牛顿第二定律的应用-整体法与隔离法
牛顿第二定律应用方法
练习、如图,将质量为 的物体分置于质量为M的 练习、如图,将质量为m1、m2的物体分置于质量为 的 物体的两侧,均处于平衡状态, , 物体的两侧,均处于平衡状态,m1>m2,α < β,下 述说法正确的是( 述说法正确的是( ACD) m2 m1 A)m1对M的正压力一定大于 2对M的正压力 ) 的正压力一定大于m 的正压力 的正压力一定大于 M β α B)m1对M的摩擦力一定大于 2对M的摩擦力 的摩擦力一定大于m ) 的摩擦力一定大于 的摩擦力 C)水平地面对 的支持力一定等于 的支持力一定等于(M+m1+m2)g )水平地面对M的支持力一定等于 D)水平地面对 的摩擦力一定等于零 )水平地面对M的摩擦力一定等于零 变式:如图所示 一质量为M的楔形木块放在水平桌面 如图所示, 变式 如图所示,一质量为 的楔形木块放在水平桌面 它的顶角为90 两底角为α和 ; 、 为两个位于 上,它的顶角为 o,两底角为 和β;a、b为两个位于 斜面上质量均为m的小木块 的小木块。 斜面上质量均为 的小木块。已知所有接触面都是光滑 现发现a、 沿斜面下滑 而楔形木块静止不动, 沿斜面下滑, 的。现发现 、b沿斜面下滑,而楔形木块静止不动,这 时楔形木块对水平桌面的压力等于: 时楔形木块对水平桌面的压力等于: A A.Mg+mg; B.Mg+2mg; A. ; . ; C.Mg+mg(sinα+sinβ) . ( ) D.Mg+mg(cosα+cosβ) . )
牛顿第二定律的应用--整体法与隔离法
3.3 牛顿第二定律的应用
——整体法与隔离法
整体法与隔离法 • 在求解连接体问题时常常用到整体法与隔 离法.所谓“连接体”问题,是指运动中 的几个物体或上下叠放在一起、或前后挤 靠在一起、或通过轻绳、轻杆、轻弹簧连 在一起、或由间接的场力作用在一起的物 体组. • 内力:各物体间存在相互作用力.
m1 F 联立以上各式得: FBA m1 m2
知识梳理
一、整体法:在研究物理问题时,把所研究 的对象作为一个整体(不考虑内力)来处理 的方法称为整体法。 采用整体法时不仅可以把几个物体作为 整体,也可以把几个物理过程作为一个整体。
采用整体法可以避免对整体内部 进行繁锁的分析,常常使问题解答更 简便、明了。
对B受力分析: 水平方向:
FAB m2 g m2a
m2 F m1 m2
联立以上各式得: FAB
思考:用水平推力F向左推,A、B间的作用 力与原来相同吗?
没有摩擦力时:
解:对整体,根据牛顿第二定律得
F (m1 m2 )a
对 A 受力分析根据牛顿第二定律得:
FBA m1a
例3.如图所示,质量M=60kg的人通过光滑的定 滑轮用绳拉着m= 20kg的物体,当物体以加速度 a=5 m/s2上升时,人在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面 上分别放有质量为m1和m2的两个木块b和c,如图所示,已知m1>m2, 三木块均处于静止,则粗糙地面对于三角形木块( ) A.有摩擦力作用,摩擦力的方向水平向右 B.有摩擦力作用,摩擦力的方向水平向左 C.有摩擦力作用,但摩擦力的方向不能确定 D.没有摩擦力的作用
(1)当地面光滑时,A,B作为一个整体,根据牛顿第二定律得:
牛顿第二定律的应用——连接体问题
牛顿第二定律的应用――― 连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为 。
如果把其中某个物体隔离出来,该物体即为。
二、连接体问题的分析方法1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。
运用 列方程求解。
2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。
3.整体法与隔离法是相对统一,相辅相成的。
本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。
【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A.F m m m 211+B.F m m m 212+C.FD.F m m 21 练习:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。
2.如图右所示,质量为m 1、m 2的物块在F 1、F 2共同作用下向右运动。
