重庆中考数学18题专项训练
重庆市中考数学18题专题训练
X重庆市中考数学18题专题训练一、反比例函数与三角形1、如图,11POA∆、212P A A∆都是等腰直角三角形,点1P、2P在函数4yx=(0x>)的图像上,斜边1OA、12A A、都在x轴上,则点2A的坐标__________2、如图所示,()()111222P x y P x y,,,,……,()n n nP x y,在函数()9y xx=>的图象上,11OP A∆,212P A A∆,323P A A∆,…,1n n nP A A-∆,…都是等腰直角三角形,斜边1121n nOA A A A A-,,…,都在x轴上,则12ny y y+++=…__________3、如图,直线y=x+4与x轴、y轴交于A、B两点,与y=kx相交于C、D两点,过C点作CE⊥y轴,垂足为E点,S△BDE =32,则k=__________4、如图,直线y=x+3与x轴、y轴分别交于A、B两点,与y=kx(x<0)的图像交于C、D两点,E是点C关于点A的中心对称点,EF⊥OA于F,若△AOD的面积与△AEF的面积之和为72时,则k=__________5、如图,反比例函数y=kx(k<0)与直线y=x+4交于C、D两点,S△OCD=2S△AOC,则k=D B A yx O CBAO Y XC B A CDO YX6、如图,直线y=-x+b 与x 轴相交于点A ,与y 轴相交于点B ,与双曲线y= 2x 相交于C 、D 两点,当S △BOC + S△AOD= S △COD 时,b=7、如图,直线y=-2x-2分别与两坐标轴交于A 、B 两点,C 为双曲线y= kx (x>0)上的一点,AC 交y 轴于点D ,且D为AC 的中点,若△ABC 的面积为52 ,则k=8、如图,直线y=–43 x 与双曲线y= k x 交于A 、B 两点,C (5,0)为x 轴正半轴上一点,若∠ACB=90°,则k= 9、将直线y x =向左平移1个单位长度后得到直线a ,如图,直线a 与反比例函数()10y x x=>的图象相交于A ,与x 轴相交于B ,则22OA OB -=yxAB Oa10、如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2)。
2020重庆中考数学18题专题及答案word.doc
中考数学18题专题及答案1.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__ 24____千克设A种饮料的浓度为a,B种饮料的浓度为b,各自倒出和倒入的果蔬质量相同可设为x千克,由于混合后的浓度相同,由题意可得:()() 40604060x a xb x b xa-+-+=去分母()()604060406040x a xb x b xa-+=-+,去括号得:2400606024004040a xa xb b bx xa-+=-+移项得:6060404024002400xa xb bx xa b a-++-=-合并得:()()1002400b a x b a-=-所以:24x=2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 6 千克。
设切下的一块重量是x千克,设10千克和15千克的合金的含铜的百分比为a,b,= ,整理得(b-a)x=6(b-a),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重(24公斤)设含铜量甲为a乙为b,切下重量为x.根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a,乙为b,切下重量为x.由题意,有=,解得x=24.切下的合金重24公斤.1、四川省安岳县,是我国的柠檬生产基地。
超市里有一种柠檬水,由水和柠檬汁混合配制。
购买1吨柠檬汁的钱可以购买20吨的水。
重庆中考数学第18题专题1(几何部分)汇编
重庆中考数学第18题专题1(几何部分)1. 如图,在正方形ABCD和正方形DEFG中,点G在AD上,连接AC,BF交于点H,连接DH,若BC=4,DG=1,那么DH的长是.2.如图,在正方形ABCD中, E为AD中点,AH⊥BE于点H,连接CH并延长交AD于点F, CP ⊥CF交AD的延长线于点P,若EF=1,则DP的长为_________.3、如图,以RtABC△的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO,若CA = 2,CO=22,那么CB的长为______________.4.如图,正方形ABCD的边长为3,延长CB至点M,使BM=1,连接AM,过点B 作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为.5.如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG 交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为_____________.6、如图,正方形ABCD中,点E、F、G分别为AB、BC、CD边上的点,EB=3cm,GC=4cm,连接EF、FG、GE恰好构成一个等边三角形,则正方形的边长为cm。
7.如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是.8、如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为.9、如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=62,则另一直角边BC的长为.10、.如图,等腰Rt△ABC中,O为斜边AC的中点,∠CAB的平分线分别交BO,BC于点E,F,BP⊥AF于H,PC⊥BC,AE=1,PG= .11、如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于点F,若BE=1,AB=3,则PF的长为。
(完整版)重庆中考数学第18题专题训练(含答案),推荐文档
重庆中考18题专题训练1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa-+-+=去分母,()()604060406040x a xb x b xa -+=-+去括号得:2400606024004040a xa xb b bx xa-+=-+移项得:6060404024002400xa xb bx xa b a-++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。
解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨., =, 解得x=240.故答案为:240.,由①得,则有:,两式相除得:,商品的销售利润率变成了 .(2)某商品现在的进价便宜20% ,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为 。
2020重庆中考复习数学第18题专题训练八(含答案)
2020重庆中考复习数学第18题专题训练(含答案)例1、如图,在平面直角坐标系中,已知A(0,6),B(2,0),C(6,0),D为线段BC上的动点,以AD为边向右侧作正方形ADEF,连接CF交DE于点P,则CP的最大值.练习:在平面直角坐标系中,已知A(0,4)、B(1,0)、C(4,0),D为线段BC上的动点,以AD为边向右侧作正方形ADEF,连CF交DE于P,则CP的最大值为.例2、如图,在△ABC中,AB≠AC,∠BAC≠90°,AC=4,BC=3,∠BCA=45°,点D在线段BC 一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.正方形ADEF的边DE与线段CF相交于点P,则线段CP长的最大值为.练习:如图,在△ABC中,AB≠AC,∠BAC≠90°,AC=2,BC=3,∠BCA=45°,点D在线段BC一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.正方形ADEF的边DE与线段CF相交于点P,则线段CP长的最大值为.例3、如图,在平面直角坐标系中,点A的坐标为(﹣4,0),点B是y轴上一个动点,以AB为边在AB 的下方作等边△ABC,则线段OC的最小值为.练习:1、如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,则OP的最小值为.2、在平面直角坐标系中,已知点A(4,0),点B为y轴正半轴上一个动点,连接AB,以AB为一边向下作等边△ABC,连结OC,则OC的最小值为.参考答案解析例1、(2019秋•赣榆区期末)如图,在平面直角坐标系中,已知A(0,6),B(2,0),C(6,0),D为线段BC上的动点,以AD为边向右侧作正方形ADEF,连接CF交DE于点P,则CP的最大值.解:如图,作FQ⊥y轴于点Q,∴∠FQA=∠AOD=90°,∴∠F AQ+∠AFQ=90°,∵四边形ADEF是正方形,∴F A=AD,∠F AD=90°,∴∠F AQ+∠DAO=90°,∴∠AFQ=∠DAO,在△AFQ和△DAO中,,∴△AFQ≌△DAO(AAS),∴FQ=OA=OC=6,又FQ∥OC,且∠FQO=90°,∴四边形OCFQ是矩形,∴∠PCD=∠AOD=90°,∵∠ADE=90°,∴∠ADO+∠CDP=90°,且∠OAD+∠ADO=90°,∴∠OAD=∠CDP,且∠PCD=∠AOD=90°,∴△AOD∽△DCP,∴,设OD=x,则CD=6﹣x(2≤x≤6),∴,∴PC=﹣(x﹣3)2+,∴CP的最大值为,练习:(2016春•武汉校级月考)在平面直角坐标系中,已知A(0,4)、B(1,0)、C(4,0),D为线段BC上的动点,以AD为边向右侧作正方形ADEF,连CF交DE于P,则CP的最大值为1.解:如图,作FQ⊥y轴于点Q,∴∠FQA=∠AOD=90°,∴∠F AQ+∠AFQ=90°,∵四边形ADEF是正方形,∴F A=AD,∠F AD=90°,∴∠F AQ+∠DAO=90°,∴∠AFQ=∠DAO,在△AFQ和△DAO中,,∴△AFQ≌△DAO(AAS),∴FQ=OA=OC=4,又FQ∥OC,且∠FQO=90°,∴四边形OCFQ是矩形,∴∠PCD=∠AOD=90°,∵∠ADE=90°,∴△AOD∽△DCP,∴=,设OD=x,则CD=4﹣x(1≤x≤4),则=,即PC=﹣x2+x=﹣(x﹣2)2+1,∴当x=2时,PC最大=1,例2、(2017•越秀区校级二模)如图,在△ABC中,AB≠AC,∠BAC≠90°,AC=4,BC=3,∠BCA =45°,点D在线段BC一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.正方形ADEF 的边DE与线段CF相交于点P,则线段CP长的最大值为.解:如图,过点A作AG⊥AC交CB的延长线于点G,过点A作AQ⊥BC交CB的延长线于点Q,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAF中,,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.∵DE与CF交于点P时,此时点D位于线段CQ上,∵∠BCA=45°,AC=4,∴由勾股定理得AQ=CQ=4.设CD=x,∴DQ=4﹣x,∵∠ADB+∠ADE+∠PDC=180°且∠ADE=90°,∴∠ADQ+∠PDC=90°,又∵在Rt△PCD中,∠PDC+∠DPC=90°,∴∠ADQ=∠DPC,∵∠AQD=∠DCP=90°,∴△AQD∽△DCP,∴,∴.∴CP=﹣x2+x=﹣(x﹣2)2+1.∴当x=2时,CP有最大值1.练习:如图,在△ABC中,AB≠AC,∠BAC≠90°,AC=2,BC=3,∠BCA=45°,点D在线段BC一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.正方形ADEF的边DE与线段CF相交于点P,则线段CP长的最大值为.解:过点A作AG⊥AC交BC于点G,∴AC=AG,可证△GAD≌△CAF,∴∠ACF=∠AGD=45°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.过点A作AQ⊥BC交CB的延长线于点Q,∵DE与CF交于点P时,此时点D位于线段CQ上,∵∠BCA=45°,AC=2,∴由勾股定理可求得AQ=CQ=2.设CD=x,∴DQ=2﹣x,∵∠ADB+∠ADE+∠PDC=180°且∠ADE=90°,∴∠ADQ+∠PDC=90°,又∵在直角△PCD中,∠PDC+∠DPC=90°,∴∠ADQ=∠DPC,∵∠AQD=∠DCP=90°,∴△AQD∽△DCP,∴=,∴=.∴CP=﹣x2+x=﹣(x﹣1)2+.∴当x=1时,CP有最大值.例3、如图,在平面直角坐标系中,点A的坐标为(﹣4,0),点B是y轴上一个动点,以AB为边在AB 的下方作等边△ABC,则线段OC的最小值为.解:如图,以OA为对称轴作等边△ADE,连接EC,并延长EC交x轴于点F.在△AEC与△ADB中,,∴△AEC≌△ADB(SAS),∴∠AEC=∠ADB=120°,∴∠OEF=60°,∴OF=OA=4,∴点P在直线EF上运动,当OC⊥EF时,OC最小,∴OC=OF=2,则OC的最小值为2.练习:如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上.以AB 为边在AB的下方作等边△ABP,点B在y轴上运动时,则OP的最小值为.解:以OA为对称轴作等边△ADE,连接EP,并延长EP交x轴于点F.可得△AEP≌△ADB,∴∠AEP=∠ADB=120°,∴∠OEF=60°,∴OF=OA=3,∴点P在直线EF上运动,当OP⊥EF时,OP最小,∴OP=OF=,则OP的最小值为.2、在平面直角坐标系中,已知点A(4,0),点B为y轴正半轴上一个动点,连接AB,以AB为一边向下作等边△ABC,连结OC,则OC的最小值为2.解:如图,以OA为对称轴作等边△ADE,连接EC,并延长EC交x轴于点F.在△AEC与△ADB中,,∴△AEC≌△ADB(SAS),∴∠AEC=∠ADB=120°,∴∠OEF=60°,∴OF=OA=4,∴点C在直线EF上运动,当OC⊥EF时,OC最小,∴OC=OF=2,则OC的最小值为2.。
