数学分析中求极限的方法总结

合集下载

极限求解方法总结

极限求解方法总结

千里之行,始于足下。

极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。

在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。

本文将对极限求解的方法进行总结与归纳。

1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。

常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。

- 函数极限:幂函数、指数函数、对数函数、三角函数等。

2. 替换法:替换法是求解极限问题时常用的一种方法。

通过将极限问题中的变量进行替换,使得计算变得更加简洁。

常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。

3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。

通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。

常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。

4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。

施瓦茨不等式是求解极限问题中常用的一种方法。

它可以用来估量两个函数的内积,从而得到某些函数的极限。

施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。

常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。

求极限的方法

求极限的方法

求极限的方法求极限是数学分析中的一种重要方法,用于研究数列和函数在某一点或无穷远处的性质。

极限的概念是分析学中涉及面最广、最重要的一类问题之一。

求极限的方法有很多种,常见的有直接代入法、夹逼定理、基本初等函数性质、洛必达法则等。

下面将从这些方法入手,进行详细阐述。

首先,直接代入法是求极限最简单直接的一种方法。

当函数在极限点处连续时,我们可以直接将极限点代入函数,得到极限的值。

例如,对于函数f(x)=x+1,当x趋近于2时,我们可以直接代入x=2,得到极限的值为f(2)=2+1=3。

同时,在使用直接代入法时要注意避免出现未定义的情况,如分母为0的情况。

其次,夹逼定理也是一种常用的求极限的方法。

夹逼定理是指当一个数列或函数的值始终夹在两个已知数列或函数之间,并且这两个数列或函数的极限相等时,该数列或函数的极限也等于这个共同的极限。

这种方法常用于求无穷小量的极限。

例如,对于数列an=1/n,我们可以通过夹逼定理将其夹在0和1之间,从而求得其极限为0。

第三,基本初等函数性质是求极限时经常用到的工具。

基本初等函数的性质有连续性、有界性、单调性等,这些性质对于求极限时有较大帮助。

例如,当x趋近于无穷时,指数函数的极限必定是无穷大,对数函数的极限必定是无穷小。

最后,洛必达法则是一种常用的求极限的方法,尤其适用于求函数之间的极限。

洛必达法则可以将一个函数的极限转化为求该函数的导数的极限。

具体来说,当函数的极限形式是0/0或无穷/无穷时,我们可以计算函数的导数,并再次求极限。

通过多次应用洛必达法则,可以解决一些较为复杂的极限问题。

总结起来,求极限的方法有很多种,适用于不同类型的函数和数列。

除了前面提到的直接代入法、夹逼定理、基本初等函数性质和洛必达法则之外,还有级数展开法、泰勒展开法等等。

在实际求极限的过程中,我们可以根据具体的问题和函数特点选择合适的方法来求解。

掌握这些方法,对于理解函数和数列的性质,解决一些数学问题都极为有帮助。

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求函数的极限值的方法总结

求函数的极限值的方法总结

求函数的极限值的方法总结在数学中,函数的极限值是指函数在某一特定区间上取得的最大值或最小值。

求解函数的极限值是数学分析中经常遇到的问题之一,下面将总结一些常用的方法来求解函数的极限值。

一、导数法对于给定的函数,可以通过求导数来判断函数在某一点附近的单调性和极值情况。

导数表示了函数在某一点处的变化率,通过求导数可以获得函数的驻点(导数为零的点)以及极值点。

一般来说,当函数从单调递增变为单调递减时,即导数由正变负,函数的极大值出现;当函数从单调递减变为单调递增时,即导数由负变正,函数的极小值出现。

所以,通过求导数可以找到函数的极值点,然后通过比较极值点和边界点的函数值,即可确定函数的极限值。

二、二阶导数法在某些特殊情况下,求函数的二阶导数可以提供更加准确的信息来确定函数的极限值。

当函数的二阶导数恒为正时,表示函数处于凸型,此时函数可能有极小值但没有极大值;当函数的二阶导数恒为负时,表示函数处于凹型,此时函数可能有极大值但没有极小值。

通过对二阶导数进行符号判断,可以帮助确定函数的极限值。

三、极限值存在性判定对于一些特殊的函数,通过判定函数的极限值是否存在可以快速确定函数的极限值。

当函数在某一区间上连续且存在最大最小值时,函数的极限值也会存在。

因此,可以通过求解函数在区间端点的函数值,并比较这些函数值来确定函数的极限值。

四、拉格朗日乘数法拉格朗日乘数法是一种通过引入约束条件来求解极值的方法,特别适用于求解带有约束条件的函数的极值。

通过构造拉格朗日函数,将原始问题转化为无约束的极值问题,然后通过求解极值问题来确定函数的极限值。

五、切线法切线法是一种直观而有效的求解函数极值的方法。

通过观察函数图像,在极值附近找到一条切线,使得切线与函数图像的接触点的函数值最大或最小。

通过近似切线与函数图像的接触点,可以获得函数的极值的近似值。

六、数值法数值法是一种通过计算机进行数值逼近的方法来求解函数的极限值。

通过将函数离散化,并在离散点上进行计算,可以得到函数在这些离散点上的函数值,然后通过比较这些函数值来确定函数的极限值。

极限求值方法总结

极限求值方法总结

极限求值方法总结极限是数学中一个重要的概念,也是数学分析的核心内容之一、在数学中,极限表示函数在特定点处的趋近情况,是函数性质的基础。

极限求值方法是一种通过运算和推理来确定极限值的技巧和策略,可以简化复杂的极限计算过程。

在极限求值过程中,常用的方法有以下几种:1.代数化简法:通过将含有极限的表达式进行代数化简,使其变得简单易计算。

例如,将分子和分母同时除以最高次幂的次数,或运用因式分解、化简等代数技巧进行化简。

2.夹逼定理:当要求函数f(x)在特定点a处的极限时,通过找到另外两个函数g(x)和h(x),并满足g(x) ≤ f(x) ≤ h(x),同时lim[g(x)]=lim[h(x)]=L(L为常数)时,可以利用夹逼定理得出f(x)的极限也为L。