已知m 1=3kg m 2=2kg F 1=14 N F 2=4N ,求m 1和m 2之间细绳的作用力F T 为多少?A B m 1 m 2 F3.如右图所示,物体m1、m2用一细绳连接,两者在竖直向上的力F的作用下向上加速运动,重力加速度为g,求细绳上的张力?例2:如图右,m1、m2用细线吊在光滑定滑轮,m1=3kg m2=2kg,当m1、m2开始运动时,求细线受到的张力?例3:如图所示,箱子的质量M=5.0kg,与水平地面的动摩擦因数μ=0.22。
在箱子顶板处系一细线,悬挂一个质量m=1.0kg的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直方向θ=30°角,则F应为多少?(g=10m/s2)练习:如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g=10m/s2)例4:如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力作用在B 上,使A 、B 保持相对静止做加速运动,则作用于B 的作用力为多少?练习.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用于B 上,三物体可一起匀速运动。
牛顿第二定律的应用
牛顿第二定律的应用――― 连接体问题整体法和隔离法,临界问题学习要求:会解决两个物体具有相同加速度的动力学问题求解连接体问题时,只限于各物体加速度相同的情形一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法三、连接体题型:1【例1】A 、B ,今用水平力推【练1】如图所示,质量为M 的斜面面间无摩擦。
在水平向左的推力F 已知斜面的倾角为,物体B A. B. C. D.【练2】如图所示,质量为的物体连接的绳与竖直方向成角,则( A. 车厢的加速度为B. B. 绳对物体1的拉力为C. C. 底板对物体2的支持力为D. D. 物体2所受底板的摩擦力为 kg m B 6=N F A 6=θ()(,sin μθ+==g m M F g a θ)(,cos g m M F g a +==()(,tan μθ+==g m M F g a g m M F g a )(,cot +==μθ2m θθsin g θcos 1gm g m m )(12-θtan 2g m2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)不作要求同步练习P123 124 页3、临界问题 例2、作业本P66页例3、质量为0.2kg 的小球用细线吊在倾角为θ=060的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图4-70所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g =10 2/s m )(1) 斜面体以232/s m 的加速度向右加速运动;(2) 斜面体以432/s m ,的加速度向右加速运动;例4、如图所示,箱子的质量M =3.0 kg ,与水平地面间的动摩擦因数为μ=0.22。
在箱子底板上放一质量为ml =2 kg 的长方体铁块;在箱子顶板处系一细线,悬挂一个质量m2=2.0 kg的小球,箱子受到水平恒力F 的作用,稳定时悬线偏离竖直方向θ=030角,且此时铁块刚好相对箱子静止。
牛顿第二定律的应用-整体法与隔离法
解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。
整体法与隔离法的应用详解
再选取物体B为研究对象, 受力分析如图所示, 根据牛顿第二定律:
FN - F2 ma
F2
FN
FN
F2
ma
F2
m F1 F2 2m
F1
F2 2
.
变式1:物块m和M用轻绳连接,在M上施加恒力 F,使两
物块作匀加速直线运动,地面光滑。求绳中张力。
解:(1)由牛顿第二定律,
课程内容
一、整体法:在研究物理问题时,把所研究的 对象作为一个整体来处理的方法称为整体法。 采用整体法不需要考虑内力的影响,可以避免 对整体内部进行繁锁的分析,常常使问题解答 更简便、明了。
二、隔离法:把所研究对象从整体中隔离出来 进行研究,最终得出结论的方法称为隔离法。 采用隔离物体法一般用来求内力,能排除与研 究对象无关的因素,使事物的特征明显地显示 出来,从而进行有效的处理。
(2)在使用隔离法解题时,所选取的隔离对象可以使连接体 中的某一部分物体,也可以使连接体中的某一个物体(包含两 个或两个以上的单个物体),而这“某一部分”的选取,也应根 据问题的实际情况,灵活处理.
