金属粉末的制备方法及基本原理

合集下载

铁精粉技术原理

铁精粉技术原理

铁精粉技术原理简介铁精粉技术是一种常用的金属粉末制备工艺,它具有高效、环保、低成本等优势。

本文将从铁精粉技术的原理入手,介绍其工作过程和关键技术。

工作原理铁精粉技术是通过矿石的浸出和还原等工艺,将铁矿石转化为铁粉。

其基本工作原理主要包括矿石浸出、浸出液的分离和还原。

矿石浸出矿石浸出是指将铁矿石与化学溶剂接触,使铁矿石中的铁元素溶解出来。

常用的浸出方法有酸浸法、氯化浸法等。

其中,酸浸法是最常用的方法,其原理是通过溶剂的酸性,使矿石中的铁元素离子化,从而实现铁的溶解。

浸出液的分离矿石浸出后,得到的是含有铁离子的溶液,需要将其中的杂质分离。

一般采用沉淀、过滤等方法将杂质去除,得到纯净的铁溶液。

还原将得到的铁溶液经过还原反应,将其中的铁元素还原成铁粉。

常用的还原剂有碳、氢气等。

在还原反应中,通过合适的温度、气氛等条件,将铁溶液中的铁离子还原成金属铁。

关键技术铁精粉技术中涉及到许多关键技术,下面将介绍其中的几个重要部分。

矿石选择矿石的选择是铁精粉技术中至关重要的一步。

不同的铁矿石成分不同,对应的浸出条件和还原反应也会有差异。

因此,在选择矿石时需要考虑其成分、矿石的可得性等因素。

浸出条件浸出条件主要包括酸性、温度、浸出时间等。

不同的矿石需要适用不同的浸出条件,以实现最佳的浸出效果。

浸出条件的优化可以提高铁溶液的浓度和纯度,为后续步骤提供良好基础。

还原反应条件还原反应条件也是铁精粉技术中的关键环节。

合适的温度、气氛、还原剂比例等条件可以提高还原效果,获得高纯度的铁粉。

粉末处理在铁精粉技术中,得到的铁粉通常需要进行处理,以获得所需的粒度和形态。

常用的处理方法包括粉碎、筛分等,可以获得不同粒径的铁粉。

应用前景铁精粉技术具有广泛的应用前景。

铁精粉可以作为重要的原料,用于制备磁性材料、金属陶瓷材料等。

此外,铁精粉还可以用于电子行业、冶金行业等多个领域。

随着科技的发展,对铁精粉的需求将会越来越大,其应用前景十分广阔。

结论铁精粉技术是一种重要的金属粉末制备工艺,具有高效、环保、低成本等优势。

粉末冶金原理概述

粉末冶金原理概述

粉末冶金原理概述简介粉末冶金是一种通过将金属粉末压制成型,然后通过烧结或热处理使其结合成型而获得金属制品的工艺。

粉末冶金具有许多优点,包括高材料利用率、能够制造高复杂度的零件、制造成本低等。

本文将对粉末冶金的原理进行概述。

原理概述粉末冶金是通过粉末的压制和烧结过程来制造金属制品。

其基本流程包括粉末制备、粉末的成型和烧结过程。

粉末制备粉末制备是粉末冶金的第一步。

金属粉末可以通过多种方法来制备,包括机械研磨、凝固法、气相法等。

选择合适的粉末制备方法可以控制粉末的粒度、形状和组成,以适应所需的材料特性和制品要求。

粉末成型粉末成型是将金属粉末转化为所需形状的过程。

常见的成型方法包括压制、注塑、挤压等。

其中,压制是最常用的成型方法之一。

通过将金属粉末放入模具中,然后施加高压使其成型。

成型过程中,通过给予粉末适当的压力和温度,使粉末颗粒之间发生塑性变形和结合。

烧结过程烧结是粉末冶金的关键步骤之一。

在烧结过程中,经过成型后的粉末通过加热使其进行结合。

在加热的同时,粉末颗粒之间发生扩散,并形成跨粒界结合。

烧结温度和时间的选择对最终材料的性能和结构有重要影响。

后续热处理在烧结后,通常还需要对金属制品进行后续的热处理。

热处理可以有选择地改变材料的性能和结构,如提高强度、改善耐腐蚀性等。

常见的热处理方法包括固溶处理、时效处理、淬火等。

粉末冶金的优点粉末冶金具有以下优点:1.高材料利用率:由于粉末冶金可以直接利用金属粉末进行成型,因此避免了传统加工中的材料浪费,相比传统冶金方法,粉末冶金材料利用率更高。

