【医学课件】预防医学- t检验PPT

合集下载

预防医学- t检验PPT

预防医学- t检验PPT

t =d d d 0 d , n 1
S d
Sd n Sd n
式中,d 为每对数据的差值, d 为差值的样本均数,
Sd



的标准差

S d
为差值样本均数的标准误,
n

对子数。
30
配对的主要形式有: 同源配对
①同一受试对象处理前后的数据; ②同一受试对象两个部位的数据; ③同一样品用两种方法(仪器)检验的结果;
22
(一)单样本 t 检验
(one sample t-test)
即样本均数 X(代表未知总体均数)与
已知总体均数0(一般为理论值、标准值或
经过大量观察所得稳定值等)的比较。其检 验统计量按下式计算
t X X X 0 , n 1
S X
Sn Sn
23
例15.14
t检验
一、 假设检验的基本原理
■ 假设检验的基本原理 ➢反证法:
当一件事情的发生只有两种可能A和B,为了肯定 一种情况A,但又不能直接证实A,这时否定另一种可能 B,则间接肯定了A。
➢概率论(小概率):
如果一件事情发生的概率很小,那么在一次试验 时,我们说这个事件是”不会发生的”。从一般的常识 可知,这句话在大多数情况下是正确的,但有犯错误的 时候,因为概率小也是有可能发生的。
(
1 n1

1 n2
)

(n1 1)S12 (n2 1)S22 ( 1 1 )
n1 n2 2
n1 n2
式中 S 为两样本均数之差的标准误; X1 X 2
S
2 c
为两样本合并方差。
40

t检验医学统计学PPT课件

t检验医学统计学PPT课件

[
sc2
( x12
x1)2 ][ n1
( x22
n1 n2 2
x2)2 ] n2
(n1 1)s12 (n2 1)s22 n1 n2 2
第36页/共78页
例8-7 :
表8-4 男女大学生的血清谷胱甘肽过氧化酶(GSH-PX)
性别 例 数 均 数 标准差 男 48 96.53 7.66 女 46 93.73 8.23
身高与以往男子平均身高相等
H1:µ≠µ0=170cm,即即现在该地20岁男子平均
身高与以往男子平均身高不等
α= 0.05,双侧检验
第9页/共78页
⑵ 选定检验方法,计算检验统计量 根据题目资料类型,可见,该资料是样本与
总体之间的比较,且σ已知可用样本-总体的Z
检验。依公式计算检验统计量:
z x 0 x 0
值样本是否来自零总体(μd=0 ),如来自零总体
,则两方法检测值相同,如不是来自零总体,则 表明两方法检测值的不一致,不是由抽样误差引 起,而是来自不同的总体。
第25页/共78页
⑴ 建立检验假设,确定检验水准
H0:µd=0,即两方法检测结果相同 H1:µd≠0,即两方法检测结果不同 α= 0.05 ,双侧检验
第6页/共78页
在 H0 成立的前提条件下,检验统计量计算公式:
① σ已知或σ未知但n足够大:
z x
x
( )
② σ未知且n较小:
t x μ0 x μ0
sx
s n
第7页/共78页
(n1)
例8-1 根据大量调查得知,某地20岁健康成年男子平 均身高为170cm,标准差为cm。今随机抽查了该地25 名健康成年男子,求得其身高均数为172cm,标准差 为cm,能否据此认为该地现在20岁成年男子平均身高 与以往不同?