平面上,其质量为M,它的斜面是光滑的,
在它的斜面上有一质量为m的物体,在用
水平力推斜面体沿水平面向左运动过程中,
物体与斜面体恰能保持相对静止,则下列 说法中正确的是( )
m
F
A.斜面体对物体的弹力大小为mgcosθ
B.斜面体对物体的弹力大小为mg/cosθ C.物体的加速度大小为gsinθ
θ
M
D.水平推力大小为(M+m)gtanθ
[解析]隔离m,由平行四边形定则可得:
FN=mg/cosθ
FN
F合=mgtanθ
θ
应用整体法和隔离法的解题技巧—内力公式(解析版)
高中物理题型解题技巧之力学篇03内力公式一、必备知识1.连接体问题母模型如图1所示,光滑地面上质量分别为m 1、m 2的两物体通过轻绳连接,水平外力F 作用于m 2上,使两物体一起加速运动,此时轻上的拉力多大?整体由牛顿第二定律求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F二:应用技巧(1).物理场景:轻绳或轻杆或轻弹簧等相连加速度相同的连接体,如下情形求m 2、m 3间作用力,将m 1和m 2看作整体F 23=m 1+m 2m 1+m 2+m 3F整体求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g (sin θ+μcos θ)隔离求内力T -m 1g (sin θ-μcos θ)=m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g隔离求内力T -m 1g =m 1a得T =m 1m 1+m 2Fa =F 2-F 1m 1+m 2−μg隔离T -F 1-μm 1g =m 1a得T =m 1F 2+m 2F 1m 1+m 2(2)方法总结:(内力公式)如上图所示,一起加速运动的物体系统,若力作用于m 1上,则m 1和m 2间的相互作用力为F 12=m 不m 1+m 2F (其中m 不即为外力不作用的物体的作用)此结论与有无摩擦无关(有摩擦,两物体与接触面的动摩擦因数必须相同),物体系统沿水平面、斜面、竖直方向运动时,此结论都成立。
两物体的连接物为轻弹簧、轻杆时,此结论不变。
注意:若整体受到多个外力时,可先将多点个外力分别应用内力公式a .两外力相反时,绳中的拉力为T =m 2m 1+m 2F 1+m 1m 1+m 2F2b .两外力相同时绳中的拉力为T =m 2m 1+m 2F 1-m 1m 1+m 2F2三、实战应用(应用技巧解题,提供解析仅供参考)一、单选题1如图,两物块P 、Q 置于水平地面上,其质量分别为m 、2m ,两者之间用水平轻绳连接。
牛顿第二定律的应用整体法与隔离法解
实验:
θ
打点计时器
1、首先平衡摩擦。µ =tanθ
2、m砝《m车Байду номын сангаас,可以认为砝码的重车≈F拉,
其实砝码和小车一起匀加速直线运动 时,砝码重力大于绳子拉力.
例2:如图,质量都为m的两物体A和B,中间用一弹性 系数为K的轻弹簧连接着,把它们置于光滑水平 面上,若水平恒力F1和F2分别作用在A和B上,方 向如图示,且F1> F2,则弹簧的压缩量为多少?
例3. 如图示,两物块质量为M和m,用绳连接后放在倾 角为θ的斜面上,物块和斜面的动摩擦因素为μ,用沿斜 面向上的恒力F 拉物块M 向上运动,求中间绳子的张力.
F
M m
θ T= m(a+ gsinθ+μgcosθ) = mF/( M+m)
练习 4.如图所示,置于水平面上的相同材料的 m和 M 用轻绳连接,在 M上施一水平恒力力 F,使两物体作 匀加速直线运动,对两物体间细绳拉力正确的说法是: ( A) B (A)水平面光滑时,绳拉力等于mF/(M+m); (B)水平面不光滑时,绳拉力等于m F/(M+m); (C)水平面不光滑时,绳拉力大于mF/(M+m); (D)水平面不光滑时,绳拉力小于mF/(M+m)。
例1:如图示:桌面光滑,小车质量为M,砝码质 量为m,求小车受到的拉力和小车的加速度。
F
F
解法一(隔离法): 对m:mg-F=ma L( 1) 对M:F=Ma L L(2) 由(1)(2)得:a= m g M+m 解法二(整体法):将M 、m当作整体,由牛顿第二定律得: mg=(M+m)a a= m g M+m
整体法和隔离法在牛顿运动定律中的应用
隔离法和整体法在牛顿运动定律中的应用整体法与隔离法是在高中物理学习中常用到的基本方法之一,特别是在力学部分,巧妙地选择研究对象会使问题变得简单,明了。
整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。
隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。
