牛顿第二定律的应用整体法与隔离法
牛顿第二定律应用方法
练习、如图,将质量为 的物体分置于质量为M的 练习、如图,将质量为m1、m2的物体分置于质量为 的 物体的两侧,均处于平衡状态, , 物体的两侧,均处于平衡状态,m1>m2,α < β,下 述说法正确的是( 述说法正确的是( ACD) m2 m1 A)m1对M的正压力一定大于 2对M的正压力 ) 的正压力一定大于m 的正压力 的正压力一定大于 M β α B)m1对M的摩擦力一定大于 2对M的摩擦力 的摩擦力一定大于m ) 的摩擦力一定大于 的摩擦力 C)水平地面对 的支持力一定等于 的支持力一定等于(M+m1+m2)g )水平地面对M的支持力一定等于 D)水平地面对 的摩擦力一定等于零 )水平地面对M的摩擦力一定等于零 变式:如图所示 一质量为M的楔形木块放在水平桌面 如图所示, 变式 如图所示,一质量为 的楔形木块放在水平桌面 它的顶角为90 两底角为α和 ; 、 为两个位于 上,它的顶角为 o,两底角为 和β;a、b为两个位于 斜面上质量均为m的小木块 的小木块。 斜面上质量均为 的小木块。已知所有接触面都是光滑 现发现a、 沿斜面下滑 而楔形木块静止不动, 沿斜面下滑, 的。现发现 、b沿斜面下滑,而楔形木块静止不动,这 时楔形木块对水平桌面的压力等于: 时楔形木块对水平桌面的压力等于: A A.Mg+mg; B.Mg+2mg; A. ; . ; C.Mg+mg(sinα+sinβ) . ( ) D.Mg+mg(cosα+cosβ) . )
牛顿第二定律的应用--整体法与隔离法
3.3 牛顿第二定律的应用
——整体法与隔离法
整体法与隔离法 • 在求解连接体问题时常常用到整体法与隔 离法.所谓“连接体”问题,是指运动中 的几个物体或上下叠放在一起、或前后挤 靠在一起、或通过轻绳、轻杆、轻弹簧连 在一起、或由间接的场力作用在一起的物 体组. • 内力:各物体间存在相互作用力.
m1 F 联立以上各式得: FBA m1 m2
知识梳理
一、整体法:在研究物理问题时,把所研究 的对象作为一个整体(不考虑内力)来处理 的方法称为整体法。 采用整体法时不仅可以把几个物体作为 整体,也可以把几个物理过程作为一个整体。
采用整体法可以避免对整体内部 进行繁锁的分析,常常使问题解答更 简便、明了。
对B受力分析: 水平方向:
FAB m2 g m2a
m2 F m1 m2
联立以上各式得: FAB
思考:用水平推力F向左推,A、B间的作用 力与原来相同吗?
没有摩擦力时:
解:对整体,根据牛顿第二定律得
F (m1 m2 )a
对 A 受力分析根据牛顿第二定律得:
FBA m1a
例3.如图所示,质量M=60kg的人通过光滑的定 滑轮用绳拉着m= 20kg的物体,当物体以加速度 a=5 m/s2上升时,人在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面 上分别放有质量为m1和m2的两个木块b和c,如图所示,已知m1>m2, 三木块均处于静止,则粗糙地面对于三角形木块( ) A.有摩擦力作用,摩擦力的方向水平向右 B.有摩擦力作用,摩擦力的方向水平向左 C.有摩擦力作用,但摩擦力的方向不能确定 D.没有摩擦力的作用
(1)当地面光滑时,A,B作为一个整体,根据牛顿第二定律得:
牛顿第二定律的应用——连接体问题
牛顿第二定律的应用――― 连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为 。
如果把其中某个物体隔离出来,该物体即为。
二、连接体问题的分析方法1.整体法:连接体中的各物体如果 ,求加速度时可以把连接体作为一个整体。
运用 列方程求解。
2.隔离法:如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用 求解,此法称为隔离法。
3.整体法与隔离法是相对统一,相辅相成的。
本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用 法求出 ,再用 法求 。
【典型例题】例1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A.F m m m 211+B.F m m m 212+C.FD.F m m 21 练习:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。
2.如图右所示,质量为m 1、m 2的物块在F 1、F 2共同作用下向右运动。