5第四章 t检验ppt课件

5第四章 t检验ppt课件

1.建立检验假设、确定检验水准
H0:两总体方差相等
H1:两总体方差不相等
0.10( 较大以减少II类错误)
2.选择检验方法、计算统计量
中药组S2 =0.580 西药组S2 =0.466 F=s12/s22 =0.580/0.466 =1.245
3.确定P 值、做出推论
ν1=n1-1=10-1=9,ν2=n2- 1=10-1=9,查F 界值表(方差齐 性检验用),得F 0.05〔9,9) = 4.03, F< F 0.05〔9,9) ,P >0.05。
非参数检验是一类不依赖总体分布的具体形式的统 计方法。如Ridit分析、秩和检验、符号检验、 中位数检验、序贯试验、等级相关分析等。
⑴优点:①对总体的分布形式不要求;②可用于不 能精确测量的资料;③易于理解和掌握;④计算 简便。
⑵缺陷:不能充分利用资料所提供的信息,使检验 效率降低。
(二〕单因素分析与多因素分析
已知总体均数一般为标准值、理论值或 经大量观察得到的较稳定的指标值。
一、适用条件
1.对正态分布的数值变量资料,需用t 检验。
2.对于非正态分布的资料,若经过变量 变换使成正态分布,可按t检验处理; 否则,用非参数检验的方法。
二、正态性检验的方法
检验假设H0为总体分布是正态分布,当P>α时, 不拒绝H0,认为样本所来自的总体服从正态分 布;而P≤α时,拒绝H0,认为样本所来自的总 体不服从正态分布。
表4-2 两法治疗高血脂症3个月后血清胆固醇含量(mmol/L)
病人编号 组别
1 2 3 4 5 6 7 8 9 10
中药 5.45 5.04 4.62 5.61 4.06 5.32 5.28 4.78 6.97 5.34 西药 5.34 6.12 5.87 4.67 5.21 6.89 5.48 5.43 4.57 5.79

【医学课件】预防医学-t检验

【医学课件】预防医学-t检验

t检验与相关分析的不同点
1
t检验主要用于比较两组数据的均值是否存在显 著差异,而相关分析用于衡量两个变量之间的 线性关系强度和方向。
2
t检验关注数据的分组和组间的差异,而相关分 析关注两个变量之间的共同变化趋势和相关程 度。
3
t检验通常在实验或研究中使用,样本量相对较 小,而相关分析可用于大规模数据集,样本量 不一定要相等。
1 2
适用范围
两组独立样本t检验适用于完全随机设计的两样 本均数的比较,其目的是检验两样本所来自总 体的均数是否相等。
前提条件
数据呈正态分布,两样本方差相等,且总体方 差未知但符合正态分布。
3
统计方法
采用SPSS软件计算t检验,得出t值、自由度和 相伴概率p值。
两组配对样本t检验
适用范围
01
两组配对样本t检验适用于配对设计的两样本均数的比较,目
的是检验两样本所来自总体的差值均数是否为零。
前提条件
02
数据呈正态分布,两样本方差相等,且总体方差未知但符合正
态分布。
统计方法
03
采用SPSS软件计算t检验,得出t值、自由度和相伴概率p值。
多组独立样本t检验
适用范围
多组独立样本t检验适用于完全随 机设计的多组样本均数的比较, 目的是检验多组样本所来自总体 的均数是否相等。
t检验与相关分析的相同点
t检验和相关分析都是统计分析方法,可用来研 究数据的分布和关系。
两者都可用于描述和比较数据的特征,例如均值 、中位数、方差等。
两者都可用于假设检验,通过样本数据推断总体 特征。
t检验与其他统计方法的比较
01
与方差分析(ANOVA)相比,t检验只能用于比较两组数据的均值差异,而方 差分析可用于比较多个组间的均值差异。

医学统计学——t检验课件

医学统计学——t检验课件

医学统计学——t检验课件xx年xx月xx日contents •t检验的基本概念•t检验的原理•t检验的步骤•t检验的应用•t检验的注意事项•t检验的实例演示目录01 t检验的基本概念统计假设检验的一种,用于比较两个独立样本的平均数是否有显著差异,或一个样本的平均数与一个已知的参考值之间是否有显著差异。

t检验常用于小样本数据,特别是两个独立样本的比较。

t检验的定义t检验的适用范围适用于小样本数据,特别是两个独立样本的比较;常用于检验一个样本的平均数与一个已知的参考值之间是否有显著差异;可用于二分类变量和等级变量的比较。

