八年级下《勾股定理》单元测试题.doc

合集下载

人教版八年级数学下册《第17章 勾股定理》单元练习卷

人教版八年级数学下册《第17章 勾股定理》单元练习卷

第17章勾股定理一.选择题(共8小题)1.下列选项中,不能用来证明勾股定理的是()A.B.C.D.2.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.8,12,13D.3.若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是()A.5B.6C.D.5或4.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4C.3D.5.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3C.D.56.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC沿A﹣D的方向平移AD长,得△DEF(B、C的对应点分别为E、F),则BE长为()A.1B.2C.D.37.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB =3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm8.如图,学校教学楼旁有一块矩形花圃,有极少数同学为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6B.5C.4D.3二.填空题(共7小题)9.已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.10.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.11.如图,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.12.如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为42,小正方形的面积为5,则(a+b)2的值为.13.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为km.14.如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD 的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为cm2.15.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.三.解答题(共7小题)16.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.17.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.18.如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC 的面积.19.如图,在Rt△ABC中,∠A=90°,D为斜边BC中点,DE⊥DF,求证:EF2=BE2+CF2.20.如图,将Rt△ABC绕其锐角顶点A旋转90°得到Rt△ADE,连接BE,延长DE、BC 相交于点F,则有∠BFE=90°,且四边形ACFD是一个正方形.(1)判断△ABE的形状,并证明你的结论;(2)用含b代数式表示四边形ABFE的面积;(3)求证:a2+b2=c2.21.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2.火柴盒的一个侧面ABCD倒下到AEFG的位置,连接CF,AB=a,BC=b,AC=c.(1)请你结合图1用文字和符号语言分别叙述勾股定理.(2)请利用直角梯形BCFG的面积证明勾股定理:a2+b2=c2.22.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?参考答案一.选择题(共8小题)1.D.2.C.3.D.4.A.5.B.6.C.7.D.8.C.二.填空题(共7小题)9..10..11.10.12.79.13.(1)20;(2)13;14.2.15.4三.解答题(共7小题)16.解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15、DB=9,∴CD===12;(2)在Rt△ACD中,∵AC=20、CD=12,∴AD===16,则AB=AD+DB=16+9=25.17.解:∵AB=13,AD=12,BD=5,∴AB2=AD2+BD2,∴△ADB是直角三角形,∠ADB=90°,∴△ADC是直角三角形,在Rt△ADC中,CD==9.18.解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,,∴S△ABC=,因此△ABC的面积为84.答:△ABC的面积是84.19.证明:延长ED到G,使DG=DE,连接EF、FG、CG,如图所示:在△EDF和△GDF中,∴△EDF≌△GDF(SAS),∴EF=FG又∵D为斜边BC中点∴BD=DC在△BDE和△CDG中,,∴△BDE≌△CDG(SAS)∴BE=CG,∠B=∠BCG∴AB∥CG∴∠GCA=180°﹣∠A=180°﹣90°=90°在Rt△FCG中,由勾股定理得:FG2=CF2+CG2=CF2+BE2∴EF2=FG2=BE2+CF2.20.(1)△ABE是等腰直角三角形,证明:∵Rt△ABC绕其锐角顶点A旋转90°得到在Rt△ADE,∴∠BAC=∠DAE,∴∠BAE=∠BAC+∠CAE=∠CAE+∠DAE=90°,又∵AB=AE,∴△ABE是等腰直角三角形;(2)∵四边形ABFE的面积等于正方形ACFD面积,∴四边形ABFE的面积等于:b2.(3)∵S正方形ACFD=S△BAE+S△BFE即:b2=c2+(b+a)(b﹣a),整理:2b2=c2+(b+a)(b﹣a)∴a2+b2=c2.21.解:(1)直角三角形两直角边的平方和等于斜边的平方.Rt△ABC中,∠B=90°,AB=a,BC=b,AC=c,则有b2+c2=a2.(2)∵S梯形BCFG=S△AFG+S△AFC+S△ACB=ab+ab+c2=ab+c2,S梯形BCFG=•(FG+BC)•BG=(a+b)(a+b)=a2+ab+b2,∴ab+c2=a2+ab+b2,整理得:a2+b2=c2.22.解:∵∠ABD=120°,∠D=30°,∴∠AED=120°﹣30°=90°,在Rt△BDE中,BD=520m,∠D=30°,∴BE=BD=260m,∴DE==260≈450(m).答:另一边开挖点E离D450m,正好使A,C,E三点在一直线上.。

第十七章勾股定理单元同步检测试题2021-2022学年人教版八年级数学下册(word版 含答案)

第十七章勾股定理单元同步检测试题2021-2022学年人教版八年级数学下册(word版 含答案)

第十七章《勾股定理》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )A.3,4,5B.6,8,10C.3,2,5D.5,12,132.为迎接元的到来,同学们制作了许多美丽图案来布置教室,准备召开元旦晚会,刘旭同学搬来架长为2.5m的木梯,梯子顶端到墙根的距离为2.4m,则梯子的底端与墙根的距离应为( )A.0.7mB.0.8mC.0.9mD.1.0m3如图,在△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为( )A.5B.6C.8D.104.如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系是( )A.a<c<bB.a<b<cC.c<a<bD.c<b<a5.放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为()A.600米B.800米C.1000米D.不能确定6.如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.8米,L4=10米四种备用拉线材料中,拉线AC最好选用()A.L 1B.L 2C.L 3D.L 47.如图,平面直角坐标系中,△OAB 的边OB 落在x 轴上,顶点A 落在第一象限.若OA =AB =5,OB =8,则点A 的坐标是( )A .(8,5)B .(4,5)C .(4,3)D .(3,4)8.如图,“赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形,已知大正方形面积为25,(x +y )2=49,用x ,y 表示直角三角形的两直角边(x >y ),下列选项中正确的是( )A .小正方形面积为4B .x 2+y 2=5C .x 2﹣y 2=7D .xy =249.如图,在△ABC 中,∠C =90°,AC =4,BC =2.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .2010.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,BE 平分∠ABC ,CD ⊥AB5m BCAD图1于D,BE与CD相交于F,则CF的长是()A.1 B.C.D.2二、填空题(每小题4分,共24分)11.观察下列一组勾股数:①3,4,5;②5,12,13;③7,24,25;④9,40,41;⑤15,m,n.根据你发现的规律可得m+n=.12.在Rt△ABC中,AB=n2+1,BC=n2﹣1,AC=2n,那么∠A+∠B=度.13.某花园小区有一空地(如图所示的△ABC),为美化小区,居委会准备将其开发种植花草,经测量AB=13m,BC=10m,BC边上的中线AD=12m,如果种植每平方米花草需要50元,那么种植这块三角形空地需要元.14.四根小木棒的长度分别为5cm,8cm,12cm,13cm,任选三根可组成个三角形,其中有个直角三角形.15.如图,Rt△ABC中,∠ACB=90°,AB=4,分别以AC和BC为边,向外作等腰直角三角形△ACD和△BCE,则图中的阴影部分的面积是.16.已知:如图,在四边形ABCD中,∠BAD=∠BCD=90°,M,N分别是BD,AC 的中点,且AC=8,BD=10,则MN=.17.△ABC中,AB=AC=2,∠BAC=90°,点D在直线AC上,AC=2CD,则BD=.18.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为12,直角三角形中短直角边a,较长直角边为b,那么(a+b)2的值为.三、解答题(共46分)19.(6分)有一块空白地,如图,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC =24m,试求这块空白地的面积.20.交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路l上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路l上由B向A匀速驶来,测得此车从B处行驶到A 处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:=1.41,=1.73).21.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,在A处有一所中学,AP=120米,此时有一辆消防车在公路MN上沿PN方向以每秒5米的速度行驶,假设消防车行驶时周围100米以内有噪音影响.(1)学校是否会受到影响?请说明理由.(2)如果受到影响,则影响时间是多长?22.(8分)甲、乙两位探险者今年到沙漠进行探险,没有了水,需要寻找水源,为了不至于走散,他们用两部对话机联系,已知对话机的有效距离为12千米.如图,早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进.上午10:00,甲步行到A,乙步行到B,问甲、乙二人相距多远?还能保持联系吗?23.(8分)如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?24.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.参考答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10答案 C A C C C B C C B D 二.填空题:11.解:由题意得:第n组数为(2n+1),,,∴第1个数为15时,即相当于第7组数据,∴m==112,n==113,m+n=112+113=225,故答案为:225.12.解:∵(n2+1)2=n4+2n2+1,(n2﹣1)2+(2n)2=n4+2n2+1,∴AB2=BC2+AC2,∴∠A+∠B=90°.13.解:∵AD是中线,AB=13m,BC=10m,∴BD=BC=5m.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,∴S△ABC=×AD×BC=×10×12=60(m2),∵种植每平方米花草需要50元,∴种植这块三角形空地需要:50×60=3000(元).故答案为:3000.14.解:∵5+8>12,8+12>13,5+8=13(无法构成三角形),5+12>13,∴可组成3个三角形,∵52=25,82=64,122=144,132=169,∴52+122=169=132,所以可组成1个直角三角形,故答案是:3,1.15.如图,Rt△ABC中,∠ACB=90°,AB=4,分别以AC和BC为边,向外作等腰直角三角形△ACD和△BCE,则图中的阴影部分的面积是8 .【分析】由勾股定理求出BC2+AC2=AB2=16,由等腰直角三角形的性质和三角形面积公式即可得出结果.【解答】解:∵Rt△ABC中,∠ACB=90°,AB=4,∴BC2+AC2=AB2=16,∵△ACD和△BCE是等腰直角三角形,∴图中的阴影部分的面积是BC2+AC2=×16=8.故答案为:8.16.已知:如图,在四边形ABCD中,∠BAD=∠BCD=90°,M,N分别是BD,AC 的中点,且AC=8,BD=10,则MN= 3 .【分析】连接AM、CM.根据∠BAD=∠BCD=90°,M是BD的中点,AM=CM,三角形AMC为等腰三角形,又N是AC的中点,根据等腰三角形三线合一的性质,可知MN⊥AC,AN=CN,最后由勾股定理求出MN.【解答】解:连接AM、CM.∵∠BAD=∠BCD=90°,M是BD的中点,∴AM=BD,CM=BD,∴AM=CM=,∵N分别是AC的中点,∴MN⊥AC,AN=CN=AC=,∴在Rt△CMN中,由勾股定理得,MN===3.故答案为3.17.△ABC中,AB=AC=2,∠BAC=90°,点D在直线AC上,AC=2CD,则BD=或.【分析】根据勾股定理和等腰直角三角形的性质分两种情况画图即可求解.【解答】解:根据题意分①点D在线段AC上,或点D在AC延长线上,两种情况,如图:∵AB=AC=2,∠BAC=90°,①点D′在线段AC上,AC=2CD′,∴CD′=AD′=1,在Rt△ABD′中,根据勾股定理,得BD′===;②当点D″在AC延长线上时,CD″=1,∴AD″=3在Rt△ABD″中,根据勾股定理,得BD″===.故答案为或.18.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为12,直角三角形中短直角边a,较长直角边为b,那么(a+b)2的值为23 .【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方12,也就是两条直角边的平方和是12,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12﹣1=11.根据完全平方公式即可求解.【解答】解:根据题意,并结合勾股定理得:大正方形的面积:a2+b2=12,四个直角三角形面积和为:S大正方形﹣S小正方形=12﹣1=11,∴4×ab=11,∴2ab=11,∴(a+b)2=a2+b2+2ab=12+11=23.故答案为23.三.解答题:19.解:解:连接AC,在Rt△ACD中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10米,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S空白=AC×BC﹣AD×CD=×10×24﹣×8×6=96(米2).答:这块空白地的面积是96米2.20.解:此车超速,理由:∵∠POB=90°,∠PBO=45°,∴△POB是等腰直角三角形,∴OB=OP=100米,∵∠APO=60°,∴OA=OP=100≈173米,∴AB=OA﹣OB=73米,∴≈24米/秒≈86千米/小时>80千米/小时,∴此车超速.21.解:(1)学校受到噪音影响.理由如下:作AB⊥MN于B,如图1,∵PA=120m,∠QPN=30°,∴AB=PA=60m,而60m<100m,∴消防车在公路MN上沿PN方向行驶时,学校受到噪音影响;(2)以点A为圆心,100m为半径作⊙A交MN于C、D,如图,∵AB⊥CD,∴CB=BD,在Rt△ABC中,AC=100m,AB=60m,CB==80m,∴CD=2BC=160m,∵消防车的速度5m/s,∴消防车在线段CD上行驶所需要的时间=160÷5=32(秒),∴学校受影响的时间为32秒.22.解:∵早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进,∴上午10:00时,OA=8千米,OB=6千米,(3分)∴AB=82+62=10(千米)<12千米,(6分)∴甲、乙二人相距10千米,还能保持联系.(8分)23.解:如图,连接BD.(1分)∵∠A=90°,AB=3m,AD=4m,∴在Rt△ABD中,由勾股定理得BD2=AB2+AD2=32+42=52,即BD=5m.在△CBD中,CD2=132,BC2=122,BD2=52,∵122+52=132,即BC2+BD2=CD2,∴∠DBC=90°.(5分)故S四边形ABCD=S△BAD+S△DBC=12·AD·AB+12DB·BC=12×4×3+12×5×12=36(m2).(7分)∴学校需投入的资金为36×200=7200(元).(9分) 答:学校需要投入7200元购买草皮.(10分) 24.解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.。