3.分子有理化法:当极限中存在分母中有根号的情况时,可以通过有理化的方式将分母进行化简。

常见的有理化方式有平方差公式、差平方和公式、三角恒等式等,将根式形式转换为有理式,以便更好地求解。

4.变量代换法:当要求一些变量的极限时,通过变量代换可以使问题变得简单。

常见的变量代换方法有三角代换、对数代换、指数代换等。

通过合适的变量代换,可以使极限过程中的运算简化,并更容易求解。

5.洛必达法则:当计算极限时,通过洛必达法则可以求解一些不定型的极限。

当计算极限时遇到不定型0/0或者∞/∞时,可以对分子和分母同时求导,然后取极限,利用洛必达法则将原极限转化为可求解的形式。

6.级数展开法:对于一些复杂的函数或表达式,可以利用级数展开的方法进行近似求解。

例如,将函数展开为幂级数、泰勒级数等,然后通过截断级数来逼近函数的值,从而求得极限。

7.递推法:对于一些递推数列,可以通过递推的方式求解极限。

通过找出数列中的递推关系式,并利用极限的性质,可以得到递推数列的极限。

除了以上几种常用的极限求值方法,还有许多其他特殊的技巧和策略,根据不同的问题和情况可以选择合适的方法。

在求解极限过程中,一些数学技巧和推理能力的培养也是十分重要的。

求极限的计算方法总结

求极限的计算方法总结

千里之行,始于足下。

求极限的计算方法总结极限是数学中重要的概念,它描述了函数在某一点无限接近于某个值的性质。

计算极限是数学分析中的基础内容,对于解决数学问题和理解函数的行为至关重要。

下面将总结一些计算极限的常见方法。

1.代入法:当极限的表达式中存在某个点的函数值不存在时,可以通过代入法来计算极限。

代入法即将极限的定义中与某些点不全都的部分进行代入,然后计算出相应的极限值。

2.分子分母有理化:当极限表达式中含有分数,且分母中有根式时,可以将分子分母有理化,即通过乘以分子分母的共轭形式,将根式消去。

3.利用无穷小量的性质:当极限表达式中存在无穷小量时,可以利用无穷小量的性质进行计算。

例如,常见的无穷小量的性质有:a.加减无穷小量仍旧是无穷小量;b.有界函数与无穷小量相乘仍旧是无穷小量;c.有限次幂无穷小量也是无穷小量等。

4.利用极限的四则运算法则:对于四则运算,极限也有相应的运算法则。

常见的极限运算法则有:a.加减法则:lim(f(x) ± g(x)) = lim f(x) ± lim g(x)b.乘法法则:lim(f(x) * g(x)) = lim f(x) * lim g(x)c.除法法则:lim(f(x) / g(x)) = lim f(x) / lim g(x),其中lim g(x) ≠ 0d.复合函数法则:lim(f(g(x))) = lim f(g(x)), when lim g(x) exists第1页/共2页锲而不舍,金石可镂。

5.利用夹逼定理:当极限表达式无法直接计算时,可以利用夹逼定理进行计算。

夹逼定理规定了假如存在两个函数h(x)和i(x),使得对于足够大的x,h(x) ≤ f(x) ≤i(x),且lim h(x) = lim i(x) = L,则lim f(x)也等于L。

6.利用洛必达法则:洛必达法则可用于计算形如lim(f(x)/g(x))的不定型极限,其中f(x)和g(x)在极限点四周连续可导。

极限的求法总结

极限的求法总结

n2
11 lim (1 )
n2 n
1 2
.
例ln i m (1 133 15 ...4 n 1 2 1 )
拆 项 :4 n 2 1 1 ( 2 n 1 ) 1 ( 2 n 1 ) 1 2 (2 n 1 1 2 n 1 1 )
lim( 1 1 ... 1 )
n 13 35
4n2 1
x 0
x
e e e e. 11 lim 1x x 0 2x
x lim1x x 02x
lim 1 x 02(1x)
1 2
14. 将数列极限转化成函数极限求解
例:求极限
lim
n
n
sin
1 n
n2
【说明】这是 1 形式的极限,由于数列极限不能使用
解: 当0x1时,(积分不容易计算)
01xnssiinn33xx xn
故 01xnsin 3xd x1 xnd xxn 11, 01 sin 3x 0 n 10n 1
因为 lim0lim 1 0 x xn1
所以
lim 1xnsin3xdx0
x 01sin3x
10. 用等价无穷小量代换求极限
limx2( x2+93)3 x0 x2( x2+42) 2
9.利用夹逼准则(两边夹法)则求极限
说明:两边夹法则需要放大和缩小不等式,常用的方法 是都换成最大的和最小的。
例 求 li(m 11 1). n n 2 1 n 2 2 n 2 n