方法选择:所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简化,而不必考虑内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。
有时在一个问题中需要整体法与隔离法交替使用。
一、在平衡状态下的应用当几个相互连系的物体都处于静止或匀速直线运动状态时,可以把这些物体视为一个整体,由于每一个独立的物体都处于平衡状态,所以整体也处于平衡状态。
即不管是独立的物体还是整体,受力都要满足平衡条件。
【例1】如图所示,放置在水平地面上的直角劈M上有一个质量为m的物体,若m在其上方匀速下滑,M仍保持静止,那么下列说法中正确的是:()A.M对地面的压力等于(M+m)gB.M对地面的压力大于(M+m)gC.地面对M没有摩擦力D.地面对M有向左的摩擦力〖解析〗M对地面的压力、地面对M的摩擦力,都是直角劈和物体m作为一个整体与外界的作用力,故用整体法来分析求解较为方便。
这一整体在竖直方向上受到向下的重力(M+m)g和向上的支持力F N,由平衡条件得F N =(M+m)g,做A正确,B错误。
这一整体在水平方向上平衡,因此水平方向合力为零,由此可推知地面对M没有摩擦力。
故C正确,D错误。
【例2】如图所示,用水平力F,将质量为m的三块砖压在竖直墙上,静止不动,A与F接触面光滑不受摩擦力,则下列叙述正确的是:()A.墙壁施给C的摩擦力为mg,方向竖直向上B.墙壁施给C的弹力为FC.A施给B的摩擦力大小为mg,方向竖直向下D.C施给B的摩擦力大小为2mg,方向竖直向上〖解析〗A、B、C均处于静止状态,将三者视为一个整体来研究,受力分析如图a所示,可知墙壁施给C的摩擦力为3mg,方向竖直向上,墙壁施给C的弹力为F。
牛二整体法与隔离法
要点二
解析
首先确定研究对象的运动状态和受力情况,物体做匀速圆周 运动,线速度为v,角速度为ω。然后隔离出研究对象,忽略 其他物体对它的影响,单独分析物体的运动状态和受力情况。 根据牛顿第二定律建立方程:F=m×v^2/r=mr×ω^2,其 中r为圆周运动的半径。最后求解得到物体受到的向心力 F=m×v^2/r=mr×ω^2。
牛二整体法与隔离法
目 录
• 牛二定律的概述 • 整体法 • 隔离法 • 整体法与隔离法的比较与选择
01
牛二定律的概述
定义
牛二定律,也称为牛顿第二运动定律,指的是物体受到的合外力与其加速度成正 比,与其质量成反比。数学公式表示为F=ma。
牛顿第二定律是经典力学中最重要的基本定律之一,揭示了力与运动的关系,是 解决动力学问题的关键。
04
整体法与隔离法的比较 与选择
适用场景比较
整体法适用于分析系统整体运动状态,确定整体受力情况,无需关注系统内部各部分之间的相互作用 力。
隔离法适用于分析系统内部某一物体或某一局部的运动状态和受力情况,需将该物体或局部从系统中 隔离出来分析。
优缺点比较
整体法优点
可以快速确定整体受力情况,无需逐一分析系统内部各部分之间的相 互作用力,简化计算过程。
整体法的应用条件
多个物体间的相对运动和受力关系较为简单,且可以忽略物体间的相互作用力。
多个物体组成的系统所受的外力可直接分析。
整体法的解题步骤
根据运动方程求解单个物 体的受力情况。
根据牛顿第二定律,列出 整体的运动方程。
确定需要分析的整体,明 确整体受到的外力。
01
03 02Βιβλιοθήκη 整体法的例题解析题目
隔离法的解题步骤
牛顿第二定律的应用专题
方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小
分别为a1、a2,重力加速度大小为g,则有(
)
专题——应用牛顿第二定律进行过程分析
【例3】如图,一个小球从轻弹簧正上方某处自由下落, 接触弹簧后将弹簧压缩(弹簧均为弹性形变),在小球 向下运动压缩弹簧的过程中,下列说法正确的是( CD )
5.3 牛顿第二定律的应用
——专题分析
专题——连接体
两个或两个以上的物体相连接组成的物体 系统, 称为连接体 。
B AF
整体法和隔离法
1.整体法的选取原则 若连接体内各物体具有相同的加速度,且不需要求
物体之间的作用力,可以把它们看成一个整体,分析 整体受到的合外力,应用牛顿第二定律求出加速度(或 其他未知量).
A、小球接触弹簧后立即做减速运动; B、小球所受合力一直增大 ; C、小球的加速度先减小后增大 ; D、小球所受弹力变大,且最终大于重力
小球先加速后减速; (先是加速度减小的加速后是加速度增大的减速)
相似模型——“蹦床”、“蹦极”……
t2
t1
某人身系弹性绳自高空P点自由下 落, 图中a点是弹性绳的原长位置, c是人所到达的最低点, b是人静止地悬吊着时的平衡位置,
2.隔离法的选取原则 若连接体内各物体的加速度不相同,或者要求出系
统内各物体之间的作用力时,就需要把物体从系统中 隔离出来,应用牛顿第二定律列方程求解.