第十七章 勾股定理 单元测试训练卷

第十七章 勾股定理 单元测试训练卷

人教版八年级数学下册第十七章 勾股定理单元测试训练卷一、选择题(共10小题,每小题4分,共40分)1. 下列各组数中,为勾股数的是( )A .1,2,3B .3,4,5C .1.5,2,2.5D .5,10,122. 如图所示的数轴上的四点E ,F ,G ,H 中,表示实数- 5 的点是( )A .点EB .点FC .点GD .点H3. 若一直角三角形的两直角边的长分别是4和6,则它的斜边长为( )A .6B .213C .37D .104. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A .365 B .1225C .94D .3345. 如图,矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和为( )A .14B .16C .20D .286. 如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( )A .1013 13B .913 13C .813 13D .713 13 7. 若△ABC 的三边长a ,b ,c 满足(a -b)2+|a 2+b 2-c 2|=0,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .无法确定8. 如图是台阶的示意图,已知每级台阶的宽度都是30 cm ,每级台阶的高度都是15 cm ,连接AB ,则AB 等于( )A .195 cmB .200 cmC .205 cmD .210 cm 9. 如图是一块长、宽、高分别是6 cm ,4 cm ,3 cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需爬行的最短路程是( )A .(3+213 ) cmB .97 cmC .85 cmD .109 cm 10. 在△ABC 中,AB =10,AC =210BC 边上的高AD =6,则另一边BC 等于( )A .10B .8C .6或10D .8或10 二.填空题(共6小题,每小题4分,共24分)11. 在△ABC 中,∠ACB =90°,AC =6,AB =10,BC =________.12. 在平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为__ __.13. 公元3世纪初,中国古代数学家赵爽注《周髀算经》时创造了“赵爽弦图”.如图,设勾a =6,弦c =10,则小正方形ABCD 的面积是__ __.14. 如图,在△ABC 中,∠B =45°,AB 的垂直平分线交AB 于点D ,交BC 于点E(BE >CE),点F 是AC 的中点,连接AE ,EF ,若BC =7,AC =5,则△CEF 的周长为________.15. 如图,长方体的长、宽、高分别为8 cm,4 cm,5 cm.一只蚂蚁沿着长方体的表面从点A 爬到点B.则蚂蚁爬行的最短路径的长是__ __cm.16. 如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是__ _.三.解答题(共6小题,56分)17.(6分) 如图,在四边形ABCD中,已知AB=1,BC=2,CD=2,AD=3,且AB⊥BC,试说明:AC⊥CD.18.(8分) 如图,有一个长方形的场院ABCD,其中AB=9 m,AD=12 m,在B处竖直立着一根电线杆,在电线杆上距地面8 m的E处有一盏电灯,则点D到灯E的距离是多少?19.(8分) 如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.20.(10分) 如图,在一条公路CD的同一侧有A,B两个村庄,A,B到公路的距离AC,BD分别为50 m,70 m,且C,D两地相距50 m,若要在公路旁(在CD上)建一个集贸市场(看作一个点),求A,B两村庄到集贸市场的距离之和的最小值.21.(12分) 如图,某沿海城市A接到台风警报,在该城市正南方向260 km的B处有一台风中心,沿BC方向以15 km/h的速度向C移动,已知城市A到BC的距离AD=100 km,那么台风中心经过多长时间从B点移动到D点?如果在距台风中心30 km的圆形区域内都将受到台风的影响,正在D点休息的游人在接到台风警报后的几小时内撤离才可以免受台风的影响?22.(12分) 阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30 cm,然后分别以D,C为圆心,以50 cm与40 cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是__ __;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).参考答案1-5BABAD 6-10DCACC11.8 12. 513. 414. 8 15. 14516. 1017.解:在△ABC 中,AB ⊥BC ,根据勾股定理得AC 2=AB 2+BC 2=12+22=5, ∵在△ACD 中,AC 2+CD 2=5+4=9,AD 2=9,∴AC 2+CD 2=AD 2,∴根据勾股定理的逆定理得,△ACD 为直角三角形,∴AC ⊥CD.18.解:∵在Rt △ABD 中,∠BAD =90°,∴BD =AB 2+AD 2 =92+122 =15(m).又∵在Rt △BDE 中,∠EBD =90°,∴ED =EB 2+BD 2 =82+152 =17(m),∴点D 到灯E 的距离是17 m19.解:在Rt △BDC 中,BC 2=BD 2+DC 2,在Rt △ABC 中,AC 2=AB 2+BC 2,∴AC 2=AB 2+BD 2+DC 2,又∵BD =DC ,∴AC 2=AB 2+2CD 2=42+2×62=88,∴AC =222 ,即AC 的长为22220.解:设A 关于直线CD 的对称点为A′,连接A′B ,则A′B 即为A ,B 两村到集贸市场的距离之和的最小值,过A′作BD 的垂线A′H 交BD 的延长线于点H ,在Rt △BHA′中,BH =50+70=120 (m),A′H =50 m ,∴A′B =1202+502=130(m),故A ,B 两村庄到集贸市场的距离之和的最小值为130 m.21.解:由题意可知∠ADB =90°.在Rt △ABD 中,∵AB =260 km ,AD =100 km ,∴BD =2602-1002=240(km).∴台风中心从B 点移动到D 点所用的时间为24015=16(h). 在D 点休息的游人应在台风中心距D 点30 km 前撤离,30÷15=2(h),16-2=14(h). ∴在接到台风警报后的14 h 内撤离才可以免受台风的影响.22.解:(1)∵CD =30,DE =50,CE =40,∴CD 2+CE 2=302+402=502=DE 2,∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理,故答案为:勾股定理的逆定理(2)由作图方法可知,QR=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC +∠RCS+∠QSC=180°,即∠QCR+∠QCS+∠QRC+∠QSC=180°,∴2(∠QCR+∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

八年级下册数学第17章《勾股定理》单元测试题(含答案)

八年级下册数学第17章《勾股定理》单元测试题(含答案)

⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。

八年级数学下勾股定理_单元测试题(带答案)

八年级数学下勾股定理_单元测试题(带答案)