已知m 1=3kg m 2=2kg F 1=14 N F 2=4N ,求m 1和m 2之间细绳的作用力F T 为多少?A B m 1 m 2 F3.如右图所示,物体m1、m2用一细绳连接,两者在竖直向上的力F的作用下向上加速运动,重力加速度为g,求细绳上的张力?例2:如图右,m1、m2用细线吊在光滑定滑轮,m1=3kg m2=2kg,当m1、m2开始运动时,求细线受到的张力?例3:如图所示,箱子的质量M=5.0kg,与水平地面的动摩擦因数μ=0.22。
在箱子顶板处系一细线,悬挂一个质量m=1.0kg的小球,箱子受到水平恒力F的作用,使小球的悬线偏离竖直方向θ=30°角,则F应为多少?(g=10m/s2)练习:如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g=10m/s2)例4:如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力作用在B 上,使A 、B 保持相对静止做加速运动,则作用于B 的作用力为多少?练习.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用于B 上,三物体可一起匀速运动。
牛顿第二定律连接体问题(整体法与隔离法)
牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则三、连接体题型:1【例1】A、B 平力N F A 6=推A ,用水平力N F B 3=【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. gm M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2滑定滑轮连接质量为1m 的物体,与物体A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gm C. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m m g ,m B =0.4kg ,盘C 的质量O 处的细线瞬间,木F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。
要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。
f= f= F AB = F AB = 3、如图所示,在光滑水平桌面上,叠放着三个质量相同的物体,用力推物体a ,使三个物体保持静止,一起作加速运动,则各物体所受的合外力 ( ) A .a 最大 B .c 最大 C .同样大 D .b 最小4、如图所示,小车的质量为M,的前端相对于车保持静止,A.在竖直方向上,B.在水平方向上,C.若车的加速度变小,D.若车的加速度变大,5、物体A 、B 叠放在斜面体C 上,物体的作用下一起随斜面向左匀加速运动的过程中,物体A 、B摩擦力为2f F ,(02≠f F ),则(A. 01=f F B. 2f F C.1f F 水平向左 D. 2f F 6、如图3所示,质量为M A. 地面对物体M B. 地面对物体M C. 物块m D. 地面对物体M 7、如图所示,质量M =8kg 到1.5m/s μ=0.28、如图6所示,质量为A m 的物体A 沿直角斜面C 9、如图10所示,质量为M 的滑块C B B 、2a F a b c。
牛顿第二定律的应用-整体法与隔离法
解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。
2017.9 高三 牛二定律--整体与隔离
高三物理 牛顿第二定律应用专项复习——整体法与隔离法一、牛顿第二定律——连接体问题1.连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统2.处理方法——整体法与隔离法系统运动状态相同,一般用来求加速度和外力整体法问题不涉及物体间的内力使用原则系统各物体运动状态不同隔离法问题涉及物体间的内力两种方法都是根据牛顿第二定律列方程求解。
例1. 物体A 和B 的质量分别为1.0kg 和2.0kg ,用F=12N 的水平力推动A ,使A 和B 一起沿着水平面运动,A 和B 与水平面间的动摩擦因数均为0.2,求A 对B 的弹力。
(g 取10m/s 2)例2、现将质量为M 的斜面放在光滑水平地面上,质量为m 的物块放在光滑斜面上,斜面倾角为θ。
现对M 施加一个水平向左的力,使两个物体相对静止一起向左运动。