两个独立样本来自的总体服从正态分布;两个独立样本来自的总体方差相等;样本数据是随机样本。

t检验的假设条件02 t检验的原理两独立样本t检验适用条件样本应来自正态分布总体,且方差相等。

结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。

统计假设比较两组独立样本的均值是否存在显著差异,即H0:μ1=μ2与H1:μ1≠μ2。

两配对样本t检验统计假设比较两组配对样本的差值均值是否显著非零,即H0:μ1-μ2=0与H1:μ1-μ2≠0。

适用条件样本应来自正态分布总体,且方差相等。

结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。

单因素方差分析t检验统计假设比较三组或多组独立样本的均值是否存在显著差异,即H0:μ1=μ2=…=μn与H1:μ1≠μ2≠…≠μn。

适用条件样本应来自正态分布总体,且方差相等。

结果解释根据F值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。

如果P值小于预设显著性水平α,则认为各组均值存在显著差异;否则,认为无显著差异。

03 t检验的步骤明确研究目的明确研究目的是t检验的首要步骤,决定了数据的类型和数量。

数据筛选对数据进行筛选,去除异常值和缺失值,以确保数据的有效性和可靠性。

数据分组根据研究目的,将数据分成两组或以上,以便进行比较和分析。

计量资料统计推断(t检验)-预防医学-课件

计量资料统计推断(t检验)-预防医学-课件

3
样本量的确定
合理的样本量对于可靠的t检验结果至关重要。掌握样本量的计算方法和实际应 用技巧。
步骤
假设检验
明确研究问题并提出原假设和备择假设,为接 下来的检验做好准备。
计算P值
通过t值、自由度和显著性水平计算P值,以判 断差异是否显著。
检验统计量
计算t值作为判断两个平均值是否有显著差异的 统计量。
t检验是用于比较两个平均值是否有显著差异的统计方法。它可以帮助我们判 断一种干预措施对预防医学中的结果是否产生了显著影响。
原理
1
正态分布
数据符合正态分布的假设是t检验的前提之一。了解正态分布对于正确应用t检验 至关重要。2单侧、双侧t检验
t检验可以根据研究问题和假设,选择进行单侧或双侧检验,以得出准确的结论。
结果分析
根据P值和显著性水平,判断研究结果是否支持 原假设,进行科学的结论推断和决策。
应用和实例
预防医学中的应用举例
通过实际的研究案例,展示t检验在预防医学领域中 的应用和实际效果。
使用Excel进行统计分析
探索如何使用Excel进行t检验和统计分析,使数据处 理更加高效和准确。
注意事项
数据采集和处理
2 t检验的应用前景
展望t检验在预防医学领域的应用前景,并提 供相关建议和思考。
计量资料统计推断(t检 验)-预防医学-课件
探索计量资料统计推断中的t检验在预防医学中的重要性和应用。通过深入介 绍其原理、步骤和应用实例,让你深入理解这一统计方法。
统计学概述
统计学是研究收集、整理、分析和解释数据的科学。它提供了一种方法来从 数据中推断出关于总体的信息,并进行相应的决策。
t检验是什么?为什么要使用?

