牛顿第二定律超重失重

合集下载

牛顿第二定律超重及失重

牛顿第二定律超重及失重

A.t2时刻小球速度最大
B.t1~t2期间小球速度先增大后减小
C.t3时刻小球动能最小
图2
D.t1与t4时刻小球速度一定相同
高三物理
应用与提高
例3、如图所示,是电梯上升的v~t图线,若电 梯的质量为100kg,则承受电梯的钢绳受到的 拉力在0~2s之间、2~6s之间、6~9s之间分 别为多大?(g取10m/s2)
应高用三与物理提高
例4:质量为200 kg的物体,置于升降机内的台秤 上,从静止开始上升,运动过程中台秤的示数F与 时间t的关系如图所示,试画出升降机在7s内的速 度-时间图象,并求出升降机在7s内上升的高度 (g=10m/s2)
高三物理 AD
高三物理
小结:
本节课我们复习了超重和失重现象,除了 掌握必要的知识点外,还要注意它们与其他 知识的联系。
2 15
C.m=0.5kg,μ=0.2
D.m=1kg,μ=0.2
高三物理
高三物理
6.利用传感器和计算机可以测量快速变化的力的瞬 时值。右图是用这种方法获得的弹性绳中拉力随时间 的变化图线。实验时,把小球举高到绳子的悬点O处, 然后放手让小球自由下落。 由此图线所提供的信息, 以下判断正确的是 ( )
高三物理 变式练习
【问题1】竖直升降的电梯内的天花板上悬挂着一 根弹簧秤,如图所示,弹簧秤的秤钩上悬挂一个质 量m=4kg的物体,试分析下列电梯的运动情况下 弹簧称的读数(g取10m/s2): (2)当电梯以2m/s2的加速度匀加速下降时弹簧秤的 读数及物体所受的重力.
(3)电梯做怎样的运动时弹簧称 的读数为零。
高三物理
高三物理
知识回顾
一、相关概念:
超重现象:物体对悬挂物的拉力(或对支持物 的压力)大于物体所受重力的情况。

超重和失重

超重和失重

牛顿运动定律的运用---超重和失重根据二力平衡的原理,可以在平衡状态下利用弹簧秤称物体的重量。

这时弹力和重力大小相等,因此弹簧秤上的示数(视重)等于被称物体的重量。

当系统处于加速状态时,二力平衡被打破,弹力和重力大小不再相等。

这时弹簧秤的示数(视重)不再等物体的重量。

这种现象被称为超重或失重。

1.当物体存在向上的加速度时,对支持物的压力或对悬挂物的拉力大于重力,这种现象叫做超重。

(加速上升或减速下降或竖直面内圆周运动到最低点时刻等)超重状态下,视重大于物体的实际重量。

2.当物体存在向下的加速度时,对支持物的压力或对悬挂物的拉力小于重力,这种现象叫做失重。

(加速下降或减速上升或竖直面内圆周运动到最高点时刻等)失重状态下,视重小于物体的实际重量。

3.当物体向下的加速度大小等于g 时,对支持物的压力或对悬挂物的拉力为零,这种现象叫做完全失重。

(自由下落或竖直上抛或沿圆轨道正常运行的人造卫星内的物体等)完全失重状态下,视重为零。

4.无论是超重还是失重,物体的重量实际上都没有改变,只是对支持物的压力或对悬挂物的拉力大小发生了变化,即“视重”发生了变化。

例1:电梯内弹簧秤上挂有一个质量为5kg 的物体,电梯在运动时,弹簧秤的示数为39.2N ,若弹簧秤示数突然变为58.8N ,则可以肯定的是( )A .电梯速率突然增加B .电梯速率突然减小C .电梯突然改变运动方向D .电梯加速度突然增加E .电梯加速度突然减少F .电梯突然改变加速度方向分析与解:物体质量是5kg ,则物体受到的重力为49.0N ,弹簧秤的示数为39.2N ,说明物体失重了,加速度方向向下,而弹簧秤示数突然变为58.8N ,说明物体超重了,加速度方向突然变为向上,所以,选F . 例2:某人在地面上最多能举起质量为60kg 的物体,而在一加速运动的电梯里最多能举起80kg 的物体,此时,电梯的加速度为多少?若电梯以此匀加速上升,则此人在电梯里最多能举起多少质量的物体?(g 取10m/s 2)分析与解:某人在地面上最多能举起质量为60kg 的物体,也就是此人的最大举力F =600N 研究加速运动的电梯里质量为m 1=80kg 的物体,能举起80kg 的物体,说明此物体处于失重状态,加速度方向向下,所以运动方向向下,受力情况与运动情况分析如图3-6-1(甲)所示,则2111(800600)/80 2.5m/s F m g N m a a =-=⇒=-=∑再研究匀加速上升的电梯里质量为m 2的物体,受力情况与运动情况分析如图3-6-1(乙)所示,则2222600/(10 2.5)48kg F N m g m a m =-=⇒=+=∑例3.嫦娥一号月球卫星由长征三号甲火箭发射。

专题十二牛顿第二定律超重与失重(讲义原卷版)新人教版高三一轮复习

专题十二牛顿第二定律超重与失重(讲义原卷版)新人教版高三一轮复习

必修一专题十二牛顿第二定律超重与失重复习目标:1.理解牛顿第二定律及瞬时加速度问题。

2.学会用牛顿第二定律将物体受力情况和运动情况联系起来,会处理动力学两类基本问题,以及解决生活实际问题。

3.通过情景分析,能区分超重失重现象,并能说出实质。

夯实考点考点一牛顿第二定律1.牛顿第二定律内容:物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma,其中力F指的是物体所受的合力.3.适用范围:(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系。

(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况。

【深入理解】牛顿第二定律的五个特性合力、加速度、速度之间的决定关系(1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度。

(2)a=∆v/∆t是加速度的定义式,a与∆v、∆t无必然联系;a=F/m 是加速度的决定式,a∝F,a∝1/m 。

(3)合力与速度同向时,物体加速运动;合力与速度方向时,物体减速运动。

经典例题[典例1](2023春·新疆巴音郭楞·高一校考开学考试)下列对牛顿第二定律的表达式F ma=及其变形公式的理解,正确的是()变式训练变式1 (2023·陕西宝鸡·宝鸡中学校考二模)一重为100N的物体静止在水平桌面上,物体与水平桌面间的动摩擦因数为0.4,现对物体同时施加如图所示的水平力F1和F2,使物体做匀加速直线运动。

已知F2=50N,取重力加速度g=10m/s2,最大静摩擦力等于滑动摩擦力,则F1的大小可能为()A.8N B.30N C.50N D.98N夯实考点考点二动力学两类基本问题处理这类问题的基本思路是先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的相关公式求出速度或位移等。