2.制造高复杂度零件:粉末冶金可以制造复杂度高的零件,如多孔件、中空件等。

这是传统加工方法无法实现的。

3.制造成本低:粉末冶金不需要进行复杂的加工步骤,相比传统加工方法,制造成本更低。

4.可以利用废料:粉末冶金可以利用废料或回收材料进行制造,提高了资源的利用率。

应用领域粉末冶金广泛应用于各个领域,包括汽车制造、航空航天、船舶制造、化工、电子等。

粉末冶金原理-中文

粉末冶金原理-中文

粉末冶金原理粉末冶金是一种特殊的金属加工方法,它利用金属和非金属粉末的物理特性和化学特性,通过粉末成型、烧结和后处理等工艺制备出各类金属材料和相关制品。

在这种加工方法中,粉末被视为材料的原子和晶粒的集合体。

本文将介绍粉末冶金的基本原理以及其在工业上的应用。

粉末冶金的基本原理1.原料选择:粉末冶金的首要任务是选择适当的原料。

原料可以是金属、合金或陶瓷等材料的粉末。

原料的选择应该考虑材料的化学成分、晶体结构、粒子形状和尺寸分布等因素。

2.粉末的制备:粉末的制备是粉末冶金的关键步骤之一。

常见的粉末制备方法包括研磨、机械合金化、溶液沉淀和气相反应等。

不同的制备方法可以获得不同尺寸和形状的粉末。

3.粉末的成型:成型是将粉末转变为所需形状的工艺。

常用的成型方法包括压制、挤出、注射成型和3D打印等。

通过成型,粉末可以被固化成具有一定强度和形状的零件。

4.烧结:烧结是粉末冶金过程中的关键步骤之一。

经过成型的粉末件放入高温环境中,粉末颗粒与颗粒之间发生扩散和结合,形成致密的材料。

烧结温度和时间会影响材料的致密性和力学性能。

5.后处理:烧结后的材料可能需要进行后处理。

常用的后处理方法包括热处理、表面处理和加工等。

通过后处理,可以改善材料的性能和功能。

粉末冶金的应用领域粉末冶金广泛应用于各个领域,包括汽车、航空航天、电子、能源、医疗和军工等。

1.汽车行业:粉末冶金技术在汽车行业中得到广泛应用。

例如,通过粉末冶金可以制备高强度和轻质的发动机零件和齿轮等关键部件,提高汽车的燃油效率和排放性能。

2.航空航天:航空航天行业对材料的要求非常高。

粉末冶金可以制备出具有优异的高温强度和耐腐蚀性能的钛合金和镍基合金等材料,用于制造航空发动机和航天器件。

3.电子:在电子行业中,粉末冶金可以制备具有高导电性和磁导率的材料,例如铜粉末用于制造电子线路板和电磁元件。

4.能源:粉末冶金在能源领域的应用主要集中在制备高温抗氧化和热电材料。

例如,通过粉末冶金可以制备铁素体不锈钢和铬基合金等材料,用于制造高温炉和热交换器等设备。

粉末冶金知识大全

粉末冶金知识大全

粉末冶金知识大全简介粉末冶金是一种重要的制备材料的方法,它通过将金属或非金属加工成粉末,再通过压制和烧结等工艺将粉末粒子紧密结合形成所需的材料。

本文将介绍粉末冶金的基本原理、工艺流程和应用领域。

1. 粉末制备粉末冶金的第一步是制备粉末。

常见的粉末制备方法包括:•原子熔化法:通过将金属或合金加热到高温,使其熔化后迅速冷却,冷却过程中形成的微细颗粒即为粉末。

•机械研磨法:将金属块或合金块放入球磨机中与球磨介质一起磨碎,经过一定时间后得到所需的粉末。

•物理气相法:通过高温蒸发和凝聚,使金属或合金从气相转变为粉末。

常见的物理气相制备方法有气体凝聚法、物理溅射法等。

2. 粉末冶金工艺粉末冶金包括压制、烧结和后处理等多个工艺步骤。

2.1 压制压制是将制备好的粉末以一定的压力塑造成所需形状的过程。

常见的压制方法有:•静态压制:即将粉末放置在模具中,施加垂直于模具方向的压力,使粉末颗粒之间发生塑性变形,形成一定形状的绿体。

•动态压制:即通过提供一个快速冲击力,使粉末颗粒互相碰撞并发生变形,形成一定形状的绿体。

2.2 烧结烧结是将压制好的绿体在一定温度下进行加热,使粉末颗粒之间发生扩散和结合,形成致密的材料。

常见的烧结方法有:•常压烧结:将绿体放在电炉或气炉中进行加热,使粉末颗粒熔结或固相扩散结合。

•热等静压烧结:在加热的同时施加一定的压力,用于加强绿体的结合。

2.3 后处理烧结完成后,还需要进行一些后处理步骤以提高材料的性能。

常见的后处理方法有:•热处理:通过控制温度和时间,在一定的条件下改变材料的组织结构,提高其硬度、强度等性能。

•表面处理:在材料表面形成覆盖层、涂层或改变表面形貌,以提高耐磨、耐腐蚀等性能。

3. 应用领域粉末冶金在许多领域都有着广泛的应用。

3.1 金属制品粉末冶金可以制备各种金属制品,如汽车零部件、工具等。

由于独特的结构和物理性能,粉末冶金制品具有优异的耐磨、抗拉伸和耐腐蚀等特点。

3.2 陶瓷制品通过粉末冶金技术可以制备出高纯度、高强度的陶瓷制品,如陶瓷刀具、陶瓷齿轮等。

第二章粉末制备

第二章粉末制备
内容
粉末粒度/μm 颗粒形状 聚集状况 表观密度% 冷却速度/K· s -1 偏析程度 氧化物/10
-6
气雾化
100 球形 有一些 55 10
4
水雾化
150 不规则 很少 35 10
5
轻微 120
可忽略 3000
流体压力/MPa
流体速度/m· s 雾化效率
-1
3
100 低
14
100 中等
2)影响二流雾化性能的因素
从制备过程的实质来分:机械破碎法、物 理化学法

固态
粉末
1、金属(合金)→金属粉末:机械粉碎,电化腐蚀 2、金属氧化物(盐类)→金属粉末:还原法 3、金属+非金属化合物 →金属化合物粉末:还原-化合法
金属氧化物+非金属化合物
3 常用的粉末制备方法 3、1 机械粉碎法
碾碎 碾碎机 双辊滚碎机
机 械 粉 碎 法
雾化粉末性能的表征 a.粉末的粒度:平均粒度、粒度分布、可用粉 末收得率 b.粉末形状:松装密度、流动性、压坯密度、 比表面积 c.粉末纯度和结构:化学成分、氧化度、均匀 性、颗粒微观组织结构
A.雾化介质
空气 气体 雾化介质 影响 液体 水 惰性 气体 油
对氧化不严重或再进行还原处理的合 金。(铜、铁、碳钢) 对易氧化的金属粉末制备,含锰、硅、 钒、钛、锆的合金或镍基、钴超合金 能较好地控制颗粒形状和表面氧化 对含有易被还原的氧化物金属合金, 铁、低碳钢、合金钢(由于金属冷却 速度快粉末表面烟花大大减少)
3.2.2离心雾化
离心雾化法—利用机械旋转离心力将金属液流 击碎成细液滴,然后冷却凝结成 粉末 离心雾化法分类:旋转圆盘、旋转坩埚、旋转 电极、旋转网
1)旋转圆盘法

金属粉末的制备方法及基本原理.

金属粉末的制备方法及基本原理.

金属粉末的制备方法及基本原理1引言金属粉末尺寸小,比表面积大,用其制得的金属零部件具有许多不同于常规材料的性质,如优良的力学性能、特殊的磁性能、高的电导率和扩散率、高的反应活性和催化活性等。

这些特殊性质使得金属粉末材料在航空航天、舰船、汽车、冶金、化工等领域得到越来越广泛的应用。

2金属粉末的制备方法2.1机械法机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。

按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。

目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的纳米粉末。

2.1.1球磨法球磨法主要分为滚动球法和振动球磨法。

该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。

其优点是对物料的选择性不强,可连续操作, 生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。

缺点是在粉末制备过程中分级比较困难[3]。

2.1.2气流磨粉碎法气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。

具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区从而带动研磨区内的物料互相碰撞,使粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨,直至达到要求的粒度被分出为止。

整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在3~8 ym气流磨粉碎法适于大批量工业化生产,工艺成熟。

缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

2.2物理法物理法一般是通过高温、高压将块状金属材料熔化,并破碎成细小的液滴,并在收集器内冷凝而得到金属粉末,该过程不发生化学变化。

目前研究和使用最多的物理法主要有等离子旋转电极法和气体雾化法。

粉末烧结原理

粉末烧结原理

粉末烧结原理
粉末烧结是一种常用的金属粉末加工技术,用于将细粉末颗粒通过加热和压制的方式,形成致密的固体材料。

其工作原理可简述如下:
1. 粉末制备:首先需要选择合适的金属粉末或其混合物,这些粉末通常具有较小的粒径和均匀的颗粒大小。

粉末制备过程可以包括球磨、气雾化、水热合成等手段,以获得所需的粉末。

2. 粉末混合:将所选的金属粉末混合均匀,以确保最终烧结体具有均一的组织结构和化学成分。

3. 压制成型:将混合的金属粉末置于模具中,并施加高压力以压制粉末。

压制的目的是使粉末颗粒之间发生变形,并使颗粒间的物理接触增加,促进后续烧结过程中的颗粒结合。

4. 烧结:将已压制成型的粉末坯体置于高温环境中进行加热处理。

在加热过程中,金属粉末颗粒之间发生扩散和结合,生成新的结晶颗粒,并形成致密的固体结构。

具体的烧结温度和时间取决于所使用的粉末和目标材料。

5. 冷却处理:完成烧结过程后,将烧结体从高温环境中取出,并进行冷却处理,使其达到室温。

冷却过程有助于固化和稳定烧结体的结构,并提高其力学性能。

总的来说,粉末烧结通过压制和加热金属粉末,使其颗粒结合并形成坚固的体材料。

这种方法可用于制备各种金属材料,具
有较高的加工效率和良好的成型能力,广泛应用于金属制造和材料工程领域。

黄培云粉末冶金原理

黄培云粉末冶金原理

黄培云粉末冶金原理主要是指通过将金属粉末或者合金粉末在一定的温度、压力和气氛条件下进行烧结或者热塑性加工,从而制备出具有一定形状和性能的金属零部件的工艺过程。

黄培云粉末冶金原理的核心包括以下几个方面:
1. 粉末制备:首先需要将金属或者合金的块状材料通过机械方法加工成粉末,这通常包括粉碎、球磨等过程,以获得所需颗粒大小和形状的金属粉末。