医学统计学t检验PPT课件

医学统计学t检验PPT课件
检验的统计量:
t = d d
sd nd
~t(nd 1),其中nd为对子数,因为
d =0,化简后得到课本公式:
t= d sd nd
配对设计t检验(例8.2)
24名儿童接种卡介苗,按照年龄、性别配成12对,每对中的 一人接种新制品,另外一人接种标准品;经相同部位注射, 72小时后观察结核菌素皮肤反应的直径,请问两种疫苗的反 应结果有无差别?
40 既然满足正态分布就可以作z转换,但是总体标准差
未知,而且样本例数较少,所以只能作t转换: t= x = 3.27 3.36 = 1.294 = 40 1 = 39
s / n 0.44 / 40
P /2
P/ 2
1/2α
0 -1.294 -2.023
1/2 α
t39
1.294 2.023
对子号 1 2 3
……
试验组
对照组
门诊6
门诊1
女性、55~、重度
门诊4
门诊2
男性、40~、轻度
门诊3
门诊5
女性、45~、中度
……
试验组与对照组的两个观察对象均按照一定的条件配成对子, 同一对子中的“混杂”因素在二者间几乎相同;而在不同对子 间这些“混杂”因素则有可能差别很大
配对设计的t检验
常见的配对方法之二: 将同一份样品分成两份(或同一机体不同 部位),同时、随机接受两种不同的处理方 案,例如:牙医分别用两种方法对相同患者 的牙龈取模,比较两种方法的精确度
的因素,例如要比较两种药物的疗效,如果两组 患者在开始时的病情严重程度相差较大,那么即 使最终两药的治愈情况不同,也不能归结于药物 差别;在这里患者的病情称之为非处理因素或“ 混杂”因素 配对设计就是研究者为了控制可能存在的非处理 因素对研究结果的影响而采用的一种“均衡”的 设计方法

计量资料统计推断(t检验)-预防医学-课件

计量资料统计推断(t检验)-预防医学-课件

02
t检验的步骤
建立假设
假设检验的基本思想
设立原假设的依据
在假设检验中,通常先设立一个原假 设,然后基于样本数据对原假设进行 检验,判断是否拒绝原假设。
原假设的设立通常基于已有的研究结 果、理论或实践经验,并且原假设应 该是一个可以验证的命题。
原假设与备择假设
原假设通常是研究者想要否定的假设 ,备择假设则是研究者想要接受的假 设。
p值是用于判断是否拒绝原假设 的统计量,p值越小,说明样本 数据与原假设之间的差异越大,
越有理由拒绝原假设。
显著性水平
显著性水平是预先设定的一个临 界值,用于判断是否拒绝原假设
,通常取0.05或0.01。
结论的表述
根据p值与显著性水平的比较结 果,可以得出是否拒绝原假设的 结论,并进一步解释结果的意义
断实验处理或条件改变对数据的影响。
两独立样本t检验
总结词
用于比较两个独立样本的平均值是否存 在显著性差异。
VS
详细描述
两独立样本t检验,也称为两组独立样本t 检验,是统计学中常用的方法之一,用于 比较两个独立样本的平均值是否存在显著 差异。这种方法常用于比较不同组对象的 数据、不同条件下的独立测量等。通过计 算t统计量,我们可以判断两组独立样本 的均值是否存在显著差异,从而推断不同 组别或条件对数据的影响。在进行两独立 样本t检验时,需要注意样本来自的总体 是否具有方差齐性和正态分布等统计假设 ,以确保检验结果的准确性和可靠性。
t检验的适用范围
• t检验适用于样本量较小、数据分布情况未知或总体标准差未知的情况。在预防医学领域,t检验常用于比较两组人群的生理 指标、行为习惯等计量资料的差异。
t检验的假设条件
• 假设条件包括:样本数据来自正态分布总体、总体 方差齐性、独立样本等。在进行t检验之前,需要检 验样本数据是否满足这些假设条件,以确保统计推 断的准确性。

t检验ppt课件

t检验ppt课件

1. 建立检验假设,确定检验水准 令两组患者血糖值的总体均数分别为μ1 和μ2 。 H0: μ1 = μ2 ; H1: μ1 ≠ μ2 ;α= 0.05。
2. 计算检验统计量
t X1 X2 SX1X2
X1 X2
SC2 X1X2
是两样本均数之差的联合标准误, S
2 C
是联合方差。
SC 2
X12(
X1)2 n1
X22(
X2)2 n2
n1n22
另外,如果已知两样本标准差为
S1
,
S2
时,可按以下公式计算S
2 C

