(完整)初中二元一次方程组应用题专项练习(含部分难题答案)
初中数学:二元一次方程组应用题专题训练附详解(精)
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
7.永辉超市计划购进甲、乙两种体育器材,若购进甲器材3件,乙器材6件,需要480元,购进甲器材2件,乙器材3件,需要280元,销售每件甲器材的利润率为37.5%,销售每件乙器材的利润率为30%.
3.(1)甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.
(2)安排甲、乙两个装修施工队同时施工更有利于饭店
【分析】
(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,根据“若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元”,即可得出关于x,y的二元一次方程施工队,解之即可得出结论;
品种
高档
中档
低档
价格/元
20
15
10
9.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买 、 两种防疫物资, 种防疫物资每箱1500元, 种防疫物资每箱1200元.若购买 种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).
初中数学二元一次方程组经典练习题(含答案)
初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。
完整版)二元一次方程组应用题经典题及答案
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
(完整版)七年级下二元一次方程组应用题含答案
新人教版数学七年级下册 8. 3 实际问题与二元一次方程组课时练习、选择题1.成渝路内江至成都全长 170 千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过 1 小时 10 分钟相遇. 相遇时, 小汽车比小客车多行驶 20 千米. 设小汽车和客车的平均速度分别为x千米 /时和 y 千米 /时,则下列方程组正确的是()答案: B知识点: 二元一次方程组的应用 解析:解答:先找出题目中的两个相等关系: 程=170 千米, 1小时 10 分钟小汽车走的路程- 1小时 10分钟小客车走的路程 =20 千米,再列出方 程组.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.2.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购 1 副羽毛球拍和 1 副乒乓球拍共需 50 元,小强一共用 320 元购买了 6 副同样的羽毛球拍和 10 副同样的乒 乓球拍,若设每副羽毛球拍为 x 元,每副乒乓球拍为 y 元,列二元一次方程组得( )答案: B知识点: 二元一次方程组的应用 解析:解答:先找出题目中的两个相等关系:购 同样的羽毛球拍和 10 副同样的乒乓球拍,再列出方程组.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出方程组.B .C .D .1 小时 10 分钟小汽车走的路程 +1 小时 10 分钟小客车走的路1 副羽毛球拍和 1 副乒乓球拍共需 50 元,320 元购买 6 副3.现有 190 张铁皮做盒子,每张铁皮可做 8 个盒身或 22 个盒底,一个盒身与两个盒底配成一个完答案: D知识点: 二元一次方程组的应用解析: 套,得方程 2 8x 22y ,故选 D . 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.4.把一根长 100cm 的木棍锯成两段,使其中一段的长比另一段的 2 倍少 5cm, 则锯出的木棍的长不 可能为( ) A . 70cmB . 65cmC .35cmD . 35cm 或 65cm答案: A知识点: 二元一次方程组的应用 解析:解答:不妨设其中一段的长为 x ,另一段的长为 y ,根据题意有,解这个二元一次方程组得 ,因为这两段没有顺序,所以锯出的木棍的长可能为 65cm 或 35cm ,不可能为 70cm , 故选 A . 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.5.一套《少儿百科全书》总价为 270 元,张老师只用 20 元和 50 元两种面值的人民币正好全额付 清了书款,则他可能的付款方式一共有( )A .5 种B .4 种C .3 种D .2种答案: C 知识点: 二元一次方程组的应用 解析:解答:设 20元面值的为 x 张,50 元面值的为 y 张,可列方程 20x +50 y =270 .因为 x 、y 均为正整数, x 1 x 6 x11所以满足条件的解为 , , ,所以可能的付款方式一共有 3 种,故选 C .y 5 y 3 y 1分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出整的盒子,设用 x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A .x 2y 190 2×8x 22y B . 2y x 190 C.8x 22yx y 190 2 22y 8x D .x y 190 2 8x 22y解答:根据共有 190 张铁皮,得方程 x y 190 ;根据做的盒底数等于盒身数的2 倍时才能正好配方程组.各有多少?( )A . 150,350B .250,200 答案: D知识点: 二元一次方程组的应用 解析:x y 400 ,解这个二元1000x 1200 y 45x 150次方程组得 x y 125500,所以甲乙债券分别有 150 元与 250 元,故选 D .分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.7.