2. 模具成型:将金属粉末放入模具中,在一定的温度和压力下对粉末进行成型,使其具备一定的初步形状。

3. 烧结或热塑性加工:经过成型的粉末零件通常会进行烧结或者热塑性加工,以提高其密度和机械性能。

烧结过程中,粉末颗粒之间通过扩散结合形成致密的结构,同时可以进行热处理来调整材料的性能。

4. 后续加工:经过烧结或者热塑性加工后的零件可能需要进行后续的加工,例如机加工、表面处理等,以满足最终产品的要求。

粉末冶金技术由于不需要传统的熔炼工艺,可节约能源和原材料,还能够制备具有特殊形状和性能的零部件,因此在航空航天、汽车、医疗器械等领域有着广泛的应用。

粉末冶金原理

粉末冶金原理

粉末冶金原理粉末冶金是一种利用金属粉末或者金属粉末与非金属粉末混合后,再经过压制和烧结等工艺制造金属零件的方法。

在粉末冶金工艺中,粉末的特性和原理起着至关重要的作用。

粉末冶金原理主要包括粉末的制备、成型、烧结和后处理等几个方面。

首先,粉末的制备是粉末冶金的第一步。

金属粉末的制备可以通过机械研磨、化学方法和物理方法等多种途径。

机械研磨是指将金属块或者金属棒经过研磨机械的加工,得到所需的金属粉末。

化学方法则是通过化学反应得到金属粉末,而物理方法则是通过物理手段如电解、喷雾等得到金属粉末。

在粉末冶金中,粉末的制备质量直接影响着最终制品的质量和性能。

其次,成型是指将金属粉末进行成型工艺,使其成为所需形状的工件。

成型方法包括压制成型、注射成型、挤压成型等多种方式。

压制成型是将金属粉末放入模具中,再经过压制机械的加工,使其成为所需形状的工件。

注射成型则是将金属粉末与粘结剂混合后,通过注射成型机械将其注射成型。

挤压成型是将金属粉末放入容器中,再通过挤压机械的作用,使其成为所需形状的工件。

成型工艺的精密度和成型质量对于最终产品的质量和性能至关重要。

接下来,烧结是粉末冶金中的关键工艺。

烧结是指将成型后的金属粉末在高温下进行加热处理,使其颗粒间发生结合,形成致密的金属材料。

烧结工艺的温度、压力和时间等参数对于最终产品的致密度、硬度和耐磨性等性能有着重要影响。

最后,后处理是指对烧结后的金属制品进行表面处理、热处理和精加工等工艺。

表面处理可以提高金属制品的耐腐蚀性和美观度,热处理可以改善金属制品的硬度和强度,精加工则可以提高金属制品的精度和表面质量。

总之,粉末冶金原理是一个复杂而又精密的工艺体系,涉及到材料科学、机械工程、化学工程等多个领域的知识。

通过对粉末的制备、成型、烧结和后处理等环节的深入研究和探索,可以不断提高粉末冶金工艺的精度和效率,为制造业的发展和进步提供更加可靠的技术支持。

粉末冶金材料概述

粉末冶金材料概述

粉末冶金材料概述引言粉末冶金材料是一类通过粉末冶金工艺制备的新型材料。

粉末冶金是指通过粉末冶金工艺将金属或非金属粉末压制成型,经过烧结或其他处理方法得到所需材料的一种制备方法。

粉末冶金材料因其独特的结构和性能,在许多工业和科研领域受到广泛关注。

本文将对粉末冶金材料进行概述,包括其制备方法、特点和应用领域等方面。

粉末冶金材料的制备方法粉末冶金材料的制备方法主要包括粉末制备、成型和烧结等步骤。

粉末制备粉末制备是粉末冶金材料制备的第一步。

粉末制备方法有很多种,包括物理方法和化学方法两大类。

物理方法主要包括气雾法、机械法、电解法和溅射法等。

其中,气雾法是指通过气体或喷雾器产生粉末颗粒,例如高温气雾法和超声气雾法。

机械法是指通过机械力使原料产生破碎、研磨或合金化的方法,常见的机械法有球磨法和挤压法等。

电解法是指通过电解原理将金属溶液电解析出粉末。

溅射法是将金属或合金靶材置于真空或较低压力下,在被轰击时产生粉末颗粒。

化学方法主要包括沉积法和还原法等。

沉积法是将金属盐溶液注入电化学池中,通过电解原理在电极上析出粉末。

还原法是指通过还原反应将金属离子还原成金属粉末。

成型是将粉末加工成所需形状的步骤。

常见的成型方法有压制、注射成型和挤压等。

压制是将粉末放入模具中,在一定压力下使其成型。

注射成型是将粉末与有机绑定剂混合,通过注射机将混合物喷射到模具中,经过固化后得到成型件。

挤压是将粉末放入带有孔的金属筒子中,在压力下挤出形状。

烧结是粉末冶金材料制备的最后一步,通过加热使粉末颗粒之间的结合力增强,形成致密的材料。

烧结温度和时间根据材料的要求进行选择,一般在金属的熔点以下,同时需要保证烧结后的材料具有所需的物理和化学性质。

粉末冶金材料的特点粉末冶金材料具有许多独特的特点,使其在许多领域具有广泛的应用前景。

高纯度由于粉末冶金材料可以通过粉末制备方法获得,因此可以获得高纯度的材料。

在制备过程中,可以通过选择合适的原料和控制工艺参数,减少杂质的含量,从而获得高纯度的材料。

粉末冶金工艺的基本工序

粉末冶金工艺的基本工序

粉末冶金工艺的基本工序粉末冶金工艺的基本工序一、粉末制备1. 硫酸分解法:复合金属固态粉末以硫酸分解制备,铝钛合金等酸不溶金属催化剂也可以通过该方法制备。

2. 总离子法:溶剂可溶金属浆料通过总离子法制备成粉末,如金属木质素,金属均质盐等金属烃分子束反应,使得金属溶液形成粒子状粉末,具有该类特征形貌。

3. 冷冻干燥法:扮演著催化剂的氧化物和金属有机物助剂可以被冷冻干燥技术制备,此外,可通过冷冻干燥法和固体催化剂制备复合金属材料的粉末。

4. 高压气相沉淀法:高压气相沉淀法制备的金属粉末具有较高的浓度和均匀性,常用于制备金属表润滑材料,特别是含有较高硫含量的粉末。

二、混合成型1. 筒状热压成型:采用筒状热压成形,可以模拟加工小尺寸部件,可以得到比较规则的成形零件,它大大减少了加工工作量,减轻了加工压力。

2. 冷压成型:采用冷压成形可以得到极其精细的零件形状,这种方法的控制加工量甚至可以得到极其精细的零件表面结构,此外,由于无需添加其它热量来成形,可以有效地减小模具损伤,减少金属质量的损失。