2020重庆中考复习数学第18题《七类最值问题的求解策略》
2020重庆中考复习第18题《七类最值问题的求解策略》类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段.EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值.2、(2019秋•海曙区校级月考)如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .A类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .练习如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .练习1、(2019秋•东台市期中)如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG,则 CG 的最小值为.3、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为 .类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为 .A例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为.例5、如图,在△ABC 中,∠BAC =120°,AB =AC =6,D 为边AB 上一动点(不与B 点重合),连接CD ,将线段CD 绕着点D 逆时针旋转90°得到DE ,连接BE ,则S △BDE 的最大值为 .练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.练习如图,在四边形ABCD 中,AB =6,BC =4,若AC =AD ,且∠ACD =60°,则对角线BD 的长的最大值为 .类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为 .练习:如图,在矩形ABCD 中,AB =,1BC =,将ABD ∆沿射线DB 平移到A B D '''∆,连接B C D C ''、,则+B C D C ''的最小值为 .类型七:利用基本不等式求最值参考答案类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为.解:如图,取AB的中点N.连接EN,EC,GN,(即将△EAF绕点E逆时针旋转60°得△ENG)作EH ⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,∴DH=DE=1,EH=,在Rt△ECH中,EC==2,∴GB+GC≥2,∴GB+GC的最小值为2.练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC ==22、(2019秋•海曙区校级月考)如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .AA解:取AB的中点H,连接HG、HE、HG、BE、CE,则△AEF≌△HEG∴∠GHE=∠A=60°,∴HG∥AD,可知△BHG≌△EHG,∴BG=GE,∴CE的长就是GB +GC的最小值;在Rt△EBC中,EB=3,BC=6,∴EC=3,∴GB+GC的最小值3.类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .解析:如图,将△ABP绕着点B逆时针旋转60°,得到△DBE,连接EP,CD,∴△ABP≌△DBE∴∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,∴△BPE是等边三角形∴EP=BP∴AP+BP+PC=PC+EP+DE,∴当点D,点E,点P,点C共线时,PA+PB+PC有最小值CD∵∠ABC=30°=∠ABP∠+PBC,∴∠DBE∠+PBC=30°,∴∠DBC=90°,∴CD==.练习如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是.解:由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,CG的最小值为.练习1、(2019秋•东台市期中)如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC ==,故答案为:.2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG,则 CG 的最小值为.F解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转45°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等腰直角三角形,点G在垂直于HE的直线HG上,作CM⊥HG,则CM即为CG的最小值,作EN⊥CM,可知四边形HENM为矩形,则CM=MN+CN=HE EC=123、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB 上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为 .解析:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A∠+B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH =60°,∠AEF =∠HEG ,且EF =EG ,AE =EH ,∴△AEF ≌△HEG (SAS ) ∴∠A =∠EHG =120°=∠AEH ,∴AD ∥HG ,∴点G 的轨迹是过点H 且平行于AD 的直线, ∴当DG ⊥HG 时,线段GD 长度有最小值,∵∠HEM =60°,EH =4,HM ⊥AD , ∴EM =2,MH =EM =2,∴线段GD 长度的最小值为2,类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为 .AA解:过E 作EF ⊥AC 于点F . 则∠EFD =90°,∵090ACB ∠=,∴∠EFD=∠C ,∵ED=DB ,∠FED =∠CDB ,∴△EFH ≌△EDC , ∴DF =CB =2,EF CD =,设AD x =,则2AF x =+,5EF CD x==-, ∴AE ===32x =时,AE 有最小值2. 例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为.解:过A 作AM ⊥BC 于M ,EN ⊥AM 于N ,如图,∵线段AD 绕点A 逆时针旋转90°得到AE ,∴∠DAE =90°,AD =AE ,∴∠NAE =∠ADM , 易证得Rt △AMD ≌Rt △ENA ,∴NE =AM ,∵∠ACB =45°,∴△AMC 为等腰直角三角形,∴AM =MC ,∴MC =NE ,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴=,设DC=x,∵∠ACB=45°,,∴AM=CM=3,MD=3﹣x,∴=,∴CF=﹣x2+x,∴当x=1.5时有最大值,最大值为0.75.例5、如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM中∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=AC=6=3,∴BM=AB+AM=6+3=9,设BD=x,则EN=DM=9﹣x,∴S△BDE==(9﹣x)=﹣(x﹣4.5)2+,∴当BD=4,5时,S△BDE有最大值为.练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .解:过F作FH⊥ED,∵正方形CEFG,∴EF=EC,∠FEC=∠FED+∠DEC=90°,∵FH⊥ED,∴∠FED+∠EFH=90°,∴∠DEC=∠EFH,且EF=EC,∠FHE=∠EDC=90°,∴△EFH≌△EDC(AAS),∴EH=DC=2,FH=ED,∴AF===∴当AE=1时,AF的最小值为3 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM中,∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=AC=2=1,∴BM=AB+AM=2+1=3,设BD=x,则EN=DM=3﹣x,∴S△BDE==(3﹣x)=﹣(x﹣1.5)2+,∴当BD=1.5时,S△BDE有最大值为,类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.CA解析:如图,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF ⊥BC,∴BF =BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF ,∴DF =BC=×4=2,∴AC =DE ≤DF+EF=2+2,即AC的最大值为2+2.练习如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为 .解析:将AB绕点A顺时针旋转60°得到线段AK,连接BK、DK.则AK=AB=BK=6,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS)∴DK=BC=4,∵DK+KB≥BD,DK=4,KB=AB=6∴当D、K、B共线时,BD的值最大,最大值为DK+KB=10.类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为 .解法一:∵在边长为1的菱形ABCD 中,∠ABC =60°,∴AB =CD =1,∠ABD =30°, ∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',∴A ′B ′=AB =1,A ′B ′∥AB ,∵四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,∴∠BAD =120°,∴A ′B ′=CD ,A ′B ′∥CD , ∴四边形A ′B ′CD 是平行四边形,∴A ′D =B ′C ,∴A 'C +B 'C 的最小值=A ′C +A ′D 的最小值,∵点A ′在过点A 且平行于BD 的定直线上, ∴作点D 关于定直线的对称点E ,连接CE 交定直线于A ′,则CE 的长度即为A 'C +B 'C 的最小值,∵∠A ′AD =∠ADB =30°,AD =1,∴∠ADE =60°,DH =EH =AD =,∴DE =1,∴DE =CD ,∵∠CDE =∠EDB ′+∠CDB =90°+30°=120°,∴∠E =∠DCE =30°,∴CE =2×CD =.解法二:练习:如图,在矩形ABCD 中,AB =,1BC =,将ABD ∆沿射线DB 平移到A B D '''∆,连接B C D C ''、,则+B C D C ''的最小值为 .解法一: 解法一:解法三: 解法四:类型七:利用基本不等式求最值解:原式=1111+12a a++⨯=11+12a a a ++=2222+32a a a a +++=2232+32a a a a a ++-+=21+32aa a -+=112+3a a -+12a a +≥ ,1+35a a ∴+≥,1513a a ∴≤++,1513a a ∴-≥-++, 1142+3a a∴-≥-+.当2a a =,即a =时有最小值4-,此时2b =.。
重庆中考数学第18题专题训练(含答案)
重庆中考18题专题训练 1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa -+-+= 去分母()()604060406040x a xb x b xa -+=-+,去括号得:2400606024004040a xa xb b bx xa -+=-+移项得:6060404024002400xa xb bx xa b a -++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。
解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨. , =, 解得x=240.故答案为:240.5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.5.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开分钟.考点:三元一次方程组的应用.解:设出水管比进水管晚开x分钟,进水管的速度为y,出水管的速度为z,则有:,两式相除得:,解得:x=40,即出水管比进水管晚开40分钟.故答案为:40.6.(1)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了.(2)某商品现在的进价便宜20%,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为。
重庆中考数学18题不定方程
果小汽车在 AB 段正常行驶需 10 分钟,大卡车在 AB 段正常行驶需 20 分钟,小汽车在 AB 段倒车的速度是它正常
行驶速度的 1 ,大卡车在 AB 段倒车的速度是它正常行驶速度的 1 ,小汽车需倒车的路程是大卡车需倒车的路程的
5
8
4 倍.问两车都通过 AB 这段狭窄路面的最短时间是________分钟.
汽车?
9、小王骑自行车在环城公路上匀速行驶,每隔 6 分钟有一辆公共汽车从对面想后开过,每隔 30 分钟又有一辆公共
汽车从后面向前开过,若公共汽车也是匀速行驶,且不计乘客上、下车的时间,那么公交站每隔多少分钟开出一辆
公交车?