3.整体法、隔离法的交替运用 若连接体内各物体具有相同的加速度,且
要求出物体之间的作用力时,可以先用整体法 求出加速度,然后再用隔离法选取合适的研究 对象,应用牛顿第二定律求作用力.
即“先整体求加速度,后隔离求内力”.
【例1】 如图所示,光滑的水平面上有质量分别为m1、m2的 两物体静止靠在一起,现对m1施加一个大小为 F 方向水平向 右的推力作用。求此时物体m2受到物体 m1的作用力F1。
牛顿第二定律的应用之整体法与隔离法
画出球的受力图和加速度的方向,
T+mg=ma=mV2/L T=m(V2/L-g)
再研究人,画人的受力图,N+T'=Mg
N=Mg-m(v2/L-g)=(M+m)g-mv2/L
a mg
T
N T
Mg
习题三
• 右示图中水平面光滑,弹簧 倔强系数为K,弹簧振子的 振幅为A,振子的最大速度 为V,当木块M在最大位移 时把m无初速地放在M的上 面,则要保持M与m在一起 振动二者间的最大静摩擦力 至小要多大?
可见解题时合理选取坐标轴会给解题带来方便。
例2. 如图示,两物块质量为M和m,用绳连接后放在倾 角为θ的斜面上,物块和斜面的动摩擦因ቤተ መጻሕፍቲ ባይዱ为μ,用沿斜 面向上的恒力F 拉物块M 运动,求中间绳子的张力.
解:画出M 和m 的受力图如图示: 由牛顿运动定律,
对M有 F - T - Mgsinθ-μMgcosθ= Ma (1)
f2 m θ
T
Mg
例3. 一质量为M、倾角为θ的楔形木块,静止在水平桌面上, 与桌面的动摩擦因素为μ,一物块质量为m,置于楔形木块的斜
面上,物块与斜面的接触是光滑的,为了保持物块相对斜面静
止,可用一水平力F推楔形木块,如图示,此水平力的大小等
于
(m+M)g(μ。+ tgθ)
解:对于物块,受力如图示:
思路点拨
盘静止时KL=(M+m)g 放手时先研究整体K(L+ Δ L) -(M+m)g= (M+m)a
再研究盘中物体m N-mg=ma N=mg(L+ Δ L)/L
习题一
牛顿运动定律应用—整体法和隔离法
m
θ
M
F ( M m)a
θ
①
m
F FN sin ma ② FN cos mg 0 ③
θ
mg
M F
联立①②③式解出使m相对M ⑴整体法和隔离法相结合. 相对滑动的最小推力 ⑵动态分析临界状态,从两个方 ( M m) mg tan 面理解临界状态.
F
M
P 附加题3:如图,一细线的一端固定于倾角为 450的光滑楔形滑块A的顶端P处, 细 线的另 一端拴以质量为m的小球, ⑴.当滑块至少以 a 多大加速度向左运动时,小球对滑块的压力 为零? ⑵.当滑块以加速度a=2g向左运动时, 线中张力多大? a0 解:⑴根据牛顿第二定律得 450
1、物体1、2放在光滑的水平面上,中间以轻质弹簧相连,如图所 示,对物体1、2分施以方向相反的水平力F1、F2,且F1>F2,则弹 簧秤的读数C [ ] A.一定为F1+F2 B.可能为F1+F2 C.一定小于F1,大于F2 D. 一定为F1-F2 用整体法可知加速度方向向左, 对1物体作为对象有弹力F小于F1, 对B物体作为对象有弹力F大于F2
F
再分析B的受力情况:
A B
FNB F FfB
FfB =μFNB=μm2g
FB合 =FAB-FfB=m2a
m2 F FAB =FfB+m2a m1 m2
Ff
FN
AB
G
B
GB
FAB
变式训练2:如图所示,在光滑的水平面上,有等质 量的五个物体,每个物体的质量为m.若用水平推力 F推1号物体,求: (1)它们的加速度是多少? (2)2、3号物体间的相互作用力为多少?