3. 压入成型:压入成型技术通常用于制备复杂部件,大部分金属比较容易受到压力的影响,因而可以得到规则的薄壁和精细的表面细节,同时还可以实现铸件表面外形的微调。

三、烧结1. 烧结前处理:在进行烧结前,必须进行粉末的预处理,包括过滤、混合、筛分等。

2. 烧结炉:在烧结之前,先在烧结炉内将粉末进行平均分布,待烧结温度达到要求,再将烧结温度维持某个温度,并一直保持一定的时间,即可完成烧结。

3. 烧结过程:烧结过程中会产生大量的热量,热量的传递容易使得烧结物不能充分的受热,而出现部分未烧结的现象。

4. 烧结温度控制:因此,在烧结过程中对温度有较为严格的控制要求,烧结室内和外温度的精确控制可以有效地提高烧结率,保证烧结质量。

四、制备复合材料1. 试剂混合法:一般采用试剂混合法,使用试剂使粉末熔化成金属液,将两种粉末液分别滴入容器内,然后混合,固化,再烧结,形成复合材料,其优点是可以快速产生复合材料,但受试剂的影响,使得成型容易受到外界环境的影响。

金属粉末注射成型工艺及研究进展

金属粉末注射成型工艺及研究进展

金属粉末注射成型工艺及研究进展金属粉末注射成型(Metal Powder Injection Molding)是一种将金属粉末与有机增塑剂混合,并经过成型、脱脂与烧结等工艺步骤得到高密度的金属制品的先进制造技术。