(第6题)AB D C(第12题)307米5米八年级下勾股定理测试题一、耐心填一填每小题3分,共36分1、在Rt △ABC 中,∠C=90°,AC=3,BC=4,则AB=___________;2、如图,小明的爸爸在院子的门板上钉了一个加固板,从数学的角度看, 这样做的道理是 .3、小明同学要做一个直角三角形小铁架,他现有4根长度分别为4cm 、6cm 、8cm 、10cm 的铁棒,可用于制作成直角三角形铁架的三条铁棒分别是________________________;4、若三角形三条边的长分别为7,24,25,则这个三角形的最大内角是 度.5、在△ABC 中,∠C =90°,若c =10,a ∶b =3∶4,则ab = .6、如图,在等腰△ABC 中,AB=AC=10,BC=12,则高AD=________;7、等腰△ABC 的面积为12cm 2,底上的高AD =3cm, 则它的周长为________.8、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2=________.9、有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为 ;10、有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了________米.11、一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是________. 12、如图,今年第8号台风“桑美”是50多年以来登陆我国大陆地区 最大的一次台风,一棵大树受“桑美”袭击于离地面5米 处折断倒下,倒下部分的树梢到树的距离为7米, 则这棵大树折断前有__________米保留到0.1米; 二、精心选一选每小题4分,共24分13、下列各组数据为边的三角形中,是直角三角形的是A 、 错误!、错误!、7B 、5、4、8C 、错误!、2、1D 、错误!、3、错误! 14、正方形ABCD 中,AC=4,则正方形ABCD 面积为A 、 4B 、8C 、 16D 、32 15、已知Rt △ABC 中,∠A,∠B,∠C 的对边分别为a,b,c,若∠B=90○,则 A 、b2= a2+ c2;B 、c2= a2+ b2;C 、a2+b2=c2;D 、a +b =c16、三角形的三边长a,b,c满足2ab=a+b2-c2,则此三角形是 . A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形 17、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为 A 、 直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定AB D CdabD CB A N O MAM O N B 图图图18、一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是 A 、 12米 B 、 13米 C 、 14米 D 、15米 三、决心试一试19、12分如右图,等边△ABC 的边长6cm; ①求高AD ②求△ABC 的面积 20、12分如图,ABC ∆中,3590,12,,22CCD BD ∠=︒∠=∠==,求AC 的长;21、12分某菜农要修建一个塑料大棚,如图所示,若棚宽a=4m,高b=3m,长d=40m;求覆盖在顶上如右图阴影部分的逆料薄膜的面积;22、12分如图3-2,在△ABD 中,∠A 是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD 的面积. 23、12分如图,一架长为5米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,梯子底端距离墙ON 有3米;①求梯子顶端与地面的距离OA 的长; ②若梯子顶点A 下滑1米到C 点, 求梯子的底端向右滑到D 的距离;24、15分如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少25、15分如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形涂上阴影.⑴在图1中,画一个三角形,使它的三边长都是有理数;⑵在图2、图3中,分别画一个直角三角形,使它的三边长都是无理数.两个三角形不全等答案一、1. 5 2. 三角形的稳定性意思对就可以了 3. 6cm 、8cm 、10cm 4. 90 5. 48 6. 87. 18 8.8 cm9. 34111. 120 cm 212. 13.6 二、13-18 CBACAA三、19`. ①3错误!或 ②9错误!或15.59cm220. AC=3ABCDL21. 200m222. 3623. ①AO=错误! =4②OD=错误! =4 BD=OD-OB=4-3=1米24. 作A关于CD的对称点A’,连接A’B与CD的交点为M点为所求点可求得AM+BM=A’B=50千米,总费用为50×3=150万元25. 仅供参考每个5分。

勾股定理单元测试试卷

勾股定理单元测试试卷

新人教版八年级下册第17章勾股定理单元测试试卷(B卷)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.已知直角三角形的两边分别为3、4,则第三边为___ __.2.如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C 处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为_______米.123.已知,如图所示,Rt △ABC 的周长为4+23,斜边AB 的长为23,则Rt △ABC •的面积为_____.4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.5.在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.6.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形. 7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、第2题 第3题第4题3220BA第7题32dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________.8.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .9.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 10.直角三角形的三边长为连续偶数,则这三个数分别为__________.11.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有___米.60 12014060BAC第8题第11题第12题第13题图12.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.13.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端B下降至B’,那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.14.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为.二、选择题(共4小题,每题3分,共12分)15.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5 B.25 C.7D.5或716.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2 C.48cm2 D.60cm2417.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定18.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米 B. 800米 C. 1000米 D. 不能确定三、解答题(共60分)19.(5分)如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?520.(5分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?6721.(5分)已知,如图所示,折叠长方形的一边AD,使点D落在BC边的点F•处,•如果AB=8cm,BC=10cm,求EC的长.822.(6分)如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走1.5km,遇到障碍后又往西走2km,再折回向北走到4.5km处往东一拐,仅走0.5km就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是多少?91011 23.(6分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?24.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D 点在距A点多远处时,水渠的造价最低?最低造价是多少?1225.(6分)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河13141526.(6分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.27.(7分)如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船的航速是多少?1617181928.(8分)如图,A市气象站测得台风中心在A市正东方向300千米的B处,以107千米/时的速度向北偏西60°的BF方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A市受这次台风影响,那么受台风影响的时间有多长?2021参考答案一、填空题1.52..1 4.2 5.50 6.直角 7.25 8.10 9.1360 10.6,8,10 11.2412.100mm 13.③ 14.2m二、选择题15.D 16.A 17.C 18.C三、解答题19.15米 20.5米 21.3cm 22.AB=6.5km 23.5cm 24.64米处,最低造价为480元 25.17km 26.22. 3.75尺 27.12海里/时 28.(1)会受影响;(2)10小时勾股定理单元测试题1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为().A.16πB.12πC.10πD.8π222、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12 B.7+7C.12或7+7D.以上都不对3、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m4、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm5、在Rt△ABC中,∠C=90°,且2a=3b,c=213,则a=_____,b=_____.23246、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元. 9、如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.(1)记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,……,a n ,请求出a 2,a 3,a 4的值;150o20米30米(2)根据以上规律写出a n的表达式.10、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1.4m,BC=30米,请帮助小明计算出树高AB.(3取1.732,结果保留三个有效数字)2511、如图,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少海里?2612、去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2.732km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)参考答案与提示27281、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=21πR 2=21π×(28)2=8π.故选D );2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,故选D ). 5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有(3k )2+(2k )2=(213)2,解得a =b ,b =4.);6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);7.3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8); 8、150a .9、解析:利用勾股定理求斜边长.(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC =22BC AB +=2211+=2.同理:AE =2,EH =22,…,即a 2=2,a 3=2,a 4=22. (2)a n =12-n (n 为正整数).10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D 作DE ⊥AB 于点E ,则ED =BC29=30米,EB =DC =1.4米.设AE =x 米,在Rt △ADE 中,∠ADE =30°,则AD =2x .由勾股定理得:AE 2+ED 2=AD 2,即x 2+302=(2x )2,解得x =103≈17.32.∴AB =AE +EB ≈17.32+1.4≈18.7(米).答:树高AB 约为18.7米.11、解析:本题要注意判断角的大小,根据题意知:∠1=∠2=45°,从而证明△ABC 为直角三角形,这是解题的前提,然后可运用勾股定理求解.B 在O 的东南方向,A 在O 的西南方向,所以∠1=∠2=45°,所以∠AOB =90°,即△AOB 为Rt △.BO =16×23=24(海里),AB =30海里,根据勾股定理,得AO 2=AB 2-BO 2=302-242=182,所以AO =18.所以乙船的速度=18÷23=18×32=12(海里/时).答:乙船每小时航行12海里.12、解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =x ,∴AC =2x .由勾股定理得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732, ∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7, ∴计划修筑的这条公路不会穿过公园.有效处理学生的不当行为当学生在课堂上故意做出某些出格的行为时,他往往心里清楚教师将会对此做出什么反应。

八年级下册 数学 第 17 章《勾股定理》单元测试题(含答案)

八年级下册 数学 第 17 章《勾股定理》单元测试题(含答案)

八年级下册 数学第17章《勾股定理》单元测试题(含答案)一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直角三角形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了米.(假设绳子是直的)三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满足两小边的平方和等于最长边的平方.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直角三角形,故选:B.3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正方形的面积和勾股定理即可求解.【解答】解:设全等的直角三角形的两条直角边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG=EF=4,∴BH=16,∴在直角三角形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸【分析】画出直角三角形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101寸.故选:B.7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平方=x2+12,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长BE、CF相交于D,则EFD构成直角三角形,运用勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直角三角形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵火车在铁路MN上沿ON方向以10米/秒的速度行驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米【分析】首先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17米,得出EF=EM﹣FM=AC﹣BD=7米,求出BF=OE=5米,OF=12米,得出CM=CD﹣DM=CD﹣BF=12米,OM=OF+FM=15米,由勾股定理求出ON=OA=13米,进而求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所示:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(米)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(米),∵OE+OF=2EO+EF=17米,∴2OE=17﹣7=10(米),∴BF=OE=5米,OF=12米,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(米),OM=OF+FM=12+3=15(米),由勾股定理得:ON=OA===13(米),∴MN=OM﹣OF=15﹣13=2(米).故选:A.二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,又其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直角三角形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,一是把两边长都看作直角边,二是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三角形ABC为直角三角形,利用勾股定理列出关系式,结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为100.【分析】根据正方形的面积可得两个正方形的边长分别为13和7,再根据勾股定理可求得直角三角形的两条直角边长,进而求解.【解答】解:∵正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,∴AE=BF,∠AEB=90°,∵正方形ABCD与正方形EFCH的面积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所用细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.【分析】根据勾股定理的逆定理,△ABC是直角三角形,利用它的面积:斜边×高÷2=短边×短边÷2,就可以求出最长边的高.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是13,设斜边上的高为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9米.(假设绳子是直的)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.故答案为:9.三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直角三角形的性质解答;(2)作PF⊥AC于F,根据角平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.【分析】(1)根据全等三角形的性质和线段的和差即得结论;(2)根据大三角形的面积等于三个小三角形的面积和即可求解;(3)综合(1)和(2)的结论进行推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600米<1000米,于是得到结论;(2)根据勾股定理得到BP=BQ=800米,求得PQ=1600米,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600米<1000米,∴村庄能听到宣传;(2)如图:假设当宣讲车行驶到P点开始影响村庄,行驶QD点结束对村庄的影响,则AP=AQ=1000米,AB=600米,∴BP=BQ=米,∴PQ=1600米,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD的长度.【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣3)m,利用勾股定理可得x2=62+(x ﹣3)2.【解答】解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x﹣3)m,故x2=62+(x﹣3)2,解得:x=7.5,答:绳索AD的长度是7.5m.。