SC 2 (n11n)1S12 n2(n221)S22
本例中,t = 2.639
3. 确定P值,得出推断结论
自由度ν= n1 + n2 – 2 = 23, 查 t 界值表,t 0.05/2,(23) = 2.069,
t > t 0.05(23), P < 0.05, 差别有统计学意义。按α= 0.05 水准, 拒绝 H0 ,接 受H1,可认为两组患者2个月后测得的空腹血糖值的均数不同。
总体方差不具齐性的两样本 t' 检验
方差齐性检验
两总体的方差齐性决定了,采用何种统计检验的方法去比较两小
样本均数的差异。
两总体方差的齐性检验,即 F 检验。
二. t' 检验
t' 检验有3种方法,本章介绍Cochran & Cox法和Satterthwaite法。 检验统计量t'为:
t X1 X 2
S
2 1
S
2 2
n1 n2
ν 1 = n1 – 1, ν2 = n2 – 1
校正临界值 t'α/2为:

医学统计学——t检验课件

医学统计学——t检验课件

•t检验概述•t检验的前提条件•单一样本t检验•独立样本t检验•配对样本t检验•t检验的扩展•t检验在医学中的应用•t检验的常见错误及注意事项目录t检验的定义0102031t检验的适用范围23t检验主要用于比较两组数据的均值是否存在显著差异,例如比较两组病人的平均血压、平均血糖等指标是否存在显著差异。

t检验还可用于检测单个样本的均值与已知的某个值是否存在显著差异,例如检测某种新药的有效性。

在医学研究中,t检验常用于临床试验、流行病学调查等数据统计分析中。

t检验的历史与发展t检验起源于英国统计学家G.E.皮尔逊,最初用于解决科学实验中的数据分析问题。

随着科学技术的不断发展,t检验逐渐成为医学统计学中最常用的统计分析方法之一。

目前,t检验已经广泛应用于医学、生物、社会科学等领域的数据统计分析中,成为研究者和学者们必备的统计工具之一。

样本正态分布样本独立性独立性是指样本数据来自不同的总体,且各总体之间相互独立。

在进行t检验时,要求样本数据是来自两个或多个相互独立的总体。

如果样本数据不是来自相互独立的总体,那么t检验的结果可能会受到影响。

在实际应用中,如果样本数据不满足独立性要求,可以通过将数据分为不同的组(如按时间、按个体等)来满足独立性要求。

如果数据无法分组满足独立性要求,则可以考虑使用其他统计方法。

方差齐性单一样本t检验是用来检验一个样本均值是否显著地不同于已知的参考值或“零”(即检验假设H<sub>0</sub>:μ=μ<sub>0</sub>)。

这种检验通常用于检验单个观察值是否与已知的参考值有显著差异。

公式t=(X-μ<sub>0</sub>)/S<sub>X</sub>/√n,其中X是样本均值,μ<sub>0</sub>是已知的参考值或“零”,S<sub>X</sub>是样本标准差,n是样本大小。