处理这类问题的基本思路是已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法。

牛顿第二定律应用之二超重失重

牛顿第二定律应用之二超重失重

四 牛顿第二定律应用之三——解释超重失重现象1.超重、失重现象.超重、失重现象(1)(1)超重:物体对支持物的压力超重:物体对支持物的压力超重:物体对支持物的压力((或对悬挂物的拉力或对悬挂物的拉力))大于物体所受重力的情况称为超重现象.大于物体所受重力的情况称为超重现象.(2)(2)失重:物体对支持物的压力失重:物体对支持物的压力失重:物体对支持物的压力((或对悬挂物的拉力或对悬挂物的拉力))小于物体所受重力的情况称为失重现象.小于物体所受重力的情况称为失重现象.2.关于超重和失重的理解.关于超重和失重的理解(1)(1)当物体处于超重和失重状态时,物体所受的重力并没有变化.当物体处于超重和失重状态时,物体所受的重力并没有变化.当物体处于超重和失重状态时,物体所受的重力并没有变化.(2)(2)物体处于超重还是失重状态,物体处于超重还是失重状态,物体处于超重还是失重状态,不在于物体向上运动还是向下运动,不在于物体向上运动还是向下运动,不在于物体向上运动还是向下运动,而是取决于加速度方向是向而是取决于加速度方向是向上还是向下.上还是向下.★①超重时物体的加速度方向竖直向上,但是物体不一定是竖直向上做加速运动,也可以是竖直向下做减速运动;②失重时物体的加速度方向竖直向下,但是物体既可以是向下做加速运动,也可以是向上做减速运动;③尽管物体不在竖直方向上运动,只要其加速度在竖直方向上有分量,即0¹y a ,则当y a 方向竖直向上时,方向竖直向上时,物体处于超重状态,物体处于超重状态,物体处于超重状态,当当y a 方向竖直向下时,方向竖直向下时,物体处于失重状态.物体处于失重状态.(3)(3)当物体处于完全失重状态时,当物体处于完全失重状态时,当物体处于完全失重状态时,重力只产生使物体具有重力只产生使物体具有a =g 的加速度效果,不再产生其它效果.(4)(4)处于超重和失重状态下的液体的浮力公式分别为处于超重和失重状态下的液体的浮力公式分别为)a g V F +(=排浮r 和)a g V F -(=排浮r ,处于完全失重状态下的液体F 浮=0即液体对浸在液体中的物体不再产生浮力.即液体对浸在液体中的物体不再产生浮力.【例题1】如图3—33所示,在减速运动的升降机里,天花板上的细线悬挂小球A ,下面依次连接一轻弹簧秤和小球B .已知m A =m B =5kg 5kg,弹簧秤读数为,弹簧秤读数为40 N 40 N.则升降机处于超重还是失重状态.则升降机处于超重还是失重状态.则升降机处于超重还是失重状态??是在上升还是在下降在上升还是在下降??若某时刻剪断细线,线断的瞬间,若某时刻剪断细线,线断的瞬间,A A 与B 球的加速度大小、方向如何球的加速度大小、方向如何?(g=10m ?(g=10m ?(g=10m//s 2)【例题【例题2】如图3—35所示,斜面C 的质量为M=20 kg M=20 kg,倾角,倾角θ=37=37°,物体°,物体A 的质量m 1=lOkg =lOkg,,B 的质量m 2=2kg =2kg.当.当A 以加速度a=2.5 m a=2.5 m//s 2沿斜面向下做加速运动时,斜面保持静止.求斜面对地的压力是多大速运动时,斜面保持静止.求斜面对地的压力是多大?(g ?(g 取10m 10m//s 2)【例题【例题3】如图所示,一根细线一端固,定在容器的底部,另一端系一木球,木球浸没在水中,整个装置在台秤上,现将细线割断,在木球上浮的过程中在木球上浮的过程中((不计水的阻力阻力)),则台秤上的示数,则台秤上的示数( ) ( )A A.增大.增大.增大 B. B. B.减小减小减小C. C.不变不变不变 D D D.无法确定.无法确定.无法确定 答案答案B解析: 系统中球加速上升,相应体积的水加速下降,因为相应体积水的质量大于球的质量,整体效果相当于失重,所以台秤示数减小.大于球的质量,整体效果相当于失重,所以台秤示数减小.【例题【例题4】如图,在静止的电梯里放一桶水,将一个用弹簧固连在桶底的软木塞浸没在水中,当电梯以加速度a(a<g)a(a<g)下降时下降时下降时( ) ( )A A.弹簧的伸长量将比静止时减小.弹簧的伸长量将比静止时减小.弹簧的伸长量将比静止时减小B B.弹簧的伸长量将比静止时增大.弹簧的伸长量将比静止时增大.弹簧的伸长量将比静止时增大C. C. 弹簧的伸长量与静止时相等弹簧的伸长量与静止时相等弹簧的伸长量与静止时相等D D.弹簧的伸长量为零.弹簧的伸长量为零.弹簧的伸长量为零答案:答案:A A【例题【例题5】某人站在一台秤上,当他猛地下蹲的过程中,台秤读数】某人站在一台秤上,当他猛地下蹲的过程中,台秤读数((不考虑台秤的惯性不考虑台秤的惯性) ( ) ) ( )A A.先变大后变小,最后等于他的重力.先变大后变小,最后等于他的重力.先变大后变小,最后等于他的重力B B.变大,最后等于他的重力.变大,最后等于他的重力.变大,最后等于他的重力C C.先变小,后变大,最后等于他的重力.先变小,后变大,最后等于他的重力.先变小,后变大,最后等于他的重力D D.变小,最后等于他的重力.变小,最后等于他的重力.变小,最后等于他的重力答案:答案:C C【例题【例题6】如下图质量为M 的粗糙斜面上有一,质量为m 的木块匀减速下滑,则地面受到的正压力应当是地面受到的正压力应当是 ( ) ( )A .等于.等于(M+m)gB (M+m)g B (M+m)g B.大于.大于.大于(M+m)g c (M+m)g c (M+m)g c.小于.小于.小于(M+m)g D (M+m)g D (M+m)g D.无法确定.无法确定.无法确定超重和失重·典型例题解析【例1】竖直升降的电梯内的天花板上悬挂着一根弹簧秤,如图24-1所示,弹簧秤的秤钩上悬挂一个质量m =4kg 的物体,试分析下列情况下电梯的运动情况(g 取10m/s 2):(1)当弹簧秤的示数T 1=40N ,且保持不变.,且保持不变.(2)当弹簧秤的示数T 2=32N ,且保持不变.,且保持不变.(3)当弹簧秤的示数T 3=44N ,且保持不变.,且保持不变.解析:选取物体为研究对象,它受到重力mg 和竖直向上的拉力T 的作用.规定竖直向上方向为正方向.向上方向为正方向.(1)当T 1=40N 时,根据牛顿第二定律有T 1-mg =ma 1,解得这时,解得这时电梯的加速度=-=-×=,由此可见,电梯处于a 404104m /s 012T mg m 1静止或匀速直线运动状态.静止或匀速直线运动状态. (2)当T 2=32N 时,根据牛顿第二定律有T 2-mg =ma 2,解得这,解得这时电梯的加速度===-.式中的负号表a 2m /s 22T mg m m s 2232404--/示物体的加速度方向与所选定的正方向相反,即电梯的加速度方向竖直向下.电梯加速下降或减速上升.降或减速上升.(3)当T 3=44N 时,根据牛顿第二定律有T 3-mg =ma 3,解得这时,解得这时电梯的加速度==-=.为正值表示电梯a 44404m /s 1m /s a 3223T mg m 3-的加速度方向与所选的正方向相同,即电梯的加速度方向竖直向上.