n1 1n, n 2 nn 2 1 n 2 nn 2 1
(n1,2,3,)
(1)证明
lim
n
xn
存在;
(2)求
lim

求极限的几种方法

求极限的几种方法

求极限的几种方法在数学分析中,求极限是一种重要的技巧和方法,用于研究数列、函数的收敛性和特性。

对于求极限的方法,可以总结为以下几类:代入法、夹逼法、等价无穷小代换法、洛必达法则、泰勒展开精确到n次、换元法、分数分解法、递归关系法等。

一、代入法:代入法是求函数极限的最基本的方法之一,适用于绝大多数最简单的函数。

通过将自变量值代入函数中,得到具体的函数值,看函数的值是否有限并趋于确定的值,如果有限且趋于确定的值,则可以认为该函数极限存在,并等于该确定的值。

当然,代入法只是一种相对简单和直观的方法,并不适用于复杂函数的极限计算。

二、夹逼法:夹逼法也被称为迫敛法或挤压定理,适用于数列或函数的极限计算。

当数列或函数存在上、下界,且上、下界的极限都为所求极限时,可以通过夹逼法来证明所求极限的存在并求得。

三、等价无穷小代换法:等价无穷小代换法是一种常用的得到极限的方法之一,将一个复杂的极限问题转化成一个简单的等价无穷小求极限问题。

其主要思想是将原函数与理论已知的函数进行比较,找出它们之间的等价关系,进而得到原函数的极限。

常用的等价无穷小有:指数、对数、三角函数等。

四、洛必达法则:洛必达法则是求函数极限的常用方法之一,主要用于求解0/0型或∞/∞型的极限。

其基本思想是将函数的极限转化成求导数的极限。

通常情况下,通过不断使用洛必达法则,可以通过求多次极限最终得到函数的极限。

五、泰勒展开精确到n次:对于有限次求导的函数,可以使用泰勒展开式来近似估计函数极限。

泰勒展开式是用若干项之和来逼近一个函数的方法,通过将函数展开成多项式形式,可以在一定程度上表示出原函数的性质。

通常情况下,使用泰勒展开精确到n次可以更加准确地求得函数的极限。

六、换元法:换元法也称为特殊换元法,通过选择合适的换元变量,将原来复杂的极限问题转化成更加简单的极限计算问题。

常见的换元方法有:取代法、正弦替换法、余弦替换法、平方根替换法等。

七、分数分解法:分数分解法是一种常用的计算复杂函数极限的方法,通过将极限问题利用分式相除的形式,将复杂的极限表达式化简成多个简单函数之比的极限表达式,进而进行求解。

极限的求法总结

极限的求法总结

a xn
=
a 0 xn
a
即 {xn} 有下界, 由此得
xn+1 −
xn
=
1 2
(
xn
+
a xn
)

xn
=
a − xn2 2 xn
0

xn 单调下降,因此
lim
x→+
xn
存在。
(2)设
lim
x→+
xn
=
,由(1)
a 0
对递推公式两端取极限,得 = 1 ( + 2 ) 2
解得 = a (舍去负值),所以 = a.
=
a0
(
lim
x→x0
x)n
+
a1
(
lim
x→x0
x) n−1
++
an
= a0 x0n + a1 x0n−1 + + an = Pn (x0 ).

极限的求法总结
例3. lim x2 + 5x − 6 x→−1 3x2 + 2
商的法则(代入法)
方法总结: 多项式函数与分式函数(分母不为0)用 代入法求极限;
极限的求法总结
极限的求法总结
简介:求极限方法举例,列举21种 求极限的方法和相关问题

1.代入法求极限
极限的求法总结
例1.lim(x2 + x − 2) x→2
例2.设有多项式Pn (x) = a0 xn + a1xn−1 + ... + an ,

lim
x → x0
Pn
(

极限求解总结

极限求解总结

极限求解总结引言极限是数学分析中的重要概念,可以用来描述函数在某一点附近的趋势。

在解决数学问题中,极限的求解经常被用到。

本文将总结极限求解的一些常用方法,并通过具体例子来说明这些方法的应用。

基本概念在开始介绍极限求解的方法之前,我们先回顾一下极限的基本概念。

对于函数f(x),当x无限接近某一点c时,如果f(x)的值也无限接近于某个常数L,那么我们说f(x)在点c处有极限,记作$\\lim_{x\\to c}f(x) = L$。

如果不存在这样的常数L,则称函数f(x)在点c处无极限。

在求解极限时,我们通常通过一些方法来逼近待求的极限值。

极限的求解方法代入法代入法是最简单的求解极限的方法之一。

当函数在某一点c处连续时,可以直接将x=c代入函数,求得极限值。

例如,对于函数f(x)=2x+3,我们要求$\\lim_{x\\to 1}f(x)$,只需要将x=1代入函数,得到f(1)=2(1)+3=5,所以$\\lim_{x\\to 1}f(x)=5$。