10、某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋房的销售金额占总销
5、甲、乙两厂生产同一种产品,都计划把全年的产品销往重庆,这样两厂的产品就能占有重庆市场同类产品的 3 . 4
然而实际情况并不理想,甲厂仅有 1 的产品、乙厂仅有 1 的产品销到了重庆,两厂的产品仅占了重庆市场同类产品
2
3
的 1 .则甲厂该产品的年产量与乙厂该产品的年产量的比为__________. 3
的件数少 50%时,这个商人得到的总利润率是________
35、某商场销售一批电视机,一月份每台毛利润是售出价的 20%(毛利润=售出价-买入价),二月份该商场将每台
售出价调低 10%(买入价不变),结果销售台数比一月份增加 120%,那么二月份的毛利润总额与一月份毛利润总额
的比是________
37、某公司生产一种饮料是由 A, B 两种原料液按一定比例配制而成,其中 A 原料液的成本价为 15 元/千克, B 原 料液的成本价为 10 元/千克,按现行价格销售每千克获得 70%的利润率.由于市场竞争,物价上涨, A 原料液上涨 20%, B 原料液上涨 10%,配制后的总成本增加了 12%,公司为了拓展市场,打算再投入现总成本的 25%做广告宣
2019重庆中考数学第18题专题练习(精选)
24 万元.已知甲型和乙型机器人每台每小时分拣快递分别是 1200 件和 1000 件,该公司计
划购买这两种型号的机器人共 8 台,总费用不超过 41 万元0 件,则该公司最低购买费用是
万元。
1/3
4.经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速 销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:
2/3
8.某超市销售水果时,将 A,B,C 三种水果采用甲、乙、丙三种方式搭配装箱进行销售, 每箱的成本分别为箱中 A,B,C 三种水果的成本之和,箱子成本忽略不计,甲种方式每箱分别 装 A,B,C 三种水果 6kg,3kg,1kg,乙种方式每箱分别装 A,B,C 三种水果 2kg,6kg,2kg,甲每 箱的总成本是每千克 A 成本的 12.5 倍,每箱甲的销售利润为 20%,每箱甲比乙的售价低 25%, 丙每箱在成本上提高 40%标价后打八折销售获利为每千克 A 成本的 1.2 倍,当销售甲、乙、 丙三种方式的水果数量之比为 2:3:3 时,则销售的总利润为______.
3/3
9.小明暑假外出旅行时,准备给朋友们些土特产作为礼物,预先了解到当地最富盛名的 A、B 两种特产的价格之和为 140 元,小明计划购买 B 特产的数量比 A 特产的数量多 5 盒, 但一共不超过 60 盒,小明在土特产商店发现 A 正打九折销售,而 B 的价格提高了 10%,小 明决定将 A、B 特产的购买数量对调,这样,实际花费只比计划多 20 元,已知价格和购买数 量均为整数,则小明购买土特产实际花费为_____元.
元.
5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景。甲种盆景由 15 朵红花、24 朵黄
花和 25 朵紫花搭配而成,乙种盆景由 10 朵红花和 12 朵黄花搭配而成,丙种盆景由 10 朵红
2019重庆中考数学第18题专题训练50题(Word版20190220)
2019重庆中考数学第18题专题训练50题1、重庆市第八中学2019级九年级(上)九月入学考试某商店中销售水果时采用了三种组合搭配的方式进行销售,甲种搭配是:2千克A水果,4千克B水果;乙种搭配是:3千克A水果,8千克B水果,1千克C水果:丙种搭配是:2千克A水果.6千克B水果,1千克C水果:如果A水果每千克售价为2元.B水果每千克售价为1.2元,C水果每千克售价为10元,某大,商店采用三种组合搭的方式进行销售后共得钟售额441.2元,并且A水果销售额116元,那么C水果的销售额是元2、重庆市实验外国语学校2018-2019学年度上期初三入学考试某超市销售水果时,将A、B、C三种水果采用甲、乙、丙三种方式搭配装箱进行销售,每箱的成本分别为箱中A.,B、C三种水果的成本之和,箱子成本忽略不计甲种方式每箱分别装A、B、C三种水果6kg.3kg,1kg,乙种方式每箱分别装A,B、C三种水果2kg,6kg,2kg.甲每箱的总成本是每千克A成本的12.5倍,每箱甲的销售利润率为20%,每箱甲比每箱乙的售价低25%,丙每箱在成本上提高40%价后打八折销售获利为每千克A成本的1.2倍,当销售甲、乙、丙三种方式的水果数量之比为2:1:6时,则销售的总利润率为3、重庆一中2018-2019学年度上期初三入学考试某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙、丙三种袋装产品,其中,甲产品每袋含1千克A原料、3千克B原料;乙产品每袋含2千克原料、1千克B原料;丙产品每袋含有1千克A原料、1千克B原料。
若丙产品每袋售价42元,则利润率为20%,某节庆日,该电商进行促销活动,将,甲、乙、丙各一袋合装成礼品盒,每购买一个礼品盒可免费赠送一袋乙产品,这样即可实现利幸为10%,则礼盒售价价为4、重庆南开中学2019级九年级(上)九月入学考试小明暑假外出旅行时,准备给朋友们带些士特产作为礼物.预先了解到当地最富盛名的A、B两种特产的价格之和为140元,小明计划买B特产的数量比A特产的数量多5盒,但一共不超过60盒,小明在士特产商店发现A正打九折销售,而B的价格提高了10%,小明决定将A、B特产的购买数量对调,这样,实际花费只比原计划多20元,已知价格和湖买数量均为整数,则小明购买土特产卖际花费为元5、重庆市十一中学2019级九年级(上)九月入学考试某学校九年级的一个研究性学习小组对学生中午在学校食堂的就餐时间进行了调查.发现在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部就餐的人数各是一个固定数.并且发现若开1个窗口,45分钟可使等待人都能买到午餐:若同时开2个口,则需30分钟,还发现,若在25分钟内等待的学生都能买到午餐,在单位时间内,外出就餐的人数可减少80%.在学校学生总人数不变且人人都要就餐的情况下,为了方便学生就餐,调查小组建议学校食堂20分钟内卖完午餐,则至少要问时开个窗口.6、重庆一中初2019级初三第一周周考平区手工木访只生产四腿桌和三腿桌两种产品,所有工人分为A、B、C三个小组,方案一:A、B两组负责生产桌面,C组负责生产桌腿,那么一天所生产的桌面和桌腿恰好可以拼成m张是腿桌和若干章三腿桌。
重庆市中考数学专题训练——数字为载体的阅读理解题
数字为载体的阅读理解题一.解答题(共40小题)1.(2018•南岸区模拟)对于一个各个数位上的数字均不为零的三位正整数n,如果它的百位数字、十位数字、个位数字是由依次增加相同的非零数字组成,则称这个三位数为“递增数”,记为D(n),把这个“递增数”的百位数字与个位数字交换位置后,得到321,即E(123)=321,规定F(n)=,如F(123)==1.(1)计算:F(159),F(246);(2)若D(s)是百位数字为1的数,D(t)是个位数字为9的数,且满足F(s)+F(t)=5,记k=,求k的最大值.2.(2018春•沙坪坝区校级期中)对于一个四位自然数n,如果n满足各个数位上的数字互不相同且均不为0,它的千位数字与个位数字之和等于百位数字与十位数字之和,那么称这个数n为“平衡数”.对于一个“平衡数”,从千位数字开始顺次取出三个数字构成四个三位数,把这四个三位数的和与222的商记为F(n).例如:n=1526,因为1+6=2+5,所以1526是一个“平衡数”,从千位数字开始顺次取出三个数字构成的四个三位数分别为152、526、261、615,这四个三位数的和为:152+526+261+615=1554,1154÷222=7,所以F(1526)=7.(1)写出最小和最大的“平衡数”n,并求出对应的F(n)的值;(2)若s,t都是“平衡数”,其中s=10x+y+3201,t=1000m+10n+126(0≤x≤9,0≤y≤8,1≤m≤9,0≤n≤7,x,y,m,n都是整数),规定:k=,当F(s)+F(t)是一个完全平方数时,求k的最大值.3.(2018•南岸区模拟)材料1:若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除;反之也成立.材料2:两位数m和三位数n,它们各个数位上的数字都不为0,将数m任意一个数位上的数字作为一个新的两位数的十位数字,将数n任意一个数位上的数字作为该新的两位数的个位数字,按照这种方式产生的所有新的两位数的和记为F(m,n),例如:F(12,345)=13+14+15+23+24+25=114;F(11,369)=13+16+19+13+16+19=96.(1)填空:F(16,123)=,并求证:当n能被3整除时,F(m,n)一定能被6整除;(2)若一个两位数s=21x+y,一个三位数t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),交换三位数t的百位数字和个位数字得到新数t′,当t′与s的个位数字的3倍的和能被11整除时,称这样的两个数s和t为“珊瑚数对”,求所有“珊瑚数对”中F(s,t)的最大值.4.(2018•重庆模拟)先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.5.(2017•沙坪坝区校级一模)一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.6.(2017秋•渝中区月考)将一个三位正整数n各数位上的数字重新排列(含n本身)后,得到新的三位数(a<c),在所有重新排列大的数中,当|a+c ﹣2b|最小时,我们称是n的“天时数”,并规定F(n)=b2﹣ac.当|a+c﹣2b|最大时,我们称是n的“地利数”,并规定G(n)=ac﹣b2.并规定M(n)=是n的“人和数”,例如:215可以重新排列为125,152,215,因为|1+5﹣2×2|=2,|1+2﹣2×5|=7,|2+5﹣2×1|=5,且2<5<7,所以125是215的“天时数”F(215)=22﹣1×5=﹣1,152是215的“地利数”,G(215)=1×2﹣52=﹣23,M(215)=.(1)计算:F(168),G(168);(2)设三位自然数s=100x+50+y(1≤x≤9,1≤y≤9,且x,y均为正整数),交换其个位上的数字与百位上的数字得到t,若s﹣t=693,那么我们称s为“厚积薄发数”;请求出所有“厚积薄发数”中M(s)的最大值.7.(2018•长寿区模拟)对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数(a≤c),在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的为t的“最优组合”,并规定F(t)=|a﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合”,此时F(124)=﹣1.(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N 整除,我们称这样的数为“善雅数”.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.8.(2018•重庆模拟)任意一个正整数n,都可以表示为:n=a×b×c(a≤b≤c,a,b,c均为正整数),在n的所有表示结果中,如果|2b﹣(a+c)|最小,我们就称a×b×c是n的“阶梯三分法”,并规定:F(n)=,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F(6)==2.(1)如果一个正整数p是另一个正整数q的立方,那么称正整数p是立方数,求证:对于任意一个立方数m,总有F(m)=2.(2)t是一个两位正整数,t=10x+y(1≤x≤9,0≤y≤9,且x≥y,x+y≤10,x 和y均为整数),t的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t为“满意数”,求所有“满意数”中F(t)的最小值.9.(2018春•沙坪坝区期末)我们知道,任意一个正整数a都可以进行这样的分解:a=m×n(m,n是正整数,且m≤n),在a的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是a的最佳分解.并规定:F(a)=.例如:12可以分解成1×12,2×6,3×4,因为|1﹣12|>|2﹣6|>|3﹣4|,所以3×4是12的最佳分解,所以F(12)=.(1)求F(18)﹣F(16);(2)若正整数p是4的倍数,我们称正整数p为“四季数”.如果一个两位正整数t,t=10x+y(1≤x<y≤9,x,y为自然数),交换个位上的数字与十位上的数字得到的新两位正整数减去原来的两位正整数所得的差为“四季数”,那么我们称这个数t为“有缘数”,求所有“有缘数”中F(t)的最小值.10.(2017春•巫溪县校级月考)一个三位自然数m.将它任意两个数位上的数字对调后得一个首位不为0的新三位自然数m'(m'可以与m相同),记m'=,在m’所有的可能情况中,当|a+2b﹣c|最小时,我们称此时的m’是m的“幸福美满数”,并规定K(m)=a2+2b2﹣c2.例如:318按上述方法可得新数有:381、813、138;因为|3+2×1﹣8|=3,|3+2×8﹣1|=18,|8+2×1﹣3|=7,|1+2×3﹣8|=1,1<3<7<18.所以138是318的“幸福美满数”.K(318)=12+2×32﹣82=﹣45.(1)若三位自然数t的百位上的数字与十位上的数字都为n(1≤n≤9.n为自然数),个位上的数字为0,求证:K(t)=0;(2)设三位自然数s=100+10x+y(1≤x≤9,1≤y≤9,x,y为自然数),且x<y,交换其个位与十位上的数字得到新数s',若19s+8s'=3888,那么我们称s为“梦想成真数”,求所有“梦想成真数”中K(s)的最大值.11.(2018春•九龙坡区校级期中)如果一个多位自然数能被l7整除,那么将这个多位自然数分解为末三位与末三位之前的数,用末三位数减去末三位之前的数的3倍,所得的差一定能被17整除,反之也成立.(1)利用上述规律判断并填空:3074(填“能”或“不能”)被17整除,36125(填“能”或“不能”)被17整除;(2)证明:任意一个多位自然数末三位数减去末三位之前的数的3倍,如果所得的差能被17整除,那么这个多位数一定能被17整除.