电梯加速上升或减速下降.下降.点拨:当物体加速下降或减速上升时,亦即具有竖直向下的加速度时,物体处于失重状态;当物体加速上升或减速下降时,亦即具有竖直向上的加速度时,物体处于超重状态.【例2】举重运动员在地面上能举起120kg 的重物,而在运动着的升降机中却只能举起100kg 的重物,求升降机运动的加速度.若在以2.5m/s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(g 取10m/s 2) 解析:运动员在地面上能举起120kg 的重物,则运动员能发挥的向上的最大支撑力F =m 1g =120×10N =1200N ,在运动着的升降机中只能举起100kg 的重物,可见该重物超重了,升降机应具有向上的加速度的加速度对于重物,-=,所以==-×=;F m g m a a 120010010100m /s 2m /s 221122F m g m -22当升降机以2.5m/s 2的加速度加速下降时,重物失重.对于重物,的加速度加速下降时,重物失重.对于重物,m g F m a m 120010 2.5kg 160kg 3323-=,得==-=.F g a -2点拨:题中的一个隐含条件是:题中的一个隐含条件是:该运动员能发挥的向上的最大支撑力该运动员能发挥的向上的最大支撑力(即举重时对重物的最大支持力)是一个恒量,它是由运动员本身的素质决定的,不随电梯运动状态的改变而改变.改变.【例3】如图24-2所示,是电梯上升的v ~t 图线,若电梯的质量为100kg ,则承受电梯的钢绳受到的拉力在0~2s 之间、2~6s 之间、6~9s 之间分别为多大?(g 取10m/s 2) 解析:从图中可以看出电梯的运动情况为先加速、后匀速、再减速,根据v -t 图线可以确定电梯的加速度,由牛顿运动定律可列式求解以确定电梯的加速度,由牛顿运动定律可列式求解对电梯的受力情况分析如图24-2所示:所示:(1)由v -t 图线可知,0~2s 内电梯的速度从0均匀增加到6m/s ,其加速度a 1=(v t -v 0)/t =3m/s 2由牛顿第二定律可得F 1-mg =ma 1解得钢绳拉力解得钢绳拉力 F 1=m(g +a 1)=1300 N (2)在2~6s 内,电梯做匀速运动.F 2=mg =1000N (3)在6~9s 内,电梯作匀减速运动,v 0=6m/s ,v t =0,加速度a 2=(v t -v 0)/t =-2m/s 2 由牛顿第二定律可得F 3-mg =ma 2,解得钢绳的拉力F 3=m(g +a 2)=800N .点拨:本题是已知物体的运动情况求物体的受力情况,而电梯的运动情况则由图象给出.要学会从已知的v ~t 图线中找出有关的已知条件.图线中找出有关的已知条件.【问题讨论】在0~2s 内,电梯的速度在增大,电梯的加速度恒定,吊起电梯的钢绳拉力是变化的,还是恒定的?拉力是变化的,还是恒定的?在2~6s 内,电梯的速度始终为0~9s 内的最大值,电梯的加速度却恒为零,吊起电梯的钢绳拉力又如何?梯的钢绳拉力又如何?在6~9s 内,电梯的速度在不断减小,电梯的加速度又是恒定的,吊起电梯的钢绳拉力又如何?力又如何?请你总结一下,吊起电梯的钢绳的拉力与它的速度有关,还是与它的加速度有关?请你总结一下,吊起电梯的钢绳的拉力与它的速度有关,还是与它的加速度有关?【例4】如图24-3所示,在一升降机中,物体A 置于斜面上,当升降机处于静止状态时,物体A 恰好静止不动,若升降机以加速度g 竖直向下做匀加速运动时,以下关于物体受力的说法中正确的是体受力的说法中正确的是[ ] A .物体仍然相对斜面静止,物体所受的各个力均不变.物体仍然相对斜面静止,物体所受的各个力均不变B .因物体处于失重状态,所以物体不受任何力作用.因物体处于失重状态,所以物体不受任何力作用C .因物体处于失重状态,所以物体所受重力变为零,其它力不变.因物体处于失重状态,所以物体所受重力变为零,其它力不变D .物体处于失重状态,物体除了受到的重力不变以外,不受其它力的作用.物体处于失重状态,物体除了受到的重力不变以外,不受其它力的作用点拨:(1)当物体以加速度g 向下做匀加速运动时,物体处于完全失重状态,其视重为零,因而支持物对其的作用力亦为零.零,因而支持物对其的作用力亦为零.(2)处于完全失重状态的物体,地球对它的引力即重力依然存在.处于完全失重状态的物体,地球对它的引力即重力依然存在.答案:D 【例5】如图24-4所示,滑轮的质量不计,已知三个物体的质量关系是:m 1=m 2+m 3,这时弹簧秤的读数为T .若把物体m 2从右边移到左边的物体m 1上,弹簧秤的读数T 将[ ] A .增大.增大B .减小.减小C .不变.不变D .无法判断.无法判断 点拨:(1)若仅需定性讨论弹簧秤读数T 的变化情况,则当m 2从右边移到左边后,左边的物体加速下降,边的物体加速下降,右边的物体以大小相同的加速度加速上升,右边的物体以大小相同的加速度加速上升,右边的物体以大小相同的加速度加速上升,由于由于m 1+m 2>m 3,故系统的重心加速下降,系统处于失重状态,因此T <(m 1+m 2+m 3)g .而m 2移至m 1上后,由于左边物体m1、m2加速下降而失重,因此跨过滑轮的连线张力T 0<(m 1+m 2)g ;由于右边物体m 3加速上升而超重,因此跨过滑轮的连线张力T 0>m 3g .(2)若需定量计算弹簧秤的读数,则将m 1、m 2、m 3三个物体组成的连接体使用隔离法,求出其间的相互作用力T 0,而弹簧秤读数T =2T 0,即可求解.,即可求解.答案:B 跟踪反馈1.金属小筒的下部有一个小孔A ,当筒内盛水时,水会从小孔中流出,如果让装满水的小筒从高处自由下落,不计空气阻力,则在小筒自由下落的过程中的小筒从高处自由下落,不计空气阻力,则在小筒自由下落的过程中[ ] A .水继续以相同的速度从小孔中喷出.水继续以相同的速度从小孔中喷出 B .水不再从小孔中喷出.水不再从小孔中喷出C .水将以较小的速度从小孔中喷出.水将以较小的速度从小孔中喷出D .水将以更大的速度从小孔中喷出.水将以更大的速度从小孔中喷出2.一根竖直悬挂的绳子所能承受的最大拉力为T ,有一个体重为G 的运动员要沿这根绳子从高处竖直滑下.若G >T ,要使下滑时绳子不断,则运动员应该,要使下滑时绳子不断,则运动员应该[ ] A .以较大的加速度加速下滑.以较大的加速度加速下滑B .以较大的速度匀速下滑.以较大的速度匀速下滑C .以较小的速度匀速下滑.以较小的速度匀速下滑D .以较小的加速度减速下滑.以较小的加速度减速下滑3.在以4m/s 2的加速度匀加速上升的电梯内,分别用天平和弹簧秤称量一个质量10kg 的物体(g 取10m/s 2),则,则[ ] A .天平的示数为10kg B .天平的示数为14kg C .弹簧秤的示数为100N D .弹簧秤的示数为140N 4.如图24-5所示,质量为M 的框架放在水平地面上,一根轻质弹簧的上端固定在框架上,下端拴着一个质量为m 的小球,在小球上下振动时,框架始终没有跳起地面.当框架对地面压力为零的瞬间,小球加速度的大小为框架对地面压力为零的瞬间,小球加速度的大小为。