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。

人教版八年级下册数学 第十七章 勾股定理 单元测试

人教版八年级下册数学  第十七章  勾股定理  单元测试

人教版八年级下册数学第十七章 勾股定理 单元测试一.单选题(本大题共12小题,每小题3分,共36分)1.在△ABC 中,∠C =90°,AB =3,则222AB BC AC ++的值为( )A .24B .18C .12D .92.已知点M 的坐标为()3,4-,则下列说法正确的是( )A .点M 在第二象限内B .点M 到x 轴的距离为3C .点M 关于y 轴对称的点的坐标为()3,4D .点M 到原点的距离为53.如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB 竖直插到水底,此时竹竿AB 离岸边点C 处的距离0.8CD =米.竹竿高出水面的部分AD 长0.2米,如果把竹竿的顶端A 拉向岸边点C 处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD 为( )A .1.5米B .1.7米C .1.8米D .0.6米4.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .4.75 cmC .6 cmD .5cm5.《九章算术》中有一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:如图,一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?若设折断处离地面x 尺,则下面所列方程正确的是( )A .2223(1)x x +=-B .222(1)3x x +-=C .222(10)3x x +-=D .2223(10x)x +=-6.如图,x 轴、y 轴上分别有两点A(3,0)、B(0,2),以点A 为圆心,AB 为半径的弧交x 轴负半轴于点C ,则点C 的坐标为( )A .(﹣1,0)B .(20) C .3,0) D .(30)7.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE V 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .748.如图,Rt ABC 中,8,6,90AB BC B ==∠=︒,M ,N 分别是边,AC AB 上的两个动点.将ABC 沿直线MN 折叠,使得点A 的对应点D 落在BC 边的三等分点处,则线段BN 的长为( )A .3B .53C .3或53D .3或1549.△ABC 的三边长a ,b ,c(b ﹣12)2+|c ﹣13|=0,则△ABC 的面积是( )A .65B .60C .30D .2610.如图,斜靠在墙上的一根竹竿,AB =10m ,BC =6m ,若A 端沿垂直于地面的方向AC 下移2m ,则B 端将沿CB 方向移动的距离是( )米.A .1.6B .1.8C .2D .2.211.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:①20是“整弦数”;②两个“整弦数”之和一定是“整弦数”;③若c 2为“整弦数”,则c 不可能为正整数;④若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n之积为“整弦数”;⑤若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个12.如图所示,ABCD 是长方形地面,长20AB =,宽10AD =,中间整有一堵砖墙高2MN =,一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走( )A .20B .24C .25D .26二.填空题(本大题共8小题,每小题3分,共24分)13.一根直立于水中的芦节(BD )高出水面(AC )2米,一阵风吹来,芦苇的顶端D 恰好到达水面的C 处,且C 到BD 的距离AC =6米,水的深度(AB )为________米14.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.15.如图所示,在四边形ABCD 中,AB =5,BC =3,DE ⊥AC 于E ,DE =3,S △DAC =6,则∠ACB 的度数等于 _____.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了 _____步路.(假设2步为1米)17.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑥组勾股数为______.18.如图,AB ⊥BC 于点B ,AB ⊥AD 于点A ,点E 是CD 中点,若BC =5,AD =10,BE =132,则AB 的长是 _____.19.如图,Rt △ABC ≌Rt △FDE ,∠ABC =∠FDE =90°,∠BAC =30°,AC =4,将Rt△FDE 沿直线l 向右平移,连接BD 、BE ,则BD+BE 的最小值为___.20.如图所示的是我国古代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由4个全等的直角三角形与1个小正方形拼成的一个大正方形,若大正方形的边长为5,小正方形的边长为1.(1)如图1,若用a ,b 表示直角三角形的两条直角边(a<b ),则ab=______.(2)如图2,若拼成的大正方形为正方形ABCD ,中间的小正方形为正方形EFGH ,连接AC ,交BG 于点P ,交DE 于点M ,AFP CGP S S -△△=______.三.解答题(本大题共5小题,每小题8分,共40分)21.在ABC 中,90C =∠,3AC =,4CB =,CD 是斜边AB 上高.(1)求ABC 的面积;(2)求斜边AB ;(3)求高CD .22.如图,在△ABC 中,∠B =45°,∠C =30°,边AC 的垂直平分线分别交边BC 、AC 于点D 、E ,DC =6.求AB 的长.23.琪琪与婷婷进行遥控赛车游戏,终点为点A ,琪琪的赛车从点C 出发,以4米/秒的速度由西向东行驶,同时婷婷的赛车从点B 出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,40AC =米,30AB =米,(1)出发3秒钟时,遥控信号是否会产生相互干扰?(2)当两赛车距A 点的距离之和为35米时,遥控信号是否会产生相互干扰?24.先阅读下列一段文字,再解答问题:已知在平面内有两点111222(,),(,)P x y P x y ,其两点间的距离公式为12PP 同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -(1)已知点M (2,4),N (3,8),试求M ,N 两点间的距离;(2)已知点(0,6)(3,2),(3,,2)A B C -,判断线段AB ,BC ,AC 中哪两条是相等的?并说明理由.25.在平面直角坐标系xOy中,对于点A,规定点A的α变换和β变换.α变换:将点A向左平移一个单位长度,再向上平移两个单位长度;β变换:将点A向右平移三个单位长度,再向下平移一个单位长度(1)若对点B进行α变换,得到点(1,1),则对点B进行β变换后得到的点的坐标为.=,求m的值.(2)若对点C(m,0)进行α变换得到点P,对点C(m,0)进行β变换得到点Q,OP OQ(3)点D为y轴的正半轴上的一个定点,对点D进行α变换后得到点E,点F为x轴上的一个动点,对点+的最小值为D的坐标.F进行β变换之后得到点G,若DG EF。

八年级数学《勾股定理》单元测试题(B卷)

八年级数学《勾股定理》单元测试题(B卷)

八年级数学《勾股定理》单元测试题(B 卷)一.选择题(共10小题)1.已知△ABC 的三条边分别为a ,b ,c 下列条件不能判断△ABC 是直角三角形的是( ) A .∠A :∠B :∠C =3:4:5 B .a =5,b =12,c =13 C .∠A ﹣∠B =∠CD .a 2=b 2﹣c 22.以下各组数为三角形的三边,其中,能构成直角三角形的是( ) A .3k ,4k ,5k (k >0) B .32,42,52 C .13,14,15D .√3,√4,√53.已知△ABC 的三边为a 、b 、c ,下列条件不能判定△ABC 为直角三角形的是( ) A .b 2=a 2﹣c 2B .∠A =∠B +∠C C .∠A :∠B :∠C =3:4:5D .a 2:b 2:c 2=1:2:34.在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A .26B .18C .20D .215.如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为( )A .5B .25C .27D .5√26.小明从家出发向正北方向走了60m ,接着向正东方向走到离家100m 远的地方,小明向正东方向走了( ) A .60 mB .80 mC .100 mD .160 m7.如图,长方形ABCD 中,AB =3,AD =1,AB 在数轴上,若以点A 为圆心,AC 的长为半径画弧交数轴于点M ,则点M 表示的数为( )A.√5B.√5−1C.√10D.√10−18.满足下列条件的三角形中,不是直角三角形的是()A.三边长之比为3:4:5B.三内角之比为3:4:5C.三内角之比为1:2:3D.三边长的平方之比为1:2:39.“赵爽弦图”巧妙的利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形,若图中的直角三角形的长直角边是12,小正方形的面积是49,则大正方形的面积是()A.121B.144C.169D.19610.如图,在边长为1的正方形网格中,点A,B都在格点上,则线段AB的长为()A.3B.4C.5D.6二.填空题(共5小题)11.直角三角形两直角边长分别为3和4,则它斜边上的高为.12.已知直角坐标平面内两点A(6,4)和B(2,1),则线段AB的长为.13.在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,若AC=2cm,AD=52cm,则BD的长度为cm.14.如图,在△ABC中,∠C=90°,AB=15,CB=12,BD平分∠ABC,则AD的长是.15.如图,在一棵树的10米高B处,有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树的高度为米.三.解答题(共8小题)16.如图,在Rt△ABC中,∠B=90°,AB=4,BC=3,AD=CD,求CD的长.17.如图,Rt△ABC中,∠BAC=90°,∠C=30°,AD⊥BC于D,BF平分∠ABC分别与AD,AC交于点E,F.(1)求证:△AEF是等边三角形;(2)若EF=2,求CF的长.18.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B的距离为800米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入.问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.19.如图,有一架秋千,当它静止在AD的位置时,踏板离地的垂直高度为0.3米,将秋千AD往前推送BC=1.5米,到达AB的位置,此时,秋千的踏板离地的垂直高度为0.8米,秋千的绳索始终保持拉直的状态.(1)求秋千的长度;(2)如果想要踏板离地的垂直高度为1.8米时,需要将秋千AD往前推送米.20.勾股定理是人类最伟大的科学发现之一,西方国家称之为毕达哥拉斯定理.(1)请用文字语言叙述勾股定理的内容:;(2)请从下列3种常见的证明图形中任选一种来证明该定理.(下图中的图形均满足证明勾股定理所需的条件)21.为了绿化环境,我县某中学有一块空地,如图所示,学校计划在空地上种植草皮,经测量AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m.求出该空地的面积.22.某实践探究小组在放风筝时想测量风筝离地面的垂直高度,通过勘测,得到如下记录表:测量示意图测量数据边的长度①测得水平距离BC的长为15米.②根据手中剩余线的长度计算出风筝线AB的长为17米.③小明牵线放风筝的手到地面的距离为1.7米.数据处理组得到上面数据以后做了认真分析,他们发现根据勘测组的全部数据就可以计算出风筝离地面的垂直高度AD.请完成以下任务.(1)已知:如图,在Rt△ABC中,∠ACB=90°,BC=15,AB=17.求线段AD的长.(2)如果小明想要风筝沿DA方向再上升12米,BC长度不变,则他应该再放出多少米线?23.每周一我们都会举行升旗仪式,看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.。