解:因各个物体的加速度相同,可以五个物体整体为研究 对象求出整体的加速度.再以3、4、5号物体为研究对象求 出2、3号物体间的相互作用力. 对整体:F=5ma 对3、4、5号物体:F23=3ma 得 a=F/5m; F1=3F/5
3-3_牛顿运动定律—连接体问题(整体隔离法)、临界
[变式训练] 1.如图所示,一个质量为 m = 0.2 kg的小球用细绳吊在倾
角为θ=53°的光滑斜面上,当斜面静止时,绳与斜面平行.当
斜面以10 m/s2的加速度向右做加速运动时,求绳子的拉力及斜 面对小球的弹力大小.
第三章 牛顿运动定律
第29页
金版教程 · 高三一轮总复习 · 新课标 · 物理
第三章 牛顿运动定律
第26页
金版教程 · 高三一轮总复习 · 新课标 · 物理
主干回顾固基础 典例突破知规律 特色培优增素养 高考模拟提能训 限时规范特训
1 2 由运动学公式 x= at 得从挡板开始运动到小球与挡板分 2 离所经历的时间为 t= 2mgsinθ-a . ka
(2)小球速度达最大时,其加速度为零,即 kx′=mgsinθ 即从挡板开始运动到小球的速度达最大时,小球的位移为 mgsinθ x′= k .
动: ①拉力水平,m1、m2在光滑的水平面上加速运动;
②拉力水平,m1、m2在粗糙的水平面上加速运动;
③拉力平行于倾角为θ的斜面,m1、m2在光滑的斜面上沿斜 面向上加速运动; ④拉力平行于倾角为θ的斜面,m1、m2在粗糙的斜面上沿斜 面向上加速运动.
用 Δl1 、 Δl2 、 Δl3 、 Δl4 依次表示弹簧在以上四种情况下的伸 长量,则下列选项正确的是( )
[针对训练] [2013·湖北重点中学联考 ]如图所示,在建筑工地,民工兄
弟用两手对称水平使力将两长方体水泥制品夹紧并以加速度 a竖
直向上匀加速搬起,其中A的质量为m,B的质量为3m,水平作 用力为 F , A 、 B 之间的动摩擦因数为 μ ,在此过程中, A 、 B 间 的摩擦力为( )
A.μF 3 C. m(g+a) 2
牛顿第二定律的系统表达式及应用一中
牛顿第二定律的系统表达式一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程:F 合 = (m 1+m 2+……)a分量表达式: F x = (m 1+m 2+……)a xF y = (m 1+m 2+……)a y2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。
例1、如图,在水平面上有一个质量为M 的楔形木块A ,其斜面倾角为α,一质量为m 的木块B 放在A 的斜面上。
现对A 施以水平推力F , 恰使B 与A 不发生相对滑动,忽略一切摩擦,则B 对 A 的压力大小为( BD )A 、 mgcos αB 、mg/cos αC 、FM/(M+m)cos αD 、Fm/(M+m)sin α★题型特点:隔离法与整体法的灵活应用。
★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B 受力分析得出A 、B 之间的压力。
省去了对木楔受力分析(受力较烦),达到了简化问题的目的。
例2.质量分别为m 1、m 2、m 3、m 4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F 1、F 2分别水平地加在m 1、m 4上,如图所示。
求物体系的加速度a 和连接m 2、m 3轻绳的张力F 。
(F 1>F 2)例3、两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对B 的作用力等于 ( ) A .F FαABFF F3、B 解析:首先确定研究对象,先选整体,求出A 、B 共同的加速度,再单独研究B ,B 在A 施加的弹力作用下加速运动,根据牛顿第二定律列方程求解.将m 1、m 2看做一个整体,其合外力为F ,由牛顿第二定律知,F=(m 1+m 2)a ,再以m 2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F 12=m 2a ,以上两式联立可得:F 12= ,B 正确.例4、在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m 1和m 2的两个木块b 和c ,如图1所示,已知m 1>m 2,三木块均处于静止,则粗糙地面对于三角形木块( D ) A .有摩擦力作用,摩擦力的方向水平向右。