高中物理牛顿三大定律公式及内容

高中物理牛顿三大定律公式及内容

牛顿三大定律公式:
1,牛顿第一定律(惯性定律):
物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

2,牛顿第二定律公式:
F合=ma或a=F合/m
a由合外力决定,与合外力方向一致。

3,牛顿第三定律公式:
F= -F;
负号表示方向相反,F、-F为一对作用力与反作用力,各自作用在对方。

4,共点力的受力平衡公式:
F合=0
二力平衡则满足公式F1=-F2
请注意,二力平衡与作用力与反作用力是不一样的。

二力平衡的研究对象,是同一个物体;而作用力与反作用力,研究对象是两个不同的物体。

5,超重与失重的公式:
超重满足:N>G
失重满足:N<G
N为支持力,G为物体所受重力,不管失重还是超重,物体所受重力是不变的。

牛顿三大定律的内容:
1、牛顿第一定律:一切物体总是保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。

(定性的描述了力与运动的关系,物体的运动不需要力维持,但改变物体的运动一定需要力,牛顿第一定律也叫惯性定律)
2、牛顿第二定律:物体加速度的大小跟它所受的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。

(定量的计算力与运动的关系,F=ma)
3、牛顿第三定律:两个物体之间的作用力和反作用力,总是大小相等、方向相反,作用在同一条直线上。

(说明了力的作用是相互的)。

超重与失重

超重与失重

(双)如图 所示,轻质弹簧的上端固定在电梯 的天花板上,弹簧下端悬挂一个小铁球,在电 梯运行时,乘客发现弹簧的伸长量比电梯静止 时的伸长量大了,这一现象表明( BD) • A.电梯一定是在下降 • B.电梯可能是在上升 • C.电梯的加速度方向一定是向下 • D.乘客一定处在超重状态
(双选,2011年珠海质检)一个质量为 50 kg 的人, 站在电梯中的台秤上,当电梯以 2 m/s2 的加速度上 升时,下列说法正确的是(取 g=10 m/s2)( ) BC
A.人对台秤的压力为 500 N
B.人受到的重力为 500பைடு நூலகம்N
C.台秤的示数是 600 N D.台秤对人的支持力为 500 N
v
a
A.弹簧秤的读数在上升阶段等于60N,在最高点等 于30N,下降阶段读数为零 B.弹簧秤的读数在上升阶段和下降阶段都为零,在 最高点等于30N C.弹簧秤的读数不为零,在上升阶段和下降阶段都 小于30N,在最高点为零 D.上升阶段、下降阶段和最高点弹簧秤的读数都为 零
• 2、(单)某座空间站在太空中绕地球运行 时,空间站所有物体都处于完全失重状态, D ) 那么在其中可以完成下列哪个实验( • A、用天平称量物体的质量 • B、做托里拆利实验 • C、验证阿基米德定律 • D、用两个弹簧验证牛顿第三定律
O
A
B C
(单)某中学物理实验小组利用DIS系统(数字化信息实验室系统), 观察超重和失重现象.他们在学校电梯内做实验.在电梯天花板 上固定一个力传感 器,测量时挂钩向下.并在钩上悬挂一个重 为10 N的钩码,在电梯运动过程中,计算机显示屏上显示出如图 所示图线.根据图线分析可知,下列说法中正确的是 C A.t1到t2时间内,钩码处于超重状态,t3到t4时间内,钩码 处于失重状态. B.t1到t2时间内,电梯一定正在向下运动,t3到t4时间内, 电梯可能正在向上运动。 C.t1到t4时间内,电梯可能先加速向下.接着匀速向下,再 减速向下. D.t1到t4时间内,电梯可能先加速向上,接着匀速向上,再减速向 上.

超重与失重及巧用解题

超重与失重及巧用解题

超重与失重及其巧用解题超重与失重实质上是高考核心考点牛顿第二定律的重要应用.只有结合牛顿第二定律去理解、掌握它,才能应用它去分析解决问题.一. 超重与失重1. 超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体所受的重力的情况称为超重现象.设支持物对物体竖直向上的支持力为F,物体质量为m,向上加速度为,由牛顿第二定律得:F-mg=ma,则视重F=m(g+a)>mg.2. 失重现象:物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力的情况称为失重现象.设加速度a向下,有mg- F=ma,则视重F=m(g-a)<mg.当a= g时,F=0,这是完全失重状态.3. 理解:⑴超重与失重并不是物体所受的重力增大与减小了,而是视重(或示重)增大与减小了,即相互作用的弹力增大与减小了.⑵超、失重的条件:是否出现超重与失重,与运动速度的大小及方向无关,只有竖直方向的加速度决定.即当物体(或物体的一部分)有竖直向上的加速度(或分量)时,物体处于超重状态;有竖直向下的加速度(或分量)时,物体处于失重状态.⑶常见的完全失重主要有三种情况:做自由落体的物体;所有做抛体运动的物体;在太空轨道上做匀速圆周运动的天体及其内的一切物体.当物体处于完全失重状态时,与重力有关的现象和仪器可能会变化、消失或不能使用.如单摆停摆、天平失效、液体柱不再产生向下的压强、浸在液体中的物体不受浮力等.二. 巧用超重与失重解题超重、失重与我们的生活、生产等息息相关;大家一定还记得女航天员王亚平在神十中精彩授课的情景:那个大水球、单摆的运动等.正因如此,围绕超重与失重现象的命题越来越多,这当然要用超重与失重观点解决;而一些常规的问题,用超重与失重观点既可定性分析,也可定量计算,常能起到事半功倍作用.用超重与失重观点计算视重的方法是:先由竖直方向的加速度计算出超重或失重ma,则视重为总重力加或减超重或失重ma.此法对两个或以上物体组成的整体也可用.例1. 如图1所示,一质量为M=10kg,倾角θ为30°的斜面ABC静止在粗糙水平地面上.有一质量m=1kg的物块由静止开始沿斜面下滑,当滑行的路程S=1.4m时,其速度v=1.4m/s,在这过程中斜面没有动.求地面对斜面的支持力?(g取10)解析:本题如用一般的隔离法、牛顿定律等解答比较繁杂,图1但如用失重与超重的观点分析,则问题就显得容易多了.把M、m看成整体,物体的一部分m存在竖直向下的加速度,物体就部分失重,结合牛顿第三定律,地面对斜面的支持力就等于物体的实重减去失去的那部分重量.物体m的加速度由运动学公式可得:a 的竖直分量为:则地面对斜面的支持力为:例2. 在正常运行的太空实验室中,下列说法正确的是:()A. 不用模具可以制出标准球形滚珠B. 不用模具只能制出椭球形滚珠C.可在液态金属中冲入气泡制成泡沫金属D. 可用体重计测出宇航员的体重解析:在正常运行的太空实验室中,由于一切物体均处于完全失重状态,物体间没有相互作用的挤压力.熔融态的金属液在表面张力的作用下,不用模具便可形成标准球形滚珠;气泡在液态金属中既不“上浮”,也不“下沉”,可在任意位置停住,也可均匀地分布其中,凝固后就成为泡沫金属.太空实验室中体重计、水银气压计等是无法使用的.正确答案是:A、C.例3. 如图2所示,支架质量为M,放在水平地面上,转轴O处用长为L的细绳悬挂一质量为m的小球.求小球由静止从与轴O在同一平线上的水平位置释放后,当它运动到最低点时地面对支架的支持力多大?解析:小球在竖直平面内做圆周运动,到达最低点时向心加速度a方向向上,小球超重.将支架和小球看作一个整体,由失重与超重的观点可得地面对支架的支持力图2 小球由静止从水平位置释放运动到最低点时的速度为:小球在竖直位置时的加速度为:由以上三式可得:强化练习:1.一运动员站在体重计上,他由静止开始下蹲,至下蹲状态刚停下为止.此过程中关于体重计示数变化的描述正确是()A.一直变小B.一直变大C.先变小后变大D. 先变大后变小2.如图3所示,滑轮与绳子质量不计,且无摩擦,,在A、B两物体作匀加速运动过程中,下列关于悬挂滑轮轻杆中的张力大小判断正确的是()A. B.C. D. 无法确定参考答案:1. C 2. C图3。