自20世纪60年代开始发展以来,金属粉末注射成型技术在汽车、航空航天、医疗器械等领域得到了广泛应用。

本文将着重介绍金属粉末注射成型工艺的基本原理和研究进展。

一、基本原理金属粉末注射成型工艺主要包括以下几个步骤:原料制备、混合、注射成型、脱脂与烧结。

1. 原料制备在金属粉末注射成型过程中,合适的原料对成品制品的性能和质量起着决定性的作用。

通常,金属粉末的粒径要细小,分布要均匀,并具备良好的流动性。

为了提高金属粉末的流动性,往往需要通过表面处理、添加润滑剂等方法进行改性。

2. 混合在混合过程中,金属粉末与有机增塑剂按一定比例进行混合,并通过机械作用使其均匀分散。

混合的目的是为了使金属粉末与增塑剂形成均匀的糊状混合物,便于后续注射成型工艺的进行。

3. 注射成型注射成型是金属粉末注射成型工艺的核心步骤。

通过将混合物注射进注射机的模具腔中,并在一定的压力和温度下进行填充与压实,使其形成所需形状的绿体。

注射成型的优势在于可以制造出复杂且精密的金属件,且生产效率较高。

4. 脱脂与烧结脱脂与烧结是为了最终获得高密度的金属制品。

脱脂过程中,通过热处理将有机增塑剂从绿体中除去,获得无机绿体。

而烧结过程则是将无机绿体在高温下进行热处理,使金属粉末颗粒相互结合,形成致密的金属零件。

二、研究进展金属粉末注射成型技术在近年来获得了许多关注,在工艺、材料以及设备等方面取得了一系列的研究进展。

1. 工艺优化为了提高金属粉末注射成型工艺的效率和品质,研究者们进行了大量的工艺优化研究。

例如,通过调整注射成型参数、优化模具结构以及改变绿体预烧工艺等,可以有效改善成品的性能和质量。

2. 材料开发金属粉末注射成型所使用的金属粉末涉及多种材料,如不锈钢、钴基合金、铁基合金等。

粉末冶金原理

粉末冶金原理

粉末冶金原理
粉末冶金原理是一种制备金属零件的重要工艺方法。

它基于粉末的可塑性和可压缩性,通过将金属粉末在适当的温度和压力条件下进行压制和烧结,从而使粉末颗粒之间发生结合,形成具有一定形状和尺寸的实体零件。

具体而言,粉末冶金原理包括以下几个基本步骤:首先,选择适当的金属粉末作为原料,这些金属粉末通常具有均匀的颗粒尺寸和化学成分。

然后,对金属粉末进行混合,以获得所需的成分和性能。

混合可以通过机械混合、球磨等方法进行。

接下来,将混合后的粉末通过模具进行压制,使其形成一定形状的绿体。

在绿体制备完成后,需要进行烧结过程。

烧结是粉末冶金中最关键的步骤之一,它通过加热和压力作用,使金属粉末颗粒之间结合形成固体。

在烧结过程中,金属粉末的表面氧化膜会被还原,颗粒间的扩散和晶界增长发生,从而形成更加致密和结实的材料。

最后,经过烧结的零件可以通过进一步加工,如热处理、表面处理等,来获得所需的性能和表面特征。

粉末冶金可以制备复杂形状、高精度和优良性能的零件,具有灵活性和高效性,广泛应用于汽车、航空航天、电子等领域。

总的来说,粉末冶金原理是通过将金属粉末进行压制和烧结,实现颗粒间结合形成固体的工艺方法。

它具有制备复杂形状零件、优良性能和高效性等优点,是一种重要的金属制备工艺。

粉末冶金基础知识

粉末冶金基础知识

粉末冶金基础知识粉末冶金是一种通过加工金属粉末来制造零件和材料的加工技术。

粉末冶金工艺的基本原理是将金属粉末在高温和高压条件下进行压制和烧结,使其在固态下发生扩散和结合,形成具有一定形状和性能的零件和材料。

粉末冶金的基础知识包括粉末的制备、压制和烧结过程以及粉末冶金材料的性能等方面。

一、粉末的制备粉末冶金的第一步是制备金属粉末。

金属粉末可以通过机械球磨、化学方法、电化学方法和气相沉积等多种方法获得。

其中,机械球磨是常用的制备金属粉末的方法。

通过在球磨机中将金属块或粉末与球磨介质一起进行反复磨蚀,使金属表面不断剥落并形成粉末。

二、粉末的压制粉末的压制是将金属粉末在模具中进行压实,使其形成一定形状和尺寸的零件。

压制主要分为冷压和热压两种方式。

冷压是在室温下进行的压制过程,适用于易压制的材料和简单形状的零件。

热压则需要在高温下进行,可以加快扩散和结合过程,得到更密实的零件。

三、粉末的烧结粉末的烧结是将压制成型的粉末在高温下进行加热,使其发生扩散和结合,形成致密的块状材料。

烧结过程中,金属粉末之间的颗粒通过扩散相互结合,并且形成晶粒长大,使材料的性能得到提高。

烧结温度和时间的选择对于材料的性能具有重要影响。

四、粉末冶金材料的性能粉末冶金材料具有许多优异的性能。

首先,粉末冶金可以制得高纯度的材料,因为粉末冶金材料的成分可以通过调整原料粉末的配比来控制。

其次,粉末冶金可以制造具有复杂形状和内部结构的零件,满足不同的工程需求。

此外,粉末冶金材料具有较高的强度、硬度和耐磨性能,适用于高强度和耐磨的工作环境。

粉末冶金还有一些其他的应用领域,如制备陶瓷材料、复合材料和表面涂层等。

陶瓷材料由陶瓷粉末或金属粉末与陶瓷粉末混合烧结而成,具有低密度、高硬度和高耐热性能,被广泛应用于制造刀具、轴承和结构材料等。

复合材料由金属粉末和陶瓷或有机材料混合烧结而成,结合了金属和陶瓷或有机材料的优点,具有较好的力学性能和导热性能。

表面涂层是将金属粉末喷涂到工件表面,形成保护层或改善表面性能。

粉末冶金原理

粉末冶金原理

粉末冶金原理
粉末冶金是一种重要的金属加工技术,通过将金属粉末进行成形和烧结加工,制备出具有特定性能的金属零件。

粉末冶金原理涉及粉末制备、成形、烧结和后续处理等多个方面。

粉末制备
粉末制备是粉末冶金的第一步,通常采用机械合金化、原子溅射、化学合成等方法制备金属粉末。

机械合金化是通过球磨等机械方法将金属粉末与添加剂混合均匀,形成合金粉末。

原子溅射则是通过高能离子轰击金属靶,产生金属原子蒸汽再凝结成粉末。

化学合成则是利用化学反应产生金属粉末。

成形
在成形阶段,将金属粉末与添加剂混合后,通过压制成型的方式制备出所需形状的粉末冶金零件。

压制成型通常采用冷压、注射成型等方法。

压制后的粉末冶金件通常呈现出较高的强度和密度。

烧结
烧结是粉末冶金中关键的工艺步骤,通过高温热处理将压制成型后的金属粉末在固态中形成致密的金属结构。

烧结温度、保温时间、气氛等因素对烧结效果有重要影响。

经过烧结处理后,粉末冶金件具有一定的强度和密度。

后续处理
经过烧结后的粉末冶金件通常需要进行后续处理,包括热处理、表面处理等,以进一步改善材料性能。

热处理可以提高材料的硬度、强度和耐磨性,表面处理可以提高材料的耐腐蚀性和美观性。

粉末冶金技术在汽车、航空航天、电子等领域有着广泛的应用,制备出具有特定性能的零件,为现代工业的发展提供了重要支持。

粉末冶金原理的研究和应用将进一步推动金属材料领域的创新和发展。

粉末冶金原理

粉末冶金原理

粉末冶金原理
粉末冶金是一种通过粉末冶金工艺制备金属、合金、陶瓷和复合材料的方法。

它是一种高效的材料制备技术,具有原料利用率高、产品尺寸精度高、材料组织均匀等优点,因此在航空航天、汽车、电子、机械等领域得到广泛应用。

粉末冶金的基本原理是将金属粉末或合金粉末按一定的成型方法制备成所需形
状的坯料,然后通过烧结或热压等方法将其致密化,最终得到所需的产品。

这种方法可以制备复杂形状的产品,且可以调控产品的性能,因此在一些特殊领域有着独特的优势。

粉末冶金的工艺包括粉末制备、成型和烧结等步骤。

首先是粉末的制备,通常
采用机械球磨、化学法、电化学法等方法制备金属或合金粉末。

然后是成型,通过压制、注射成型等手段将粉末压制成所需形状的坯料。

最后是烧结,将压制好的坯料在一定的温度下进行热处理,使粉末颗粒之间发生扩散与结合,最终形成致密的产品。

粉末冶金的优点之一是可以制备高性能的材料。

由于粉末冶金可以制备复杂形
状的产品,因此可以设计出更加符合工程需求的材料,提高材料的使用性能。

另外,由于粉末冶金可以控制材料的成分和微观结构,因此可以调控材料的力学性能、导热性能、磁性能等,满足不同领域的需求。

除此之外,粉末冶金还可以实现材料的资源化利用。

由于粉末冶金可以利用废料、废料料等再生资源进行材料制备,因此可以减少对原材料的依赖,实现资源的再利用,降低生产成本,减少对环境的影响。

