60米的A ,B 两地顺时针方向沿长方形ABCD 的边走向D 点.甲8时20分到D 点后,丙、丁两人立即以相同速度从D 点出发.丙由D 向A 走去,8时24分与乙在E 点相遇;丁由D 向C 走去,8时30分在F 点被乙追上.问三角形BEF 的面积为多少平方米?【分析与解】 如下图,标出部分时刻甲、乙、丙、丁的位置.先分析甲的情况,甲10分钟,行走了AD 的路程;再看乙的情况,乙的速度等于甲的速度,乙14分钟行走了60+AE 的路程,乙20分钟走了60+AD+DF 的路程.所以乙10分钟走了(60+AD+DF)-(AD)=60+DF 的路程.有601014AD AE +=6010DF +=,有()()607560AD DFAE ED AE =+⎧⎪⎨-=+⎪⎩然后分析丙的情况,丙4分钟,行了走ED 的路程,再看丁的情况,丁的速度等于丙的速度,丁10分钟行走了DF 的距离.。
小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
六年级奥数教材(博识教育)
目录第一讲百分数及其应用 (2)第二讲圆柱和圆锥 (7)第三讲比例 (12)第四讲正比例和反比例 (16)第五讲解决问题的策略及统计 (22)第六讲期中复习 (27)第七讲升中总复习专题一---数的认识 (32)第八讲升中总复习专题二---数的运算 (36)第九讲升中总复习专题三---式与方程 (40)第十讲升中总复习专题四---应用题(一) (44)第十一讲升中总复习专题五---应用题(二) (48)第十二讲升中总复习专题六---几何初步 (52)第十三讲升中综合训练(一) (56)第十四讲升中综合训练(二) (60)第十五讲升中综合训练(三) (65)第十六讲升中模拟考试………………………………………………………另附第一讲百分数及其应用【复习巩固】【整理与反思】怎样求一个数比另一个数多(或少)百分之几? 5比4多_______%你存过钱吗?什么是利息税?利息=_______×________什么是折扣和成数?原价打五折=原价×_______,原价的8成=原价×_______例1:求未知数xx-65%x=70练习:49+40%x=89例2:小强的妈妈在银行存了5000元,定期两年,年利率是2.70%,到期时,她可得税前利息多少钱?练习:陈老师出版了一本《小学数学解答100问》,获得稿费5000元,按规定,超出800元的部分应缴纳14%的个人所得税。
陈老师应交税多少钱?【基础训练】一、填空:1. 30平方米比24平方米多()% 比8千克多0.4千克是()千克 140千克比( )千克多40% 5千克减少20%后是()千克2. 某厂有男职工285人,女职工215人,男职工占全厂职工总人数的()%,在一次职工技能测试中,成绩优秀的有387人,优秀率()%。
3.王叔叔看中一套运动装,标价200元,经过还价,打八五折买到,王叔叔实际付了()元买了这套运动装。
4.动物园里有斑马x只,猴子的数量是斑马的6倍,动物园有猴子()只,猴子比斑马多()只。
小学奥数六年级讲义教材精编
六年级数学奥数培训资料- 1 -第1讲 定义新运算 第2讲 简便运算(一) 第3讲 简便运算(二) 第4讲 简便运算(三) 第5讲 简便运算(四) 第6讲 转化单位“1”(一) 第7讲 转化单位“1”(二) 第8讲 转化单位“1”(三) 第9讲 设数法解题 第10讲 假设法解题(一) 第11讲 假设法解题(二) 第12讲 倒推法解题 第13讲 代数法解题 第14讲 比的应用(一) 第15讲 比的应用(二) 第16讲 用“组合法”解工程问题 第17讲 浓度问题 第18讲 面积计算(一) 第19讲 面积计算(二) 第20讲 面积计算目录第21讲 抓“不变量”解题 第22讲 特殊工程问题 第23讲 周期工程问题 第24讲 比较大小 第25讲 最大最小问题 第26讲 加法、乘法原理 第27讲 表面积与体积(一) 第28讲 表面积与体积(二) 第29讲 抽屉原理(一) 第30讲 抽屉原理(二) 第31讲 逻辑推理(一) 第32讲 逻辑推理(二) 第33讲 行程问题(一) 第34讲 行程问题(二) 第35讲 行程问题(三) 第36讲 流水行船问题 第37讲 对策问题 第38讲 应用同余问题 第39讲 “牛吃草”问题 第40讲 不定方程六年级数学奥数培训资料 姓名:__________________- 2 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)109页第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
六年级奥数辅导材料培训资料
六年级奥数辅导材料行程问题一、数学思维方法:画线段图法,转化思维,假设思维。
二、基本公式:1. 相遇问题(包括相向运动和背向运动)路程和=速度和⨯相遇时间。
2. 追及问题(同向运动)路程差=速度差⨯追及时间3. 行船问题(包括顺风逆风和顺水逆水)顺水速度=静水船速+水速逆水速度=静水船速-水速三、解题思路过程:解答有关“行程问题”的应用题:1. 必须弄清物体运动的具体情况。