超重失重现象

超重失重现象
在电子技术中所用的晶体,在地面上生长时,由于受重力的影响,晶体的大小受到限制,而且要受到容器的污染,在失重条件下,晶体的生长是均匀的,生长出来的晶体也要大得多。在不久的将来,如能在太空建立起工厂,生产出砷化镓的纯晶体,它要比现有的硅晶体优越得多,将会引起电子技术的重大突破。
在太空失重的条件下,会生产出地面上难以生产的一系列产品。建立空间工厂,已经不再是幻想。科学家们在太空中做各种实验,青年学生也可以提出自己的太空实验设想,展开你想像的翅膀,为宇宙开发贡献一份力量!
完全失重情况下的一些物理现象:
人造地球卫星、宇宙飞船、航天飞机等航天器进入轨道后,其中的人和物将处于失重状态。航天器进入轨道后可以近似认为是绕地球做圆周运动,做圆周运动的物体的速度方向是时刻改变的,因而具有加速度,它的大小等于卫星所在高度处的重力的大小。这跟在以重力加速度下降的升降机中发生的情况类似,航天器中的人和物都处于完全失重状态。
教学课题
牛顿第二定律的应用㈠
超重与失重现象
授课人
课型
复习、阅读、实验、讨论与讲解
学习目标
①正确认识和理解超重和失重现象;
②能正确应用牛顿第二定律解释有关现象、分析和计算有关问题。
③通过本课学习,增强将所学知识联系和应用到生活中的能力。
教学过程
⒈引入课题
录象:乘电梯
自从人造地球卫星和宇宙飞船发射成功以来,人们经常谈到超重和失重的问题。究竟什么是超重现象和失重现象呢?
物体的超重和失重现象。
观察比较:A物体平衡时与向上作加速运动时弹簧秤的示数;
观察比较:A物体平衡时与向下作加速运动时弹簧秤的示数。
研究超重失重现象的运动学特征
V的方向
△V的方向
a的方向
视重F与G的大小关系

第6节 超重和失重

第6节 超重和失重
分析:对同一个人来说,他能提供的最大举力是一定的, 分析:对同一个人来说,他能提供的最大举力是一定的,因 它在电梯里对物体的支持力也为300N,对物体受力分析 此,它在电梯里对物体的支持力也为 , 可求出F 从而求出加速度。 N可求出 合,从而求出加速度。 解:设物体的质量为m,对其受力分析如图。 设物体的质量为 ,对其受力分析如图。 得: F合 = N — G =300 — 250 = 50(N) 由题意: 由题意:m = 25kg 方向: 方向:竖直向上 故:a = F合/m=2m/s2 mg
FN
v
mg
FN-mg=ma =
FN =910N
根据牛顿第三定律, 根据牛顿第三定律,人对地板的压力大小也等 于910N,方向竖直向下。 ,方向竖直向下。
在升降机中测人的体重, 在升降机中测人的体重,已知人的 质量为40 40kg 质量为40kg (1)若升降机以2.5m/s 的加速度匀 若升降机以2.5 (1)若升降机以2.5m/s2的加速度匀 a 加速下降,台秤的示数是多少? 加速下降,台秤的示数是多少? (2)若升降机自由下落, 若升降机自由下落 (2)若升降机自由下落,台秤的示数 又是多少? 又是多少?
a
FN
v
mg
视重大于重力
超重和失重 物体对支持物的压力 (或对悬挂物的拉力) 大于物体所受到的重 大于 力的情况称为超重 超重现 超重 象。
用弹簧秤测物体 的重力时, 的重力时,突然 向下减速, 向下减速,弹簧 秤的示数如何变 化?
可以看出产生超重现象的条件:
物体存在向上的加速度 物体存在向上的加速度
v
mg
视重小于重力
超重和失重 物体对支持物的压 力(或对悬挂物的拉 力) 小于物体所受到 小于物体所受到 的重力的情况称为 失重现象 现象。 失重现象。

高一物理超重和失重2

高一物理超重和失重2

求作文。 杨振宁1971年第一次回到祖国的时候就要求见一见他的老同学邓稼先,因为邓稼先是在美国和杨振宁一起拿博士学位的,杨振宁留在美国,而邓稼先回来了。见了面以后杨就问邓,你是不是给我说一说,中国搞核武器有没有外国人帮助? 这个问题问得很自然,为什么
呢?因为美国搞核武器一些主要人员都是欧洲的移民,苏联发展核武器也有很多西方科学家帮忙。邓稼先是一个治学严谨的科学家,他说:“我知道没有,但是让我再去调查一下。”过了一个多星期,杨振宁从到,在大厦吃饭的时候传进来一张条子,在这张条子上邓稼先写着:我已经做
人生,而以怎样的态度,持怎样的价值观,就是一个不可回避的问题。对于两种心态、行为、价值观,拟题者并未厚此薄彼,学生亦无需定势思维,完全可以从自己的生活体验出发,以自己的人生判断为尺度,真诚地表达自己要说的话,风行水上,自然成文,就是好文章。 作文题三十
四 阅读下面的材料,根据要求作文。 我们周围很多古代遗址都得到了保护和修缮,电视上几个戏曲节目备受欢迎,书市上古代文化类的图书也在悄悄升温,在重大的节日里很多人都穿起了唐装……传统的历史文化气氛笼罩着我们的生活。就连2008年将在举行的奥运盛会,也提出
二.超重和失重的条件
向上加速 向下减速 向上减速 向下加速
加速度向上
超重
加速度向下
失重
例题1.如图所示的弹簧秤上放一物体,
静止时弹簧秤的读数为30N.若保持秤
v
盘水平,使弹簧秤竖直向上抛出,不
计空气阻力,对于运动过程中弹簧秤 的读数,下列说法正确的是
a
A.弹簧秤的读数在上升阶段等于60N,在最高点等 于30N,下降阶段读数为零
B.弹簧秤的读数在上升阶段和下降阶段都为零,在 最高点等于30N
C.弹簧秤的读数不为零,在上升阶段和下降阶段都 小于30N,在最高点为零

知识讲解 超重和失重(提高)

知识讲解 超重和失重(提高)