(3)对于一个两位自然数t,规定F(t)=(其中a,b分别是这个两位数的十位数字和个位数字)例如:F(23)=.已知一个五位自然数,其末三位数表示为,前两位数n=10(x+2)+(y+1)(其中1≤x≤7,1≤y ≤8且均为整数).若交换这个五位自然数的十位和百位上的数字后,所得的新五位自然数能被17整除.求F(n)的最大值.12.(2016秋•沙坪坝区校级期末)阅读下列材料,回答问题.正整数m(m≥2)可分解成两个正整数的和,即m=s+t(s、t是正整数,且s≤t),在m的所有这些加和中,若s、t两加数之差的绝对值最小,称s+r为m 的最美加和,并规定F(m)=7s﹣6t,如7=1+6=2+5=3+4,因为6﹣1>5﹣2>4﹣3,所以3+4为7的最美加和,所以F(7)=7×3﹣6×4=﹣3.(1)F(8)=,F(9)=:(2)对任意的正整数n(n≥2),用含n的代数式分别表示出n为奇数,偶数时的F(n):(3)若一个三位正整数q是7的倍数,且满足各位数字之和为7,称这个数q 为“潜力数“,求所有“潜力数”中F(q)的最大值.13.(2017春•涪陵区期末)一个三位正整数N,各个数位上的数字互不相同都不为0,若从它的百位、十位、个位上的数字任意选择两个数字组成两位数.所有这些两位数的和等于这个三位数本身.则称这样的三位数N为“友好数”.例如:132.选择百位数字1和十位数字3所组成的两位数为:13和31.选择百位数字1和个位数字2所组成的两位数为:12和21.选择十位数字3和个位数字2所组成的两位数为:32和23.因为13+31+12+21+32+23=132,所以132是“友好数”.一个三位正整数,若它的十位数字等于百位数字与个位数字的和.则称这样的三位数为“和平数“,(1)判断123是不是“友好数“?请说明理由.(2)一个三位数,如果百位上的数字为x,十位上的数字为y,个位上的数字为z,则把这个三位数记作,三位数可用多项式表示为100x+10y+z,比如三位数523可用多项式表示为:5×100+2×10+3.证明:当一个“和平数”是“友好数”时,则z=2x.14.(2018春•北碚区校级月考)一个三位正整数N,各个数位上的数字互不相同且都不为0,若从它的百位、十位、个位上的数字任意选择两个数字组成两位数,所有这些两位数的和等于这个三位数本身,则称这样的三位数N为“公主数”.例如:132,选择百位数字1和十位数字3所组成的两位数为:13和31,选择百位数字1和个位数字2组成的两位数为:12和21,选择十位数字3和个位数字2所组成的两位数为:32和23,因为13+31+12+21+32+23=132,所以132是“公主数”.一个三位正整数,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数为“伯伯数”.(1)判断123是不是“公主数”?请说明理由.(2)证明:当一个“伯伯数”是“公主数”时,则z=2x.(3)若一个“伯伯数”与132的和能被13整除,求满足条件的所有“伯伯数”.15.(2017•江北区校级模拟)任意一个正整数都可以进行这样的分解:n=p×q (p、q是正整数,且p≤q),正整数的所有这种分解中,如果p、q两因数之差的绝对值最小,我们就称p×q是正整数的最佳分解.并规定:F(n)=.例如24可以分解成1×24,2×12,3×8或4×6,因为24﹣1>12﹣2>8﹣3>6﹣4,所以4×6是24的最佳分解,所以F(24)=.(1)求F(18)的值;(2)如果一个两位正整数,t=10x+y(1≤x≤y≤9,x、y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差记为m,交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和记为n,若mn为4752,那么我们称这个数为“最美数”,求所有“最美数”;(3)在(2)所得“最美数”中,求F(t)的最大值.16.(2017春•渝中区校级月考)如果一个四位自然数的百位数字大于或等于十位数字,且千位数字等于百位数字与十位数字的和,个位数字等于百位与十位数字的差,则我们称这个四位数为亲密数,例如:自然数4312,其中3>1,4=3+1,2=3﹣1,所以4312是亲密数;(1)最小的亲密数是,最大的亲密数是;(2)若把一个亲密数的千位数字与个位数字交换,得到的新数叫做这个亲密数的友谊数,请证明任意一个亲密数和它的友谊数的差都能被原亲密数的十位数字整除;(3)若一个亲密数的后三位数字所表示的数与千位数字所表示的数的7倍之差能被13整除,请求出这个亲密数.17.对于一个三位正整数m各数位上的数字重新排序后得到新数(a≥b且a,b,c均不为零且可以与m相同),当所有重新排列中最小时,则称为m的“倍约数”,并规定F(m)=c2﹣(a+b)2,其中[a,b]表示a,b 的最小公倍数,(a,c)表示a,c的最大公约数,如:m=324时,重新排列432、423重,因为==6,==4,且4<6,所以423是m=324的“倍约数”,此时F(m)=32﹣(4+2)2=﹣27,若m=522,重新排列522,225,因为==10,==2,且2<10,所以225是m=522的“倍约数”,此时F(m)=52﹣(2+2)2=9.根据以上阅读材料,解决下列问题.(1)若三位正整数m能被19整除,且m百位上的数字比个位数上的数字大2,十位上的数字比个位上的数字小2,求证:F(m)是一个完全平方数.(2)已知三位正整数m,n均小于300的完全平方数,且m﹣n=p(p为质数),当m最大时,求F(m)的值.18.(2018春•汉阳区期末)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“差异数”,将一个“差异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算F(243);(2)若一个“差异数”表示为,(其中1≤a≤9,1≤b≤9,1≤c≤9,且a,b,c均为正整数),则求证:F()=a+b+c;(3)若s,t都是“差异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,直接写出k的最大值.19.(2017•沙坪坝区校级三模)若一个三位数t=(其中a、b、c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫做原数的差数,记为T(t).例如,357的差数T(357)=753﹣357=396.(1)已知一个三位数(其中a>b>1)的差数T()=792,且各数位上的数字之和为一个完全平方数,求这个三位数;(2)若一个三位数(其中a、b都不为0)能被4整除,将个位上的数字移到百位得到一个新数被4除余1,再将新数个位数字移到百位得到另一个新数被4除余2,则称原数为4的“闺蜜数”.例如:因为612=4×153,261=4×65+1,126=4×31+2,所以612是4的一个闺蜜数.求所有小于500的4的“闺蜜数”t,并求T(t)的最大值.20.(2017秋•埇桥区月考)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(143),F(624);(2)若m是“相异数”,m的百位上的数字为7,十位上的数字比个位上的数字多3,且F(m)=22,“相异数”m是多少?(3)若s,t都是“相异数”,其中s=100a+35,t=160+b(1≤a≤9,1≤b≤9,a,b都是正整数),当F(s)+F(t)=22时,求a+b的值.21.(2018春•沙坪坝区校级期末)已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数即是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22﹣12,∴321是“谐数”,∴321是“和谐数”.(1)最小的和谐数是,最大的和谐数是;(2)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(3)已知m=10b+3c+817(0≤b≤7,1≤c≤4,且b,c均为整数)是一个“和数”,请求出所有m.22.(2018•重庆模拟)根据阅读材料,解决问题.数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.(1)计算:G(125),G(746);(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=,若G(s)•G(t)=84,求k的最小值.23.(2016秋•渝中区校级期末)任意写一个个位数字不为零的四位正整数A,将该正整数A的各位数字顺序颠倒过来,得到四位正整数B,则称A和B为一对四位回文数.例如A=2016,B=6102,则A和B就是一对四位回文数,现将A的回文数B从左往右,依次顺取三个数字组成一个新数,最后不足三个数字时,将开头的一个数字或两个数字顺次接到末尾,在组成三位新数时,如遇最高位数字为零,则去掉最高位数字,由剩下的两个或一个数字组成新数,将得到的所有新数求和,把这个和称为A的回文数B作三位数的和.例如将6102依次顺取三个数字组成的新数分别为:610,102,26,261,它们的和为:610+102+26+261=999,把999称为2016的回文数作三位数的和.(1)请直接写出一对四位回文数:猜想一个四位正整数的回文数作三位数的和能否被111整除?并说明理由;(2)已知一个四位正整数(千位数字为1,百位数字为x且0≤x≤9,十位数字为1,个位数字为y且0≤y≤9)的回文数作三位数的和能被27整除,请求出x与y的数量关系.24.(2018秋•沙坪坝区校级月考)若一个四位自然数n满足千位与个位相同,百位与十位相同,我们称这个数为“天平数”.将“天平数”n的前两位与后两位交换位置得到一个新的“天平数”n′,记F(n)=,例如n=2112,n′=1221,F(2112)==9(1)计算F(5335)=;若“天平数”n满足F(n)是一个完全平方数,求F(n)的值;(2)s、t“天平数“,其中s=,t=(1≤b<a≤9,1≤x<y≤9且a,b,xy为整数),若F(s)能被8整除,且F(s)+F(t)﹣9(y+1)=0,规定:K (s,t)=,求K(s,t)的所有结果的值.25.(2017秋•万州区期末)一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.(1)判断3253和254514是否为“十三数”,请说明理由.(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.①求证:任意一个四位“间同数”能被101整除.②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.26.(2017•沙坪坝区校级模拟)在一个m(m≥3,m为整数)位的正整数中,若从左到右第n(n≤m,n为正整数)位上的数字与从右到左第n位上的数字之和都等于同一个常数k(k为正整数),则称这样的数为“对称等和数”.例如在正整数3186中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”,其中k=12.(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位上的数字为s(1≤s≤9,s为整数),百位上的数字为t(0≤t≤9,t为整数),是整数,求这个四位“对称等和数”;(2)已知数A,数B,数C都是三位“对称等和数”.A=(1≤a≤9,a为整数),设数B十位上的数字为x(0≤x≤9,x为整数),数C十位上的数字为y(0≤y≤9,y为整数),若A+B+C=1800,求证:y=﹣x+15.27.(2017秋•沙坪坝区校级期末)一个三位自然数是s,将它任意两个数位的数字对调后得到一个首位不为0的新三位自然数s′(s′可以与s相同),设s′=,在s′所有的可能情况中,当|x+3y﹣z|最大时,我们称此时的s′是s的“梦想数”,并规定P(s)=x2+3y2﹣z2.例如127按上述方法可得到新数有:217、172、721,因为|2+3﹣7|=2,|1+21﹣2|=20,|7+6﹣1|=12,2<12<20,所以172是172的“梦想数”,此时,P(127)=12+3×72﹣22=144.(1)求512的“梦想数”及P(512)的值;(2)设三位自然数S=交换其个位与十位上的数字得到新数s′,若29s+7s′=4887,且P(s)能被7整除,求s的值.28.(2018•重庆)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.29.(2018春•沙坪坝区校级期末)若正整数k满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,我们称这样的数k为“言唯一数”,交换其首位与个位的数字得到一个新数k',并记F(k)=+1.(1)最大的四位“言唯一数”是,最小的三位“言唯一数”是;(2)证明:对于任意的四位“言唯一数”m,m+m'能被11整除;(3)设四位“言唯一数”n=1000x+100y+10y+1(2≤x≤9,0≤y≤9且y≠1,x、y 均为整数),若F(n)仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n.30.(2017春•开州区期末)阅读下列材料,解决后面两个问题.如果一个四位数的千位数字与个位数字相同,百位数字与十位数字相同,则称这个四位数为“四位友谊数”.如2112,5225,7667,…等都是“四位友谊数”.如果将一个“四位友谊数”的百位数字与千位数字,个位数字与十位数字都交换位置,得到一个新四位数,我们把这个新四位数叫做“四位友谊数的姊妹数”,如果“四位友谊数”的百位数字是0,则交换位置后保留首位的“0”,即它的姊妹数就是首位为“0”的四位数,如2112的对应数为1221,5225的对应数为2552,1001的对应数为0110.(1)任意写一个“四位友谊数”及它的“姊妹数”;猜想任意一个“四位友谊数”与它的“姊妹数”的差是否都能被11整除?并说明理由.(2)一个“四位友谊数”的千位数字为a(1≤a≤9),百位数字为b(0≤b≤9,b <a).若这个“四位友谊数”与它的姊妹数的差能被486整除,求这个四位友谊数.31.(2017•重庆)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.32.(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.33.