求此力 F 应该多大?例3、如右图所示,弹簧测力计外壳质量为m 0,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为m 的重物.现用一方向竖直向上的外力F 拉着弹簧测力计,使其向上做匀加速运动,则弹簧测力计的示数为( )A .mgB .FC.m m 0+m FD.m 0m 0+mg例4、在水平桌面上叠放着A 、B 物体,如图.B 与桌面间的摩擦系数为0.4,两物体的质量分别为m A =2kg ,m B =3kg 用30N 的水平力F 拉B 时,AB 未产生相对滑动,求A 受到的摩擦力.隔离法例5、.如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的1/2,即a=g /2,则小球在下滑的过程中,木箱对地面的压力为多少?●针对训练1.如图,质量分别为m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀加速直线运动(m 1在光滑地面上,m 2在空中),力F 与水平方向的夹角为θ,则m 1的加速度大小为( )A .12cos F m m θ+ B .2sin F m θ C .12sin F m m θ+ D .1cos F m θ2、如图所示,五个木块并排放在水平地面上,它们的质量相同,与地面的摩擦不计。
应用整体法和隔离法的解题技巧—内力公式(解析版)
高中物理题型解题技巧之力学篇03内力公式一、必备知识1.连接体问题母模型如图1所示,光滑地面上质量分别为m 1、m 2的两物体通过轻绳连接,水平外力F 作用于m 2上,使两物体一起加速运动,此时轻上的拉力多大?整体由牛顿第二定律求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F二:应用技巧(1).物理场景:轻绳或轻杆或轻弹簧等相连加速度相同的连接体,如下情形求m 2、m 3间作用力,将m 1和m 2看作整体F 23=m 1+m 2m 1+m 2+m 3F整体求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g (sin θ+μcos θ)隔离求内力T -m 1g (sin θ-μcos θ)=m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g隔离求内力T -m 1g =m 1a得T =m 1m 1+m 2Fa =F 2-F 1m 1+m 2−μg隔离T -F 1-μm 1g =m 1a得T =m 1F 2+m 2F 1m 1+m 2(2)方法总结:(内力公式)如上图所示,一起加速运动的物体系统,若力作用于m 1上,则m 1和m 2间的相互作用力为F 12=m 不m 1+m 2F (其中m 不即为外力不作用的物体的作用)此结论与有无摩擦无关(有摩擦,两物体与接触面的动摩擦因数必须相同),物体系统沿水平面、斜面、竖直方向运动时,此结论都成立。
两物体的连接物为轻弹簧、轻杆时,此结论不变。
注意:若整体受到多个外力时,可先将多点个外力分别应用内力公式a .两外力相反时,绳中的拉力为T =m 2m 1+m 2F 1+m 1m 1+m 2F2b .两外力相同时绳中的拉力为T =m 2m 1+m 2F 1-m 1m 1+m 2F2三、实战应用(应用技巧解题,提供解析仅供参考)一、单选题1如图,两物块P 、Q 置于水平地面上,其质量分别为m 、2m ,两者之间用水平轻绳连接。
第三章 第3课时 专题强化:牛顿第二定律的综合应用-2025物理大一轮复习讲义人教版
第3课时专题强化:牛顿第二定律的综合应用目标要求 1.知道连接体的类型以及运动特点,会用整体法、隔离法解决连接体问题。
2.理解几种常见的临界极值条件,会用极限法、假设法、数学方法解决临界极值问题。
考点一动力学中的连接体问题多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的物体系统称为连接体。
系统稳定时连接体一般具有相同的速度、加速度(或速度、加速度大小相等)。
1.共速连接体两物体通过弹力、摩擦力作用,具有相同的速度和相同的加速度。
(1)绳的拉力(或物体间的弹力)相关类连接体(2)叠加类连接体(一般与摩擦力相关)例1如图所示,水平面上有两个质量分别为m1和m2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g,下列说法正确的是()A.若水平面是光滑的,则m2越大,绳的拉力越大B.若木块和地面间的动摩擦因数为μ,则绳的拉力为m1Fgm1+m2+μm1C.绳的拉力大小与水平面是否粗糙无关D.绳的拉力大小与水平面是否粗糙有关答案C 解析若设木块和地面间的动摩擦因数为μ,以两木块整体为研究对象,根据牛顿第二定律有F -μ(m 1+m 2)g =(m 1+m 2)a ,得a =F -μ(m 1+m 2)g m 1+m 2,以木块1为研究对象,根据牛顿第二定律有F T -μm 1g =m 1a ,得a =F T -μm 1g m 1,系统加速度与木块1加速度相同,联立解得F T =m 1m 1+m 2F ,可知绳子拉力大小与动摩擦因数μ无关,与两木块质量大小有关,无论水平面是光滑的还是粗糙的,绳的拉力大小均为F T =m 1m 1+m 2F ,且m 2越大,绳的拉力越小,故选C 。