第17章 单元测试题《勾股定理》

第17章  单元测试题《勾股定理》

八年级(下)《勾股定理》单元测试题班级 姓名一、选择题(3×10=30分)1、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )A 、4B 、8C 、10D 、122、如图中字母A 所代表的正方形的面积为( )A 、4B 、8C 、16D 、643、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( )A 、钝角三角形B 、直角三角形C 、锐角三角形D 、等腰三角形4、一直角三角形的一条直角边长是7cm ,另一条直角边与斜边长的和是49cm ,则斜边的长( )A 、18cmB 、20cmC 、24cmD 、25cm5、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( )A 、96cm 2B 、120cm 2C 、160cm 2D 、200cm 26、直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长是( )A 、120B 、121C 、132D 、123※7、适合下列条件的△ABC 中, 直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320,∠B=580;④;25,24,7===c b a ⑤.4,2,2===c b aA 、2个B 、3个C 、4个D 、5个※8、如图:有一圆柱,它的高等于cm 8,底面直径等于cm 4(3=π)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约( )A 、10cmB 、12cmC 、19mD 、20cm9、如图,等腰三角形ABC 的一腰长为13,底边长为10,则它的面积为( )A.65B.60C.120D.13010、在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( ). A 直角三角形 B 、钝角三角形 C 、等腰三角形 D 、锐角三角形二、填空题(4×8=32分)11、等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为____________。

八年级数学下册《勾股定理》单元测试卷(附答案)

八年级数学下册《勾股定理》单元测试卷(附答案)

八年级数学下册《勾股定理》单元测试卷(附答案)一、单选题1.如图,等边ABC的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt BDE△,连接AE,则AE的最小值为()A.1 B2C.2 D.2212.如图,有一个圆柱,它的高等于9cm,底面上圆的周长等于24cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.20cm3.下列各组数中,不能构成直角三角形的是( )A.a=1,b=43,c=53B.a=5,b=12,c=13 C.a=1,b=3,10D.a=1,b=1,c=24.如图,x轴、y轴上分别有两点A(3,0)、B(0,2),以点A为圆心,AB为半径的弧交x轴负半轴于点C,则点C的坐标为()A.(﹣1,0) B.(250) C.133,0) D.(313-0)5.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为m和n.若mn=32,大正方形的边长为10,则小正方形的边长为()A .2B .4C .6D .86.如图,已知ABC 中,45ABC ∠=,F 是高AD 和BE 的交点,5AC =2BD =,则线段DF 的长度为( )A .22B .2C 3D .17.如图,在△ABC 中,∠BAC =90°,BC =5,以AB ,AC 为边作正方形,这两个正方形的面积和为( )A .5B .9C .16D .258.如图所示,ABCD 是长方形地面,长20AB =,宽10AD =,中间整有一堵砖墙高2MN =,一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走( )A .20B .24C .25D .269.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7m ,梯子顶端到地面的距离AC 为2.4m .如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A D '为1.5m ,则小巷的宽为( ).A .2.4mB .2.5mC .2.6mD .2.7m10.下列四个命题中,正确的个数有( ) 33 4 和 5 之间;③Rt △ABC 中,已知两边长分别是 3 和 4,则第三条边长为 5;④在平面直角坐标系中点(2,-3)关于x 轴对称的点的坐标是(2,3);⑤16 的平方根是±4 16±4 ;⑥立方根等于它本身的数有 2 个.A .1 个B .2 个C .3 个D .4 个二、填空题11.风景秀丽的永嘉境内分布着许多国家级旅游景点,北斗卫星拍摄到永嘉小若岩风景区与埭头古村以及两条相互垂直的乡间公路的位置如图所示,A 点的坐标为()2,4,B 点的坐标为()6,1.现要在两条乡间公路上各建一个便民服务点C ,D ,形成一条便民服务通道.试求四边形ABCD 的最小周长______.12.如图,分别以等腰Rt △ACD 的边AD ,AC ,CD 为直径画半圆,AD =2,则阴影部分的面积是__________13.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.14.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.15.已知长方形ABCD 的长为5,宽为4,点E ,F 分别位于AB ,AD 上,且3AE AF ,点G 是长方形ABCD上一点,EFG 是直角三角形,则Rt EFG 的斜边长为______.三、解答题16.课间,小明拿着王老师的等腰直角三角板玩,三角板不小心掉到墙缝中.我们知道两堵墙都是与地面垂直的,如图.王老师没有批评他,但要求他完成如下两个问题:△≌△;(1)试说明ADC CEB(2)从三角板的刻度知AC=25cm,算算一块砖的厚度.(每块砖的厚度均相等)小明先将问题所给条件做了如下整理:如图,ABC中,CA=CB,∠ACB=90°,AD⊥DE于D,BE⊥DE于E.请你帮他完成上述问题.17.如图所示,长方形纸片ABCD的长AD=8cm,宽AB=4cm,将其沿着折痕EF折叠,使点D与点B重合.(1)求证:BE=BF;(2)求折叠后△BEF的面积.18.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.19.小明将一副三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.若已知3AB的长.20.我们知道,到线段两端距离相等的点在线段的垂直平分线上.由此,我们可以引入如下新定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.(1)如图1,点P 在线段BC 上,∠ABP =∠APD =∠PCD =90°,BP =CD .求证:点P 是△APD 的准外心;(2)如图2,在Rt △ABC 中,∠BAC =90°,BC =5,AB =3,△ABC 的准外心P 在△ABC 的直角边上,试求AP 的长.21.如图,在ABC 中,AD BC ⊥,垂足为D ,BD CD =,延长BC 至E ,使得CE CA =,连接AE .(1)求证:B ACB ∠=∠;(2)若5AB =,4=AD ,求ABE 的周长和面积.参考答案:1.B2.A3.D4.D5.C6.D7.D8.D9.D10.A11.8912.113.9.14.715.32252616.(1)如图:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∴∠1+∠2=90°,∵∠ACB=90°,∴∠2+∠3=180°﹣90°=90°,∵∠ADC=∠BEC=90°,∴∠1=∠3,由∠ADC=∠BEC=90°,∠1=∠3,CA=CB,∴△ADC≌△CEB;(2)设每块砖厚度为xcm,由①得,DC=BE=3xcm,AD=4xcm,∵∠ADC=90°,∴AD2+CD2=AC2,即(4x)2+(3x)2=252,解得x=5,(x=﹣5舍去),∴每块砖厚度为5cm.17.(1)由折叠的性质得:∠BEF=∠DEF,∵AD//BC,∴∠BFE=∠DEF,∴∠BFE=∠BEF,∴BE=BF;(2)设AE=x,则BE=DE=8﹣x,在Rt△ABE中,由勾股定理得:x2+42=(8﹣x)2解得,x=3,∴BE=BF=5,∴△BEF的面积=12×BF×AB=12×5×4=10.18.(1)∠BAC=75°;(2)AD219220.(1)证明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB =∠DPC ,在△ABP 和△PCD 中,PAB DPC ABP PCD BP CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△PCD (AAS ),∴AP =PD ,∴点P 是△APD 的准外心;(2)解:∵∠BAC =90°,BC =5,AB =3, ∴AC 2253-=4,当P 点在AB 上,PA =PB ,则AP 12=AB 32=; 当P 点在AC 上,PA =PC ,则AP 12=AC =2, 当P 点在AC 上,PB =PC ,如图2, 设AP =t ,则PC =PB =4﹣x ,在Rt △ABP 中,32+t 2=(4﹣t )2,解得t 78=, 即此时AP 78=, 综上所述,AP 的长为32或2或78.21.(1)证明:AD BC ⊥,90ADB ADC ∴∠=∠=︒,在ABD △和ACD 中,AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,()ABD ACD SAS ∴≅,B ACB ∴∠=∠;(2)ABD ACD ≅,5AB =, 5AB AC ∴==,CE CA =,5CE∴=,5,4,AB AD AD BC==⊥,223BD AB AD∴=-,BD CD=,3CD∴=,11,8BE BD CD CE DE CD CE∴=++==+=,2245AE AD DE∴+则ABE的周长为511451645AB BE AE++=++=+ABE的面积为1111422 22BE AD⋅=⨯⨯=.。

人教版八年级数学下《第十七章勾股定理》单元测试题(含答案)

人教版八年级数学下《第十七章勾股定理》单元测试题(含答案)