(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.34.(2018•沙坪坝区校级一模)对于两个两位数m和n,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为F(m,n).例如:当m=36,n=10时,将m 十位上的3放置n中1与0之间,将m个位上的6位置于n中0的右边,得到1306.将n十位上的1放置于m中3和6之间,将n个位上的0放置于m 中6的右边,得到3160.这两个新四位数的和为1306+3160=4466,4466÷11=406,所以F(36,10)=406.(1)计算:F(20,18)(2)若a=10+x,b=10y+8(0≤x≤9,1≤y≤9,x,y都是自然数).当150F(a,36)+F(b,49)=62767时,求F(5a,b)的最大值.35.(2018春•渝北区期末)对于两个两位数p和q,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为F(p,q).例如:当p=23,q=15时,将p十位上的2放置于q中1与5之间,将p个位上的3位置于q中5的右边,得到1253.将q十位上的1放置于p中2和3之间,将q个位上的5放置于p中3的右边,得到2135.这两个新四位数的和为1253+2135=3388,3388÷11=308,所以F (23,15)=308.(1)计算:F (13,26);(2)若a=10+m,b=10n+5,(0≤m≤9,1≤n≤9,m,n均为自然数).当150F (a,18)+F(b,26)=32761时,求m+n的值.36.阅读材料:若一个四位数的前2位数是后2位数的2倍,则称该数为“欢喜数”.如1005、2211等都是欢喜数.若各个数位上的数字之和等于十位上的数字的2倍,则称该数为“半和数”,如132等都是半和数.一个三位数字,若十位上数字等于百位数字与个位数字的平方差,则称该数为“平方差数”.根据上面的材料,回答下列问题.(1)证明所有的三位“半和数”均能被11整除;(2)若一个四位正整数abbc是欢喜数,bmc既是半和数又是平方差数,求m 的值.37.(2017秋•南岸区校级期中)对于任意一个自然数N,将其各个数位上的数字相加得到一个数,我们把这一过程称为一次操作,把这个得到的数进行同样的操作,不断进行下去,最终会得到一个一位数K,我们把K称为N的“中子数”,并记f(x)=K,例如,163→1+6+3=10→1+0=1,∴f(163)=1(1)计算:f(2018888)=;(2)易知:任意两个自然数M和N,如果各个数位上的数字之和相等,则f(M)=f(N),此时我们称M、N是“特别有缘数”,例如163和28即为“特别有缘数”,若已知一个三位数和一个两位数是“特别有缘数”,请证明它们的差一定能被9整除;(3)有一个三位自然数L=,已知f(L)=6,而且x、y、z都是偶数,我们规定i=y2+xz,请求出i取最大值时的自然数L.38.(2018春•顺义区期末)对任意一个三位数n,如果n满足各个数位上的数字。
重庆中考数学24题专题
重庆中考几何一、有关几何的基本量:线段、角度、全等、面积、四边形性质1、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC 交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.(1)若HE=HG,求证:△EBH≌△GFC;(2)若CD=4,BH=1,求AD的长.(1)证明:∵HE=HG,∴∠HEG=∠HGE,∵∠HGE=∠FGC,∠BEH=∠HEG,∴∠BEH=∠FGC,∵G是HC的中点,∴HG=GC,∴HE=GC,∵∠HBE=∠CFG=90°.∴△EBH≌△GFC;(2)解:过点H作HI⊥EG于I,∵G为CH的中点,∴HG=GC,∵EF⊥DC,HI⊥EF,∴∠HIG=∠GFC=90°,∠FGC=∠HGI,∴△GIH≌△GFC,∵△EBH≌△EIH(AAS),∴FC=HI=BH=1,∴AD=4-1=3.2、已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD 和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.证明:(1)∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△DAC和△BAE中,AC=AE ∠DAC=∠BAE AD=AB ,∴△DAC≌△BAE(SAS),∴DC=BE;(2)如图,作DG∥AE,交AB于点G,由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,∴∠DGF=∠FAE=90°,又∵∠ACB=90°,∠CAB=30°,∴∠ABC=60°,又∵△ABD为等边三角形,∠DBG=60°,DB=AB,∴∠DBG=∠ABC=60°,在△DGB和△ACB中,∠DGB=∠ACB ∠DBG=∠ABC DB=AB ,∴△DGB≌△ACB(AAS),∴DG=AC,又∵△AEC为等边三角形,∴AE=AC,∴DG=AE,在△DGF和△EAF中,∠DGF=∠EAF ∠DFG=∠EFA DG=EA ,∴△DGF≌△EAF(AAS),∴DF=EF,即F为DE中点.3、如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.(1)求证:CF=CG;(2)连接DE,若BE=4CE,CD=2,求DE的长.解答:(1)证明:连接AC,∵DC ∥AB ,AB=BC ,∴∠1=∠CAB ,∠CAB=∠2, ∴∠1=∠2;∵∠ADC=∠AEC=90°,AC=AC , ∴△ADC ≌△AEC , ∴CD=CE ;∵∠FDC=∠GEC=90°,∠3=∠4, ∴△FDC ≌△GEC ,∴CF=CG .(2)解:由(1)知,CE=CD=2, ∴BE=4CE=8,∴AB=BC=CE+BE=10,∴在Rt △ABE 中,AE= AB 2-BE 2 =6, ∴在Rt △ACE 中,AC= AE 2+CE 2 =102 由(1)知,△ADC ≌△AEC , ∴CD=CE ,AD=AE ,∴C 、A 分别是DE 垂直平分线上的点, ∴DE ⊥AC ,DE=2EH ;(8分) 在Rt △AEC 中,S △AEC =21 AE •CE=21AC •EH , ∴EH=AC CEAE ⋅ =10226⨯ =5103∴DE=2EH=2×5103=5106 4、如图,AC 是正方形ABCD 的对角线,点O 是AC 的中点,点Q 是AB 上一点,连接CQ ,DP ⊥CQ 于点E ,交BC 于点P ,连接OP ,OQ ;求证:(1)△BCQ ≌△CDP ; (2)OP=OQ .证明:∵四边形ABCD 是正方形, ∴∠B=∠PCD=90°,BC=CD , ∴∠2+∠3=90°,又∵DP ⊥CQ , ∴∠2+∠1=90°, ∴∠1=∠3,在△BCQ 和△CDP 中,∠B=∠PCD BC=CD ∠1=∠3 . ∴△BCQ ≌△CDP . (2)连接OB . 由(1):△BCQ ≌△CDP 可知:BQ=PC , ∵四边形ABCD 是正方形, ∴∠ABC=90°,AB=BC , 而点O 是AC 中点, ∴BO=21AC=CO ,∠4=21∠ABC=45°=∠PCO , 在△BCQ 和△CDP 中, BQ=CP ∠4=∠PCO BO=CO∴△BOQ ≌△COP , ∴OQ=OP .5、在等腰梯形ABCD 中,AD ∥BC ,AB=AD=CD,∠ABC=60°,延长AD 到E,使DE=AD,延长DC 到F ,使DC=CF,连接BE 、BF 和EF.⑴求证:△ABE ≌△CFB; ⑵如果AD=6,tan ∠EBC 的值. 解:(1)证明:连结CE , 在△BAE 与△FCB 中,∵ BA=FC ,∠A=∠BCF ,, AE=BC , ∴△BAE ≌△FCB ;(2)延长BC 交EF 于点G ,作AH ⊥BG 于H ,作AM ⊥BG ,∵△BAE ≌△FCB ,∴∠AEB=∠FBG ,BE=BF ,∴△BEF 为等腰三角形,又∵AE ∥BC , ∴∠AEB=∠EBG ,∴∠EBG=∠FBG ,∴BG ⊥EF ,∵∠AMG=∠EGM=∠AEG=90°, ∴四边形AMGE 为矩形,∴AM=EG , 在Rt △ABM 中,AM=AB •sin60°=6×23=33 ,∴EG=AM=33, BG=BM+MG=6×2+6×cos60°=15,∴tan ∠EBC=531533==BG EG 6、如图,在梯形ABCD 中,AD ∥BC ,∠C=90°,E 为CD 的中点,EF ∥AB 交BC 于点F(1)求证:BF=AD+CF ;ABDECF(2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长.(1)证明:如图(1),延长AD交FE的延长线于N∵∠NDE=∠FCE=90°∠DEN=∠FEC DE=EC∴△NDE≌△FCE ∴DN=CF ∵AB∥FN,AN∥BF∴四边形ABFN是平行四边形∴BF=AD+DN=AD+FC(2)解:∵AB∥EF,∴∠ABN=∠EFC,即∠1+∠2=∠3,又∵∠2+∠BEF=∠3,∴∠1=∠BEF,∴BF=EF,∵∠1=∠2,∴∠BEF=∠2,∴EF=BF,又∵BC+AD=7+1∴BF+CF+AD=8而由(1)知CF+AD=BF∴BF+BF=8∴2BF=8,∴BF=4,∴BF=EF=47、已知:AC是矩形ABCD的对角线,延长CB至E,使CE=CA,F是AE的中点,连接DF、CF分别交AB于G、H点(1)求证:FG=FH;(2)若∠E=60°,且AE=8时,求梯形AECD 的面积.(1)证明:连接BF∵ABCD为矩形∴AB⊥BC AB⊥AD AD=BC∴△ABE为直角三角形∵F是AE的中点∴AF=BF=BE∴∠FAB=∠FBA∴∠DAF=∠CBF∵AD=BC, ∠DAF=∠CBF ,AF=BF ,∴△DAF≌△CBF∴∠ADF=∠BCF∴∠FDC=∠FCD∴∠FGH=∠FHG ∴FG=FH ;(2)解:∵AC=CE ∠E=60° ∴△ACE 为等边三角形 ∴CE=AE=8 ∵AB ⊥BC ∴BC=BE=CE 21=4 ∴根据勾股定理AB=34 ∴梯形AECD 的面积=21×(AD+CE)×CD=21×(4+8)×34=3248、如图,直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,且CD=2AD ,tan ∠ABC=2,过点D作DE ∥AB ,交∠BCD 的平分线于点E ,连接BE . (1)求证:BC=CD ;(2)将△BCE 绕点C ,顺时针旋转90°得到△DCG ,连接EG .求证:CD 垂直平分EG ; (3)延长BE 交CD 于点P .求证:P 是CD 的中点. 证明:(1)延长DE 交BC 于F ,∵AD ∥BC ,AB ∥DF ,∴AD=BF ,∠ABC=∠DFC . 在Rt △DCF 中,∵tan ∠DFC=tan ∠ABC=2, ∴CFCD=2, 即CD=2CF ,∵CD=2AD=2BF , ∴BF=CF , ∴BC=BF+CF=21CD+21CD=CD . 即BC=CD .(2)∵CE 平分∠BCD ,∴∠BCE=∠DCE , 由(1)知BC=CD , ∵CE=CE ,∴△BCE ≌△DCE , ∴BE=DE ,由图形旋转的性质知CE=CG ,BE=DG , ∴DE=DG ,∴C ,D 都在EG 的垂直平分线上, ∴CD 垂直平分EG . (3)连接BD , 由(2)知BE=DE , ∴∠1=∠2. ∵AB ∥DE ,∴∠3=∠2.∴∠1=∠3.∵AD ∥BC ,∴∠4=∠DBC .由(1)知BC=CD ,∴∠DBC=∠BDC ,∴∠4=∠BDP . 又∵BD=BD ,∴△BAD ≌△BPD(ASA)∴DP=AD . ∵AD=21CD ,∴DP=21CD .∴P 是CD 的中点. 9.(2011南岸二诊)如图,已知点P 是正方形ABCD 的对角线AC 上一点,过点P 作EF ⊥DP ,交AB 于点E ,交CD 于点G ,交BC 的延长线于点F ,连接DF .(1)若23=DF ,求DP 的长; (2)求证:CF AE =.10.如图,正方形CGEF 的对角线CE 在正方形ABCD 的边BC 的延长线上(CG >BC ),M 是线段AE 的中点,DM 的延长线交CE 于N . (1)线段AD 与NE 相等吗?请说明理由; (2)探究:线段MD 、MF 的关系,并加以证明.11、如图,梯形ABCD 中,AD ∥BC ,AB=DC=10cm ,AC 交BD 于G ,且∠AGD=60°,E 、F 分别为CG 、AB 的中点.(1)求证:△AGD 为正三角形; (2)求EF 的长度.G 24题图PFEDCBA解答:(1)证明:连接BE,∵梯形ABCD中,AB=DC,∴AC=BD,可证△ABC≌△DCB,∴∠GCB=∠GBC,又∵∠BGC=∠AGD=60°∴△AGD为等边三角形,(2)解:∵BE为△BCG的中线,∴BE⊥AC,在Rt△ABE中,EF为斜边AB上的中线,∴EF=AB=5cm.12、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC=,试判断△DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.解答:解:(1)证明:∵EF=EC,∴∠EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠B=∠ECF,∴梯形ABCD是等腰梯形;(2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF=CD,∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF=(BC﹣AD)=1,∵DC=,∴由勾股定理得:DF=1,∴△DCF是等腰直角三角形;(3)共四种情况:∵DF⊥BC,∴当PF=CF时,△PCD是等腰三角形,即PF=1,∴PB=1;当P与F重合时,△PCD是等腰三角形,∴PB=2;当PC=CD=(P在点C的左侧)时,△PCD是等腰三角形,∴PB=3﹣;当PC=CD=(P在点C的右侧)时,△PCD是等腰三角形,∴PB=3+.故共四种情况:PB=1,PB=2,PB=3﹣,PB=3+.(每个1分)13.在梯形ABCD中,AD∥BC,AB=CD,且DE⊥AD于D,∠EBC=∠CDE,∠ECB=45°.⑴求证:AB=BE ;⑵延长BE ,交CD 于F .