一种饮料大小包装有 3 种,1 个中瓶比 2 小瓶便宜 2 角,1 个大瓶比 1个中瓶加 1 个小瓶贵 4 角, 大、中、小各买 1 瓶,需 9 元 6 角,若设小瓶单价为 x 角,大瓶为 y 角,可列方程为()3xy983xy982xy983x y 98 A .B .C .D .y3x 2y3x 2y3x 42xy4答案: A知识点: 二元一次方程组的应用 解析:解答:根据 1 个中瓶比 2 小瓶便宜 2 角可知中瓶价格为 (2x - 2)角,大、中、小各买 1 瓶,需 9 元 6 角可列方程x +(2 x - 2)+ y =96 即得 3x + y =98 ,根据 1 个大瓶比 1 个中瓶加 1 个小瓶贵 4 角可列方程 y - (2x - 2+ x )=4 即 y -3x =2 ,联立后选 A .分析:可以设大、中、小瓶中的任意两个为未知数,另一个用其中一个未知数表示出来,根据题目 中的相等关系列出方程组并整理得.8.某品牌服装店一次同时售出两件上衣, 每件售价都是 135 元,若按成本计算, 其中一件盈利 2500 ,另一件亏损 2500 ,则这家商店在这次销售过程中()A .盈利为 0B .盈利为 9 元C .亏损为 8 元答案: D知识点: 二元一次方程组的应用 解析: 解答:设盈利的上衣售价为 x 元,亏损的上衣为 y 元,根据题意有 ((11 2255%%))x y 113355,解这个二元 (1 25%)y 135x 108次方程组得 ,所以这两件的利润为 135×2- (108+180)= - 18,所以亏损 18 元. y 180 分析:售价 =进价 +利润,亏损即利润为负.9.某校体操队和篮球队的人数之比是 5:6,篮球队的人数与体操队的人数的 3 倍的和等于 42 人,若设体操队的人数是 x 人,篮球队的人数为 y 人,则可列方程组为()6.有甲乙两种债券,年利率分别是10%与 12%,现有 400 元债券,一年后获利 45 元,问甲乙债券C . 350,150D .150,250解答:不妨设甲乙债券分别有多少x 元与 y 元,根据题意有 D .亏损为 18 元5x6y 6x5y5x6y6x5y A.B.C.D.3x y 42 3x y 42x y 423x y 42答案:B知识点:二元一次方程组的应用解析:解答:根据题目中的相等关系:体操队和篮球队的人数之比是5:6,篮球队的人数与体操队的人数的3 倍的和等于42 人,可列方程组为B.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出方程组.10.李勇购买80 分与100 分的邮票共16 枚,花了14 元6 角,购买80 分与100 分的邮票的枚数分别是( ) A.6,10 B.8,8 C.7,9 D.9,7答案:C知识点:二元一次方程组的应用解析:x y 16解答:设李勇购买80 分与100 分的邮票的枚数分别是x 与y,根据题意有,解这个0.8x y 14.6x7二元一次方程组得,所以李勇购买80 分与100 分的邮票的枚数分别是7 与9.y9分析:本题目中的相等关系是:购买的邮票共16枚,花了14 元6角,再利用相等关系列出方程组;注意单位要统一.11.已知甲、乙两种商品的原价和为200 元,因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%,求甲、乙两种商品的原单价分别是( ) A.50 元,150 元B.150 元,50 元C.80 元,120 元D.120 元,80 元答案:A知识点:二元一次方程组的应用解析:x y 200解答:设甲、乙两种商品的原单价分别是x元与y元,则有(x1 1y0%2)0x0(1 10%)y 200 (1 5%)x 50解这个二元一次方程组得x y 15500,所以甲、乙两种商品的原单价分别是 50 元与 150 元.分析:本题目中的相等关系是:甲、乙两种商品的原价和为 200 元,调价后甲、乙两种商品的单价 和比原单价和提高了5%,再利用相等关系列出方程组.12. 2辆大卡车和 5辆小卡车工作 2小时可运送垃圾 36吨,3 辆大卡车和 2 辆小卡车工作 5小时可 运输垃圾 80吨,那么 1辆大卡车和 1 辆小卡每小时分别运 x 吨与 y 吨垃圾,则可列方程组( )A.2x 5y36B.2 2x5y 363x 2y805 3x 2y 80C.2 2x 25y 36D.2x 2 5y 365 3x 52y 803x 5 2y 80答案: C知识点: 二元一次方程组的应用 解析:解答:根据题目中的相等关系: 2 辆大卡车和 5 辆小卡车工作 2 小时可运送垃圾 36 吨, 3 辆大卡车 和 2 辆小卡车工作 5 小时可运输垃圾 80 吨,可列方程组为 C .分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.xy 50xy 50 C .D .xy90xy90答案: D知识点: 二 元一 次方程组的应用解析:解答:根据题目中的相等关系: ∠1 的度数比 ∠2 的度数大 50°,从图中可知 ∠1与∠2 的和为 90°, 可列方程组为D .13.一副三角板按如图摆放,且∠1的度数比 ∠2的度数大 50°,若设 1=x o,2=y o ,则可得到x y 50x y 180 x y 180分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.14.某公司向银行申请了甲、乙两种贷款共计 68 万元,每年需付出 8.42 万元利息,已知甲种贷款每年的利率为 12%,乙种贷款每年的利率为 13%,则该公司甲、乙两种贷款的数额分别为()A .26 万元, 42 万元B .40 万元, 28 万元C .28 万元, 40 万元D .42 万元, 26 万元答案: D知识点: 二元一次方程组的应用 解析:x y 68解答:设该公司甲、乙两种贷款的数额分别为x 万元与 y 万元,则有 ,解这个12%x 13%y 8.42x 42元一次方程组得y x 4226,所以该公司甲、乙两种贷款的数额分别为 42 万元与 26 万元.