如运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地),运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、交错而过、追及)。
2. 当两个物体“相向运动”或“相背运动”时,此时的运动速度都是“两个物理运动速度的和”(即速度和);当两个物体“同向运动”时,此时两个物体追及的速度就变为了“两个物体运动速度的差”(即速度差)。
3. 借助画线段图法把题中抽象的情节形象地表示出来,并巧妙运用“转化思维”或“假设思维”等方法把复杂的数量关系转化为简单的数量关系。
4. 顺水速度与逆水速度之间相差着两个“水流速度”。
四、例题分析:例1. 甲乙两车同时从相距299千米的两地相向而行,甲车每小时行52千米,乙车每小时行40千米,几小时后,两车第一次相距69千米?再经过几小时两车第二次相距69千米?例2. 甲乙两车同时从A、B两地相向而行,途中相遇,相遇时距离A地90千米。
相遇后,两车继续以原速度前进,到达目的地后,立即返回,在途中第二次相遇。
这时相遇地点距A 地50千米。
已知从第一次相遇到第二次相遇所用的时间是4小时,求甲乙两车的速度?例3. 一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出故障修车2小时,因为要按时到达乙地,修好车后必须每小时多行30千米。
问:汽车是在离甲地多远处修车的?例4. 两地相距460千米,甲列车开出两小时后,乙列车和甲列车相向开出,经过4小时与甲列车相遇。
小学六年级数学奥数基础教程(30讲)
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
新版六年级数学奥数培训教材
第一讲 新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷"不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a *b=(a+b )+(a —b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*"就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b )×(a-b )..求27*9。
2.设a *b=a2+2b ,那么求10*6和5*(2*8). 3。
设a *b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q )÷2.求3△(4△6)。
【思路导航】根据定义先算4△6.在这里“△"是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2.求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
(完整版)小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
六年级数学奥数培训课程第1讲至第20讲
六年级数学奥数培训课程第1讲至第20讲第1讲:数学奥数概述数学奥数是一门旨在培养学生逻辑思维和数学能力的课程。
在六年级的数学奥数培训课程中,我们将从基础概念开始,逐步深入学习各种数学问题,帮助学生拓展思维,提高解题能力。
第2讲:整数和有理数整数和有理数是数学中非常基础且重要的概念。
我们将在这一讲中复习整数的运算规则,进而探讨有理数的性质和运算方法。
第3讲:平面几何基础平面几何是数学中的一个重要分支,对于提高学生的几何思维能力尤为重要。
本讲将介绍平面几何的基本概念,如点、线、角等,并结合实际问题进行训练。
第4讲:图形的计算在这一讲中,我们将学习如何计算各种图形的面积和周长,包括矩形、三角形、圆等。
这些技能不仅在奥数竞赛中有用,也对学生日常生活有实际帮助。
第5讲:方程方程组的解法方程和方程组是数学中常见的问题类型,我们将在这一讲中介绍如何解一元一次方程、二元一次方程等,并提供相关练习。
第6讲:不等式和绝对值不等式和绝对值是数学中的重要概念,我们将在这一讲中详细讨论不等式的性质和解法,以及绝对值的计算方法。
第7讲:数论基础数论是数学中一个非常有趣的领域,我们将在这一讲中介绍一些基础的数论理论,如质数、公约数、最大公约数等,帮助学生建立数论思维。
第8讲:概率与统计概率与统计是数学中的另一个重要分支,我们将在这一讲中介绍概率的基本概念和统计的常见方法,帮助学生理解随机事件和数据分析。
第9讲:多边形的特性多边形是几何中常见的图形类型,我们将在这一讲中学习多边形的性质和分类,包括正多边形、凸多边形等。
第10讲:立体几何的基础立体几何是平面几何的延伸,我们将在这一讲中介绍立体图形的性质、表面积和体积计算方法,帮助学生理解立体几何的重要性。