需要注意的是,代入法只适用于函数在该点处连续的情况,对于其他情况,我们需要使用其他方法求解。

四则运算法则四则运算法则是求解极限时常用的一种方法。

根据四则运算法则,我们可以将复杂的函数分解成简单的四则运算,然后通过求解各个部分的极限值来得到函数的极限。

例如,对于函数f(x)=(3x+1)(2x−5),我们要求$\\lim_{x\\to 2}f(x)$。

首先,我们可以将函数f(x)分解成两个因子,并分别求解各个因子的极限。

对于第一个因子3x+1,我们代入x=2得到3(2)+1=7;对于第二个因子2x−5,我们代入x=2得到2(2)−5=−1。

然后,将这两个极限值相乘,得到$\\lim_{x\\to2}f(x)=7\\times(-1)=-7$。

夹逼法夹逼法是求解极限中常用的一种方法,特别适用于无法直接通过代入法或四则运算法则求得极限的情况。

夹逼法的基本思想是找到两个函数,一个从上方逼近待求极限的值,另一个从下方逼近待求极限的值,然后通过两个函数的极限值确定待求极限的值。

求极限的方法总结

求极限的方法总结

求极限的方法总结求极限是数学分析中的一个重要概念,用于描述函数在某一点的变化趋势,包括函数趋于无穷大、无穷小、某一常数以及其他特殊情况等。

在解题过程中,需要灵活运用各种极限的计算方法,掌握不同类型极限的求解技巧。

下面将对常见极限的求解方法进行总结。

一、几种常见的极限类型1. 无穷大与无穷小极限当自变量趋于无穷大或无穷小时,函数的极限值称为无穷大或无穷小极限。

在计算过程中,可以利用以下方法求解:(1)使用等价无穷小替换法,将复杂的函数替换为更简单的无穷小,从而求出极限;(2)利用夹逼准则,通过找到两个函数夹住待求函数,确定其极限范围;(3)使用洛必达法则,计算函数的导数与求导后函数的极限,进而求得原函数的极限。

2. 常数极限当自变量趋于某一常数时,函数的极限称为常数极限。

常见的求解方法包括:(1)直接计算法,将自变量带入表达式中,求解对应的极限值;(2)利用函数的连续性,根据定义进行计算;(3)使用复合函数的性质,将函数分解为多个部分,然后计算各部分的极限。

3. 极限的两侧性质当自变量趋于某一点的左右两侧时,函数的极限可能存在不同的值。

这时可根据函数的性质和定义来判断其左右极限是否相等,常用的方法有:(1)利用函数的连续性,判断函数在特定点处是否连续,以及左右极限是否相等;(2)使用夹逼准则,确定左右极限的取值范围。

4. 极限存在性的判定在有些情况下,函数的极限可能不存在。

判断函数是否存在极限的方法有多种:(1)使用保号性质,判断是否存在有界变量和无穷小数列;(2)利用函数的性质,如奇偶性、周期性等,判断函数在某一点的趋势。

二、极限的计算方法1.常用求极限的基本运算法则(1)常数运算法则:如果f(x)和g(x)的极限都存在,那么常数c * f(x)和f(x) ± g(x)的极限也存在,并且满足以下关系:lim(c * f(x)) = c * lim(f(x)),lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))。

求极限的计算方法总结

求极限的计算方法总结

求极限的计算方法总结在数学中,极限是一种重要的概念,用于描述一个函数或者数列在一些点或无穷远处的趋势。

计算极限是解决微积分、数学分析以及其他数学领域中问题的基础。

极限的计算方法种类繁多,以下是一些常见的极限计算方法的总结:1.代入法:直接将要计算的极限值代入函数中。

这个方法通常适用于简单的极限,例如多项式的极限。

2. 分子有理化法:对于含有根式的极限,可以通过有理化方法将分子有理化,从而更容易求得极限。

例如,对于极限lim(x->0)((sinx)/x),可以通过将分子分母都乘以(conj(x))来有理化。

3. 倍角公式和和差化积公式:对于一些三角函数的极限,可以使用倍角公式或和差化积公式进行化简。

例如,对于极限lim(x->0)((sin2x)/(x^3)),可以使用倍角公式将分子化简为2*sin(x)*cos(x),进而求得极限。

4. 指数函数和对数函数的性质:对于一些指数函数和对数函数的极限,可以利用它们的性质进行计算。

例如,对于极限lim(x->0)(e^x-1)/x,可以利用指数函数的性质e^0=1进行计算。

5. L'Hospital法则:L'Hospital法则是求解一些特定类型极限的强大工具。

该法则适用于极限形式为0/0或无穷/无穷的情况。

它的基本思想是将函数的求导转化为简化问题。

例如,对于极限lim(x->0)((sinx)/x),可以使用L'Hospital法则将其转化为lim(x->0)(cosx)/1=16. 夹逼准则:夹逼准则适用于求解一些不能直接计算的极限,它的基本思想是找到两个函数夹住要计算的函数,并且这两个函数的极限相等。

然后可以利用夹逼准则得到要计算函数的极限。

例如,对于极限lim(x->0)(x*sin(1/x)),我们可以利用夹逼准则,将其夹逼在两个函数0和x之间,从而得到0。

7. 泰勒级数展开:对于一些复杂的函数,可以利用泰勒级数展开来近似求解极限。

数学分析中求极限的几种重要方法

数学分析中求极限的几种重要方法

而+@$/=0+ H5* 存在+ # 再对式两边取极限得 5H槡,P5"所以 5)
R5R, H%" 解 得 5H$P槡$P3, 和 5H$R槡$P3, * 舍 去 + " 所
)
)
以+@$/=0+ H$
P槡$ )
P3,
#
' 十一( 利用对数法求极限
形如 3* 0+ 4*0+ 的极限"通常利用指数与对数恒等变形式
H ." )
,+P$
H .P,)+ ))
"证明!{,+ }
收敛"
并求其极限#
证5用数学归纳法可以证明!%d,+ d."* + H$")"3+
事实上
%
d,$
H .d."假设 )
%
d,+
d.d$
"则!
% d, +P$
H .P,)+ ))
d.P.) d.P.H. ))))
令 3* 0+H .P0) "则 3s* 0+H0# ))
关键词数学分析极限方法
一极限的简单概述
极限是数学分析中最基本的概念"因为数学分析的其他
基本的都用到极限来刻画# 如函数在某一点 0% 处连续'函数 在某点 0% 可导'偏导数$定积分$二重积分和三重积分定义' 无穷积分瑕积分$无穷级数的收敛的定义等# 因此极限是贯
穿数学分析的一条主线"它将数学分析的各个知识点联系在
*
7P$+