若CE =2,tan ∠CD E =31,求BF 的长. 13.⑴证明:延长DE ,交BC 于G .∵DE ⊥AD 于D ,∴∠ADE =90°又AD ∥BC , ∴∠DGC =∠BGE =∠ADE =90°, 而∠ECB =45°, ∴△EGC 是等腰直角三角形, ∴EG=CG在△BEG 和△DCG 中,EBG CDG EGB CGD EG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEG ≌△DCG (AAS ) ∴BE=CD=AB ⑵连结BD .∵∠EBC=∠CDE ∴∠EBC +∠BCD =∠CDE +∠BCD =90°,即∠BFC =90° ∵CE=2,∴EG=CG=1又tan ∠CDE =31,∴13CG DG =,∴DG =3 ∵△BEG ≌△DCG ,∴BG=DG=3∴2210BE BG EG =+=∴CD=BE=10法一:∵1122BCDSBC DG CD BF ==,11431022BF ⨯⨯=⨯∴6105BF = 法二:经探索得,△BEG ∽△BFC ,∴BE BCBG BF=,∴1043BF = ∴6105BF = 14.如图,直角梯形ABCD 中,,90,45,AD BC ADC ABC AB ∠=∠=∥的垂直平分线EG 交BC 于F ,交DC 的延长线于.G求证:(1)CG CF =;(2).BC DG =AB CDEF证明:(1) ,AB EF ⊥ 45B ∠=904545EFB ∴∠=-=45CFG ∴∠=//,90AD BC ADC ∠=90FCG ∴∠=45,FCG ∴∠= CG CF =∴(2)连接AF , EF 是AB 的中垂线,AF BF FE AB ∴=⊥45=∠=∠∴BFE AFE90=∠∴AFB DCB AFB ∠=∠∴BC AD CD AF //,// ∴,AF DC BF DC ∴=∴=由(1)知CG CF = ,CG DC CF BF +=+∴即:DG BC =二、有关“截长补短”题型1、在ABCD 中,对角线,BD BC G BD ⊥为延长线上一点且ABG ∆为等边三角形,BAD ∠、CBD ∠的平分线相交于点E ,连接AE BD F 交于,连接GE 。
【精选试卷】重庆市中考数学专项练习测试题
一、选择题1.定义一种新运算:1a n n nbn xdx a b -⋅=-⎰,例如:222kh xdx k h ⋅=-⎰,若m 252m x dx --=-⎰,则m =( )A .-2B .25-C .2D .252.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .54 3.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.54.如图,是一个几何体的表面展开图,则该几何体是( )A .三棱柱B .四棱锥C .长方体D .正方体5.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y=4x ﹣12x 2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:26.分式方程()()31112x x x x -=--+的解为( ) A .1x = B .2x = C .1x =- D .无解7.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .8 8.已知反比例函数 y =abx 的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是( )A .B .C .D .9.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0) 10.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .11.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)12.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D .13.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.A .1B .2C .3D .414.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .15.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )A .中位数B .平均数C .众数D .方差16.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=,则GAF ∠的度数为()A .110B .115C .125D .13017.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形18.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+919.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .20.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( )A .3.84×103B .3.84×104C .3.84×105D .3.84×10621.下列四个实数中,比1-小的数是( )A .2-B .0C .1D .222.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B .C.D.23.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.24.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A.①②B.②③C.①②③D.①③25.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间26.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°27.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα28.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠29.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.1069605076020500x x-=+B.5076010696020500x x-=+C.1069605076050020x x-=+D.5076010696050020x x-=+30.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.B3.B4.A5.A6.D7.B8.C9.D10.C11.D12.C13.B14.C15.A16.A17.A18.D19.A20.C21.A22.D23.A24.D25.B26.D27.B28.A29.A30.无2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m 11(5)25m x dx m m m m ---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解,故选B.【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.2.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 3.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.4.A解析:A【解析】【分析】本题可以根据三棱柱展开图的三类情况分析解答【详解】三棱柱的展开图大致可分为三类:1.一个三角在中间,每边上一个长方体,另一个在某长方形另一端.2.三个长方形并排,上下各一个三角形.3.中间一个三角形,其中两条边上有长方形,这两个长方形某一个的另一端有三角形,在这三角形的一条(只有一条,否则拼不上)边有剩下的那个长方形.此题目中图形符合第2种情况故本题答案应为:A【点睛】熟练掌握几何体的展开图是解决本题的关键,有时也可以采用排除法.5.A解析:A【解析】分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.详解:当y=7.5时,7.5=4x﹣12x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣1 2 x2=﹣12(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意;∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.6.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解. 故选D .点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.7.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键8.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;的图象在第一、三象限,∵反比例函数y=abx∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=1<0,对称轴在y轴左边,故D错误;a当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.9.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 10.C解析:C【解析】从上面看,看到两个圆形,故选C.11.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.12.C解析:C【解析】【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】解:将图形按三次对折的方式展开,依次为:.故选:C.【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.13.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 14.C解析:C【解析】【分析】x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b ,所以,两个函数图象与y 轴相交于同一点,故B 、D 选项错误;由A 、C 选项可知,抛物线开口方向向上,所以,a >0,所以,一次函数y=ax+b 经过第一三象限,所以,A 选项错误,C 选项正确.故选C .15.A解析:A【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A .【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.16.A解析:A【解析】【分析】依据AB//CD ,EFC 40∠=,即可得到BAF 40∠=,BAE 140∠=,再根据AG 平分BAF ∠,可得BAG 70∠=,进而得出GAF 7040110∠=+=.【详解】解:AB//CD ,EFC 40∠=,BAF 40∠∴=,BAE 140∠∴=,又AG 平分BAF ∠,BAG 70∠∴=,GAF 7040110∠∴=+=,故选:A .【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.17.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B 四条边都相等的四边形是菱形,故B 错误;C 有一组邻边相等的平行四边形是菱形,故C 错误;对角线相等且相互平分的四边形是矩形,则D 错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.19.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.20.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.21.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.22.D解析:D【解析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D23.A解析:A【解析】试题解析:∵x+1≥2,∴x ≥1.故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.24.D解析:D【解析】如图,连接BE ,根据圆周角定理,可得∠C=∠AEB ,∵∠AEB=∠D+∠DBE ,∴∠AEB>∠D ,∴∠C>∠D ,根据锐角三角形函数的增减性,可得,sin ∠C>sin ∠D ,故①正确;cos ∠C<cos ∠D ,故②错误;tan ∠C>tan ∠D ,故③正确;故选D .25.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴5,∴,故选B .【点睛】是解题关键.26.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB ∥CD ,∴∠BAD=∠D=40°.故选D .27.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【详解】在Rt △ABC 中,AB=AC sin α, 在Rt △ACD 中,AD=AC sin β, ∴AB :AD=AC sin α:AC sin β=sin sin βα, 故选B .【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题. 28.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.29.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A . 考点:由实际问题抽象出分式方程. 30.。