人教版八年级数学下册《第十七章勾股定理》单元测试题一.选择题(共10小题,满分40分,每小题4分)1.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169B.119C.13D.1442.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3244.如图是一个直角三角形,它的未知边的长x等于()A.13B.C.5D.5.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)6.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,77.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,98.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:159.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4B.4πC.8πD.810.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.2D.4二.填空题(共4小题,满分20分,每小题5分)11.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为.12.一个直角三角形的两条直角边长分别为3,4,则第三边为.13.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.14.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形三.解答题(共9小题,满分90分)15.在△ABC中,∠ACB=90°,AC=5,AB=BC+1,求Rt△ABC的面积.16.如图,在△ADC中,∠C=90°,AB是DC边上的中线,∠BAC=30°,若AB=6,求AD的长.17.如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B25m,结果他在水中实际划了65m,求该河流的宽度.18.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.19.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?20.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.21.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的边.(1)若b=2,c=3,求a的值;(2)若a:c=3:5,b=16,求△ABC的面积.22.如图所示,四边形ABCD ,∠A =90°,AB =3m ,BC =12m ,CD =13m ,DA =4m .(1)求证:BD ⊥CB ; (2)求四边形ABCD 的面积;(3)如图2,以A 为坐标原点,以AB 、AD 所在直线为x 轴、y 轴建立直角坐标系,点P 在y 轴上,若S△PBD=S 四边形ABCD ,求P 的坐标.23.如图,一艘轮船以30km /h 的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km /h 的途度由南向北移动,距台风中心200km 的圆形区域(包括边界)都属台风影响区.当这艘轮船接到台风警报时,它与台风中心的距离BC =500km ,此时台风中心与轮船既定航线的最近距离BA =300km . (1)如果这艘轮船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航行速度和航向不变,轮船受到台风影响一共经历了多少小时?人教版八年级数学下册《第十七章勾股定理》单元测试题参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:第三边长的平方是52+122=169.故选:A.2.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.4.【解答】解:∵x==,故选:B.5.【解答】解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.6.【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选:C.7.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.8.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.9.【解答】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.10.【解答】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S=102﹣4×24=4,△ABE∴正方形EFGH的边长=2,故选:C.二.填空题(共4小题,满分20分,每小题5分)11.【解答】解:∵点A(﹣3,4),∴它到坐标原点的距离==5,故答案为:5.12.【解答】解:由勾股定理得:第三边为:=5,故答案为:5.13.【解答】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.14.【解答】解:当第三条线段为直角边时,5cm为斜边,根据勾股定理得,第三条线段长为=4cm;当第三条线段为斜边时,根据勾股定理得,第三条线段长为=cm.故答案为4或cm.三.解答题(共9小题,满分90分)15.【解答】解:如图所示:设AB=x,则BC=x﹣1,故在Rt△ACB中,AB2=AC2+BC2,故x2=52+(x﹣1)2,解得;x=13,即AB=13.∴BC=12,∴S=•AC•BC=×5×12=30.△ABC16.【解答】解:在Rt△ABC中,∠C=90°,∠BAC=30°,AB=6,∴BC=AB=3,在Rt△ABC中,AC==3,∵AB是DC边上的中线,∴DB=BC=3,所以CD=6,在Rt△ACD中,AD===3.答:AD的长是317.【解答】解:根据图中数据,由勾股定理可得:AB===60(米).∴该河流的宽度为60米.18.【解答】解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.19.【解答】解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21﹣x)cm,依题意有x2+(21﹣x)2=152,解得x1=9,x2=12.故运动9秒或12秒时,它们相距15cm.20.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°.在Rt△ABD中,∠ADB=90°,AB=10,BD=8,∴AD==6.(2)∵AD⊥BC,∠ACD=45°,∴△ACD为等腰直角三角形,又∵AD=6,∴CD=6,AC=6,=AB+BD+CD+AC=24+6.∴C△ABC21.【解答】解:(1)∵△ABC中,∠C=90°,b=2,c=3,∴a==;(2)∵a:c=3:5,∴设a=3x,c=5x,∵b=16,∴9x2+162=25x2,解得:x=4,∴a=12,∴△ABC的面积=×12×16=96.22.【解答】(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC =12m ,CD =13m , ∴BD 2+BC 2=CD 2. ∴BD ⊥CB ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=×3×4+×12×5 =6+30 =36(m 2).故这块土地的面积是36m 2;(3)∵S △PBD =S 四边形ABCD ,∴•PD •AB =×36,∴•PD ×3=9, ∴PD =6,∵D (0,4),点P 在y 轴上, ∴P 的坐标为(0,﹣2)或(0,10).23.【解答】解:(1)根据题意得:轮船不改变航向,轮船会进入台风影响区; (2)如图所示:设x 小时后,就进入台风影响区,根据题意得出: CE =30x 千米,BB ′=20x 千米, ∵BC =500km ,AB =300km ,∴AC ===400(km ),∴AE =400﹣30x ,AB ′=300﹣20x , ∴AE 2+AB ′2=EB ′2,即(400﹣30x )2+(300﹣20x )2=2002,解得:x 1=≈8.3,x 2=≈19.3,∴轮船经8.3小时就进入台风影响区;(3)由(2)知,从8.3小时到19.3小时轮船受到台风影响, ∴轮船受台风影响的时间=19.3﹣8.3=11(小时),答:轮船受到台风影响一共经历了11小时.。

八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)

八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)

八年级数学下册《第十七章勾股定理》单元测试卷及答案(人教版)一、单选题1.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52 =(x+1)2B.x2+52 =(x﹣1)2C.x2+(x+1)2 =102D.x2+(x﹣1)2=522.如图,Rt△ABC中,∠BAC=90°,AB=AC,D、E为BC边上两点,∠DAE=45°,过A 点作AF⊥AE,且AF=AE,连接DF、BF.下列结论:①△ABF≌△ACE,②AD平分∠EDF;③若BD=4,CE=3,则AB=6√2;④若AB=BE,S△ABD=12S△ADE,其中正确的个数有()A.1个B.2个C.3个D.4个3.在△ABC中,AB=10,AC=17,BC边上的高AD=8,则△ABC的面积为()A.72B.84C.36或84D.72或844.如图,在△ABC中,△C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.55.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为8m,则BB′的长为()A.1m B.2m C.3m D.4m6.有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.1B.2020C.2021D.20227.如图,直线l上有三个正方形A、B、C,若正方形A、C的边长分别为4和6,则正方形B的面积为()A.26B.49C.52D.648.要焊接一个如图所示的钢架,需要的钢材长度是()A.(3√5+7)m B.(5√3+7)m C.(7√5+3)m D.(3√7+5)m9.如图,某超市为了吸引顾客,在超市门口离地高4.5m的墙上,装有一个由传感器控制的门铃A,如①图所示,人只要移至该门铃5m及5m以内时,门铃就会自动发出语音“欢迎光临”.如②图所示,一个身高1.5m的学生走到D处,门铃恰好自动响起,则BD的长为()A.3米B.4米C.5米D.7米10.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC 绕点B逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2+1C.1﹣√2D.﹣√2二、填空题11.如图,在△ABC中,∠A=90°,AB=AC,点D为AB中点,过点B作BE⊥CD交CD的延长线于点E,BE=2,CD=5,则DE=.12.如图,在Rt△ABC中,AB=BC=4,以AB为边作等边三角形ABD,使点D与点C在AB同侧,连接CD,则CD=.13.如图,已知Rt△ABC,△C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是。

人教版八年级数学下册第十七章《勾股定理》单元同步检测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元同步检测试题(含答案)

第十七章《勾股定理》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:(每题3分,共30分)1.下列各组数中,是勾股数的是()A.9,40,41 B.2,2,2 C.5,4,41D.3,2,52.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为203.在三边分别为下列长度的三角形中,不是直角三角形的是()A.6,8,10 B.1,2,3C.2,3,5D.4,5,74.如图,在数轴上点A,B所表示的数分别为-1,1,CB⊥AB,BC=1,以点A为圆心,AC长为半径画弧,交数轴于点D(点D在点B的右侧),则点D所表示的数是()A.5B.51-C.2D.25-5.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.4 B.3 C.2 D.56. 如图,在正方形网格中,每个正方形的边长为1,则在△ABC 中,边长为无理数的边数是( )A .0 B.1 C .2 D.37.如图,数轴上的点A 表示的数是1,OB ⊥OA ,垂足为O ,且BO=1,以点A 为圆心,AB 为半径画弧交数轴于点C ,则C 点表示的数为( )A .﹣0.4B .﹣2C .1﹣2D .2﹣18.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以20米/秒的速度行驶时,A 处受噪音影响的时间为( )A .16秒B .18秒C .20秒D .22秒9.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形10.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .4二、填空题:(每题3分,共30分)11.如图,O 为数轴原点,数轴上点A 表示的数是3,AB ⊥OA ,线段AB 长为2,以O 为圆心,OB 为半径画弧交数轴于点C .则数轴上表示点C 的数为_________.12.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.13.已知△ABC 的三边长分别为1,3,10,则△ABC 的面积为_____. 14.如图,已知Rt ABC 中,90ABC ∠=︒,5AB =,12BC =,点D 在AC 上,ABD △是等腰三角形且AB BD ≠,则AD =__________.15.所谓的勾股数就是使等式222a b c +=成立的任何三个正整数.我国清代数学家罗士林钻研出一种求勾股数的方法,对于任意正整数m ,n(m >n),取a =22m n -,b =2mn ,c =22m n +,则a ,b ,c 就是一组勾股数.请你结合这种方法,写出85(三个数中最大),84和________组成一组勾股数.16.如图,一架梯子AB 长2.5m ,顶端A 靠墙AC 上,这时梯子下端B 与墙角C 距离为1.5m ,梯子滑动后停在DE 的位置上,测得BD 长为0.5m ,则梯子顶端A 下落了_______m.17.有一个棱长为1m且封闭的正方形体纸箱,一只蚂蚁沿纸箱表面从顶点A爬到顶点B,那么这只蚂蚁爬行的最短路程是 m.18.如图,已知矩形ABCD中,AB=4,AD=3,P是以CD为直径半圆上的一个动点,连接BP,则BP最大值是.19.如图,正方形的边长均为1,可以计算出,图(1)中正方形的对角线长为2;图(2)中长方形的对角线长为5;图(3)中长方形对角线的长为10,那么第n个长方形的对角线的长为_____.20.有一块田地的形状和尺寸如图,则它的面积为_________.三、解答题:(共60分)21.(10分)A,B两个居民楼在公路同侧,它们离公路的距离分别为AE=200米,BF =70米,它们的水平距离EF =390米.现欲在公路旁建一个超市P ,使超市到两居民楼的距离相等,则超市应建何处?为什么?22.(10分)已知某实验中学有一块四边形的空地ABCD ,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m ,BD=12m ,CB=13m ,DA=4m ,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?23.(10分)如图,ABC 中,10,8,6AB cm AC cm BC cm ===,若点P 从点A 出发,以每秒2cm 的速度沿折线A C B A ---运动一周,设运动时间为t 秒()0t >.问:当t 为何值时,PA PB =?24. (10分)如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m.假设拖拉机行驶时,周围100m 以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?25. (10分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.26. (10分)如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.参考答案一、选择题:1.A2.A3.D4.B5.A6.D7.C8.A9.C10.C二、填空题:11.13 12.213.3 214.5或13 215. 答案:1316.答案为:0.517.18.答案为:+2.1921n.20.96.三、解答题21.超市应建在距离E处150米的位置. 22.学校需要投入10800元买草坪23.t=258或19224.解:作AB⊥MN,垂足为B。

人教版八年级数学下册第17章《勾股定理》单元测试卷 (word版,含解析)

人教版八年级数学下册第17章《勾股定理》单元测试卷  (word版,含解析)