拓展(1)两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接。
①如图甲所示,用力F 竖直向上拉木块时,绳的拉力F T =__________;②如图乙所示,用力F 沿光滑斜面向上拉木块时,绳的拉力为__________;斜面不光滑时绳的拉力F T =__________。
整体法和隔离法在牛顿运动定律中的应用
隔离法和整体法在牛顿运动定律中的应用整体法与隔离法是在高中物理学习中常用到的基本方法之一,特别是在力学部分,巧妙地选择研究对象会使问题变得简单,明了。
整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。
隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。
方法选择:所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简化,而不必考虑内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。
有时在一个问题中需要整体法与隔离法交替使用。
一、在平衡状态下的应用当几个相互连系的物体都处于静止或匀速直线运动状态时,可以把这些物体视为一个整体,由于每一个独立的物体都处于平衡状态,所以整体也处于平衡状态。
即不管是独立的物体还是整体,受力都要满足平衡条件。
【例1】如图所示,放置在水平地面上的直角劈M上有一个质量为m的物体,若m在其上方匀速下滑,M仍保持静止,那么下列说法中正确的是:()A.M对地面的压力等于(M+m)gB.M对地面的压力大于(M+m)gC.地面对M没有摩擦力D.地面对M有向左的摩擦力〖解析〗M对地面的压力、地面对M的摩擦力,都是直角劈和物体m作为一个整体与外界的作用力,故用整体法来分析求解较为方便。
这一整体在竖直方向上受到向下的重力(M+m)g和向上的支持力F N,由平衡条件得F N =(M+m)g,做A正确,B错误。
这一整体在水平方向上平衡,因此水平方向合力为零,由此可推知地面对M没有摩擦力。
故C正确,D错误。
【例2】如图所示,用水平力F,将质量为m的三块砖压在竖直墙上,静止不动,A与F接触面光滑不受摩擦力,则下列叙述正确的是:()A.墙壁施给C的摩擦力为mg,方向竖直向上B.墙壁施给C的弹力为FC.A施给B的摩擦力大小为mg,方向竖直向下D.C施给B的摩擦力大小为2mg,方向竖直向上〖解析〗A、B、C均处于静止状态,将三者视为一个整体来研究,受力分析如图a所示,可知墙壁施给C的摩擦力为3mg,方向竖直向上,墙壁施给C的弹力为F。
牛顿第二定律的应用之整体法与隔离法
N-mg=may
ay=0.25g
N
ay a
f = max = m ay / tg θ = 0.25mg×4/3 = mg/3
fθ ax
mg
例1、如图示,倾斜索道与水平方向夹角为θ,已知
tg θ=3/4,当载人车厢匀加速向上运动时,人对厢
底的压力为体重的1.25倍,这时人与车厢相对静止,
则车厢对人的摩擦力是体重的 ( ) A
a
A. 1/3倍
B.4/3倍
C. 5/4倍
D.1/4倍
解:将加速度分解如图示,
θ
由a与合力同向关系,分析人的受力如图示:
什么是整体法?什么情况下可用整体法?
• 整体法就是对物理问题的整个系统或整个过 程进行研究的方法。
• 如果由几个物体组成的系统具有相同的加速度,一般 用整体法求加速度。(但整体法不能求出系统内力)
• 如果求解的物理问题仅涉及某过程的始末两状态,一 般可以把整个过程作为研究对象用整体法求解。(但 整体法不能求出此过程中间的状态量)
• 审题:这里由于木块与小车 在运动过程中相对静止,它 们具有相同的加速度,所以 先采用整体分析法,求出木 块和小车这个系统的整体加 速度,a=gsinθ,这样M的 加速度就求出。由于木块所 受的弹力和摩擦力对小车和 木块这个系统来说是内力, 所以必须将木块从系统中隔 离出来分析。
思路点拨与技巧训练
思路点拨
盘静止时KL=(M+m)g 放手时先研究整体K(L+ Δ L) -(M+m)g= (M+m)a
再研究盘中物体m N-mg=ma N=mg(L+ Δ L)/L
习题一
• 右示图中人的质量 为50kg,直杆的质 量为100kg,人与 杆均静止。若系杆 的绳断了,人为了 保持自已的高度不 变,必须使杆具有 多大的加速度?