医学统计学——t检验课件

医学统计学——t检验课件

样本量大小的问题
足够的样本量是t检验准确性的重要保障
如果样本量过小,t检验的结果可能不准确。
确定合适的样本量
在医学研究中,一般认为样本量至少需要达到30才能进行t检验。同时,可以使用如Bootstrap、jackknife等 重采样方法来评估t检验的稳定性。
06
t检验的复习与巩固
概念辨析
t检验
医学统计学——t检验课件
xx年xx月xx日Βιβλιοθήκη contents目录
• t检验的基本概念 • t检验的原理 • t检验的步骤 • t检验的应用 • t检验的局限性 • t检验的复习与巩固
01
t检验的基本概念
t检验的定义
总结词
t检验是一种常用的参数检验方法,用于比较两组数据的均值 是否存在显著差异。
详细描述
计算t值
正态性检验
对数据进行正态性检验,以确定数据是否符合正态分布。
t值计算
根据样本数据计算t值,并确定自由度。
查表得出p值
p值定义
p值是统计学中表示样本数据是 否显著的重要指标。
p值计算
使用t值和自由度查表得出p值 。
解读p值
根据p值大小,判断样本数据的 显著性,从而得出结论。
04
t检验的应用
t检验是通过计算t值来评价两组数据之间的差异程度,以确定 这种差异是随机误差引起还是处理效应引起。
t检验的适用范围
总结词
t检验适用于小样本数据,特别是样本数据呈正态分布或近似正态分布的情况 。
详细描述
在医学研究中,t检验常用于比较两组病例的疗效、安全性等指标的差异,也 可以用于评价不同剂量、不同处理方式之间的差异。
实例
例如在肺癌患者的预后评估中,根据患者年龄、性别、病理 类型、肿瘤大小、淋巴结转移情况等数据,使用t检验进行统 计分析,可以得出患者的生存期是否存在显著差异,从而为 临床医生提供参考依据。