整体法、隔离法的应用
(一)整体法、隔离法的应用方法概述:1、当物体间相对静止,具有共同的对地加速度时,就可以把它们作为一个整体,通过对整体所受的合外力列出整体的牛顿第二定律方程(若合力为零则列平衡方程)。
2、当需要计算物体之间(或一个物体各部分之间)的相互作用力时,就必须把各个物体(或一个物体的各个部分)隔离出来,根据各个物体(或一个物体的各个部分)的受力情况,画出隔离体的受力图,列出牛顿第二定律方程(若合力为零则列平衡方程)。
许多具体问题中,常需要交叉运用整体法和隔离法,有分有合,从而可迅速求解。
1、如图所示,有半径均为r,重均为G的两个光滑小球,放在圆柱形圆筒内,圆筒的半径为R,且R<2r,求两球之间的压力及圆筒底部所受的压力。
2、如上图所示,平板重300N,滑轮重不计,要使整个装置静止,则P物重力的最小值是多少?3、如图右,一固定斜面上两个质量相同的小物块A和B紧挨着匀速下滑,A与B的接触面光滑。
已知A与斜面之间的动摩擦因数是B与斜面之间动摩擦因数的2倍,斜面倾角为α。
B与斜面之间的动摩擦因数是()A.23tanαB.23cotα C.tanα D.cotα4.如图所示,质量分别为m和2m的两物体A、B叠放在一起,放在光滑的水平地面上,已知A、B间的最大摩擦力为A物体重力的μ倍,若用水平力分别作用在A或B上,使A、B保持相对静止做加速运动,则作用于A、B上的最大拉力F A与F B之比为多少?5.如图所示,在水平桌面上有三个质量均为m的物体A、B、C叠放在一起,水平拉力F作用在物体B上,使三个物体一起向右运动,则:(1)当三个物体一起向右匀速运动时,A与B、B与c、C与桌面之间的摩擦力大小;(2)当三个物体一起向右以加速度a匀加速运动时,A与B、B与C、C与桌面之间的摩擦力大小。
6、如图所示,置于光滑水平面上的木块A和B,其质量为m A和m B。
当水平F作用于A左端上时,两物体一起作加速运动,其A、B间相互作用力大小为N1;当水平力F作用于B右端上时,两物体一起做加速度运动,其A、B间相互作用力大小为N2。
牛顿第二定律的应用之整体法与隔离法
碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同样使两物体向右运动,但不发生相对滑动,拉力 的最大值为F2,比较F1与F2的大小,正确的是( )
A.F1<F2
B.F1=F2
C.F1>F2
D.无法比较大小
图3-4-1
3
【例1】如图3-4-2所示,物体A放在物体B上,物体B放在光滑的水 平面上,已知mA=6kg,mB=2kg,A、B间动摩擦因数=0.2.A物上系 一细线,细线能承受的最大拉力是20N,水平向右拉细线,假设A、 B之间最大静摩擦力等于滑动摩擦力.在细线不被拉断的情况下,下 述中正确的是(g=10m/s2)( )
M
m
12
★桌面光滑,求绳的拉力?
13
★求2对3的作用力
F
12 3 45
14
练习1 、如图所示,置于水平面上的相同材料的m和 M用轻绳连接,在M上施一水平力F(恒力)使两物体作 匀加速直线运动,对两物体间细绳拉力正确的说法是: ( AB )
(A)水平面光滑时,绳拉力等于mF/(M+m); (B)水平面不光滑时,绳拉力等于m F/(M+m); (C)水平面不光滑时,绳拉力大于mF/(M+m); (D)水平面不光滑时,绳拉力小于mF/(M+m)。
2.系统中各物体加速度相同时,我们可以把系统中 的物体看做一个整体.然后分析整体受力,由F=ma求出 整体加速度,再作进一步分析.这种方法叫整体法.
3.解决连接体问题时,经常要把整体法与隔离法结
合起来应用.
2
课前热身
1.如图3-4-1所示,静止的A、B两物体叠放在光滑 水平面上,已知它们的质量关系是mA<mB,用水平 恒力拉A物体,使两物体向右运动,但不发生相对
【解题回顾】若系统内各物体的加速度相同,解 题时先用整体法求加速度,后用隔离法求物体间 的相互作用力.注意:隔离后对受力最少的物体
F方向建立x轴,但 要分解加速度a,会使计算更麻烦.
22
能力·思维·方法
【例3】如图3-4-6,静止于粗糙的水平面上的斜劈A的 斜面上,一物体B沿斜面向上做匀减速运动,那么,斜 劈受到的水平面给它的静摩擦力的方向怎样?