总的来说,粉末冶金是一种高效的材料制备技术,具有制备高性能材料、实现
资源化利用等优点,因此在现代工业中得到了广泛的应用。

随着科技的发展,相信粉末冶金技术会不断完善,为人类社会的发展做出更大的贡献。

金属粉末的制备方法及基本原理

金属粉末的制备方法及基本原理

金属粉末的制备方法及基本原理金属粉末的制备方法及基本原理摘要制取粉末是粉末冶金的第一步..为了满足对粉末的各种要求;也就要有各种各样生产粉末的方法;机械法、物理法、物理化学法等超细金属粉末的制备方法;还原和机械法是制备金属粉末的基本方法关键词金属粉末的制备;机械研磨法;雾化法;还原法;电解法制取粉末是粉末冶金的第一步..为了满足对粉末的各种要求;也就要有各种各样生产粉末的方法;这些方法不外乎使金属、合金或者金属化合物从固态、液态或气态转变成粉末状态..在冶金制品生产时;其选择主要取决于以下两个因素:粉末的性能和最低的成本..是为能否制取一定物理机械性能和其它特殊性能的制品..主要取决于金属粉末的性能..从过程的实质来看;现有制粉方法大体上可归纳为两大类;即机械法和物理化学法..机械法是将原材料机械地粉碎;而化学成分基本上不发生变化;物理化学法是借助化学的或物理的作用;改变原材料的化学成分或聚集状态而获得粉末的..粉末的生产方法很多;从工业规模而言;应用最广泛的是还原法、雾化法和电解法;而气相沉积法和液相沉淀法在特殊应用时亦很重要..一机械研磨法固态金属的机械粉碎既是一种独立的制粉方法;又常作为某些制粉方法不可缺少的补充工序..因此;机械粉碎法在粉末生产中占有重要的地位机械研磨主要用来:粉碎脆性金属和合金;如锑、锰、铬、高碳铁、铁合金等以及研磨还原海绵状金属块或电解阴极沉积物;可以研磨经特殊处理后具有脆性的金属和合金;例如;研磨冷却处理后的铅以及加热处理后的锡;如钛经氢化处理后;进行研磨;最后脱氢可以制取细粒度的高纯钛粉下面主要以球磨为例讨论机械研磨的规律..1 球磨机转速慢时;球和物料沿筒体上升至自然坡度角;然后滚下;称为泻落..这时物料的粉碎主要靠球的摩擦作用2 球磨机转速较高时;球在离心力的作用下;随着筒体上升至比第一种情况更高的点平衡;这时物料不仅靠球与球之间的摩擦作用;而主要靠球落下时的冲击作用而被粉碎;其效果最好继续增加球磨机的转速;当离心力超过球体的重力时;紧靠衬板的球不脱离筒壁而与筒体一起回转;此时物料的粉碎作用将停止..影响球磨的因素:1 球磨筒的转速;2 装球量在一定范围内增加装球量能提高研磨效率..在转速固定时;装球量过少;球在倾斜面上主要是滑动;使研磨效率降低;3 球料比;在研磨中还要注意球与料的比例..料太少;则球与球间碰撞加多;磨损太大;料过多;则磨削面积不够;不能很好磨细粉末;需要延长研磨时间;能量消耗增大..4 球的大小;球的大小对物料的粉碎有很大影响..如果球的直径小;球的质量轻;则对物料的冲击力弱;但球的直径太大;则装球的个数太少;因而撞击次数减少;磨削面积减小;也使球磨效率降低..5 研磨介质; 物料除了在空气介质中干磨外;还可在液体介质中进行湿磨;后者在硬质合金、金属陶瓷及特殊材料的研磨工艺中常被采用..二雾化法雾化法属于机械制粉法;直接击碎液体金属或合金而制得粉末的方法;应用较广泛;生产规模仅次于还原法..雾化法又称喷雾法;可以制取铅、锡、铝、锌、铜、镍、铁等金属粉末;也可制取黄铜、合金钢、高速钢、不锈钢等预合金粉末..制造过滤器用的青铜、不锈钢、镍的球形粉末目前几乎全是采用雾化法生产..雾化法包括:二流雾化法;水雾化;离心雾化法;分旋转圆盘;其他雾化法;如真空雾化、油雾化等..下面主要讨论气体雾化和水雾化;并简要介绍离心雾化法二流雾化法雾化过程原理:二流雾化法是用高速气流或高压水击碎金属液流的;而机械粉碎法是借机械作用破坏固体金属原子间的结合;所以雾化法只要克服液体金属原子间的键合力就能使之分散成粉末;因而雾化过程所需消耗的外力比机械粉碎法小得多..从能量消耗这一点来说;雾化法是一种简便的经济的粉末生产方法..根据雾化介质气体、水对金属液流作用的方式不同;雾化具有多种形式:平行喷射;气流与金属液流平行;垂直喷射;气流或水流与金属液流互呈垂直方向;这样喷制的粉末较粗;常用来喷制锌、铝粉;互成角度的喷射;气流或水流与金属液流呈一定角度;这种呈角度的喷射又有以下几种形式:V 型喷射、锥形喷射旋涡环形喷射..雾化过程是复杂的;影响因素很多;要综合考虑..显然;气流和金属液流的动力交互作用愈显着;雾化过程愈强烈..金属液流的破碎程度取决于气流的动能;特别是气流对金属液滴的相对速度以及金属液流的表面张力和运动粘度..一般来说;金属液流的表面张力、动粘度值是很小的;所以气流对金属液滴的相对速度是主要的因素影响雾化粉末性能的因素雾化介质类别的影响雾化介质分为气体和液体两类..气体可用空气和惰性气体氮、氩等;液体主要用水..不同的雾化介质对雾化粉末的化学成分、颗粒形状、结构有很大的影响..气体或水的压力的影响;实践证明;气体压力愈高;所得粉末愈细金属液流股直径的影响;当雾化压力与其他工艺参数不变时;金属液流股直径愈细;所得细粉末也愈多气体雾化法制取铜和铜合金粉工艺:气体雾化法制取铁粉工艺;水雾化法制取铁粉和合金钢粉的工艺..三还原法还原金属氧化物及盐类以生产金属粉末是一种应用最广泛的制粉方法..特别是直接使用矿石以及冶金工业废料如轧钢铁鳞作原料时;还原法最为经济..实践证明:用固体碳还原;不仅可以制取铁粉;而且可以制取钨粉;用氢或分解氨还原;可以制取钨、钼、铁、铜、钴、镍等粉末;用转化天然气作还原剂;可以制取铁粉等;用钠、钙、镁等金属作还原剂;可制取钽、铌、钛、锆、钍、铀等稀有金属粉末..归纳起来;不但还原剂可呈固态、气态以至液态;而被还原物料除固态外;还可以是气相和液相..以碳还原法为例碳还原铁氧化物的基本原理:铁氧化物的还原过程是分阶段进行的;即从高价氧化铁到低价氧化铁;最后转变成金属..固体碳还原金属氧化物的过程通常称为直接还原..影响还原过程和铁粉质量的因素研究铁氧化物还原的基本原理就是为了了解其实质和影响还原过程的内外在因素;以便在生产上控制这些因素;来提高还原速度和铁粉的质量..下面讨论这些因素的影响1 原料中杂质的影响;原料中杂质的含量超过一定限度后;不仅还原时间延长;并且使还原不完全;铁粉中含铁量降低;原料粒度的影响..多相反应与界面有关;原料粒度愈细;界面的面积愈大;因而促进反应的进行 2 固体碳还原剂:木炭的还原能力最强;其次是焦炭;而无烟煤则较差..固体碳还原剂用量的影响在一定的还原条件下;固体碳还原剂的消耗量主要根据氧化铁的含氧量而定..如果还原温度变了;气相组成也随之改变;则固体碳的消耗量也会变化..3 还原工艺条件在还原过程中;如其他条件不变;还原温度和还原时间又互相影响..实践证明;随着还原温度的提高;还原时间可以缩短.. 在还原温度一定时;料层厚度不同;还原时间也不同..4 添加剂:加入少量的固体还原剂于原料中;可以同时起疏松剂和辅助还原剂的作用..四电解法电解法在粉末生产中占有重要的地位;其生产规模在物理化学法中仅次于还原法..不过;电解法耗电较多;一般来说成本比还原粉、雾化粉高..因此;在粉末总产量中;电解粉所占的比重是较小的..电解制粉又可分为:水溶液电解、有机电解质电解、熔盐电解和液体金属阴极电解;其中用得较多的还是水溶液电解和熔盐电解;而熔盐电解主要用于制取一些稀有难熔金属粉末..下面主要讨论水溶液电解法;也简单介绍熔盐电解法..水溶液电解法可生产铜镍、铁、银、锡、铅、铬、锰等金属粉末..从所得粉末特性来看;电解法有一个提纯过程;因而所得粉末较纯;同时;由于电解晶粉末形状一般为树枝状;压制性包括压缩性和成形性较好;电解还可以控制粉末粒度;因而可以生产超细粉末..水溶液电解法制铜粉的工艺电解法制取铜粉的工艺条件大体有高电流密度和低电流密度两种方案;前者电能消耗大;但生产率较高..见右图流程五;检测性能方法比较常用的是筛分析法;筛分析的原理、装置;操作都很简单;应用也很广泛..筛分析适于以上的中等和粗粉末的分级和粒度测定..显微镜法、沉降分析、光散射法、光遮法等等..随着技术的进步;金属粉末的应用领域不断扩展;市场需求急剧增加;且呈现出向高纯、超细方向发展的趋势..。