分析:本题目中的相等关系是:甲、乙两种贷款共计 68 万元,每年需付出 8.42 万元利息,再利用 相等关系列出方程组.15.甲、乙二人按 2:5 的比例投资开办了一家公司,约定除去各项开支外,所得利润按投资比例分 成.若第一年所得利润为 14000 元,那么甲、乙二人分别应分得( )A . 2000 元, 5000 元B .4000 元, 10000 元C .5000 元, 2000 元D .10000 元, 4000 元 答案: B 知识点: 二元一次方程组的应用 解析:5x 2yx 元与 y 元,则有 x y 14000,解这个二元一次方程组得所以甲、乙二人分别应分得 4000 元与 14000 元. 分析:本题目中的相等关系是:所得利润按投资比例分成,第一年所得利润为 等关系列出方程组. 二、填空题1.在一次知识竞赛中,学校为获得一等奖和二等奖共 30名学生购买奖品,共花费 528 元,其中一等奖奖品每件 20 元,二等奖奖品每件 16 元,求获得一等奖和二等奖的学生各有多少名?设获得一 等奖的学生有 x 名,二等奖的学生有 y 名,根据题意可列方程组为 . 答案: 知识点: 二元一次方程组的应用 解析:x y 30 解答:解:设获得一等奖的学生有 x 名,二等奖的学生有 y 名,由题意得 2x 0x y 163y 0 528 故答案x 4000 y 10000解答:设甲、乙二人分别应分得 14000 元,再利用相为x y 3020x 16y 528分析:设获得一等奖的学生有 x 名,二等奖的学生有 y 名,根据 “一等奖和二等奖共 30 名学生,一 等奖和二等奖共花费 528 元”列出方程组即可.2.一只船在 A 、 B 两码头间航行,从 A 到 B 顺流航行需 2 小时,从 B 到 A 逆流航行需 3 小时,那么 一只救生圈从 A 顺流漂到 B 需要 小时. 答案: 12知识点: 二元一次方程组的应用 解析:a ,船在静水中的速度为 x ,水流的速度为 y ,根据航行问题的数a 1 a 12 (小时).12与计算.3.某公园 “六 ·一 ”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他 们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3 个大人和4 个小孩,共花了 38 元钱;李利说他家去了 4 个大人和 2 个小孩,共花了 44 元钱,王 斌家计划去 3 个大人和 2 个小孩,请你帮他计算一下,需准备 元钱买门票. 答案: 34知识点: 二元一次方程组的应用解析: 解答:设大人门票为 x 元,小孩门票为 y 元,由题意,得 3x 4y 38 ,解得4x 2y 44即王斌家计划去 3个大人和 2 个小孩,需要 34 元的门票.分析:设大人门票为 x 元,小孩门票为 y 元,根据题目给出的等量关系建立方程组,然后解出x 、y的值,再代入计算即可.4.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克 力的质量为 .g解答:设 A 、 B 两码头间的距离为 量关系建立方程组2(x 3(x y) y)解得5a 1212,所以一只救生圈从 A 顺流漂到 B 需要1a 12分析: ① 一只救生圈从 A顺流漂到 B 即求水流速度, ② 很多时候解实际问题可以借助一个字母参x 10x y 120,则 3x 2y34答案: 20知识点: 二元一次方程组的应用 解析:答案: 6 秒知识点: 二元一次方程组的应用 解析:巧克力果冻解答:设每块巧克力的质量是 x g ,每个果冻的质量是 y g ,则 3x 2y,解得x y 50x 20 y 30分析:设每块巧克力的质量是 x g ,每个果冻的质量是 yg ,根据题目给出的等量关系建立方程组,然后解出 x 、y 的值,再代入计算即可.5.如下图所示,高速公路上,一辆长为 4 米,速度为 110 千米/时的轿车准备超越一辆长为 12 米,速度为 100 千米 / 时的卡车, 则轿车从开始追赶到超越卡车, 需要花费的时间约是 秒(结果保留整数)知识点: 二元 次方程组的应用解析:解答:设整个超越过程历时x 小时,在这一过程中卡车行驶了 y 千米,则轿车行驶了( y +0.012 +100x 0.004)千米,则 110100x xyy 0.012 0.004,解得 x =0.0016(小时),0.0016 小时=5.76秒≈6秒.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组. 三、解答题 1.为表彰在某活动中表现积极的同学, 老师决定购买文具盒与钢笔作为奖品.已知 5 个文具盒、 2支钢笔共需 100 元;3 个文具盒、 1 支钢笔共需 57 元.那么每个文具盒、每支钢笔各多少元?答案: 每个文具盒 14 元,每支钢笔15 元50g 砝码解答:解:设每个文具盒 x 元,每支钢笔 y 元,则 5x 2y 100,解得 x 14 ,所以每个文具盒3x y 57 y 1514 元,每支钢笔 15 元.分析:设每个文具盒 x 元,每支钢笔 y 元,然后根据花费 100 元与 57元分别列出方程组,解二元一 次方程组即可.2.小林在某店购买 A 、B 商品共三次,只有一次购买时,商品A 、B 同时打折,其余两次均按标价购买,三次购买商品 A 、B 的数量和费用如下表:( 1)小林以折扣价购买商品 A 、B 是第 次购物;(2)求出商品 A 、B 的标价;( 3)若商品 A 、B 的折扣相同,问商店是打几折出售这两种商品的? 答案:(1)三;(2)商品 A 的标价为 90元,商品 B 的标价为 120 元;(3)6折 知识点: 二元一次方程组的应用 解析:解答:解:( 1)因为第三次购物较多但是价格较便宜,所以小林以折扣价购买商品A 、B 是第三次购物;6x5y 1140 x 90( 2)设商品 A 的标价为 x 元,商品 B 的标价为 y 元,根据题意,得,解得3x 7y 1110y120答:商品 A 的标价为 90 元,商品 B 的标价为 120 元;(3)设商店是打 a 折出售这两种商品,由题意得, 9 90 8 120a 1062 ,解得 a 6.10答:商店是打 6 折出售这两种商品的. 