牛二整体法与隔离法
要点二
解析
首先确定研究对象的运动状态和受力情况,物体做匀速圆周 运动,线速度为v,角速度为ω。然后隔离出研究对象,忽略 其他物体对它的影响,单独分析物体的运动状态和受力情况。 根据牛顿第二定律建立方程:F=m×v^2/r=mr×ω^2,其 中r为圆周运动的半径。最后求解得到物体受到的向心力 F=m×v^2/r=mr×ω^2。
牛二整体法与隔离法
目 录
• 牛二定律的概述 • 整体法 • 隔离法 • 整体法与隔离法的比较与选择
01
牛二定律的概述
定义
牛二定律,也称为牛顿第二运动定律,指的是物体受到的合外力与其加速度成正 比,与其质量成反比。数学公式表示为F=ma。
牛顿第二定律是经典力学中最重要的基本定律之一,揭示了力与运动的关系,是 解决动力学问题的关键。
04
整体法与隔离法的比较 与选择
适用场景比较
整体法适用于分析系统整体运动状态,确定整体受力情况,无需关注系统内部各部分之间的相互作用 力。
隔离法适用于分析系统内部某一物体或某一局部的运动状态和受力情况,需将该物体或局部从系统中 隔离出来分析。
优缺点比较
整体法优点
可以快速确定整体受力情况,无需逐一分析系统内部各部分之间的相 互作用力,简化计算过程。
整体法的应用条件
多个物体间的相对运动和受力关系较为简单,且可以忽略物体间的相互作用力。
多个物体组成的系统所受的外力可直接分析。
整体法的解题步骤
根据运动方程求解单个物 体的受力情况。
根据牛顿第二定律,列出 整体的运动方程。
确定需要分析的整体,明 确整体受到的外力。
01
03 02Βιβλιοθήκη 整体法的例题解析题目
隔离法的解题步骤
牛顿运动定律应用—整体法和隔离法
m
θ
M
F ( M m)a
θ
①
m
F FN sin ma ② FN cos mg 0 ③
θ
mg
M F
联立①②③式解出使m相对M ⑴整体法和隔离法相结合. 相对滑动的最小推力 ⑵动态分析临界状态,从两个方 ( M m) mg tan 面理解临界状态.
F
M
P 附加题3:如图,一细线的一端固定于倾角为 450的光滑楔形滑块A的顶端P处, 细 线的另 一端拴以质量为m的小球, ⑴.当滑块至少以 a 多大加速度向左运动时,小球对滑块的压力 为零? ⑵.当滑块以加速度a=2g向左运动时, 线中张力多大? a0 解:⑴根据牛顿第二定律得 450
1、物体1、2放在光滑的水平面上,中间以轻质弹簧相连,如图所 示,对物体1、2分施以方向相反的水平力F1、F2,且F1>F2,则弹 簧秤的读数C [ ] A.一定为F1+F2 B.可能为F1+F2 C.一定小于F1,大于F2 D. 一定为F1-F2 用整体法可知加速度方向向左, 对1物体作为对象有弹力F小于F1, 对B物体作为对象有弹力F大于F2
F
再分析B的受力情况:
A B
FNB F FfB
FfB =μFNB=μm2g
FB合 =FAB-FfB=m2a
m2 F FAB =FfB+m2a m1 m2
Ff
FN
AB
G
B
GB
FAB
变式训练2:如图所示,在光滑的水平面上,有等质 量的五个物体,每个物体的质量为m.若用水平推力 F推1号物体,求: (1)它们的加速度是多少? (2)2、3号物体间的相互作用力为多少?
解:因各个物体的加速度相同,可以五个物体整体为研究 对象求出整体的加速度.再以3、4、5号物体为研究对象求 出2、3号物体间的相互作用力. 对整体:F=5ma 对3、4、5号物体:F23=3ma 得 a=F/5m; F1=3F/5
整体法、隔离法的应用
(一)整体法、隔离法的应用方法概述:1、当物体间相对静止,具有共同的对地加速度时,就可以把它们作为一个整体,通过对整体所受的合外力列出整体的牛顿第二定律方程(若合力为零则列平衡方程)。
2、当需要计算物体之间(或一个物体各部分之间)的相互作用力时,就必须把各个物体(或一个物体的各个部分)隔离出来,根据各个物体(或一个物体的各个部分)的受力情况,画出隔离体的受力图,列出牛顿第二定律方程(若合力为零则列平衡方程)。
许多具体问题中,常需要交叉运用整体法和隔离法,有分有合,从而可迅速求解。
1、如图所示,有半径均为r,重均为G的两个光滑小球,放在圆柱形圆筒内,圆筒的半径为R,且R<2r,求两球之间的压力及圆筒底部所受的压力。
2、如上图所示,平板重300N,滑轮重不计,要使整个装置静止,则P物重力的最小值是多少?3、如图右,一固定斜面上两个质量相同的小物块A和B紧挨着匀速下滑,A与B的接触面光滑。
已知A与斜面之间的动摩擦因数是B与斜面之间动摩擦因数的2倍,斜面倾角为α。
B与斜面之间的动摩擦因数是()A.23tanαB.23cotα C.tanα D.cotα4.如图所示,质量分别为m和2m的两物体A、B叠放在一起,放在光滑的水平地面上,已知A、B间的最大摩擦力为A物体重力的μ倍,若用水平力分别作用在A或B上,使A、B保持相对静止做加速运动,则作用于A、B上的最大拉力F A与F B之比为多少?5.如图所示,在水平桌面上有三个质量均为m的物体A、B、C叠放在一起,水平拉力F作用在物体B上,使三个物体一起向右运动,则:(1)当三个物体一起向右匀速运动时,A与B、B与c、C与桌面之间的摩擦力大小;(2)当三个物体一起向右以加速度a匀加速运动时,A与B、B与C、C与桌面之间的摩擦力大小。