【精选试卷】重庆中考数学专项练习阶段练习
一、选择题1.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣52.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.3.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=4.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( ) A.B.C.D.5.下列二次根式中的最简二次根式是( ) A .30B .12C .8D .0.56.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-7.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .868.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A .3B .23C .32D .69.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .10.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24B.16C.413D.2311.an30°的值为()A.12B.√32C.√3D.√3312.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩13.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx=图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)14.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.22D215.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.616.二次函数y=x2﹣6x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,则m的值为()A.27B.9C.﹣7D.﹣1617.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数kyx=(0k>,x )的图象上,横坐标分别为1,4,对角线BD x∥轴.若菱形ABCD的面积为452,则k的值为()A.54B.154C.4D.518.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③19.-2的相反数是()A.2B.12C.-12D.不存在20.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是221.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A .B .C .D .22.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数 B .方差C .平均数D .中位数23.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣124.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .25.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1 B .0 C .1或﹣1 D .2或0 26.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .727.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个28.cos45°的值等于( )A .2B .1C .32D .2229.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)30.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.A 3.A4.D 5.A 6.C 7.C 8.B 9.C 10.C 11.D 12.A 13.D 14.C 15.A 16.D 17.D 18.C 19.A 20.A 21.D 22.D 23.B 24.C 25.A 26.C 27.A 28.D 29.D 30.C2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.2.A解析:A【解析】【分析】【详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.3.A解析:A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.4.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.6.C解析:C【解析】【分析】【详解】∵A(﹣3,4),∴, ∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8, 故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C .考点:菱形的性质;反比例函数图象上点的坐标特征.7.C解析:C 【解析】 【分析】设第n 个图形中有a n 个点(n 为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n =12n 2+72n+1(n 为正整数)”,再代入n =9即可求出结论.【详解】设第n 个图形中有a n 个点(n 为正整数),观察图形,可知:a 1=5=1×2+1+2,a 2=10=2×2+1+2+3,a 3=16=3×2+1+2+3+4,…, ∴a n =2n+1+2+3+…+(n+1)=12n 2+72n+1(n 为正整数),∴a 9=12×92+72×9+1=73. 故选C . 【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n =12n 2+72n+1(n 为正整数)”是解题的关键. 8.B解析:B 【解析】 【分析】根据折叠的性质可得∠MAN=∠DAM ,再由AN 平分∠MAB ,得出∠DAM=∠MAN=∠NAB ,最后利用三角函数解答即可. 【详解】由折叠性质得:△ANM ≌△ADM , ∴∠MAN=∠DAM ,∵AN 平分∠MAB ,∠MAN=∠NAB , ∴∠DAM=∠MAN=∠NAB , ∵四边形ABCD 是矩形, ∴∠DAB=90°, ∴∠DAM=30°,∴==故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 9.C解析:C【解析】从上面看,看到两个圆形,故选C.10.C解析:C【解析】【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【详解】∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=12AC=3,OB=12BD=2,AB=BC=CD=AD,∴在Rt△AOB中,∴菱形的周长为故选C.11.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=√33,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.12.A解析:A【解析】【分析】【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩, 故选D .考点:由实际问题抽象出二元一次方程组. 13.D解析:D【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】∵把A (12,y 1),B (2,y 2)代入反比例函数y=1x 得:y 1=2,y 2=12, ∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52,当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.14.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB=22.故选C.15.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.16.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=−−62×1=3,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y=x2−6x+m得4+12+m=0,解得m=−16.故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.17.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.18.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.19.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.20.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.21.D解析:D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.22.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键. 23.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.24.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.25.A解析:A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.26.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.27.A解析:A【解析】【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.【详解】试题分析:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BOE=1:2,又∵FM:BM=1:3,∴S△BCM =34S△BCF=34S△BOE∴S △AOE :S △BCM =2:3故④正确;所以其中正确结论的个数为4个考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质28.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°= 2. 故选D .【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 29.D解析:D【解析】【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D30.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE ,设ED=x ,则AE=8﹣x ,在△ABE 中根据勾股定理得到关于线段AB 、AE 、BE 的方程x 2=42+(8﹣x )2, 解方程得x=5,即ED=5故选C .【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.。
2020重庆中考复习数学第18题专题训练二(含答案解析)