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.3.已知该公司每天能精加工蔬菜6 吨或粗加工蔬菜 16 吨(两种加工不能同时进行) ,某蔬菜公司收 购蔬菜进行销售的获利情况如下表所示:(1)现在该公司收购了 吨蔬菜,如果要求在 天内全部销售完这 吨蔬菜,请完成下列表格:( )如果先进行精加工,然后进行粗加工,要求天刚好加工完 吨蔬菜,则应如何分配加工时间?答案:(1)依次填:14000,35000,518000;(2)10 天进行精加工,5 天进行粗加工知识点:二元一次方程组的应用解析:解答:解:(1)当全部直接销售时140 ×100=14000 (元);当全部粗加工后销售时250×140=35000(元);当尽量精加工,剩余部分直接销售时18 6 450 140 18 6 100 51800 (元);所以)依次填:14000,35000,518000 ;x y 15 x 10(2)设应安排x 天进行精加工,y天进行粗加工,根据题意得:,解得:,6x 16y 140 y 5答:应安排10 天进行精加工,5 天进行粗加工.分析:(1)按已知把已知表中的数据1和2都乘以140 完成表格;而3中18天只能精加工6×18=108(吨),所以为108 450 140 108 100 51800(元);(2)由题意列二元一次方程组求解.4.“下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351 元,又知B型洗衣机售价比A 型洗衣机售价多500 元.求:(1)A 型洗衣机和B 型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?答案:(1)A型与B型洗衣机的售价分别为1100 元与1600 元;(2)实际各付款957元和1392 元知识点:二元一次方程组的应用解析:解答:解:(1)设A 型洗衣机的售价为x元,B型洗衣机的售价为y 元;根据题意可列方程组:解得:答:A型洗衣机的售价为1100 元,B型洗衣机的售价为1600 元.(2 )小李实际付款为:1100×(1-13%)=957 (元);小王实际付款为:1600 ×(1-13%)=1392 (元).答:小李和小王购买洗衣机各实际付款957 元和1392 元.分析:(1)可根据:“两人一共得到财政补贴351 元;又知B型洗衣机售价比A 型洗衣机售价多500元”来列出方程组求解;(2)根据(1)得出的A,B 洗衣机的售价根据补贴的规定来求出两人实际的付款额.5.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1 支签字笔和2 个笔记本共8.5 元,2 支签字笔和3 个笔记本共13.5 元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类且定价为15 元的图书.书店出台如下促销方案:购买图书总数超过50 本可以享受8 折优惠,学校如果多买12 本,则可以享受优惠且所花钱数与原来相同,问学校获奖的同学有多少人?答案:(1)签字笔和笔记本的单价分别是 1.5 元与3.5元;(2)学校获奖的同学有48 人知识点:二元一次方程组的应用;一元一次方程的应用解析:x 2y 8.5解答:解:(1)设签字笔和笔记本的单价分别是x 元与y 元,由题意可得,解得2x 3y 13.5x 1.5y 3.5 答:签字笔和笔记本的单价分别是1.5元与3.5 元(2)设学校获奖的同学有z 人,由题意可得15 0.8 z 12 15z解得z 48 答:学校获奖的同学有48 人.分析:(1)可根据“1支签字笔和2个笔记本共8.5元,2 支签字笔和3 个笔记本共13.5 元”列方程组并解方程组;(2)可根据“购买图书总数超过50本可以享受8 折优惠,学校如果多买12本,则可以享受优惠且所花钱数与原来相同”列一元一次方程,并解方程即可.。
北师大版八年级数学上册第五章《二元一次方程组》应用练习题(有解析)
八年级数学上册第五章《二元一次方程组》应用练习题1.某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?2.育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?3.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?4.某山区有若干名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:捐款数额/元资助贫困中学生人数/名资助贫困小学生人数/名七年级4000 2 4八年级4200 3 3九年级5000(1)求a,b的值;(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.5.某写字楼门口安装了一个如图所示的旋转门,旋转门每转一圈按正常负载可以出去6人,每分钟转4圈.(1)问:按正常负载半小时此旋转门可出去多少人?(2)紧急情况时,旋转门每圈负载出去人数可增加50%,但因此每分钟门的转速降低25%.①直接写出紧急情况时旋转门每分钟可以出去人;②该写字楼有9层,每层10间办公室,平均每个办公室6人,为了符合消防安全要求,要在一楼再安装几近普通侧门,每近侧门每分钟能通过45人,在紧急情况下,要使整写字楼的人能在5分钟内全部安全离(下楼时间忽略不计),至少要安装几道普通侧门.6.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?7.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”8.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?9.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?10.某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?