数学分析中求极限的方法总结

数学分析中求极限的方法总结

数学分析中求极限的方法总结1 利用极限的四则运算法则和简单技巧极限的四则运算法则叙述如下:定理1.1(1(2(3)若B ≠0(4(5)[]0lim ()lim ()nnn x x x x f x f x →→⎡⎤==A ⎢⎥⎣⎦(n 为自然数)i由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。

例1. 求225lim3x x x →+- 解:由定理中的第三式可以知道()()22222lim 55lim 3lim 3x x x x x x x →→→++=--22222lim lim5lim lim3x x x x x x →→→→+=+225923+==--例2. 求3x →33x x→→=3x→=14=式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3. 已知()11112231nxn n=+++⨯⨯-⨯观察11=1122-⨯111=2323-⨯因此得到()11112231nxn n=+++⨯⨯-⨯11111111223311n nn=-+-+-+---1lim lim11nn nxn→∞→∞⎛⎫=-=⎪⎝⎭2 利用导数的定义求极限导数的定义:函数f(x)如果()()00lim limx xf x x f xyx x∆→∆→+∆-∆=∆∆存在,则此极限值就称函数f(x)()'f x。

即f(x)在定点0x 的导数。

例4.lim()212lim'22x x f x f x f πππ→⎛⎫- ⎪⎝⎭==⎛⎫- ⎪⎝⎭12=3 利用两个重要极限公式求极限两个极限公式:(1(2)1lim 1xx ex →∞⎛⎫+= ⎪⎝⎭但我们经常使用的是它们的变形:(1,(2例5:xx x x 10)1()21(lim +-→解:为了利用极限故把原式括号内式子拆成两项,使得第一项为e x xx =+→10)1(lim 1,第二项和括号外的指数互为倒数进行配平。

高等数学极限求法总结

高等数学极限求法总结

高等数学极限求法总结在高等数学中,极限是一个至关重要的概念,它在微积分、数学分析等领域中扮演着重要角色。

极限求法是数学学习中的一个关键技能,通过正确的方法和技巧能够更快地求解各种极限问题。

本文将系统总结常见的极限求法,包括极限的基本性质、洛必达法则、泰勒展开等内容,帮助读者更好地掌握和运用极限求法。

一、极限的基本性质1. 有界性如果一个函数在某点的一个邻域内有界,那么该函数在该点的极限存在且有限。

2. 夹逼准则如果函数f(x)在点a的某个邻域内除a点以外都满足0≤g(x)≤f(x)≤h(x),并且lim[g(x)]=lim[h(x)]=L,则由夹逼准则可得lim[f(x)]=L。

二、洛必达法则洛必达法则常用来解决0/0型或∞/∞型的极限。

若lim[f(x)]=0, lim[g(x)]=0,并且lim[f’(x)/g’(x)]存在,则lim[f(x)/g(x)]=lim[f’(x)/g’(x)]。

三、泰勒展开泰勒展开是在某一点附近用多项式逼近一个函数的方法。

简单来说,就是用一个多项式不断逼近原函数,使得在该点附近它们的表现尽量接近。

泰勒展开的公式如下:f(x)≈f(a)+f’(a)(x-a)+f’’(a)(x-a)2/2!+⋯+f n(a)(x-a)^n/n!+Rn(x)其中,f(x)是原函数,a是展开的点,f^(n)(a)表示f(x)在点a处的n阶导数,Rn(x)是泰勒余项,即多项式逼近的误差。

通过以上总结,我们可以看到,极限求法涉及到多方面的知识和技巧,需要结合具体问题选择合适的方法进行求解。

掌握极限求法不仅可以帮助我们更好地理解函数的性质,还可以在数学建模、物理学等领域中发挥重要作用。

希望通过本文的总结,读者能够更加熟练地运用各种极限求法,提升自己的数学水平。

论文极限求法总结范文

论文极限求法总结范文

摘要:极限是高等数学中的重要概念,求极限的方法也是数学分析和应用数学中的基本技能。

本文旨在总结常见的极限求法,包括直接求极限、夹逼法、洛必达法则、等价无穷小替换法、无穷小代换法等,并对其适用条件和应用进行简要分析。

关键词:极限;求极限方法;直接求极限;夹逼法;洛必达法则一、引言极限是高等数学中的核心概念之一,它在数学分析、物理学、工程学等领域都有广泛的应用。

求极限的方法是解决各种数学问题的基础,因此,掌握各种极限求法对于学习高等数学具有重要意义。

二、常见的极限求法1. 直接求极限直接求极限是最基本的极限求法,适用于直接观察出极限值的情况。

对于一些简单的函数,如常数函数、一次函数、二次函数等,可以直接求出其极限。

2. 夹逼法夹逼法是一种常用的极限求法,适用于当函数在无穷远处趋于某一值时。

具体来说,如果存在函数f(x)和g(x),满足以下条件:(1)f(x) ≤ h(x) ≤ g(x),对于所有的x > a或x < b成立;(2)lim(x→a) f(x) = A,lim(x→b) g(x) = A,则lim(x→a) h(x) = A。