第11讲:空间坐标系空间坐标系是数学中的一个重要工具,我们将在这一讲中介绍三维坐标系的建立和运用,以及空间中点、直线、平面等的相关性质。
第12讲:复数与方程复数是数学中一个神秘而有趣的概念,我们将在这一讲中介绍复数的定义、性质和运算法则,以及如何利用复数解决方程问题。
小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数培训教材目 录第1讲 定义新运算第2讲 简单的二元一次不定方程第3讲 分数乘除法计算第4讲 分数四则混合运算第5讲 估算第6讲 分数乘除法的计算技巧第7讲 简单的分数应用题(1)第8讲 较复杂的分数应用题(2)第9讲 阶段复习与测试(略)第10讲 简单的工程问题第11讲 圆和扇形第12讲 简单的百分数应用题第13讲 分数应用题复习第14讲 综合复习(略)第15讲 测试(略)第16讲 复杂的利润问题(2)第一讲 定义新运算在加,减,乘,六年级奥数培训教材用“ #”“*”“Δ”等多种符号按照一定的关系“临时”规定的一种运算法则进行的运算。
例1;如果A*B=3A+2B ,那么7*5的值是多少?例2;如果A#B 表示3B A + 照这样的规定,6#(8#5)的结果是多少?例3;规定YX XY Y X +=∆ 求2Δ10Δ10的值。
例4;设M*N 表示M 的3倍减去N 的2倍,即M*N=3M-2N(1)计算(14 *10)*6(2)计算 (58*43) *(1 *21)例5;如果任何数A 和B 有A ¤B=A ×B-(A+B )求(1)10¤7(2)(5¤3)¤4(3)假设2¤X=1求X例6;设P ∞Q=5P+4Q ,当X ∞9=91时,1/5∞(X ∞ 1/4)的值是多少?例7;规定X*Y=XY Y AX +,且5*6=6*5则(3*2)*(1*10)的值是多少?例8;▽表示一种运算符号,它的意义是))((A Y A X XY Y X +++=∇11 已知3211212112=+++=∇))((A 那么20088▽2009=?巩固练习1、已知2▽3=2+22+222=246; 3▽4=3+33+333+3333=3702;按此规则类推(1)3▽2 (2)5▽3(3)1▽X=123,求X的值2、已知1△4=1×2×3×4;5△3=5×6×7计算(1)(4△2)+(5△3)(2)(3△5)÷(4△4)3、如果A*B=3A+2B,那么(1)7*5的值是多少?(2)(4*5)*6 (3)(1*5)*(2*4)4、如果A>B,那么{A,B}=A;如果A<B,那么{A,B}=B;试求(1){8,0,8}(2){{1,9,1,901}1,19}5、N为自然数,规定F(N)=3N-2 例如F(4)=3×4-2=10试求;F(1)+F(2)+F(3)+F(4)+F(5)+……+F(100)的值6、如果1=1!1×2=2!1×2×3=3!……1×2×3×4×……×100=100!那么1!+2!+3!+……+100!的个位数字是几?(第四届小学生“迎春杯”数学决赛试题)7、若“+、-、×、÷、=、()”的意义是通常情况,而式子中的“5”却相当于“4”。
下面四个算式(1)8×7=8(2)7×7×7=6(3)(7+8+3)×9=39(4)3×3=3那么应该是我们通常的哪四个算式?8、如果2*4=2×3×4×5 5*3=5×6×7,请按此规定计算(1)(3*4)-(5*3)(2)(4*4)÷(3*3)9、规定(25)=2+5=7 (123)=1+2+3=6 (65)=6+5=(11)=1+1=2则计算(1)(56489)(2)(92045)+(90÷5)÷(12)10、规定64=2×2×2×2×2×2表示成F (64)=6;243=3×3×3×3×3表示成G (243)=5;试求下面各题的值(1)F (128)= ( )(2)F (16)= G ( )(3)F ( )+ G( 27 )=611、如果1=1!1×2=2!1×2×3=3!……试计算(1)5! (2)X !=5040,求X12、有一种运算符号“&”使下列算式成立2&3=7 5&3=13 4&5=13 9&7=25 求995 & 9=?13、A*B=B A B A ÷+ 在X*(5*1)=6中,X 的值是多少?14、对于任意的整数X 、Y 定义新运算“¥”X ¥Y=YMX XY 26+(其中M 是一个固定的值)如果1¥2=2,那么2¥9=?第二讲 二元一次不定方程一、学习目标;掌握用奇偶性、最值和尾数特点来解答不定方程。
二、基础知识;我们知道,一般的一个方程只能解答一个未知数,而有的题目却必须设两个未知数,且列不出两个方程,类似这样的方程我们称之为二元一次不定方程。
在我们研究不定方程的解时,常常会附有其他一些限制条件,有的条件是明显的,也有隐蔽的,但它们对解题至关重要,这就需要我们在解题过程中酌情进行讨论。
三、例题解析;(一)基本方法例1、小明要买一只4元9角的钢笔,他手上有贰角和伍角的硬币各10枚,请问他可以怎样付钱?分析;本题可以用多种方法解答,这里用不定方程来解。