参考答案1.解:(1)设打折前甲种商品每件x元,乙种商品每件y元,依题意,得:,解得:.答:打折前甲种商品每件40元,乙种商品每件120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这些商品比不打折可节省3640元.2.解:设购买红色手幅x个;购买黄色手幅y个,根据题意得,解得,答:购买红色手幅280个;购买黄色手幅520个.3.解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.4.解:(1)由题意得:解得:(2)设初三年级学生捐助x名贫困中学生,捐助y名贫困小学生.由题意得:800x+600y=5000得:4x+3y=25∵x、y均为非负整数∴x=1,y=7或x=4,y=3答:初三年级学生可捐助1名贫困中学生,捐助7名贫困小学生;或捐助4名贫困中学生,捐助3名贫困小学生.5.解:(1)正常负载下,半小时可出去:30×4×6=720人(2)①紧急情况下,出去人数可增加50%,则每圈出去人数为:6×(1+50%)=9人,每分钟门转速降低25%,即每分钟转的圈数为4×(1﹣25%)=3圏则每分钟可以出去:3×9=27人故答案填27②写字楼的总人数为:9×10×6=540人急情况下,要使整写字楼的人能在5分钟,旋转门出去的人数为:5×27=135人则剩下的人数为540﹣135=405人,要从普通侧门通过则有405÷(45×5)≈1.8,即至少安装2道普通侧门6.解:(1)设甲种规格的纸板有x个,乙种规格的纸板有y个,依题意,得:,解得:.答:甲种规格的纸板有1000个,乙种规格的纸板有1600个.(2)1600×3÷2=2400(个).。
(完整版)二元一次方程组练习题含答案
二元一次方程组专题训练1.⎩⎨⎧=-=+33651643y x y x 2. ⎩⎨⎧=+=-6251023x y x y ⎩⎨⎧=-=+19542023b a b a 1、 2、 3、 ⎩⎨⎧=-=+1572532y x y x4、⎩⎨⎧=+-=18435276t s t s 5、 ⎩⎨⎧=-=+574973p q q p 6、⎩⎨⎧=-=+42634y x y x7、⎩⎨⎧-=-=+22223n m n m 8、⎩⎨⎧=--=-495336y x y x 9、10、⎩⎨⎧=-=-yx y x 23532 11、⎩⎨⎧=-=+124532n m n m12、⎩⎨⎧=+=+10232556y x y x13、⎩⎨⎧=+=+2.54.22.35.12y x y x 14、⎪⎩⎪⎨⎧=-+-=+6)(3)1(26132y x x y x15、⎪⎩⎪⎨⎧=+--=-+-04235130423512y x y x 16、⎪⎩⎪⎨⎧=--=+-4323122y x y x yx17、⎪⎩⎪⎨⎧-=-++=-+52251230223x y x y x二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6 D .4x=2.下列方程组中,是二元一次方程组的是( )A .228423119...23754624x y x y a b xBCD x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )7.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( ) A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________. 15.以57x y =⎧⎨=⎩为解的一个二元一次方程是_________. 16.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?《二元一次方程组》单元测试题一、选择题(每题3分,共30分) 1.下列方程组中,是二元一次方程组的是( ). (A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩(D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x , 则输出的y 值是( )(A )0 (B )2- (C )2 (D )44.如果2315a b 与114x x y a b ++-是同类项,则x ,y 的值是( )(A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==32y x 5.已知12x y =⎧⎨=⎩ 是方程组错误!未找到引用源。
人教版七年级数学下册二元一次方程组应用题专练(附答案)
人教版七年级数学下册二元一次方程组应用题专练(附答案)学校:___________姓名:___________班级:___________考号:___________1.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策。
(可用(1)(2)问的条件及结论)2.育才中学新建塑胶操场跑道一圈长400米,甲、乙两名运动员从同一点同时出发,相背而跑,40秒后首次相遇;若从同一起点同时同向而跑,200秒后甲首次追上乙,求这两名运动员的速度.3.在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?4.如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为多少.(8分)5.南充某制衣厂现有22名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条。
(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润?6.列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?7.某学校组织学生到富阳春游,需要乘船到达目的地,有大小两种船,705班共有学生51人,如果租用大船4艘,小船1艘,则有3位同学没有座位;如果租用大船3艘,小船3艘,则有3个座位空余。