物理总复习:超重和失重【考纲要求】1、理解牛顿第二定律,并会解决应用问题;2、理解超重和失重的概念,会分析超重和失重现象,并能解决具体超重和失重。

【考点梳理】考点:超重、失重、完全失重1、超重当物体具有竖直向上的加速度时(包括向上加速或向下减速两种情况),物体对支持物的压力或对悬挂物的拉力大于自身重力的现象。

2、失重物体具有竖直向下的加速度时(包括向下加速或向上减速两种情况),物体对支持物的压力或对悬挂物的拉力小于自身重力的现象。

3、完全失重物体以加速度a=g向下竖直加速或向上减速时(自由落体运动、处于绕星球做匀速圆周运动的飞船里或竖直上抛时以及忽略空气阻力的各种抛体运动),物体对支持物的压力或对悬挂物的拉力等于零的现象。

在完全失重的状态下,由重力产生的一切物理现象都会消失。

如单摆停摆、天平失效、浸没于液体中的物体不再受浮力、水银气压计失效等,但测力的仪器弹簧测力计是可以使用的,因为弹簧测力计是根据F=kx制成的,而不是根据重力制成的。

要点诠释:(1)当系统的加速度竖直向上时(向上加速运动或向下减速运动)发生超重现象,当系统的加速度竖直向下时(向上减速运动或向下加速运动)发生失重现象;当竖直向下的加速度正好等于g时(自由落体运动或处在绕地球做匀速圆周运动的飞船里面)发生完全失重现象。

(2)超重、失重、完全失重产生仅与物体的加速度有关,而与物体的速度大小和方向无关。

“超重”不能理解成物体的重力增加了;“失重”也不能理解为物体的重力减小了;“完全失重”不能理解成物体的重力消失了,物体超重、失重以及完全失重时重力是不变的。

(3)人们通常用竖直悬挂的弹簧秤或水平放置的台秤来测量物体的重力大小,用这种方法测得的重力大小常称为“视重”,其实质是弹簧秤拉物体的力或台秤对物体的支持力。

例、在探究超重和失重规律时,某体重为G的同学站在一压力传感器上完成一次下蹲动作。

传感器和计算机相连,经计算机处理后得到压力F 随时间t 变化的图象,则下列图象中可能正确的是 ( )【答案】D【解析】 人从静止→加速向下→最大速度→减速向下→静止,可见从静止到最大下蹲速度,人处于失重状态,台秤读数变小;从最大的下蹲速度到静止,人处于超重状态,台秤读数变大,最后其读数等于人的重力。

超重和失重

超重和失重

超重与失重考点一、重力的测量1.方法一:利用牛顿第二定律先测量物体做自由落体运动的加速度g,再用天平测量物体的质量m,利用牛顿第二定律可得G =mg .2.方法二:利用力的平衡条件将待测物体悬挂或放置在测力计上,使它处于静止状态.这时物体受到的重力的大小等于测力计对物体的拉力或支持力的大小.考点二、超重和失重1.视重:体重计的示数称为视重,反映了人对体重计的压力.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有竖直向下(选填“竖直向上”或“竖直向下”)的加速度.3.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有竖直向上(选填“竖直向上”或“竖直向下”)的加速度.4.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)等于零的状态.(2)产生条件:a=g,方向竖直向下.知识深化1.对视重的理解当物体挂在弹簧测力计下或放在水平台秤上相对静止时,弹簧测力计或台秤的示数称为“视重”,大小等于弹簧测力计所受的拉力或台秤所受的压力.当物体处于超重或失重状态时,物体的重力并未变化,只是视重变了.2.判断物体超重与失重的方法(1)从受力的角度判断:超重:物体所受向上的拉力(或支持力)大于重力,即视重大于重力.失重:物体所受向上的拉力(或支持力)小于重力,即视重小于重力.完全失重:物体所受向上的拉力(或支持力)为零,即视重为零.(2)从加速度的角度判断:①当物体的加速度方向向上(或竖直分量向上)时,处于超重状态,如图2.根据牛顿第二定律:F N -mg =ma ,此时F N >mg ,即处于超重状态.可能的运动状态:向上加速或向下减速.图2 图3 图4②当物体的加速度方向向下(或竖直分量向下)时,处于失重状态,如图3.根据牛顿第二定律:mg -F N =ma ,此时F N <mg ,即处于失重状态.可能的运动状态:向下加速或向上减速.③当物体的加速度为g 时,处于完全失重状态,如图4.根据牛顿第二定律:mg -F N =ma ,此时a =g ,即F N =0.可能的运动状态:自由落体运动或其他抛体运动.1.物体处于超重或失重状态时,物体的重力并未变化,只是视重变了.2.发生超重或失重现象只取决于加速度的方向,与物体的速度方向、大小均无关.一、单选题 1.如图甲,水火箭受水流的反作用力竖直上升。

牛顿第二定律连接体问题临界极值超失重

牛顿第二定律连接体问题临界极值超失重
连结体问题旳处理措施 课本P53
连结体: 稳定之后,系统内各物体具有共同旳加速度
两个(或两个以上)物体相互连结参加运动旳系统。
隔离法:求系统相互作用力时,将各个物体隔离出来分析
整体法:若连结体内(即系统内)各物体旳加速度相同,又不
需要系统内各物体间旳相互作用力时,可将系统作为一种整
体来研究
目旳是先把共同加速度表达出来
课本P54 例3
如图所示,AB、AC为不可伸长旳轻绳,小球质量为
m=0.4 kg,当小车静止时,AC水平,AB与竖直方向夹角
为θ=37°,试求小车分别下列列加速度向右匀加速运动时,
两绳上旳张力FAC、FAB分别为多少.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,tan37°=0.75.
了变化(即“视重”发生变化).
[规律总结] 超重和失重现象判断旳“三”技巧
(1)从受力旳角度判断,当物体所受向上旳拉力(或支持力)不小于重 力时,物体处于超重状态,不不小于重力时处于失重状态,等于 零时处于完全失重状态.
(2)从加速度旳角度判断,当物体具有向上旳加速度时处于超重状 态,具有向下旳加速度时处于失重状态,向下旳加速度为重力加 速度时处于完全失重状态.
答案:(1)a=2 m/s2 (2)FAB=4 N (3)s=40 m
考点 临界与极值问题 课本P54
[规律总结] 动力学中旳“四种”经典临界条件
(1)接触与脱离旳临界条件:弹力FN=0. (2)相对滑动(分离)旳临界条件:静摩擦力到达最大值或加速度 不相同步. (3)绳子断裂与松驰旳临界条件:绳子所能承受旳张力是有程度旳, 绳子断与不断旳临界条件是绳中张力等于它所能承受旳最大张力, 绳子松驰旳临界条件是:FT=0. (4)加速度变化,速度到达最值旳临界条件:当加速度变为零时.