3. 洛必达法则洛必达法则适用于“0/0”型或“∞/∞”型的未定式。

具体来说,如果函数f(x)和g(x)在x = a处可导,且满足以下条件:(1)lim(x→a) f(x) = 0,lim(x→a) g(x) = 0;或(2)lim(x→a) f(x) = ∞,lim(x→a) g(x) = ∞,则lim(x→a) [f(x)/g(x)] = lim(x→a) [f'(x)/g'(x)],其中f'(x)和g'(x)分别是f(x)和g(x)的导数。

4. 等价无穷小替换法等价无穷小替换法适用于在求极限过程中,需要将复杂函数替换为简单函数的情况。

具体来说,如果函数f(x)和g(x)在x = a处可导,且满足以下条件:(1)lim(x→a) f(x) = 0,lim(x→a) g(x) = 0,则f(x)和g(x)可以替换为它们的等价无穷小。

数学分析中求极限的方法总结

数学分析中求极限的方法总结

数学分析中求极限的方法总结一、数列极限:1.利用通项公式或递推公式求出数列的表达式,进而通过数学运算和性质进行极限求解;2.利用引理,例如夹逼定理、单调有界定理等,根据已知的性质以及所要求的极限关系,确定一个与之相关的已知极限,然后运用引理求解未知极限。

二、函数极限:1.利用函数的性质,例如连续性、导数性质等,结合极限的定义进行计算;2.利用夹逼定理、单调有界准则等物理建模方法,将复杂的函数极限问题转化为更简单的函数极限问题,然后求解;3.利用泰勒展开、极坐标变换、特殊函数性质等数学分析工具进行极限计算。

三、级数极限:1.根据级数极限的定义,利用极限计算原理进行求解;2.利用级数的收敛判别法,例如比较判别法、积分判别法、根值判别法等,确定级数的收敛性质,进而求解其极限。

在具体的求极限中,还可以运用以下方法和技巧:1. 运用数列极限的性质,例如子数列性质、Cauchy准则等,进行极限求解;2.将复杂的极限问题化为较为简单的形式,例如利用变量替换或函数分解等方法;3.利用数列和函数的收敛性质,例如极限的保序、保号、保比、保和等运算规则;4. 运用Stolz定理、L'Hopital法则等特殊的求极限方法;5.利用正弦函数、余弦函数、指数函数、对数函数等特殊函数的性质,进行计算。

最后,对于一些复杂的极限问题,如果经过常规方法无法求解,可以尝试使用数值逼近法,例如牛顿法、二分法等,来逼近极限值。

综上所述,数学分析中求极限的方法主要包括数列极限、函数极限和级数极限等多个方面。

除了利用极限的定义和性质进行计算外,还可以利用引理、准则、工具和技巧等进行解题。

在实际的极限求解中,还需要根据具体问题选择最合适的方法,灵活运用,提高解题效率。

求极限的方法总结

求极限的方法总结

极限是数学分析中的重要概念,也是微积分的基础。

求极限的方法有很多种,下面将对常用的几种方法进行总结和解析。

1. 直接代入法直接代入法是最基本的求极限方法,适用于函数单调、连续,且直接代入可知极限值的情况。

具体步骤如下:(1)将极限表达式中的变量替换为具体的数值。

(2)根据函数的定义和性质,计算替换后的表达式。

(3)得出极限值。

2. 因式分解法因式分解法适用于有理函数的极限求解,通过分解函数,消除分子、分母中的共同因子,简化极限表达式。

具体步骤如下:(1)对有理函数进行因式分解。

(2)对分解后的表达式进行约分,消除共同因子。

(3)根据约分后的表达式求极限。

3. 泰勒公式法泰勒公式法是利用泰勒公式将函数展开,近似表示函数在某一点附近的值,从而求解极限。

具体步骤如下:(1)确定函数在某一点附近的泰勒展开式。

(2)根据泰勒展开式求极限。

4. 洛必达法则洛必达法则(L’Hôpital’s Rule)适用于求解“0/0”或“∞/∞”形式的极限。

该法则通过对分子、分母同时求导,将极限问题转化为导数的极限问题。

具体步骤如下:(1)判断极限形式是否为“0/0”或“∞/∞”。

(2)对分子、分母分别求导。

(3)将求导后的表达式代入原极限表达式。

(4)求解新的极限表达式。

5. 夹逼定理夹逼定理(Squeeze Theorem)适用于求解形如“f(x) = (g(x))/(h(x))”,且当x趋向于某一点时,g(x)和h(x)分别趋向于a和b(a ≠ b)的极限。