牛顿第二定律的应用
(整体法与隔离法)
要点·疑点·考点 课前热身 能力·思维·方法 延伸·拓展
1
要点·疑点·考点
一、连接体问题
当两个或两个以上的物体之间通过轻绳、轻杆相连或 直接接触一起运动的问题.
二、整体法与隔离法
1.当研究问题中涉及多个物体组成的系统时,通常 把研究对象从系统中“隔离”出来,单独进行受力及 运动情况的分析.这叫隔离法.
A.当拉力F<12N时,A静止不动
B.当拉力F>12N时,A相对B滑动
C.当拉力F=16N时,B受A摩擦力等于4N
D.无论拉力F多大,A相对B始终静止
CD
图3-4-2
4
例2. 如图示,两物块质量为M和m,用绳连接后放在倾 角为θ的斜面上,物块和斜面的动摩擦因素为μ,用沿斜 面向上的恒力F 拉物块M 运动,求中间绳子的张力.
解:由上题结论: T 的大小与μ无关,应选 A B
m
MF
15
★如图所示,质量为M的斜面放在水平面上, 其上游质量为 m 的物块,各接触面均无摩 擦,第一次将水平力F1加在m 上,第二次将 水平力F2加在M上,两次要求m与M不发生 相对滑动,求F1与F2之比
F1
F2
m:M
16
能力·思维·方法
【例2】如图3-4-3,物体M、m紧靠着置于动摩擦因 数为的斜面上,斜面的倾角为θ,现施一水平力F作 用于M,M、m共同向上加速运动,求它们之间相互作 用力的大小.
图3-4-6
23
能力·思维·方法
【解析】此类问题若用常规的隔离方法分析将是很 麻烦的.把A和B看做一个系统,在竖直方向受到向 下的重力和竖直向上的支持力;在水平方向受到摩 擦力f,方向待判定.
对m有
T - mgsinθ-μmgcosθ= ma (2)
∴a = F/(M+代入(2)式得
T= m(a+ gsinθ+μgcosθ) = mF/( M+m) 由上式可知:
N1 F
T 的大小与运动情况无关 N2 T f1
M
T 的大小与θ无关 T 的大小与μ无关
(B) 小球A与容器B一起匀速下滑;
(C) 小球A与容器B一起以加速度a加速上滑;
(D) 小球A与容器B一起以加速度a减速下滑.
CD
11
★水平面光滑,M与m相互接触,M>m, 第一次用水平力F向右推M,M与m间相互 作用力为F1,第二次用水平力F向左推m, M与m间相互作用力为F2,那麽F1与F2的关 系如何
f2 m
T
Mg
θ
6
★斜面光滑,求绳的拉力?
7
★斜面光滑,求弹簧的拉力?
8
★斜面光滑,求物块间的弹力?
9
★斜面光滑,求球与槽间的弹力?
10
例3 、如图所示,质量为m的光滑小球A放在盒子B
内,然后将容器放在倾角为a的斜面上,在以下几种
情况下,小球对容器B的侧壁的压力最大的是
(
)
(A) 小球A与容器B一起静止在斜面上;
图3-4-3
17
能力·思维·方法
【解析】因两个物体具有相同的沿斜面向上的加 速度,可以把它们当成一个整体(看做一个质 点),其受力如图3-4-4所示,建立图示坐标系:
图3-4-4 18
能力·思维·方法
由∑Fy=0, 有N1=(M+m)gcos+Fsin ;① 由∑Fx=(M+m)a, 有Fcos - f1-(M+m)gsin=(M+m)a,② 且f1=N1 要求两物体间的相互作用力, ∴应把两物体隔离.
19
能力·思维·方法
对m受力分析如图3-4-5所示,
图3-4-5
20
能力·思维·方法
由∑Fy=0得N2-mgcos=0④ 由∑Fx=ma得N-f2-mgsin=ma⑤ 且f2=N2⑥ 由以上联合方程解得: N=(cos-sin)mF/(M+m). 此题也可以隔离后对M分析列式,但麻烦些.
21
能力·思维·方法
N2 T f1
f2 m
T
θ
N1 F
M
Mg 5
例2. 如图示,两物块质量为M和m,用绳连接后放在倾 角为θ的斜面上,物块和斜面的动摩擦因素为μ,用沿斜 面向上的恒力F 拉物块M 运动,求中间绳子的张力.
解:画出M 和m 的受力图如图示: 由牛顿运动定律,
对M有 F - T - Mgsinθ-μMgcosθ= Ma (1)