二元一次方程(组)解应用题(含答案)
第八章二元一次方程(组)解应用题(含答案)1缉私艇与走私艇相距 120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?1. 解:设走私艇的速度是 x海里/时,缉私艇的速度是 y海里/时,由题意得:[2(x+y)=120[12 (y- K)-120,解得卜,辽(y=35答:走私艇的速度是 25海里/时,缉私艇的速度是 35海里/时2. 甲、乙两人从 A , B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经 3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地.(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米?2. 解:(1)设甲、乙行驶的速度分别是每小时 x 千米、y千米,根据题意,得’,ir v-i & 解得….(y=45所以甲、乙行驶的速度分别是每小时15千米、45千米;(2)由第(1)小题,可得 A , B两地相距45X( 3+1) =180 (千米).设甲、乙行驶x小时,两车相距 30千米,根据题意,得两车行驶的总路程是(180- 30)千米或(180+30)千米,则:(45+15) x=180 - 30 或(45+15) x=180+30 .解得:戸|或疋所以甲、乙行驶"或—小时,两车相距 30千米2 23. 小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的平均速度为3千米/时,而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32 分钟.求小明上坡、下坡各用了多长时间?3. 解:32分钟小时,15设小明上坡用了 x小时,下坡用了(亠-x)小时,由题意,得15]3x+5 (一-x) =1.8,解得:x=90 y=304. A 、B 两地相距20千米.甲乙两人同时从 A 、B 两地相向而行,经过 2小时后两人相遇, 相遇时甲比乙多行 4千米•根据题意,列出两元一次方程组,求出甲乙两人的速度. 4•解:(1设甲的速度为 x 千米/时,乙的速度为 y 千米/小时,由题意得,(2s+2y=20(2K - 2y=4,解得:|{二.答:甲的速度为6千米/时,乙的速度为4千米/小时5.长春至吉林现有铁路长为 128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米•开通后,城际列车的平均速度将为现有列车平均速度的 2.25倍,运行时间将比现有列车运行时间缩短 芒小时.求城际3列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.xy=1282.药小(y- -|) =96,卜二內4解得 :.64X2.25=144 千米 /小时.城际列车的平均速度 144千米/小时6•甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行, 1小时20分后相遇•相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?[解得:x=「,则下坡所用时间为:答:小明上坡用了 鱼左』=丄15 30"10'小时1CI—小时,下坡用了306. 解:设汽车的速度是[■| (x+y) =160丄』 ,x 千米每小时,拖拉机速度 y 千米每小时,根据题意得:则汽车汽车行驶的路程是: (一+_) >90=165 (千米),3 2拖拉机行驶的路程是:(一+卫)>30=85 (千米).冈2答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.—列客车长200 m ,一列货车长280 m ,在平行的轨道上相向行驶,从两车头相遇到两 车尾相离经过16s,已知客车与货车的速度之比是 3: 2,问两车每秒各行驶多少米? 7.解:设客车的速度是每秒x 米,货车的速度是每秒 -x 米.由题意得(x+Zx ) >6=200+280 ,3解得x=18.答:两车的速度是客车 18m/s ,货车12m/s& A 、B 两地相距36千米•甲从A 地出发步行到B 地,乙从B 地出发步行到 A 地•两人 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的 2倍•求两人的速度.&解:设甲的速度是 x 千米/时,乙的速度是y 千米/时. 「4 (x+yj =36 (36-內0 二2 (36-6y)解得: 答:甲的速度是4千米/时,乙的速度是5千米/时9•从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走 3km ,平路每小时走4km ,下坡每小时走 5km ,那么从甲地到乙地用 54分钟,从乙地到甲地用 42分钟,甲地到 乙地的全程是多少?xkm ,平路为ykm ,/• x+y=3.1km ,答:甲地到乙地的全程是 3.1km 10•甲、乙分别自 A 、B 两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速 度都提高了 1千米/小时,当甲到达B 地后立刻按原路向 A 地返行,当乙到达A 地后也立刻由题意得:9•解:设从甲地到乙地的上坡路为解之得宙1・5 ]尸1花按原路向B 地返行,甲、乙二人在第一次相遇后 3小时36分又再次相遇,则 A 、B 两地的距离是多少?10•解:设甲的速度为 x 千米/时,乙的速度为y 千米/时, 可得:x+y=18 A 、B 两地的距离=2 (x+y) =2 XI8=36 答:A 、B 两地的距离是36千米11 •某班同学,从学校出发步行到某地搞军训活动,如果每小时走 6km ,则可提前10min到达目的地;如果每小时走 5km ,则比预定时间迟到 18min ,问:学校到某地有多远预定到达时间是多少?11 •解:设学校到某地 x 千米•预定到达时间是 y 小时.