浅谈“超重”和“失重”

浅谈“超重”和“失重”

大家谈D ISCUSSIONOCCUPATION2012 06144浅谈“超重”和“失重”文/张 丽摘要:超重、失重现象是常见的物理现象,是牛顿第二定律应用的一个方面,是重要和典型的应用知识点。

随着航空和航天技术的发展,超重和失重的话题无论是在教学中还是在生活中,正越来越多地引起人们的注意。

关键词:超重 失重 牛顿第二定律超重、失重现象是常见的物理现象,是牛顿第二定律应用的一个方面,是重要和典型的应用知识点。

但是,由于学生们对超重和失重缺乏直接的感性认识,因而不容易建立正确的超重和失重的概念,笔者结合自身的教学实践和体会对超重和失重概念作如下理解。

一、超重和失重的概念也许大家都见过“激流探险”——从很高的坡顶滑下的,颇为刺激的娱乐游戏。

滑下时,人会感到整颗心悬于空中,事实上并不是心脏位置提高,而是自身的重心位置相对于平衡位置提高,产生了向下的加速度,出现“失重现象”。

反之,若物体具有向上的加速度(可以是竖直向上,也可以是某加速度的竖直向上的分量)就产生“超重现象”。

当人造卫星做匀速圆周运动时,其向心加速度等于卫星所处高度的重力加速度,则其处于“完全失重状态”。

下面给出教材的定义:视重:人们习惯上用物体对支持面的压力或对悬挂物的拉力反映物体重力的大小,称为物体的视重。

实重:物体的真实重力,G =mg 。

超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力,即视重大于实重的现象称为超重现象。

失重现象:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力,即视重小于实重的现象称为失重现象。

完全失重:物体对支持物的压力(或对悬挂物的拉力)为零,即视重=0的现象称为完全失重。

二、对超重和失重理解相当一部分学生容易按照字面意思去理解超重和失重,被超重和失重字面意思所误导,想当然地认为超重就是物体的重量增加了,此时物体很重,应该向下运动。

失重就是物体的重量减少了,此时物体很轻,应该向上运动。

实际上处于超重和失重状态的物体其重力没有变化,处于超重和失重状态的根本原因是物体处于不平衡的状态造成的。

超重 失重

超重 失重

a
T
F合 = T - G = m a
故:T = G + m a > G 由牛顿第三定律可知:物体对弹簧秤的 由牛顿第三定律可知: 拉力T’ 拉力T’ = T > G
mg
总结:物体对悬挂物的拉力( 总结:物体对悬挂物的拉力(或对支持 物的压力) 物的压力)大于物体所受重力的情况称 超重现象。 为超重现象。
小结:物体具有竖直向上的加速度, 小结:物体具有竖直向上的加速度, 竖直向上的加速度 即处于超重状态; 即处于超重状态;
理论分析
(二)失重现象
设重物的质量为2Kg,和弹簧秤以2m/s2的 ,和弹簧秤以 设重物的质量为 加速度一起加速下降。 加速度一起加速下降。(g=10m/s2)对重物受 对重物受 力分析如图: 力分析如图: 由牛顿第二定律得 F合 = G - T = m a 故:T=G - F合 = m g -m a = 16N < 20N 由牛顿第三定律可知, 由牛顿第三定律可知,物体对弹簧秤的拉 力T’ = T < G
a=1m/s2
G
N=mg+ma =20×9.8+20×1N =20× 20× =216N =216 题目
根据牛顿第三定律得:物体对台秤的压力 根据牛顿第三定律得:物体对台秤的压力N’=N 所以台秤的读数为216N 所以台秤的读数为
(2)以 的加速度加速下降时, (2)以1m/s2的加速度加速下降时, 台秤读数又是多少N 台秤读数又是多少N?
(即整个系统做自由落体运加速度为g)
分析: 分析:
●物体受力如右图 由牛顿第二定律 物体受力如右图,由牛顿第二定律
F合=G –T= mg 可得 T = G – mg = m (g – g) =0

牛顿第二定律超重与失重集备讨论记录

牛顿第二定律超重与失重集备讨论记录

牛顿第二定律是物理学中的重要定律,它描述了物体受力的加速度与所受力的大小和方向成正比的关系。

在讨论牛顿第二定律时,我们不得不提到“超重”和“失重”这两个概念。

这些概念在重力场中的物体表现出了不同的特性,值得我们深入探讨和理解。

1. 超重和失重的概念在讨论牛顿第二定律超重与失重之前,我们先对这两个概念进行简要的介绍。

超重是指物体所受的重力大于其所受的加速度产生的惯性力,导致物体重量增加的情况。

而失重则是指物体所受的重力小于其所受的加速度产生的惯性力,使得物体呈现出轻盈的状态。

这两个概念在不同的物理情境下有着不同的表现,我们需要深入研究其原理和实际应用。

2. 牛顿第二定律在超重情况下的应用牛顿第二定律指出,物体所受的合力与物体的加速度成正比,方向与加速度的方向相同。

在超重情况下,物体所受的重力增加,导致其加速度也随之增大。

这种情况在地面小行星采样任务中有着重要的应用,科学家需要根据物体的超重情况来调整探测器的采样计划,确保能够顺利采集到样本并返回地球。

3. 牛顿第二定律在失重情况下的应用相对于超重,失重情况下物体所受的重力减小,导致其加速度也随之减小。

这种情况在航天器在轨道中运动时表现得非常明显,航天员在宇宙空间中体验到的就是失重状态。

在这种情况下,牛顿第二定律的应用帮助我们理解了宇宙空间中的物体运动规律,为航天工程提供了重要的理论指导。

4. 个人观点和总结在本文中,我们详细探讨了牛顿第二定律在超重和失重情况下的应用。

通过对这一主题的深入研究,我们更加全面地理解了物体在不同重力场中的运动规律。

个人而言,我认为牛顿第二定律超重与失重的讨论给我们提供了更广阔的视角来理解物理学中的力学规律,帮助我们更好地理解宇宙中万物运动的奥秘。

通过本篇文章的阐述,我们对牛顿第二定律超重与失重的概念有了更深入的理解。

这不仅有助于我们在物理学中的学习应用,也可以为我们在工程技术领域提供更多的思考和启发。

让我们继续深入探讨自然规律的奥秘,不断开拓科学的边界!牛顿第二定律的应用非常广泛,在不同的重力场中都有着重要的实际意义。

牛顿第二定律(解析版)

牛顿第二定律(解析版)

牛顿第二定律1.解题步骤:(1)确定研究对象,进行受力分析,画受力图。

(2)建立XOY 坐标系,将各个力进行正交分解。

(3)根据牛顿第二定律和运动学公式列方程。

(4)统一单位,求解方程,对结果进行讨论。

力 加速度 运动∑F=ma a =t V V t 0- 2022t tV s a -= s V V a t 2202-= 2Tsa ∆=2.牛顿第二定律要点(1)牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

(2)牛顿第二定律是实验定律,实验采用“控制变量法”进行研究。

(3)对牛顿第二定律的理解①矢量性:牛顿第二定律是一个矢量方程,加速度与合外力方向一致.②瞬时性:力是产生加速度的原因,加速度与力同时存在、同时变化、同时消失.③独立性:当物体受几个力的作用时,每一个力分别产生的加速度只与此力有关,与其它力无关,这些加速度的矢量和即物体运动的加速度. ④同体性:公式中,质量、加速度和合外力均应对应同一个物体(系统).1.超重和失重:超重:加速度方向向上(加速向上或减速向下运动) 失重:加速度方向向下(加速向下或减速向上运动) 2.超重、失重和完全失重的比较maF =合超重现象失重现象完全失重现象概念物体对支持物的压力(或对悬挂物的拉力)□05大于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)□06小于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)□07等于零的现象产生条件物体的加速度方向□08竖直向上物体的加速度方向□09竖直向下物体的加速度方向□10竖直向下,大小□11a=g 原理方程F-mg=maF=m(g+a)mg-F=maF=m(g-a)mg-F=maa=gF=0运动状态□12加速上升或□13减速下降□14加速下降或□15减速上升以a=g□16加速下降或□17减速上升[典例1]如图A所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度?若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图B所示,其他条件不变,求求剪断轻弹簧瞬时物体的加速度?【解析】设l1线上拉力为T1,l2轻弹簧上拉力为T2,重力为mg,物体在三力作用下保持平衡T1cosθ=mg,T1sinθ=T2,T2=mg tgθ,剪断线的瞬间,弹簧的长度末发生变化,力大小和方向都不变,物体即在T2反方向获得加速度.因为mg tgθ=ma,所以加速度a=gtgθ,方向在T2反方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律超重失重问题
1.如图所示,A、B两物体叠放在一起,以相同的初速度上抛(不计空气阻力)。