6、如图所示,置于光滑水平面上的木块A和B,其质量为m A和m B。
当水平F作用于A左端上时,两物体一起作加速运动,其A、B间相互作用力大小为N1;当水平力F作用于B右端上时,两物体一起做加速度运动,其A、B间相互作用力大小为N2。
牛顿运动定律的应用之用整体法、隔离法巧解连接体问题(解析版)
牛顿运动定律的应用之用整体法、隔离法巧解连接体问题1.连接体的分类根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
(1)绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;(2)弹簧连接:两个物体通过弹簧的作用连接在一起;(3)接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。
轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
学科,网特别提醒(1)“轻”——质量和重力均不计。
(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。
3.连接体问题的分析方法(1)分析方法:整体法和隔离法。
(2)选用整体法和隔离法的策略:①当各物体的运动状态相同时,宜选用整体法;当各物体的运动状态不同时,宜选用隔离法;②对较复杂的问题,通常需要多次选取研究对象,交替应用整体法与隔离法才能求解。
4. 整体法与隔离法的选用方法(1)整体法的选取原则若在已知与待求量中一涉及系统内部的相互作用时,可取整体为研究对象,分析整体受到的外力,应用牛顿第二定律列方程。
当系统内物体的加速度相同时:a m m m F n )...(21+++=;否则n n a m a m a m F +++=...2211。
(2)隔离法的选取原则若在已知量或待求量中涉及到系统内物体之间的作用时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.(3)整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.【典例1】如图所示,两个质量分别为m 1=3 kg 、m 2=2 kg 的物体置于光滑的水平面上,中间用轻质弹簧测力计连接。
牛顿第二定律的应用之整体法与隔离法
碰撞问题
总结词
碰撞问题是指两个或多个物体在短时间 内发生高速碰撞,导致物体运动状态发 生急剧变化的问题。通过牛顿第二定律 ,可以求解碰撞后的运动状态和运动规 律。
VS
详细描述
碰撞问题中,物体之间的相互作用力会在 极短的时间内使物体的运动状态发生急剧 变化。通过分析碰撞过程中物体的受力情 况和运动状态的变化,结合牛顿第二定律 ,可以求解碰撞后物体的速度、加速度和 位移等物理量的变化。
牛顿第二定律只适用于惯性参考系,即没有加速度的参考系。在非惯性参考系中,物体的运动规律会 受到额外的力作用,这些力无法通过牛顿第二定律来描述。
在研究天体运动、相对论效应等非惯性参考系问题时,需要使用更复杂的理论框架,如广义相对论。
只适用于单一物体的运动状态改变问题
牛顿第二定律适用于描述单一物体在 受到外力作用时运动状态的改变,不 适用于涉及多个物体相互作用的问题。
05
牛顿第二定律的局限性
只适用于宏观低速物体
牛顿第二定律只适用于描述宏观低速物体的运动规律,对于微观高速的粒子运动,如光子、电子等,需要使用量子力学和相 对论等其他理论。
在宏观低速的范围内,牛顿第二定律能够很好地描述物体的加速度与作用力之间的关系,但在高速或微观领域,这种描述会 失效。
只适用于惯性参考系
适用条件
当多个物体之间的相互作用力远大于 外界对整体的作用力时,使用整体法 更为简便。
在分析物体的加速度和受力情况时, 如果多个物体之间的运动状态相同或 相近,整体法也适用。
应用实例
当一个斜面静止在水平地面上时,可以将斜面和斜面上放置 的物体视为一个整体,分析受到的重力和地面对整体的静摩 擦力,从而得出斜面是否会滑动。
总结词
连接体问题是指两个或多个物体通过相互作用力而连接在一起的问题。通过整体法和隔离法,可以求解连接体的 运动状态和运动规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律的应用(一)——整体法与隔离体法 专题考点聚焦1.知道什么是连接体与隔离体。
2.知道什么是内力和外力。
3.学会连接体问题的分析方法,并用来解决简单问题。