具体步骤如下:(1)找到两个函数p(x)和q(x),使得p(x) ≤ f(x) ≤ q(x)。

(2)证明当x趋向于某一点时,p(x)和q(x)分别趋向于a和b。

(3)根据夹逼定理,得出f(x)趋向于a。

6. 有界函数法有界函数法适用于求解形如“f(x) = g(x)/h(x)”,且当x趋向于某一点时,g(x)趋向于0,h(x)趋向于无穷大的极限。

具体步骤如下:(1)证明g(x)在x趋向于某一点时趋向于0。

极限的求解方法总结

极限的求解方法总结

极限的求解方法总结
极限是数学中重要的概念之一,它在微积分、数学分析以及工程学等领域中都有广泛的应用。

求解极限问题是数学学习的基础,也是解决实际问题的关键步骤之一。

下面将总结几种常见的极限求解方法。

1. 代入法:这是最简单的一种极限求解方法,即将自变量的值直接代入函数中计算。

这种方法适用于求解一些简单的极限,特别是当自变量趋于某个特定值时。

2. 利用基本极限定理:基本极限定理是极限求解过程中常用的工具,包括极限的四则运算法则、极限的乘法法则、极限的除法法则以及极限的复合函数法则等。

利用这些定理,我们可以将复杂的极限问题转化为更简单的形式,从而求解出极限的值。

3. 极限的夹逼定理:夹逼定理是解决一类特殊极限问题的重要方法。

它的核心思想是通过构造一个上下夹逼函数,将待求的极限转化为夹逼函数的极限,从而求解出原极限的值。

4. 利用无穷小量的性质:在一些特殊的极限问题中,我们可以利用无穷小量的性质进行求解。

例如,当自变量趋于无穷大或无穷小时,我们可以将函数进行等价无穷小的替换,从而将复杂的极限问题简化为求解无穷小量的极限。

5. 利用洛必达法则:洛必达法则是一种常用的求解不定型极限的方法。

该法则
基于导数的定义,通过求取函数的导数来求解极限。

特别是当极限问题存在某种不定型形式(如0/0或∞/∞)时,洛必达法则可以提供一种有效的求解途径。

以上是几种常见的极限求解方法,当然还有其他更高级的方法,如泰勒展开法、积分法等。

掌握这些方法,并善于运用,将有助于我们解决各种复杂的极限问题,提高数学分析能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析中求极限的方法总结1 利用极限的四则运算法则和简单技巧极限的四则运算法则叙述如下: 定理1.1(1(2(3)若B ≠0(4(5)[]0lim ()lim ()nnn x x x x f x f x →→⎡⎤==A ⎢⎥⎣⎦(n 为自然数) i由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。

例1. 求225lim 3x x x →+-的极限解:由定理中的第三式可以知道()()22222lim 55lim 3lim 3x x x x x x x →→→++=--22222lim lim5lim lim3x x xx x x →→→→+=+225923+==--例2. 求3x →()(()()33121212lim lim 312x x x x x x x →→+-+++-=-++()()3lim312x x x →=-++14=式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知()11112231n x n n =+++⨯⨯-⨯L L ,求lim n n x →∞解: 观察11=1122-⨯ 111=2323-⨯ ()()111=n 1n n-1n--⨯ 因此得到 ()11112231n x n n=+++⨯⨯-⨯L L11111111223311n n n=-+-+-+---L L11n =-所以1lim lim 11n n n x n →∞→∞⎛⎫=-= ⎪⎝⎭2 利用导数的定义求极限导数的定义:函数f(x)在0x 附近有定义,χ∀∆,则()()00y f x x f x ∆=+∆-如果()()000limlimx x f x x f x yx x ∆→∆→+∆-∆=∆∆ 存在,则此极限值就称函数f(x)在点0x 的导数记为()0'f x 。

即在这种方法的运用过程中,首先要选好f(x)。

然后把所求极限都表示成f(x)在定点0x 的导数。

例4.()212lim'22x x f x f x f πππ→⎛⎫- ⎪⎝⎭==⎛⎫- ⎪⎝⎭12=3 利用两个重要极限公式求极限两个极限公式: (1(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭但我们经常使用的是它们的变形:(1,(2例5:xx x x 10)1()21(lim +-→解:为了利用极限e x xx =+→1)1(lim 故把原式括号内式子拆成两项,使得第一项为1,第二项和括号外的指数互为倒数进行配平。

xx x x 10)1()21(lim +-→=xx xx 10)131(lim +-+→1x 13x3x x 1x03x =lim 11x x +-⋅⋅-+→-⎛⎫+ ⎪+⎝⎭=313310])131[(lim -+--+→=+-+e x x xx xx例6:20cos 1limx xx -→解:将分母变形 后再化成“0/0”型 所以20cos 1limx x x -→=2202sin 2lim x xx → =21)2(2sin 21lim 220=→x x x例7: 求xx x 1)21(lim +→的极限解:原式=221210)21()21(lim e x x xx x =⎥⎦⎤+⋅⎢⎣⎡+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。

一般常用的方法是换元法和配指数法。

4 利用函数的连续性因为一切初等函数在其定义区间内都是连续的,所以如果)(x f 是初等函数,且0x 是)(x f 的定义区间内的点, 则)()(lim 00x f x f x x =→。

例8: 612arcsinlim 1+→x x 解 :因为复合函数arcsin 是初等函数,而x 1→是其定义区间内的点,所以极限值就等于该点处的函数值.因此612arcsin612arcsinlim 1+=+→x x x1=arcsin =26π例8:求xx sin ln lim 2π→解: 复合函数x sin ln 在2π=x 处是连续的,所以在这点的极限值就等于该点处的函数值即有2sin ln sin ln lim 2ππ=→x x=1ln 2sinlim =π=0 5 利用两个准则求极限。

(1) 函数极限的迫敛性:若一正整数 N,当n>N 时,有n n n x y z ≤≤且lim lim ,n n x x x z a →∞→∞==则有 lim n x y a→∞=。