$(厂”I 5吨)=/解得.*1° •故学校到某地14千米•预定到达时间是 2.5小时 12.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km ,那么甲用1小时就能追上乙;如果乙先走 1小时,那么甲只用15分钟就能追上乙,求甲、乙二人 的速度.12 •解:设甲的速度是 x 千米/时,乙的速度为y 千米/时, 答:甲的速度是25千米/时,乙的速度为5千米/时13.甲,乙两人相距15千米,如果两人同时相向而行,过 1小时30分相遇;如果乙向相反方向走,甲同时追赶,经过 7小时30分可以追上,求甲,乙二人的速度各是多少.13.解:设甲,乙二人的速度是 x 千米/小时和y 千米/小时.fl. 5K +1. 5y=157.由题意得,x=20+y0.25s= (141X25)y由题意可得:答:甲,乙二人的速度是 6千米/小时和4千米/小时14、在某条高速公路上依次排列着A B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米•分别在A C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A C两个加油站驶去,结果往 B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上. 问巡逻车和犯罪团伙的车的速度各是多少?14、解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则3 x y 120 x y 40 x 80,整理,得y ,解得,x y 120 x y 120 y 40答:巡逻车的速度是 80千米/时,犯罪团伙的车的速度是 40千米/时.15、悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄?15、解:设悟空飞行速度是每分钟x里,风速是每分钟 y里,依题意得 4(x+y)=10004(x-y)=600 x=200 y=5016. 某列火车通过450米的铁桥,从车头上桥到车尾下桥, 度穿过760米长的隧道时,整列火车都在隧道里的时间是分别是多少?16. 解:设火车长为x米,火车的速度为 y米/秒,33y=x + 45022y=760 — xX=276 「解方程组得:[y=22答:火车长276米,速度为22米/秒. 共33秒,同一列火车以同样的速22秒,问这列火车的长度和速度。
完整版初中数学专项练习《二元一次方程组》100道解答题包含答案
初中数学专项练习《二元一次方程组》100道解答题包含答案一、解答题(共100题)1、南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A、B两个园区,已知A园区为矩形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:C D投入(元/平方米)13 16收益(元/平方米)18 26求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)2、某一天,蔬菜经营户花90元从蔬菜批发市场批发了黄瓜和茄子共,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价/(元2.4 2)零售价/(元3.6 2.8)他当天卖完这些黄瓜和茄子可赚多少元钱?3、已知方程组的解满足x+y=-1,求k的值。
4、解方程组:5、甲、乙两人同求方程ax﹣by=7的整数解,甲求出一组解为,而乙把ax﹣by=7中的7错看成1,求得一组解为,试求a、b的值.6、已知方程组,王芳看错了方程(1)中的a,得到的方程组的解为,李明看错了方程(2)中的b,得到的方程组的解为,求原方程组的解.7、为了净化空气,美化环境,我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?8、敦煌莫高窟是世界上现存最完好的石窟艺术宝库,是重要的爱国主义教育基地,某校组织八年级540名学生去莫高窟研学参观,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知这两种车的限载人数分别为40人和60人,求这两种客车各租用多少辆?9、请阅读求绝对值不等式和的解集过程.对于绝对值不等式,从图1的数轴上看:大于-3而小于3的绝对值是是小于3的,所以的解集为;对于绝对值不等式,从图2的数轴上看:小于-3而大于3的绝对值是是大于3的,所以的解集为或.已知关于x、y的二元一次方程组的解满足,其中m是负整数,求m的值.10、已知2a-1的算术平方根是3,3a+b-1的立方根是2,求a-2b的平方根。
人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)
人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题知识网络重难突破知识点一列二元一次方程组解应用题列二元一次方程组解应用题的一般步骤:1.审:审题,明确各数量之间的关系。
2.设:设未知数3.找:找题中的等量关系4.列:根据等量关系列出两个方程,组成方程组5.解:解方程组,求出未知数的值6.答:检验方程组的解是否符合题意,写出答案。
题型一二元一次方程组的应用- 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。