例题展示例1如图所示,A 、B 两木块的质量分别为m A 、m B ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力F N 。
解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。
比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。
可得F m m m F BA BN +=例2如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。
用水平力F 拉B ,当拉力大小分别是F =10N 和F =20N 时,A 、B 的加速度各多大?解析:先确定临界值,即刚好使A 、B 发生相对滑动的F 值。
当A 、B 间的静摩擦力达到5N 时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A 在滑动摩擦力作用下加速运动。
这时以A 为对象得到a =5m/s 2;再以A 、B 系统为对象得到 F =(m A +m B )a =15N(1)当F =10N<15N 时, A 、B 一定仍相对静止,所以2BA B A 3.3m/s =+==m m Fa a(2)当F =20N>15N 时,A 、B 间一定发生了相对滑动,用质点组牛顿第二定律列方程:B B A A a m a m F +=,而a A =5m/s 2,于是可以得到a B =7.5m/s 2例3如图所示,质量分别为M 、m 的滑块A 、B 叠放在固定的、 倾角为θ的斜面上,A 与斜面间、A 与B 之间的动摩擦因数 分别为μ1,μ2,当A 、B 从静止开始以相同的加速度下滑时, B 受到摩擦力( .BC )A.等于零B.方向平行于斜面向上C.大小为μ1mgcos θD.大小为μ2mgcos θ例4.如图,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于(D )A .0B .k xC .(M m)k xD .(mM m+)k xB A θAB例5如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑, 木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相 对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止, 木板运动的加速度是多少?解(1)为了使木板与斜面保持相对静止,必须满足木板在斜面上的合力为零,所以人施于木板的摩擦力F 应沿斜面向上,故人应加速下跑。
现分别对人和木板应用牛顿第二定律得:对木板:Mgsin θ=F 。
对人:mgsin θ+F =ma 人(a 人为人对斜面的加速度)。
解得:a 人=sin M mg mθ+,方向沿斜面向下。
(2)为了使人与斜面保持静止,必须满足人在木板上所受合力为零,所以木板施于人的摩擦力应沿斜面向上,故人相对木板向上跑,木板相对斜面向下滑,但人对斜面静止不动。
现分别对人和木板应用牛顿第二定律,设木板对斜面的加速度为a 木,则:对人:mgsin θ=F 。
对木板:Mgsin θ+F=Ma 木。
解得:a 木=sin M mg Mθ+,方向沿斜面向下。
即人相对木板向上加速跑动,而木板沿斜面向下滑动,所以人相对斜面静止不动。
例6如图所示,底座A 上装有一根直立杆,其总质量为M ,杆上套有质量为m 的圆环B ,它与杆有摩擦。
当圆环从底端以某一速度v 向上飞起时,圆环的加速度大小为a ,底座A 不动,求圆环在升起和下落过程中,水平面对底座的支持力分别是多大?解:圆环上升时,两物体受力如右图所示,其中f 1为杆给环的摩擦力,f 2为环给杆的摩擦力。
对圆环:mg +f 1=ma ① 对底座:N 1+f 2-Mg =0② 由牛顿第三定律知:f 1=f 2③由①②③式可得:N 1=(M +m)g -ma圆环下降时,两物体受力如右图所示对圆环:mg -f 1=ma ' ④ 对底座:Mg +f 2-N 2=0⑤ 由牛顿第三定律得:f 1=f 2⑥由④⑤⑥三式解得:N 2=(M -m)g +mafa· N 1 f 1Mga 'f N 2 · f 1 Mg1.如图A 、B 、C 为三个完全相同的物体,当水平力F 作用 于B 上,三物体可一起匀速运动。
撤去力F 后,三物体仍 可一起向前运动,设此时A 、B 间作用力为f 1,B 、C 间作 用力为f 2,则f 1和f 2的大小为( C ) A.f 1=f 2=0 B.f 1=0,f 2=FC.f 1=3F ,f 2=F 32D.f 1=F ,f 2=02、两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体 B 的作用力等于(B ) A.F m m m 211+ B.F m m m 212+ C.FD.F m m 213、如图所示,倾角为α的斜面上放两物体m 1和m 2,用与斜面 平行的力F 推m 1,使两物加速上滑,不管斜面是否光滑,两物体 之间的作用力总为F m m m 212+。