人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)1.下列四组数据,不是勾股数的是()A.3,4,5 B.5,6,7 C.6,8,10 D.9,40,41 2.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,BE平分∠ABC,CD⊥AB于D,BE 与CD相交于F,则CF的长是()A.1 B.C.D.23.等腰三角形的周长为36,其底边上的高为6,则其面积为()A.216 B.96 C.48 D.324.下列命题中真命题的个数()(1)已知直角三角形面积为4,两直角边的比为1:2,则它的斜边为5;(2)直角三角形的最大边长为26,最短边长为10,则另一边长为24;(3)在直角三角形中,两条直角边长为n2﹣1和2n,则斜边长为n2+1;(4)等腰三角形面积为12,底边上的底为4,则腰长为5.A.1个B.2个C.3个D.4个5.已知锐角△ABC的三边长恰为三个连续整数,AB>BC>CA,若边BC上的高为AD,则BD ﹣DC=()A.3 B.4 C.5 D.66.已知直角三角形的周长是2+,斜边是2,则该三角形的面积是()A.B.C.D.17.已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对8.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB =3,AE=4,则BC+AC的长是()A.7 B.8 C.D.9.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.510.已知一个直角三角形的三边的平方和为1800cm2,则斜边长为()A.30 cm B.80 cm C.90 cm D.120 cm11.如图,△ABC三条边AC=20cm,BC=15cm,AB=25cm,CD⊥AB,则CD=cm.12.如图,已知CD=3,AD=4,∠ADC=90°,BC=12,AB=13.则图中阴影部分的面积=.13.如图,在Rt△ABC中,∠B=90°,AC的垂直平分线DE分别交AB,AC于D,E两点,若AB=4,BC=3,则CD的长为.14.如图所示,△ABC的顶点A、B、C在边长均为1的正方形网格的格点上,BD⊥AC于D,则BD的长=.15.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则△ABC的面积为.16.已知△ABC是边长为6的等边三角形,点E在直线AB上,AB=AE,在直线BC上取点D,若ED=EC,则CD的长为.17.如图△ABC中,∠D=90°,C是BD上一点,已知CB=9,AB=17,AC=10,则DC的长是,AD=.18.如图,在四边形ABCD中,AD∥BC,∠B=60°,E为AB的中点,EC⊥AB,若AD=2,AB =6.则CD的长度为.19.在平面直角坐标系中,已知A(﹣3,0),B(0,4),C(1,m),当△ABC是直角三角形时,m的值为.20.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,若AC=3cm,AB=5cm,则DE=cm.21.如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.22.如图,在Rt△ABC中,∠ABC=90°,AB=20,BC=15,点D为AC边上的动点,点D 从点C出发,沿边CA往A运动,当运动点A时停止,若设点D运动的时间为t秒,点D 运动的速度为每秒2个单位长度.(1)当t=2时,CD=,AD=;(请直接写出答案)(2)当t=时,△CBD是直角三角形;(请直接写出答案)(3)求当t为何值时,△CBD是等腰三角形?并说明理由.23.已知△ABC中,AB=AC,CD⊥AB于点D.(1)若∠A=36°,求∠DCB的度数;(2)若AB=10,CD=6,求BC的长.24.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?25.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)若每平方米草皮需要200元,问要多少投入?(2)若BE⊥DC,垂足为E,求BE的长.26.如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.(1)求△ABC的面积;(2)通过计算判断△ABC的形状;.(3)求AB边上的高.27.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B →C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长;(2)当t为几秒时,BP平分∠ABC;(3)问t为何值时,△BCP为等腰三角形?参考答案1.解:A、因为32+42=52,属于勾股数;B、因为52+62≠72,不属于勾股数;C、因为62+82=102,属于勾股数;D、因为92+402=412,属于勾股数;故选:B.2.解:过点E作EG⊥AB于点G,如图:∵CD⊥AB于D,∴EG∥CD,∴∠GEB=∠EFC,∵在Rt△ABC中,∠ACB=90°,∴EC⊥CB,又∵BE平分∠ABC,EG⊥AB,∴EG=EC.在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5.在Rt△EBC和Rt△EBG中,,∴Rt△EBC≌Rt△EBG(HL),∠CEB=∠GEB,BG=BC=4,∴∠CEB=∠EFC,AG=AB﹣BG=5﹣4=1,∴CF=CE.设CF=EG=EC=x,则AE=3﹣x,在Rt△AEG中,由勾股定理得:(3﹣x)2=x2+12,解得x=∴CF的长是.故选:B.3.解:设等腰三角形的腰长是x,根据周长可以表示出其底边是(36﹣2x).根据等腰三角形的三线合一,得底边的一半是(18﹣x),根据勾股定理得:x2=62+(18﹣x)2,解得:x=10,则底边=36﹣2x=16,根据三角形的面积公式即可计算:×6×16=48.故选:C.4.解:(1)设两直角边的长分别为x,2x,∵x•2x=4,解得x=2,∴直角三角形两直角边的长分别为2,4,∴斜边长==2,故本小题错误;(2)∵直角三角形的最大边长为26,最短边长为10,∴另一边长==24,故本小题正确;(3)∵在直角三角形中,两条直角边长为n2﹣1和2n,∴斜边长==n2+1,故本小题正确;(4)设等腰三角形底边上的高为h,∵等腰三角形面积为12,底边上的底为4,∴×4h=12,解得h=6,∴腰长==2,故本小题错误.故选:B.5.解:设BC=n,则有AB=n+1,AC=n﹣1,因为AB2﹣BD2=AC2﹣CD2,所以(n+1)2﹣(n﹣1)2=(BD﹣CD)n,所以BD﹣CD=4,故选:B.6.解:设直角三角形的两直角边分别为a、b(a>b),则满足,解得2ab=2,则ab=1,所以这个三角形的面积为S=ab=.故选:C.7.解:在直角三角形ABD中,根据勾股定理,得BD=15;在直角三角形ACD中,根据勾股定理,得CD=6.当AD在三角形的内部时,BC=15+6=21;当AD在三角形的外部时,BC=15﹣6=9.则BC的长是21或9.故选:D.8.解:∵AD⊥BC,CE⊥AB,∠AHE=∠CHD,∴∠EAH=∠ECB,又EH=EB,∴△AEH≌△CEB.∴BC=AH=5,EC=AE=4,∴AC=4,∴BC+AC=5+4.故选:C.9.解:过A点作AF⊥BC于F,连接AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.10.解:设直角三角形的两直角边分别为acm,bcm,斜边为ccm,根据勾股定理得:a2+b2=c2,∵a2+b2+c2=1800,∴2c2=1800,即c2=900,则c=30cm.故选:A.11.解:∵202+152=252,∵AC2+BC2=AB2,∴△ACB是直角三角形,∵S△ACB=AC•BC=AB•CD,∴AC•BC=AB•CD,20×15=25•CD,CD=12.故答案为:12.12.解:由勾股定理可知:AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形故所求面积=S△ABC﹣S△ACD=×5×12﹣×3×4=30﹣6=24,故答案为:24.13.解:∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4﹣x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4﹣x)2,解得x=.故答案为:.14.解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=.故答案为:.15.解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.∴△ABC的面积=AC•BC=+1;故答案为:+1.16.解:分两种情况:①当点E在BA延长线上时,过点E作EF⊥BC于F,则Rt△BEF中,∠BEF=30°,∵AB=AE=6,∴AE=4,∴BF=BE=(4+6)=5,∵BC=6,∴CF=6﹣5=1,∵ED=EC,EF⊥CD,∴CD=2CF=2;②当点E在线段AB上时,过E作EF⊥BC于F,则Rt△BEF中,∠BEF=30°,∴BF=BE=(AB﹣AE)=1,∵BC=6,∴CF=6﹣1=5,∵ED=EC,EF⊥CD,∴CD=2CF=10.综上所述,CD的长为2或10.故答案为:2或10.17.解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得:x=6,即CD=6,∴AD2=102﹣62=64,∴AD=8.故答案为:6,8.18.解:过A点作AF⊥BC于F,过D点作DG⊥BC于G,则四边形AFGD是矩形,∵在Rt△AFB中,∠B=60°,AB=6,∴∠BAF=30°,∴BF=×6=3,∴AF==3,∴DG=3,∵AD=2,∴FG=2,∴CG=BC﹣BF﹣FG=1,∴在Rt△CGD中,CD==2.故答案为:2.19.解:①A是直角顶点,(﹣3﹣0)2+(0﹣4)2+(﹣3﹣1)2+(0﹣m)2=(0﹣1)2+(m﹣4)2,解得m=﹣3;②B是直角顶点,(﹣3﹣0)2+(0﹣4)2+(0﹣1)2+(m﹣4)2=(﹣3﹣1)2+(0﹣m)2,解得m=;③C是直角顶点,(﹣3﹣1)2+(0﹣m)2+(0﹣1)2+(m﹣4)2=(﹣3﹣0)2+(0﹣4)2,解得m=2.故当△ABC是直角三角形时,m的值为﹣3或或2.故答案为:﹣3或或2.20.解:∵∠ACB=90°,AC=3cm,AB=5cm,∴BC==4,∴Rt△ABC的面积为:×3×4=6,∵AD平分∠BAC,DE⊥AB,∠ACB=90°,∴DE=DC,∴×AC×CD+×AB×DE=6,解得,DE=cm,故答案为:.21.解:(1)∵AB=AD=8cm,∠A=60°,∴△ABD是等边三角形,∵∠ADC=150°∴∠BDC=150°﹣60°=90°;(2)∵△ABD为正三角形,AB=8cm,∴其面积为××AB×AD=16,∵BC+CD=32﹣8﹣8=16,且BD=8,BD2+CD2=BC2,解得BC=10,CD=6,∴直角△BCD的面积=×6×8=24,故四边形ABCD的面积为24+16.22.解:(1)t=2时,CD=2×2=4,∵∠ABC=90°,AB=20,BC=15,AD=AC﹣CD=25﹣4=21;(2)①∠CDB=90°时,S△ABC=AC•BD=AB•BC,即×25•BD=×20×15,解得BD=12,所以CD===9,t=9÷2=4.5(秒);②∠CBD=90°时,点D和点A重合,t=25÷2=12.5(秒),综上所述,t=4.5或12.5秒;故答案为:(1)4,21;(2)4.5或12.5秒;(3)①CD=BD时,如图1,过点D作DE⊥BC于E,则CE=BE,CD=AD=AC=×25=12.5,t=12.5÷2=6.25;②CD=BC时,CD=15,t=15÷2=7.5;③BD=BC时,如图2,过点B作BF⊥AC于F,则CF=9,CD=2CF=9×2=18,t=18÷2=9,综上所述,t=6.25或7.5或9秒时,△CBD是等腰三角形.23.解:(1)在△ABC中,∵AB=AC,∠A=36°,∵CD⊥AB于点D,∴∠DCB=90°﹣72°=18°;(2)∵△ABC中,AB=AC,CD⊥AB于点D,AB=10,CD=6,∴AC=AB=10.设BD=x,则AD=10﹣x,在Rt△ACD中,∵AC2=CD2+AD2,即102=62+(10﹣x)2,解得x=2.在Rt△BCD中,∵BC2=CD2+BD2,即BC2=62+22=40,∴BC==2.24.解:(1)根据勾股定理:梯子距离地面的高度为:=24米;(2)梯子下滑了4米,即梯子距离地面的高度为A'B=AB﹣AA′=24﹣4=20,根据勾股定理得:25=,解得CC′=8.即梯子的底端在水平方向滑动了8米.25.(1)解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,即∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).(2)作BE⊥CD,垂足为E,在Rt△DBC中,由于BD•BC=CD•BE,即BE==.26.解:(1)△ABC的面积=4×4﹣×4×2﹣×2×1﹣×3×4=5;(2)由勾股定理得:AC2=42+22=20,BC2=22+12=5,AB2=32+42=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(3)∵AC==2,BC=,△ABC是直角三角形,∴AB边上的高===2.27.解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴有勾股定理得AC=8cm,动点P从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm∴出发2秒后,则CP=2cm,那么AP=6cm.∵∠C=90°,∴由勾股定理得PB=2cm∴△ABP的周长为:AP+PB+AB=6+10+2=(16+2)cm;(2)如图2所示,过点P作PD⊥AB于点D,∵BP平分∠ABC,∴PD=PC.在Rt△BPD与Rt△BPC中,,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.设PC=x cm,则PA=(8﹣x)cm在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,AP平分∠CAB;(3)若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有两种情况:①若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC ∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴t=6s或13s或12s或 10.8s时△BCP为等腰三角形.。