利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{}n y 和 {}n z ,使得n n n y x z ≤≤。

n x =+例9 : 求n x 的极限解:因为n x 单调递减,所以存在最大项和最小项.......n x ≥+=.......n x ≤+=n x ≤又因为1x x ==lim 1n x x →∞=(2 ) 单调有界准则:单调有界数列必有极限,而且极限唯一。

例12:设)1110,1,2,n x x n n +===L 。

试证数列{}n x 的极限存在, 并求此极限。

解: 由110x =及24x =知12x x ≥。

设对某个正整数k 有1k k x x +≥, 则有21166+++=+>+=k k k k x x x x从而由数学归纳法可知, 对一切自然数n , 都有1+>n n x x , 即数列}{n x 单调下降, 由已知易见...)2,1(0=>n x n 即有下界,根据“单调有界的数列必有极限”这一定理可知存在。

令A x n n =∞→lim 对n n x x +=+61两边取极限,有A =260A -A -=解得A=3,或2A =-。

因为...)2,1(0=>n x n ,所以0A ≥,舍去2A =-,故lim 3n n x →∞=6 利用洛必达法则求未定式的极限定义6.1:若当x a →(或x →∞)时,函数()f x 和()F x 都趋于零(或无穷大),则极限)()(lim)(x F x f x ax ∞→→可能存在、也可能不存在,通常称为00型和∞∞型未定式。

例如:xx x tan lim 0→, (00型);bx ax x sin ln sin ln lim→, (∞∞型).定理6.2:设 (1)当x →∞时, 函数()f x 和()F x 都趋于零;(2)在a 点的某去心邻域内,()'f x 和()'F x 都存在且()'0F x ≠; (3) )()(lim)(x F x f x ax ∞→→存在(或无穷大),则)()(lim)()(limx F x f x F x f a x ax ''=→→ 定义6.3:这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的方法称为洛必达法则.例10:x x xx x x 222220sin cos sin lim-→在利用洛比达法则求极限时,为使计算更加快捷减少运算中的诸多不便,可用适当的代换,并注意观察所求极限的类型如下例,例11:求lim 0+→x xe x-1解:lim 0+→x xex-1=111lim lim 00-=-=-++→→tt t t e e t洛必达法则通常适用于以下类型:0⨯∞型:例12 求lim (arctan )2x x x π→+∞-.解 原式2221arctan 112lim lim lim 11111x x x x x x x xπ→+∞→+∞→+∞-+====+. ∞-∞型:例13 求 ()2lim sec tan x x x π→-.解1sin 1sin sec tan cos cos cos x x x x x x x --=-=Q ,故原式221sin cos limlim 0cos sin x x x x x x ππ→→--===-. 00型:例14 求0lim xx x +→.解 原式ln 0lim ln ln 0lim lim 1x xxx e x x xx x e e e +→++→→====.1∞型:例15 求lim 1xx e x →∞⎛⎫+ ⎪⎝⎭.解 原式lim 1x e eex e e x →∞⎛⎫=+= ⎪⎝⎭.∞型:例16 求tan 01lim ()xx x +→.解 原式tan ln tan 01lim ln()tan ln 0lim lim x xxx e x xxx x e e e-+→++-→→===,而tan ~00lim(tan ln )lim(ln )0x x x x x x x x ++→→-−−−→-=,因此:原式=1.7. 用泰勒展式来求极限用此法必须熟记基本初等函数的展开式,它将原来函数求极限的问题转化为求多项式或有理分式的极限问题。

对于和或差中的项不能用其等价无穷小代替的情形, 有时可用项的泰勒展开式来代替该项, 使运算十分简便。

例17:4202cos limx e x x x -→-解:因为)(!4!21cos 442x o x x x ++-=所以例18:)]1ln([lim 2x x x +-+∞→解:因为当x →+∞)()1(()1(*211ln(22+∞→+-=+x x o x x x从而+∞→+-=+x o x x x )1(2111ln(2于是)]11([lim 2x x x x +-+∞→11lim[(1)]22x o →+∞=+=注意:如果该题利用其他方法就不容易做了。

8. 利用定积分求极限由于定积分是一个有特殊结构和式的极限,这样又可利用定积分的值求出某一和数的极限.若要利用定积分求极限,其关键在于将和数化成某一特殊结构的和式。

凡每一项可提1/n,而余下的项可用通式写成n 项之和的形式的表达式,一般可用定积分的定义去求 。

利用定积分可求如下二种形式的极限:n n n f n f n f x )(...)2(1(lim+++∞→型 定理8.1:设()f x 在[0,1]上可积,则有⎰=+++∞→1)()(...)2()1(lim dxx f nn nf n f n f x例19:求极限n n n n nx +++∞→...21lim 解:令()f x x =,()f x 在[0,1]上可积。

1012...1lim 2x n n n n xdx n →∞+++==⎰ n x nnf n f n f )(...)2()1(lim +++∞→型 定理8.2:若)(x f 在[0,1]上可积,则10[ln ()]x epx f x dx =⎰例20:求n n nx !lim∞→解:令()f x x =,则有:n n nx !lim∞→ 110[ln ]x epx xdx e -===⎰例21:求)212111(lim n n n n +++++∞→解:把此极限式化为某个积分和的极限式,并转化为计算计算定积分,为此作如下变形:n ni J ni n 1111lim ⋅+=∑=∞→ 不难看出,其中的和式是函数发x x f +=11)(在区间[]1,0上的一个积分和。

相关文档
最新文档