粉末冶金论文

粉末冶金论文

粉末冶金论文引言粉末冶金是一种重要的金属材料加工技术,可以通过粉末的成型和烧结来制造各种复杂形状的金属零件。

这种加工方法具有高效、节能和环保等优点,在航空航天、汽车制造、电子设备等领域有着广泛的应用。

本文将探讨粉末冶金技术的原理、应用及其在未来的发展趋势。

粉末冶金的原理粉末冶金的基本原理是将金属粉末加工成形,然后通过烧结过程将粉末颗粒结合成密实的金属材料。

粉末的制备粉末的制备是粉末冶金的第一步。

常见的粉末制备方法有机械研磨法、物理气相法和化学法等。

其中,机械研磨法是最常用的方法之一,通过机械研磨设备将块状金属材料研磨成粉末。

粉末成型粉末成型是将粉末按照所需形状进行加工的过程。

常见的粉末成型方法有压制、注射成型和挤压成型等。

其中,压制是最常用的方法之一,在压制过程中,粉末经过一定的压力使其紧密结合。

烧结过程烧结是粉末冶金的核心工艺环节。

在烧结过程中,经过高温和一定的时间作用,粉末颗粒之间发生结晶增长,形成坚固的结合。

粉末冶金的应用航空航天领域粉末冶金技术在航空航天领域有着广泛的应用。

通过粉末冶金技术,可以制造出复杂形状的零件,如涡轮叶片、火箭发动机喷嘴等。

这些零件具有高强度、耐高温和耐腐蚀等特点,能够适应极端环境下的工作条件。

汽车制造在汽车制造过程中,粉末冶金技术可以用于制造发动机零件、传动系统零件以及制动系统零件等。

通过粉末冶金技术,可以提高零件的性能,如减轻重量、提高强度和耐磨性等,从而提高整车的性能和经济性。

电子设备粉末冶金技术在电子设备制造中也有着重要的应用。

通过粉末冶金技术,可以制造出高导电性和磁性的材料,如电子封装材料、磁性存储器件等。

这些材料具有良好的热传导性和电磁性能,能够满足高性能电子设备的需求。

粉末冶金的发展趋势随着科学技术的进步和需求的不断增加,粉末冶金技术也在不断发展和创新。

3D打印技术与粉末冶金的结合粉末冶金技术与3D打印技术的结合,可以实现更加复杂、精密的零件制造。

通过3D打印技术,可以直接控制粉末的成型过程,制造出各种复杂形状的零件。

简述粉末冶金基本工艺

简述粉末冶金基本工艺

简述粉末冶金基本工艺
粉末冶金(Powder Metallurgy, PM) 是一种将固体金属的粉末混合,组装,热处理和
定形制备成型零件的工艺方式,它衍生自传统的冶金熔炼工艺,它允许快速、低成本地制
造几乎任何复杂形状和内部空间的零件。

其原理是,金属粉末是以连续性的状态,一般采
用挤出方法将粉末混合进行组装,然后再进行热处理和成型,从而形成零件的过程。

粉末冶金的制造工艺主要包括:粉末制备、粉末造型件加工、热处理、代用材料加工
和表面处理等五个步骤。

1、粉末制备:即是以金属、合金或其他材料制成的粉末。

金属常以压片、碎片、溶
解分解以及电弧熔毁等方式制成,合金常以压片或类似压片方式制成,其他材料常以研磨、滚压等方式制成;
2、粉末造型件加工:即粉末挤压、冲压模压部件;
3、热处理:热处理是PM制成零件的关键,热处理包括热回火、表面热处理、夸张处理,它可以改变零件的硬度、强度和结构;
4、代用材料加工:将润滑材料、密封材料或其他类似材料进行加工;
5、表面处理:为零件提供外表面的良好外观和作用,比如抛光加工、粉末涂覆等等。

粉末冶金技术相对传统冶金工艺的优势在于它的成本低、加工周期短、能够生产出超
过传统冶金工艺可生产之外的一些复杂形状和尺寸不等的零件,对非结晶固态金属表现出
了不错的硬度和抗腐蚀性。

它还可以有效地消除了零件之间的缝隙、拼接缝、焊接接头等
难题,从而大大减少了零件的制造成本。

金属粉末制备方法分类及其基本原理

金属粉末制备方法分类及其基本原理

金属粉末制备方法分类及其基本原理摘要简要介绍了金属粉末的制备方法。

由机械法和物理化学法两大类方向具体介绍。

同时简述了各种金属粉末制备方法的基本原理。

关键词金属粉末;制备;分类;原理1 引言:金属及其化合物的粉末制备目前已发展了很多方法,对于这些方法的分类也有若干种。

根据原料的状态可分为固体法、液体法和气体法;根据反应物的状态可分为湿法和干法;根据生产原理可分为物理化学法和机械法。

一般来说在物理化学方法中最重要的方法为还原法、还原-化合法和电解法;在机械法中最主要的方法则是雾化法和机械粉碎法。

金属粉末的生产方法的选择取决于原材料、粉末类型、粉末材料的性能要求和粉末的生产效率等。

随着粉末冶金产品的应用越来越广泛,对粉末颗粒的尺寸形状和性能的要求越来越高,因此粉末制备技术也在不断地发展和创新,以适应颗粒尺寸和性能的要求。

2 金属粉末的制备方法:2.1 物理化学法:2.1.1 还原法:金属氧化物及盐类的还原法是一种应用最广泛的粉末制备方法。

可以采用固体碳还原铁粉和钨粉,用氢或分解氨制取钨、钼、铁、铜、钴、镍等粉末;用转化天然气和煤气可以制取铁粉等,用纳、钙、镁等金属作还原剂可以制取钽、铌、钛、锆、钍、铀等稀有金属粉末。

金属氧化物及盐类的还原法基本原理为,所使用的还原剂对氧的亲和力比氧化物和所用盐类中相应金属对氧的亲和力大,因而能够夺取金属氧化物或盐类中的氧而使金属被还原出来。

由于不同的金属元素对氧的作用情况不同,因此生成氧化物的稳定性也不大一样。

可以用氧化反应过程中的△G的大小来表征氧化物的稳定程度。

如反应过程中的△G值越小,则表示其氧化物的稳定性就越高,即其对氧的亲和力越大。

其优点是操作简单,工艺参数易于控制,生产效率高,成本较低,适合工业化生产;缺点是只适用于易与氢气反应、吸氢后变脆易破碎的金属材料。

2.1.2 金属热还原和还原化合法:金属热还原是,被还原的原料可以是固态的、气态的,也可以是熔盐。

后二者相应的又具有气相还原和液相沉淀的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属粉末的制备方法及基本原理
1 引言
金属粉末尺寸小,比表面积大,用其制得的金属零部件具有许多不同于常规材料的性质, 如优良的力学性能、特殊的磁性能、高的电导率和扩散率、高的反应活性和催化活性等。

这些特殊性质使得金属粉末材料在航空航天、舰船、汽车、冶金、化工等领域得到越来越广泛的应用。

2 金属粉末的制备方法
2.1 机械法
机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。

按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。

目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的纳米粉末。

2.1.1 球磨法
球磨法主要分为滚动球法和振动球磨法。

该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。

其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。

缺点是在粉末制备过程中分级比较困难[3]。

2.1.2 气流磨粉碎法
气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。

具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区, 从而带动研磨区内的物料互相碰撞,使
粉末粉碎变细; 气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。