t检验PPT精品医学课件

t检验PPT精品医学课件
2018/10/14 3
t
X 0 SX

X 0 S/ n
ν=n-1
例8.1 已知某地新生儿出生体重均数为3.36kg。从该地
农村随机抽取 40 名新生儿,测得其平均体重为 3.27kg ,标 准差为 0.44kg ,问该地农村新生儿出生体重是否与该地新 生儿平均体重不同? (1)建立检验假设,确定检验水准 H0:μ=μ0=3.36 H0:μ≠μ0
配对资料的t检验(paired samples t-test)先求出各对子的差 值d的均值 d , 若两种处理的效应无差别,理论上差值d的总 d 体均数 应为0。所以这类资料的比较可看作是样本均数 d 与总体均数 0 的比较。要求差值的总体分布为正态分布。 t 检
验的公式为:
| d d | | d 0 | |d | t Sd Sd / n Sd / n
2018/10/14 10
第三节
两样本均数比较
两本均数比较的t检验亦称为成组t检验,又称为独立样本t 检验(independent samples t-test)。适用于比较按完全随机 设计而得到的两组资料,比较的目的是推断两样本均数各自所
代表的总体均数μ1和μ2是否相等。两样本含量可以相等也可以
S X1X 2 1 1 S n n 2 1
2
式中,S2称为两均数合并的方差,计算公式为:
2018/10/14
12
2 2 ( n 1 ) S ( n 1 ) S 1 2 2 S2 1 n1 n2 2
上式如果n1=n2,则
S X1X 2
2
t
3.25 | 4.52 2.491 / 12
(3)确定P值,作出推断结论 ν=n-1=12-1=11,t界值表,得 t0.001/2,11=4.437, 现t>t0.001/2, 11 , 故P<0.001。按α水准,拒绝H0, 接受 H1 ,差异有统计学意义。可以认为两种不同结核菌素对 儿童的皮肤反应直径有差别,新制品反应小于标准品。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 15.13 根据大量调查,已知一般健 康成年男子的脉搏均数为72次/min。某 医生在某山区随机抽查100名健康成年 男子,求得其脉搏均数为76.2次/min, 标准差为4.0次/min,能否认为该山区的健 康成年男子脉搏均数高于一般健康成年 男子的脉搏均数?
一般健康 成年男子
0=72次/min
如果P≤α,则按α水准拒绝H0,接受 H1,称差异有显著性,或差异有统计学 意义;
如果P>α,则按α水准不能拒绝H0。 称差异无显著性或无统计学意义。
假设检验的基本原理与t检验
■ 假设检验的基本原理
3. 确定P值,作出结论
t X 0
SX
P值是指在H0所规定的总体 中作随机抽样,获得等于 及大于(或小于)现有统 计量t值的概率。
二、假设检验的一般步骤
(一)建立检验假设(hypothesis test), 确定检验水准( size of test),
无效假设或零假设(null hypothesis) H0:= 0 差别是由抽样误差所致
备择假设或对立假设(alternative hypothesis)
H1: ≠0 或 >0 ( <0 )
S X
Sn Sn
23
例15.14
15例长期服用某种避孕药的妇女,其血清 胆固醇含量的均数为6.5mmol/L,标准差 为0.7mmol/L,一般健康妇女血清胆固醇 含量的均数为4.4mmol/L,问长期服用该 种避孕药的妇女其血清胆固醇含量的均数 与一般妇女有无差别?
已知: μ0=4.4 X=6.5 S=0.7 1、建立假设,确定检验水准 H0: μ=μ0 H1: μ≠μ0 α=0.05
还是由本质差别造成的统计推断方法
假设检验的基本思想
据专业知识,有两种可能: = 0或 ≠ 0 直接证明是哪种结果都很困难,利用反证法。 假设= 0 ,然后借助一定的分布,观察实测 样本情况是否属于小概率事件。
如果实测样本情况属于小概率事件,则认为原先的假 设是错的,拒绝这个假设;
如果实测样本情况不属于小概率事件,则不拒绝原来 的假设。
例15.15
按性别相同、年龄相近、病情相近把16例 某病患者配成8对,每对分别给予A药和B 药治疗,现测得治疗后的血沉(mm/h)结 果见下表,问不同药物治疗后病人血沉水 平是否有差异?
表15-8 不同药物治疗后某病患者的血沉值(mm/h)
对子号 A 药
(1)
(2)
1
10
2
13
3
6
4
11
5
10
6
d = 0 d = 0
d > 0 d < 0
12
3. 两样本总体均数 1 与 2 的比较
目的
H0
H1
双侧检验 是否1 ≠ 2 1 = 2 1 ≠2
单侧检验 是否1 > 2 1 = 2 1 > 2
是否1 < 2 准(size of test) 也称显著性水准(significance level),符 号为α,常取0.05或0.01。
d d / n 3 本例n=8,d=24,d2=96,
d 2 (d )2
96 (24)2
Sd
n n 1
8 1.852 8 1
35
t d 3 4.582 Sd n 1.852 / 8
(3)确定P值,作出推断结论
υ=n-1=8-1=7
t0.01,7=3.499,
t=4.582>3.499,P<0.01
7
7
8
8
8
合计
B药
差值 d
差值 d2
(3)
(4)=(2)(3)
(5)
6
4
16
9
4
16
3
3
9
10
1
1
10
0
0
4
3
9
2
6
36
5
3
9
24
96
34
(1)建立检验假设,确定检验水准
H0:d=0,不同药物治疗后病人血沉水平无差异 H1:d≠0,不同药物治疗后病人血沉水平有差异 =0.05
(2)计算检验统计量t值
2、选定检验方法,计算统计量
n=15
t x 0 x 0 6.5 4.4 11.619
s x
s / n 0.7 / 15
3、确定P值,作出推断结论
本例υ=15-1=14 查t界值表,t0.05,14=2.145 算得t=11.667 > 2.145 ,所以,P < 0.05。 按α=0.05检验水准拒绝H0,接受H1,差异有统计 学意义,可认为长期服用该种避孕药的妇女其血 清胆固醇含量的均数与一般妇女有差别。
结论:在 a = 0.05 水准上,不拒绝H0,尚不能认为 原发性高血压和脑卒中病人的尿酸含量不同。
45
表 3-4 试验组和对照组空腹血糖下降值(mmol/L) 试验组 X1 -0.70 -5.60 2.00 2.80 0.70 3.50 4.00 5.80 7.10 -0.50 (n1=20) 2.50 -1.60 1.70 3.00 0.40 4.50 4.60 2.50 6.00 -1.40 对照组 X2 3.70 6.50 5.00 5.20 0.80 0.20 0.60 3.40 6.60 -1.10 (n2=20) 6.00 3.80 2.00 1.60 2.00 2.20 1.20 3.10 1.70 -2.00
组别
例数
原发性高血压 25
均数 221.7
标准差 86.1
脑卒中
27
246.5
96.9
42
1. 建立假设,确定检验水准
H0: μ1 = μ2 H1: μ1≠μ2 α= 0.05
43
2. 选定检验方法,计算统计量
Sc2
n1
1S12
n2
1S
2 2
n1 n2 2
25 1 86.12 27 1 96.92 8440.9
即差别不仅仅是由于抽样误差所致。
注意:
假设针对的是总体; H0和 H1是互斥的; 单侧、双侧的选择(由设计决定)。
单双侧检验的确定:首先根据专 业知识,其次根据所要解决的问题 来确定。若从专业上看一种方法结 果不可能低于或高于另一种方法结 果,此时应该用单侧检验。一般认 为双侧检验较保守和稳妥。
3.确定概率P值作出结论
t t0.05(24)
p 0.05
t 检验,亦称student t 检验,有下述情况:
1、样本均数 X与已知某总体均数 比较的t检验 目的:推断一个未知总体均数与已知总体均
数0是否有差别,用单样本设计。
2、两个样本均数
X