试问经理,该怎样分发这1400元奖金?变式1-1(2018·大石桥市期末)已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.变式1-2(2019·贵港市期末)某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.题型二二元一次方程组的应用–行程问题典例2(2018·广州市期末)从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少.变式2-1(2020·辉县市期中)一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?变式2-2(2019·许昌市期末)为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.题型三二元一次方程组的应用–工程问题典例3(2020·甘南县期中)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)变式3-1(2020·成都市期末)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?变式3-2(2019·成都市期末)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?题型四二元一次方程组的应用–数字问题典例4(2019·靖远县期末)一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?变式4-1(2020·海淀区期末)小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。
(完整)初中二元一次方程组应用题专项练习(含部分难题答案)
1、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?2、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?3、初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.4、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?5、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?6、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?7、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?8、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?
2、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
3、初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.
4、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
5、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?
6、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?
7、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元
(1)若分班购票,则共应付1240元,求两班各有多少名学生?
(2)请您计算一下,若两班合起来购票,能节省多少元钱?
(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?
8、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?
(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?
9、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?
10、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?
11、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。
参考答案:
1.解:
()
元
王大伯一共获纯利答分元共获纯利分解得分得
根据题意亩西红柿亩茄子设王大伯种了630001063000152600102400815
105440001800170025::,,, =⨯+⨯⎩⎨⎧==⎩⎨⎧=+=+y x ②
y x ①y x y x 2. 解:设甲服装的成本是x 元,乙服装的成本是y 元,
依题意得。
⎩⎨⎧+=+++=+157
500%90]%)401(%)501[(500y x y x 解得x=300,y=200
答:甲、乙两件服装的成本分别为300元、200元
3.解: 设去年A 超市销售额为x 万元,B 超市销售额为y 万元,
由题意得()()⎩⎨⎧=+++=+,
170%101%151,150y x y x
解得⎩
⎨⎧==.50,100y x 100(1+15%)=115(万元),50(1+10%)=55(万元).
答:A ,B 两个超市今年“五一节” 期间的销售额分别为115万元,
4. 解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元 根据题意,得48452
x x -+= 解这个方程,得
x =92
484928360
x -=⨯-= 答:该同学看中的随身听单价为360元,书包单价为92元。
解法二:设书包的单价为x 元,随身听的单价为y 元
根据题意,得x y y x +==-⎧⎨⎩45248
解这个方程组,得x y ==⎧⎨
⎩92360 答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A 购买随身听与书包各一件需花费现金:
45280%3616
⨯=.(元) 因为3616400
.<,所以可以选择超市A 购买。
在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:
3602362
+=(元) 因为362400
<,所以也可以选择在超市B 购买。
……4分 因为3623616
>.,所以在超市A 购买更省钱。
……5分。