设小明付了X 枚贰角和Y 枚伍角列方程,得2X+5Y=49方法一1、利用奇偶性。
49是奇数,2X 是偶数,那么5Y 必定是奇数。
这样,Y 只能取1,3,5,7,9这五个数。
2、利用最值;所付钱中贰角和伍角的都有,而X 至多为10,那么5Y 不小于49—2×19=29,这样,可得Y 大于6。
方法二观察系数的特点,利用尾数(个位数)解答。
由例1可以看出,对于二元一次不定方程,尽量缩小未知数的取值范围,再求解。
不定方程常常利用奇偶性,最值和尾数来帮助解决例2、大汽车能容纳54人,小汽车能容纳36人,现有378人要乘车,问要大、小汽车各几辆才能使每个人都能上车且各车都正好坐满。
为了便于管理,要求车辆数最少,应该选择哪个方案?分析;解答不定方程时,能够把方程化简就尽量化简。
注意加了限制条件以后,答案的变化。
试一试;一个同学把他生日的月份乘以31,日期乘以12,然后加起来的和是170,你知道他出生于几月几日?例3、现有铁矿石73吨,计划用载重量分别为7吨和5吨的两种卡车一次运走,且每辆车都要装满,已知载重量7吨的卡车每台车运费65元,载重量5吨的卡车每台车运费50元,问需用两种卡车各多少台运费最省?分析;根据条件用不定方程可以求出卡车的台数,但是要注意问题求运费最省。
例4 、一个同学发现自己1991年的年龄正好等于他出生那一年的年份的各位数字之和,请问这个学生1991年时多少岁?分析与解;设他出生于19XY年,那么1991—19XY=1+9+X+Y1991—(1900+10X+Y)=10+X+Y91—10X—Y=10+X+Y(二)能力拓展例5、一辆匀速行驶的汽车,起初看路标上的数字是一个两位数xy,过了一小时路标上的数字变为yx,又行驶了一小时路标上的数字是一个三位数x0y,求每次看到的数字和汽车的速度。
分析;路标上的数字是累计数。
由于汽车是匀速行驶,因此汽车在单位时间里行驶的路程是相等的,根据这个关系可以列出方程。
试一试;一个两位数,如果把数字1放在它前面可得一个三位数,放在它后面也可得一个三位数。
已知这两个三位数之差为414,求原来的两位数。
例6、如下图,一个长方体的长、宽、高的长度都是质数,且长>宽>高,将这个长方体横切两刀,竖切两刀,得到9个长方体,这9个长方体表面积之和比原来长方体表面积之和多624平方厘米,求原来长方体的体积。
分析与解;设长方体的长、宽、高分别为a、b、c,分析可得,横切两刀,增加了4ab的面积,竖切两刀增加了4ac的面积,所以可列方程;4ab+4ac=624。
三个未知数的不定方程一般采用分解质因数的方法解答。
练习一、基本题1、求方程6x+9y=87的自然数解。
2、求方程2x+5y=24的自然数解3、大客车有48个座位,小客车有30个座位。
现在有306名旅客,要使每位旅客都有座位而且不空出座位来,需要大、小客车各几辆?4、装饼干的盒子有大、小两种,大盒每盒要11元,小盒每盒要8元,妈妈用了89元,问大小盒子各买了多少个?5、一个两位数,交换个位和十位上的数字,就得到一个新的两位数,已知新两位数比原两位数多54,求原来的两位数。
6、一个两位数,各位数字之和的6倍比原数大3,求这个两位数。
7、一个商人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。
如果弹子数为99,盒子数大于10,问两种盒子各有多少个?二、综合题8、在一个两位质数的两个数字之间,添上数字6以后,所得的三位数比原数大870,那么原数是多少?9、会场里有两座和四座的两种长椅若干把。
现有一个班的学生(不足70人)来开会。
一部分学生一人坐一把两座的长椅,其余的同学每三人坐一把四座的长椅。
结果平均每个学生坐1,35个座位。
求有多少个学生?思考题10、有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?第三讲分数乘除法计算分数乘除法的计算方法用字母表示为;b d bd ac ac⨯=(a ,c 都不等于0); b d b c bc a c a d ad÷=⨯=(a ,c 都不等于0)。
一、课前准备;1、计算下列各题;(1)35÷10÷361 (2)73+53÷157 (3)185÷79×3527(3)821÷9÷127 (4)25÷45×35 (6)52÷(41+53)2、在□或〇里填上合适的数字或符号,并说明使用了什么运算定律?(1) 25×167 ×78= ×( × ) (2) 58 ×23 ×815=( × )× (3) 229 ×(15×2931)= ×( × ) (4) 2534×4= × + × (5) 7×78= × 〇 × (6) 145×25= × 〇 × (7) 54×(89 - 56)= × 〇 × 二、例题讲解 例1;计算;⑴443745⨯; ⑵152726⨯。
【分析】认真观察这两道题的数学特点;第(1)题中的4445与1只相差145,如果把写成1(1)45-的差与37相乘,再运用乘法分配律就能简化运算了。