1
X
2
比较的t检验
目的:推断两个未知总体均数 1与 2 是否有差
t =d d d 0 d , n 1
S d
Sd n Sd n
式中,d 为每对数据的差值, d 为差值的样本均数,
Sd



的标准差

S d
为差值样本均数的标准误,
n

对子数。
30
配对的主要形式有: 同源配对
①同一受试对象处理前后的数据; ②同一受试对象两个部位的数据; ③同一样品用两种方法(仪器)检验的结果;
︱t︱值 P 值
<t0.05 >0.05
≥t0.05
≤0.05
结论 接受H0,差别无统计学意义 拒绝H0,接受H1,差别有 统计学意义
27
P
t
0
B
A
28
29
(二)配对t 检验 (paired t-test)
配对t 检验适用于配对设计的计量资料。
配对设计类型:①两同质受试对象分别接受两种不 同的处理;②同一受试对象分别接受两种不同处理;③ 同一受试对象(一种)处理前后。
数量的样本,比较某一指标在不同特征人群中是否相等。 比较目的:推断两样本各自代表的总体均数 μ1 和μ2 是否 相同。
t 检验条件:两样本含量 n1、n2 较小时, 要求样本来自正态分布总体,且要求两总体 差相等(又称方差齐性)。
38
两独立样本t检验原理
两独立样本t检验的检验假设是两总体均数相 等,即H0:μ1=μ2,也可表述为μ1-μ2=0,这里
n1 n2 2
n1 n2
式中 S 为两样本均数之差的标准误; X1 X 2
S
2 c
为两样本合并方差。
40
例15-16 某医师分别抽取原发性高血压病人 25例和脑卒中病人27例,测定其尿酸的含量, 结果见表15-9。问原发性高血压病人和脑卒中 病人的尿酸含量有无差别?
41
表 15 – 9 原发性高血压病人与脑卒中病人的尿酸含量(mmol/L)
可将两样本均数的差值看成一个变量样本, 差 值的标准误是?
则在H0条件下两独立样本均数t检验可视为样 本与已知总体均数μ1-μ2=0的单样本t检验, 统
计量计算公式为
t
(X1
X 2 ) (1
S
2)
X1 S
X2
,
n1
n2
2
X1X 2
X1X 2
S X1X 2
SC2
(
1 n1
1 n2
)
(n1 1)S12 (n2 1)S22 ( 1 1 )
按α=0.05水准,拒绝H0,接受H1,可认 为不同药物治疗后病人血沉水平不同。
(三)完全随机设计两个样本均数的比较 (Two independent sample t-test)
两种类型: 选择一定数量的观察单位,将它们随机分为两组或多组,
分别给予不同处理; 从两组或多组具有不同特征的人群中,分别随机抽取一定
相关文档
最新文档