下列说法正确的是()
A.在上升和下降
过程中A对B的压力一定为零B.上升过程中A 对B的压力大于A物体受到的重力C.下降过程中A 对B的压力大于A物体受到的重力D.在上升和下降过程中A对B的压力等于A物体受到的重力
2.我国“蛟龙号”深潜器经过多次试验,终于在2012年6月24日以7020m深度创下世界最新纪录(国外最深不超过6500m),预示着可以征服全球99.8%的海底世界.假设在某次实验时,从水面开始下潜到最后返回水面共历时10min,深潜器内的显示屏上显示的深度和速度随时间变化的图线分别如图(a)、(b)所示.则()
A.(a)图中h3代表本次最大深度,应为6.0m
B.全过程中最大加速度是0.025m/s2
C.潜水员感到超重现象应发生在3~4min和6~8min的时间段内
D.整个潜水器在8~10min时间段内机械能守恒
3.摩天大楼中一部直通高层的客运电梯,行程超过百米。

电梯的简化模型如图1所示,考虑安全、舒适、省时等因素,电梯的加速度a随时间t变化的。

已知电梯在t=0时由静止开始上升,a-t图像如图2所示。

电梯总质最m=2.0×103kg,忽略一切阻力,重力加速度g取10m/s2。

求:
(1)电梯在上升过程中受到的最大拉力F1和最小拉力F2;
(2)类比是一种常用的研究方法。

对于直线运动,教科书中讲解了由v-t图像求位移的方法。

请你借鉴此方法,对比加速度的和速度的定义,根据图2所示a-t图像,求电梯在第1s内的速度改变量△v1和第2s末的速率v2。

4.一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间的关系的图象是()
A. B. C. D.
5.下列各图分别表示甲、乙、丙、丁四个物体的运动情况或其所受合外力的情况。

其中(甲)图是位移-时间图象;(乙)图是速度-时间图象;(丙)图是的加速度-时间图象;(丁)图是合外力-时间图象。

四幅图中的图线都是直线。

从这些图象中可以判断出这四个物体的某些运动特征,则下列有关说法中正确的是()
A.甲物体受到不为零、且恒定的合力
B.乙物体收到的合力越来越大
C.丙物体受到的合力为零
D.丁物体的加速度越来越大
6.一实验兴趣小组做了一次实验,实验时让某同学从桌子上跳下,自由下落H后双脚触地,
他顺势弯曲双腿,他的重心又下降了h后停住,利用传感器和计算机显示该同学受到地面
的支持力F随时间变化的图象如图1所示.根据图象提供的信息,以下判断正确的()
A.t2时刻该同学的脚刚接触地面
B.在t2至t3时间内该同学处于下落阶段
C.t3时刻该同学的加速度为零
D.在t3至t4时间内该同学处于加速下落阶段
7.一同学乘坐竖直升降的电梯从一楼至八楼,人始终相对电梯静止,电梯经历了先加速上升、再匀速上升、最后减速上升的三段过程,下列对电梯上升的整个过程描述正确的是()
A.该同学一直处于超重状态
B.该同学一直处于失重状态
C.该同学的机械能先增加,再保持不变,最后减小
D.该同学的机械能始终增加
8.如图所示,P是位于水平粗糙桌面上的物块。

用跨过定滑轮的轻绳将P与小盘相连,小盘内有砝码,小盘与砝码的总质量为m。

在P运动的过程中,若不计空气阻力,则关于P在水平方向受到的作用力与相应的施力物体,下列说法中正确的是()
A.P受到的拉力的施力物体就是m,大小等于mg
B.P受到的拉力的施力物体不是m,大小等于mg
C.P受到的摩擦力方向水平向左,大小一定小于mg
D.P受到的摩擦力方向水平向左,大小有可能等于mg
9.一枚火箭由地面竖直向上发射,其速度和时间的关系图线如图所示,则()
A.t2 时刻火箭距地面最远
B.t2-t3的时间内,火箭在向下降落
C.火箭在t1-t2的时间内加速度小于t2-t3的时间内加速度
D.0-t3的时间内,火箭始终处于超重状态
10.如图所示是一架直升机悬停在空中在向灾区地面投放装有救灾物资的箱子,设投放初速
度为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图
示姿态.在箱子下落过程中,下列说法正确的是()
A.箱内物体对箱子底部始终没有压力
B. 箱子刚从飞机上投下时,箱内物体受到的支持力最小
C. 箱子接近地面时,箱内物体受到的支持力比刚投下时大
D. 若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来”
11.一位同学乘坐电梯从六楼下到一楼的过程中,其v-t图象如图所示.下列说法正确的是()
A.前2s内该同学处于超重状态
B.前2s内该同学的加速度是最后1s内的2倍
C.该同学在l0s内的平均速度是1m/s
D.该同学在l0s内通过的位移是17m
12.用相同材料制成的橡皮条彼此平行地沿水平方向拉同一质量为m的物块,且每根橡皮条的伸长量均相同,物块m 在橡皮条拉力的作用下所产生的加速度a与所用橡皮长的数目n的关系如图所示.下列措施中能使图线的纵截距改变的是()
A.仅改变橡皮条的伸长量B.仅改变物体与水平面间的动摩擦因数C.仅改变橡皮条的劲度系数D.仅改变物块的质量
13.如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为
m2的木块,假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木板施
加一随时间t增大的水平力F=kt(k是常数),方向向左,木板和木块加速度的大小分别为a1和a2,下图所示反映a1和a2变化的图线中正确的是()
A B C D
14.如图所示,物体沿斜面由静止滑下,在水平面上滑行一段距离后停止,物体与斜面和水
平面间的动摩擦因数相同,斜面与水平面平滑连接.下图中v、a、f和s分别表示物体速度
大小、加速度大小、摩擦力大小和路程.下图中正确的是( )
A B C D
15.放在水平地面上的一物块,受到方向不变的水平推力F的作用,F的大小与时间t的关系和物块速度v与时间t
的关系如图所示。

取重力加速度g=10m/s2。

求:(1)物块在运动过程中受到的滑动摩擦力;(2)物块的质量m;(3)物块与地面之间的动摩擦因数μ。

16.质量为1kg的物体静止在水平地面上,物体与地面间的动摩擦因数为0.2,作用在物体上的水平推力F与时间t 的关系如图甲所示(g=10m/s2)
(1)求物体在前14s内的位移.
(2)请在图乙所示的坐标系中作出物体在14s内的v-t图象.。

相关文档
最新文档