人教版八年级数学下册第十八章勾股定理测试【精品4套】

人教版八年级数学下册第十八章勾股定理测试【精品4套】

勾股定理测试卷(1)一、选择题(每题2分,共30分)1.观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组A .1 B. 2 C. 3 D. 4 2.下列说法中, 不正确的是 ( )A . 三边长度之比为5:12:13的三角形是直角三角形 B. 三个角的度数之比为1:3:4的三角形是直角三角形 C. 三个角的度数之比为3:4:5的三角形是直角三角形 D. 三边长度之比为3:4:5的三角形是直角三角形3.如图,在水塔O 的东北方向32m 处有一抽水站A ,在水塔的东南方向24m 处有一建筑工地.B ,在AB 间建一条直水管,则水管的长为( ) A .40cm B .45cm C .50cm D .56cm西南北东4.如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30ο夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米5.ABC ∆中,90B ο∠=,两直角边7,24AB BC ==,三角形内有一点P 到各边的距离相等,30°则这个距离是( )A .1B .3C .4D .56.已知一直角三角形的木板,三边的平方和为21800cm ,则斜边长为( ). A .80cm B .30cm C .90cm D .120cm.7.若三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A .12 cm B. 10 cm C. 8 cm D. 6 cm 8.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或79.如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A .12米 B. 13米 C. 14米 D. 15米10.在直角三角形中,斜边与较小直角边的和.差分别为8,2,则较长直角边长为( ) A .5 B .4 C .3 D .211.ABC ∆的三条边长分别是a b c ,,,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 12.如图,正方形网格中的ABC ∆,若小方格边长为1,则ABC ∆是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对CBA13.如图,小方格都是面积为1的矩形,则图中四边形的面积是 ( ) A .25 B. 12.5 C. 9 D. 8.514.一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.B15.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2m; B. 2.5m; C. 2.25m; D. 3m.二、填空题(每空3分,共30分)16.已知,如图中字母B.M分别代表的正方形的面积分别为__________.___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年八年级下《勾股定理》单元测试题
一、选择题:
1.
下列长度的 3 条线段能构成直角三角形的是()
①8, 15,17;② 4, 5, 6;③ 7.5 , 4, 8.5 ;④ 24, 25,7;⑤ 5,8, 17.
A. ①②④
B. ②④⑤
C. ①③⑤
D. ①③④
2.
在△ ABC中 , ∠ A, ∠ B, ∠ C的对边分别记为a,b,c,下列结论中不正确的是()
A.如果∠ A﹣∠ B=∠ C,那么△ ABC是直角三角形
B.如果 a2=b2﹣ c2,那么△ ABC是直角三角形且∠ C=90°
C.如果∠ A:∠ B:∠ C=1: 3: 2,那么△ ABC是直角三角形
D.如果 a2: b2: c2=9: 16: 25,那么△ ABC是直角三角形
3.
2 2
等于()如图 , 在△ ABC中, CE平分∠ ACB,CF 平分∠ ACD,且 EF∥ BC交 AC于 M,若 CM=5,则
CE+CF
A.75
B.100
C.120
D.125
4.
若一个三角形的三边长分别为6、 8、 10,则这个三角形最长边上的中线长为()
A.3.6
B.4
C.4.8
D.5
5.
三角形的三边长a, b, c 满足 2ab=(a+b) 2﹣ c2,则此三角形是()
A.钝角三角形
B.锐角三角形
C.直角三角形
D.等边三角形
6.
在△ ABC中 , ∠ A, ∠ B, ∠ C的对边分别为a, b, c,且 (a+b)(a ﹣ b)=c 2,则 ()
A. ∠ A 为直角
B.∠C为直角
C.∠ B为直角
D.不是直角三角形
7.
直角三角形有一条直角边为6, 另两条边长是连续偶数, 则该三角形周长为()
A.20
B.22
C.24
D.26
8.
如图,在一个高为 3 米,长为 5 米的楼梯表面铺地毯,则地毯长度为()米
A.4米
B.5米
C.7米
D.8米
9.
在一个直角三角形中, 若斜边的长是13, 一条直角边的长为12, 那么这个直角三角形的面积是( )
A.30
B.40
C.50
D.60
10.
如图所示,一场暴雨过后,垂直于地面的一棵树在距地面 1 米处折断,树尖B恰好碰到地面,经测量AB=2米,
则树高为()
A.米
B.米
C.(+1) 米
D.3米
11.
如图,在一个由4× 4 个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()
A.3 :4
B.5:8
C.9:16
D.1:2
12.
如图,在△ ABC中,∠ ACB=90°, AC=40, CB=9,点 M,N 在 AB上,且 AM=AC, BN=BC,则 MN的长为()A.6 B.7 C.8 D.9
二、填空题:
13.
已知直角三角形两直角边的长分别为3cm, 4cm,第三边上的高为 __________.
14.
三边为 9、 12、 15 的三角形,其面积为.
15.
一个直角三角形的周长为60,一条直角边和斜边的长度之比为4:5,这个直角三角形三边长从小到大分别为
_______ .
16.
如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅
仅少走了步路(假设 2 步为 1 米),却踩伤了花草.
17.
如图 , 在 Rt △ ABC中 , ∠ B=90° ,AB=3,BC=4, 将△ ABC折叠 , 使点 B 恰好落在边AC上, 与点 B′重合 ,AE 为折痕,
则 EB=.
18.
在△ ABC中 ,AB=13,AC=20,BC 边上的高为12, 则△ ABC的面积为.
三、解答题:
19.
在 Rt △ABC中 , ∠C=90° , ∠ A、∠ B、∠ C的对边分别为 a、 b、 c.
(1)若 a:b=3:4,c=75cm, 求 a、 b;
(2)若 a:c = 15:17,b=24, 求△ ABC的面积;
(3)若 c-a=4,b=16 ,求 a、 c;
(4)若∠ A=30° ,c=24, 求 c边上的高 h c;
(5)若 a、b、 c为连续整数,求 a+ b+c.
20.
如图 , ∠ B=∠ OAF=90° ,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.
21.
如图 , 已知四边形 ABCD中 , ∠ B=90° ,AB=3,BC=4,CD=12,AD=13, 求四边形 ABCD的面积 .
22.
已知在△ ABC中 ,a=m2-n 2,b=2mn,c=m2+ n2, 其中 m,n 是正整数 , 且 m>n.试判断 : △ABC是否为直角三角形?
23.
如图,△ ABC中, AB=BC,BE⊥ AC于点 E, AD⊥ BC于点 D,∠ BAD=45°, AD与 BE交于点 F,连接 CF.(1)求证: BF=2AE;( 2)若 CD= ,求 AD的长.
24.
如图, C为线段 BD上一动点,分别过点B、 D作 AB BD, ED BD,连结 AC、 EC,已知线段 AB=5, DE=1, BD=8,设CD=x
(1)用含 x的代数式表示 AC+CE的长;
(2)请问点 C满足什么条件时, AC+CE最小?最小为多少?
( 3)根据( 2)中的规律和结论,请构图求代数式的最小值.
1.D
2.B
3.B
4.D
5.C
6.A
7.C
8.C
9.A
10.C
11.B
12.C
13.答案为: 2.4cm;
14.36
15.答案为: 15, 20, 25;
16.答案为:少走了 4 步 .
17.答案为: 1.5
18.答案为: 126 或 66.
19. (1)a=45cm . B=60cm; (2)540 ; (3)a=30 , c=34; (4)6 ; (5)12 .
20. 解:如图,∵在直角△ABO中,∠ B=90°, BO=3cm, AB=4cm,∴ AO==5cm.
则在直角△AFO中,由勾股定理得到:FO= =13cm,
∴图中半圆的面积= π ×() 2= π ×= ( cm2).
答:图中半圆的面积是cm2.
21.
2 2 2 2
22. ∵ a=m-n , b=2mn, c=m+n ,
2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 ∴ a +b =(m -n ) +4mn =m+n -2m n +4mn =m4+n4+2mn =(m +n ) =c
.∴△ ABC是为直角三角形.
23.
24.。

相关文档
最新文档