整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小( 平均粒度在3~8 μm)。

气流磨粉碎法适于大批量工业化生产,工艺成熟。

缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源, 耗气量较大;只适合脆性金属及合金的破碎制粉。

2.2 物理法
物理法一般是通过高温、高压将块状金属材料熔化,并破碎成细小的液滴,并在收集器内冷凝而得到金属粉末,该过程不发生化学变化。

目前研究和使用最多的物理法主要有等离子旋转电极法和气体雾化法。

2.2.1 等离子旋转电极法
等离子旋转电极法的原理是将金属或合金制成特定规格的棒料,然后装入旋转模腔,再将等离子枪移至棒料前,在等离子束的作用下,棒料端部开始熔化, 形成的液体受到离心力和液体表面张力的双重作用,被破碎成液滴飞离电极棒,最终冷凝成球形金属粉末[4]。

该方法根据电极转速和等离子弧电流的大小调节控制粉末粒径。

优点是所得粉末球形度好,氧含量低;缺点是粉末不易制取,每批次的材料利用率不高。

2.2.2 气体雾化法
气体雾化法是生产金属及合金粉末的主要方法之一。

气体雾化的基本原理是用高速气流将液态金属流破碎成小液滴并凝固成粉末的过程。

雾化粉末具有球形度高、粉末粒度可控、氧含量低、生产成本
低以及适应多种金属粉末的生产等优点, 已成为高性能及特种合金
粉末制备技术的主要发展方向。

喷嘴是气体雾化的关键技术, 其结构和性能决定了雾化粉末的性能和生产效率。

因此,喷嘴结构设计与性能的不断提高决定着气体雾化技术的进步。

从雾化喷嘴结构设计的改进历程可以将雾化技术分为传统雾化技术和新型雾化技术。

2.2.2.1 传统雾化技术
传统雾化技术主要包括超声雾化技术、紧耦合雾化技术和高压气体雾化技术。

超声雾化技术最初由瑞典人发明, 后由美国M IT 的Grant改造完善。

这项技术利用2~2.5 M a的超音速气流和80~100 kHz的脉冲频率,气体介质压力为1.4~8.2 M Pa,气流的最高速度640 m/s,粉末冷凝速度可达104~105 K/s。

用该方法制备的铝粉平均粒度可达到22 μm,且粉末呈表面光滑的球状。

该项技术的优点是效率较高, 缺点是只能在金属液流直径小于5 mm 的情况下才具有较好的效果, 因此,适用于铝等低熔点金属粉末的生产,而对高熔点金属还处
于实验阶段。

据报道,美国坩埚材料公司( CrucibleMaterials)已引进该项技术进行工业化生产。

紧耦合雾化技术是一种对限制式喷嘴结构进行改造的雾化技术。

由于其气流出口至液流的距离达到最短[7],因而提高了气体动能的传输效率。

这种技术目前已被大多数雾化设备采用。

雾化粉末的特点是微细粉末收得率高,粒径小( 如铁合金粉末的平均粒度达10~20 μm),粒度分布窄,冷却速度高。

高的冷却速度有利于快速冷凝合金或非晶合金粉末的生产。

缺点是当雾化气压增加到一定值时,导液管出口处将产生正压, 使雾化过程不能进行; 在高压雾化下,导液管出口处将产生真空( 负压过低),使金属液流率增加,
不利于细粉末的产生。

高压气体雾化技术是由美国爱荷华州立大学Ames实验室的Anderson 等人提出。

该技术对紧耦合喷嘴结构进行进一步改进, 将紧耦合喷嘴的环缝出口改为20~24 个单一喷孔, 通过提高气压和改变导液管出口处的形状设计, 克服紧耦合喷嘴中存在
的气流激波,使气流呈超声速层流状态,并在导液管出口处形成有效
的负压[13]。

这一改进有效提高了雾化效率。

高压气体雾化技术在生产微细粉方面很有成效,且能明显节约气体用量。

2.2.2.2新型雾化技术
随着微细粉末在高新技术新材料中的应用,需要大量粒径小于
20 μm 或10 μm 的金属及合金粉末, 传统的雾化方法在生产这
类粉末时仍然存在不足:①细粉末的产出率低( 小于20% );②气体消耗量大,生产成本高。

为此,自20 世纪90 年代,人们对新型雾化技术进行大量的研究,并取得了可喜成果。

这些新型雾化技术大大提高了微细粉末的收得率,并且正在进入工业化规模应用。

新型雾化技术主要分为层流雾化技术、超声紧耦合雾化技术和热气体雾化技术3 类。

层流雾化技术是由德国Nanoval公司等提出[14]。

该技术对常规喷嘴进行了重大改进。

改进后的雾化喷嘴雾化效率高,粉末粒度分布窄,冷却速度达106~107 K/s。

在2.0 M Pa的雾化压力下,以Ar或N2
为介质雾化铜、铝、316L 不锈钢等,粉末平均粒度达到10 μm。

该工艺的另一个优点是气体消耗量低, 经济效益显著,并且适用于大多数金属粉末的生产。

缺点是技术控制难度大,雾化过程不稳定,产量小( 金属质量流率小于1 kg/min),不利于工业化生产。

Nanoval公司正致力于这些问题的解决。

超声紧耦合雾化技术是由英国PSI公司提出。

该技术对紧耦合环缝式喷嘴进行结构优化, 使气流的出口速度超过
声速,并且增加金属的质量流率。

在雾化高表面能的金属如不锈钢时, 粉末平均粒度可达20μm 左右, 粉末的标准偏差最低可以降至1.5μm。

该技术的另一大优点是大大提高了粉末的冷却速度,可以生产快冷或非晶结的粉末[7]。

从当前的发展来看, 该项技术设备代表了紧耦合雾化技术的新的发展方向,且具有工业实用意义,可以广泛应用于
微细不锈钢、铁合金、镍合金、铜合金、磁性材料、储氢材料等合金粉末的生产。

近年来,英国的PSI公司和美国的HJF 公司分别对热气体雾化的作用及机理进行了大量的研究。

HJF公司在1.72 M Pa压力下,将气体加热至200~400 ℃雾化银合金和金合金,得出粉末的平均粒
径和标准偏差均随温度升高而降低[15]。

与传统的雾化技术相比,热气体雾化技术可以提高雾化效率, 降低气体消耗量,易于在传统的雾化设备上实现该工艺,是一项具有应用前景的技术。

但是,热气体雾化技术受到气体加热系统和喷嘴的限制,仅有少数几家研究机构进行研究。

2.3 物理- 化学法
物理-化学法是指在粉末制备过程中,同时借助化学反应和物理
破碎2 种方式而获得粉末的方法。

该方法中最具代表性的是以氢气为反应介质的氢化-脱氢法( HDH)。

氢化脱氢法利用原料金属易吸氢增脆的特性, 在一定的温度下使金属与氢气发生氢化反应生成金属氢
化物, 然后借助机械方法将所得金属氢化物破碎成期望粒度的粉末, 再将破碎后的金属氢化物粉末中的氢在真空条件下脱除,从而得到金属粉末。

氢化脱氢法已被成功用来制取Ti粉、Zr粉、Hf粉、Ta 粉、
NdFeB 磁粉等金属和合金粉末,是一项成熟的工艺技术[19,20]。

其优点是操作简单,工艺参数易于控制,生产效率高,成本较低,适合工业化生产;缺点是只适用于易与氢气反应、吸氢后变脆易破碎的金属材料。

相关文档
最新文档