4、一条不可伸长的轻绳跨过质量可忽略不计的光滑定滑轮, 绳的一端系一质量m =15kg 的重物,重物静止于地面上, 有一质量m '=10kg 的猴子,从绳子的另一端沿绳向上爬, 如图所示,在重物不离地面的条件下,猴子向上爬的最大加 速度 (g=10m/s 2)( B ) A .25m/s 2B .5m/s 2C .10m/s 2D .15m/s 25、如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量 为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时, 竿对“底人”的压力大小为( B )A.(M+m )gB.(M+m )g -maC.(M+m )g+maD.(M -m )g6、如图所示,箱子的质量M =5.0kg ,与水平地面的动摩擦因 数μ=0.22。
在箱子顶板处系一细线,悬挂一个质量m =1.0kg 的小球,箱子受到水平恒力F 的作用,使小球的悬线偏离竖直a方向θ=30°角,则F 应为多少?(g =10m/s 2) 解:对小球由牛顿第二定律得:mgtg θ=ma ①对整体,由牛顿第二定律得:F -μ(M+m)g=(M+m)a ② 由①②代入数据得:F =48N7、如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少?解法一:(隔离法)木箱与小球没有共同加速度,所以须用隔离法.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图2-4,据牛顿第二定律得: mg -F f =ma①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′如图. 据物体平衡条件得: F N -F f ′-Mg =0② 且F f =F f ′③由①②③式得F N =22mM +g 由牛顿第三定律知,木箱对地面的压力大小为 F N ′=F N =22mM +g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式: (mg +Mg )-F N = ma +M ×0 故木箱所受支持力:F N =22mM +g ,由牛顿第三定律知: 木箱对地面压力F N ′=F N =22mM +g .A BF【提高训练】1、如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力F a 和F b 的变化情况是( A ) A.T a 增大 B.T b 增大 C.T a 变小 D.T b 不变2、(1999年广东)A 的质量m 1=4 m ,B 的质量m 2=m ,斜面固定在水平地面上。
开始时将B 按在地面上不动,然后放手,让A 沿斜面下滑而B 上升。
A 与斜面无摩擦,如图,设当A 沿斜面下滑s 距离后,细线突然断了。
求B 上升的最大高度H 。
答案:H=1.2 s3、如图所示,一根轻弹簧上端固定,下端挂一质量为m o 的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比自然长度伸长了L 。
今向下拉盘使弹簧再伸长△L 后停止,然后松手放开,设弹簧总处在弹性限度以内,刚刚松开手时盘对物体的支持力等于多少?解:盘对物体的支持力,取决于物体状态,由于静止后向下拉盘,再松手加速上升状态,则物体所受合外力向上,有竖直向上的加速度,因此,求出它们的加速度,作用力就很容易求了。
将盘与物体看作一个系统,静止时:kL =(m+m 0)g ……① 再伸长△L 后,刚松手时,有k(L+△L)-(m+m 0)g=(m+m 0)a ……② 由①②式得00()()k L L m m g La g m m L+∆-+∆==+刚松手时对物体F N -mg=ma则盘对物体的支持力F N =mg+ma=mg(1+LL∆)4、如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,已知A 、B 间的最大摩擦力为A 物体重力的μ倍,若用水平力分别作用在A 或B 上,使A 、B 保持相对静止做加速运动,则作用于A 、B 上的最大拉力F A 与F B 之比为多少?.解:当力F 作用于A 上,且A 、B 刚好不发生相对滑动时,对B 由牛顿第二定律得:μmg=2ma ①对整体同理得:F A =(m+2m)a ② 由①②得32A mgF μ=当力F 作用于B 上,且A 、B 刚好不发生相对滑动时,对A 由牛顿第二定律得:μμmg =ma ′ ③ 对整体同理得F B =(m+2m)a ′④ 由③④得F B =3μmgAB CT a T b所以:F A:F B=1:2。