2020重庆中考复习数学第18题专题训练二(含答案解析)例1、如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,的值为 .练习:如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为例2、如图,正方形ABCD的边长为2,点M、P、N分别在CD为直径的半圆上、边BC、边AB上运动,并且保持PM⊥PN,PM:PN=2:3则线段PM长的最小值为练习:如图,正方形ABCD的边长为4,点M、P、N分别在CD为直径的半圆上、边BC、边AB上运动,并且保持PM⊥PN,PM:PN=2:3则线段PM长的最小值为例3、(2018•杭州)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= .练习:1、(2019•济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于 .2、(2016•新县校级模拟)如图,将矩形纸片ABCD沿直线AE折叠,点B恰好落在线段CD的中点F上,点G是线段AF上一动点(不与A,F重合),点G过GH⊥AB,垂足为H,将矩形沿直线GH翻折,点A恰好落在线段BH上点A′处.若AB长为8,则当△A′GE为直角三角形时,AH的长.为例4、(2014•锦江区校级自主招生)如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D 是BC边上异于B、C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是 .练习:(2018秋•锦江区校级期末)如图,在△ABC,∠ABC=45°,∠ACB=60°,BC=4+4,D是BC边上异于点B,C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是 .例5、(2019秋•宿迁期末)如图,在矩形ABCD中,AD=3AB=6.点P是AD的中点,点E在BC 上,CE=2BE,点M、N在线段BD上,若△PMN是等腰三角形且底角与∠DEC相等,则MN= .练习:1、(2019•常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN= .2、在矩形ABCD中,AD=3CD=6,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则PN= .例6、如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是 .练习:如图,在矩形ABCD中,AB=4,BC=3,点E为对角线AC上一动点(不与点A、C重合),过点E作直线MN∥BC,分别交AB、CD于点M、N,将矩形ADNM沿MN折叠,使得点A、D的对应点P、Q分别落在AB、CD所在的直线上,若△ACP为等腰三角形,则BM的长为 .2020重庆中考复习数学第18题专题训练二(含答案解析)例1、如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,的值为 .解:延长DC与A′D′,交于点M,∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD,∴∠D=180°﹣∠A=120°,根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°﹣∠A′D′F=60°,∵D′F⊥CD,∴∠D′FM=90°,∠M=90°﹣∠FD′M=30°,∵∠BCM=180°﹣∠BCD=120°,∴∠CBM=180°﹣∠BCM﹣∠M=30°,∴∠CBM=∠M,∴BC=CM,设CF=x,D′F=DF=y,则BC=CM=CD=CF+DF=x+y,∴FM=CM+CF=2x+y,在Rt△D′FM中,tan∠M=tan30°===,∴x=y,∴==.故答案为:.练习:如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为( )A.4﹣2 B.2﹣2 C.﹣1 D.解:延长FC 、A ′D ′交于M ,设CF =x ,FD =2﹣x ,∵四边形ABCD 为菱形,∠A =60°,∴AB ∥CD ,∠DCB =∠A =60°,∴∠A +∠D =180°, ∴∠D =120°,由折叠得:∠BD ′F =∠D =120°,∴∠FD ′M =180°﹣120°=60°, ∵D ′F ⊥CD ,∴∠D ′FC =90°,∴∠M =90°﹣60°=30°,在Rt △FOC 中,∠DCB =60°,∵∠DCB =∠CBM +∠M ,∴∠CBM =60°﹣30°=30°, ∵∠BCD =∠CBM +∠M =60°,∴∠CBM =∠M =30°,∴CB =CM =2,由折叠得:D ′F =DF =2﹣x ,tan M =tan30°===,∴x =4﹣2,∴CF =4﹣2,故选:A .例2、如图,正方形ABCD 的边长为2,点M 、P 、N 分别在CD 为直径的半圆上、边BC 、边AB 上运动,并且保持PM ⊥PN ,PM :PN=2:3则线段PM 长的最小值为K解:取CD 中点O ,NP 中点K ,连接BK 、BO 、MO 、KM 。
最新重庆中考数学18题专练
最新重庆中考数学18题专练1.某服装店老板经营销售A、B两种款式的服装,其中每件A种款式的利润率为50%,每件B种款式的利润率为20%,当售出的A种款式的件数比B种款式的件数少70%时,这个老板得到的总利润率为25%;当售出的A种款式的件数比B种款式的件数多50%时,这个老板得到的总利润率为.2.某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为.3.某公司生产一种饮料是由A,B两种原料液按一定比例配制而成,其中A原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A原料液上涨20%,B原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是.4.某公司生产一种饮料是由A,B两种原料液按一定比例配制而成,其中A原料液的原成本价为10元每千克,B原料液的原成本价为5元每千克,按原售价销售可以获得50%的利润率. 由于物价上涨,现在A原料液每千克上涨20%,B原料液每千克上涨40%,配制后的饮料成本增加了,公司为了拓展市场,打算再投入现在成本的25%做广告宣传,如果要保证该种饮料的利润率不变,则这种饮料现在的售价应比原来的售价高元/千克.5.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮,其中,甲种袋装粗粮每袋装3千克A粗粮,1千克B 粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,甲、乙两种袋装粗粮每袋成本价分别为袋中的A,B,C三种粗粮的成本之和,已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率为20%.当销售这两种袋装粗粮的销售利润率为24%,该电商销售甲、乙两种袋装租粮的数量之比是 .6.双十一”来临,为促进销售,某面包店将A、B、C三种面包以甲、乙两种方式进行搭配销售,两种方式均配成本价为5元的包装箱. 甲方式每箱含A面包1千克,B面包1千克,C面包3千克,乙方式每箱含A面包3千克,B面包1千克,C面包1千克已知每千克C面包比每千克A面包成本价高2.5元甲种方式(含包装箱)每箱成本为55元,现甲、乙两种方式分别在成本价(含包装箱)基础上提价20%和35%进行销售,两种方式销售完毕后利润率达到30%,则甲、乙两种方式的销量之比.7.某超市将A,B,C三种水果采用甲、乙、丙三种方式混合后装进礼盒进行销售.每盒的总成本为盒中A,B,C三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装A,B,C三种水果6kg,3kg,1kg;乙种方式每盒分别装A,B,C三种水果2kg,6kg,2kg;甲每盒的总成本是每千克A 水果成本的12.5倍,每盒甲的销售利润率为20%;每盒甲比每盒乙的售价低25%;每盒丙在成本上提高40%作为标价,再打八折出售,获利为每千克A水果成本的1.2倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为2:2:5时,销售利润率为.1.小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A 和B. 已知A和B的单价和为25元,小明计划购入A的数量比B的数量多3件,但一共不超过30件. 现商店将A的单价提高20%,B打8折出售,小明决定将A、B的原定数量对调,这样实际花费比原计划少7元. 已知调整前后的价格和数量均为整数,求小明原计划购买费用为.2.冬至节快到了,李老师和杨老师都准备绐班级同学买饺子吃。
重庆市中考数学专题 18题
重庆市中考数学专题1、如图,正方形ABCD的边CD 在正方形ECGF边CE上,DG平分EGC∠,延长GD交BE于H,EG与FH交于点M,若DC=22-,则GM=______________2、如图,在正方形中,点为边上任一点(与点不重合),连接,过点作于点,连接并延长交边于点,连接,若正方形边长为4,,则.3、如图,在正方形ABCD的边BA的延长线上作等腰直角△AEF,连接DF,延长BE交DF于G.若FG=6,EG=2,则线段AG的长为ABCD E AB,A B CED DF CE⊥F AF BC G EG23GC AE=GE=4、如图,正方形ABCD 的边长为3,点E 、F 分别在边AD 、AB 上且AE =BF =1,连接BE 、CF 交于点G ,在线段EG 上取一点H 使HG =BG ,连接DH ,把△EFH 沿AD 边翻折得到△EDH ′,则点H 到边DH ′的距离是_______.5、在正方形ABCD 中,点E 为BC 边上一点且BE CE 2=,点F 为对角线BD 上一点且DF BF 2=,连接AE 交BD 于点G ,过点F 作AE FH ⊥于点H ,连结CH 、CF ,若cm HG 2=,则CHF ∆的面积是_________2cm6、如图,已知正方形ABCD 的边长为10,对角线AC 、BD 交于点O ,点E 在BC 上,且CE=2BE ,过B 点作BF ⊥AE 于点F ,连接OF ,则线段OF 的长度为 。
A B C D E F G H H′A FO7、如图,矩形ABCD中,AB=4√6,AD=10,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BCʹEʹ,当射线BEʹ和射线BCʹ都与线段AD相交时,设交点分别F,G,若△BFD为等腰三角形,则线段DG长为.8、如图,AC是矩形ABCD的对角线,AB=2,BC=2√3,点E,F分别是线段AB,AD上的点,连接CE,CF,当∠BCE=∠ACF,且CE=CF时,AE+ AF=.9、在矩形ABCD中,E为AB边上的中点,将△BDE沿DE翻折,B的对应点记为B′,已知AD=4,AB=6,F为线段DE上一动点,当∠DAF=∠BAB′时,则DF+BB′=.10、如图,正方形ABCD ,BE ED ,连接BD 、CE 、AE ,记EB 、EC 分别交AD 于F 、G 两点,若AF=2,FG=1,则正方形边长为__________.11、如图,在边长为3的正方形ABCD 中,E 是BC 上的一点,且EC =13BC,过E 作EF ⊥AE 交CD 于F ,连接AF ,把△AEF 沿AF 翻折到△AGF ,使E 点落在G 处,连接DG ,则DG =_______12、如图,正方形ABCD 中,连接BD ,在DC 上取一点E ,在BD 上取一点F ,使得BEC DEF ∠=∠,过点F 作PG ⊥BE 于H ,交BC 于G ,若DE =56,GC =7,则CE =______A B CD E F G13、如图,正方形ABCD ,以AB 为腰向外作等腰ABE ∆,连接DE 交AB 于点F ,BAE ∠的平分线交EF 于点G ,过D 点作AG 的垂线交GA 的延长线于点H ,已知3tan 4EDA ∠=,9AEF S ∆=,则AH 的长为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆中考18题专题训练
1.如图,在ABE ∆中90AEB ∠=︒,AB =
AB 为边
在ABE ∆的同侧作正方形ABCD ,点O 为AC 与BD 的交点,连
接OE ,OE =P 为边AB 上一点,将APE ∆沿直线
PE 翻折得到GPE ∆,若PG BE ⊥于点F ,则BF 的长度为____,
2、如图,点P 是平行四边形ABCD 对角线BD 上的动点,点M 为AD 中点,已知8AD =,10AB =,45ABD ∠= 。
把平行四边形ABCD 绕点A 按逆时针方向旋转,点P 的对应点是点Q ,则线段MQ 长度的最大值与最小值的差是。
3.在ABCD 中,过点A 作两邻边,CB CD 的垂线段,AP AQ ,连接PQ ,作AM PQ ⊥ 于点M ,作PN AQ ⊥于点N ,,AM PN 交于点K ,AC 中点为点O ,当点,,K O Q 在同一条直线上时,若 3.5,4PQ AC ==,则AK 的长度为 .
4.如图,在△ABE 中∠AEB =90°,AB
AB 为边在△ABE 的同侧作正方形ABCD ,点O 为AC 与BD 的交点,连接OE ,OE
=
点P 为边AB 上一点,将△APE 沿直线PE 翻折得到△GPE ,
若PG ⊥BE 于点F ,则BF =__________
5.如图,四边形ABCD 中,AC 、BD 为对角线,AC=10,BC=6, ∠ADB=∠ABD=∠ACB=30°,那么线段CD 的长为.
6、如图,边长为4的正方形ABCD 中,E AD 为的中点,连接CE BD
交于F ,连接AF ,过A 作AM AF ⊥交CE 的延长线于M ,则DM 的
长为
7、如图,正方形ABCD ,以AB 为腰向外作等腰ABE ∆,连接DE 交AB 于点F ,BAE ∠的平分线交EF 于点G ,过D 点作AG 的垂线交GA 的延长线于点H ,已知3tan 4
EDA ∠=
,9AEF S ∆=,则AH 的长为。
第18题图
D
A
K
P
F
E
C
B
A
18第题图
8.如图,正方形ABCD 中,4AB =,点E 是BC 上靠近点B 的四等分点,点F 是CD 的中点,连接AE 、BF 将ABE ∆着点E 按顺时针方向旋转,使点B 落在BF 上的B 1处位置处,点A 经过旋转落在点A 1位置处,连接AA 1交BF 于点N ,则AN 的长为。
9. 在△ABC 中,90BAC ∠=︒,BC 的垂直平分线EF 交BC 于点F ,交AB 于点E . P
是AC 延长线上一点,连接FP ,将FP 绕点F 逆时针旋转α2,得到FK ,连接CK ,如
果∠)900(︒<<︒=ααB ,则EF CP CK ⋅-αcos =
10如图,在正方形中,点为边上任一点(与点不重合),连接,过点作
于点,连接并延长交边于点,连接,若正方形边长为4,
,则.
ABCD E AB ,A B CE D DF CE ⊥F AF BC G EG 2
3
GC AE =
GE
=
11在四边形ABCD 中,连接对角线AC 、BD ,AB=BC ,DC=6,AD=9,且0
260A
B C A D C ∠=∠=,
则BD=.
12.如图,正方形ABCD 的边长为3,点E 、F 分别在边AD 、AB 上且AE=BF=1,连接BE 、CF 交于点G ,在线段EG 上取一点H 使HG=BG ,连接DH ,把△EFH 沿AD 边翻折得到△EDH ’,则点H 到边DH ’的距离是_______
13.如图18,矩形ABCD 中,BE 平分∠ABC 交AD 于点E ,F 为BE 上一点,连接DF ,过
F 作F
G ⊥DF 交BC 于点G ,连接BD 交FG 于点
H ,若FD = FG ,BF =,BG = 4,则GH 的长为_________
14.如图,正方形ABCD 中,连接BD ,在DC 上取一点E ,在
BD 上取一点F ,使得BEC DEF ∠=∠,过点F 作PG ⊥BE 于H ,
交BC 于G ,若DE =,GC =7,则CE =______
15.在正方形ABCD 中,点E 为BC 边上一点且BE CE 2=,点F 为对角线BD 上一点且DF BF 2=,连接AE 交BD 于点G ,过点F 作AE FH ⊥于点H ,连结CH 、CF ,若
cm HG 2=,则CHF ∆的面积是_________2cm .
16.如图,在边长为3的正方形ABCD 中,E 是BC 上的一点,且EC =1
3
BC ,
过E 作EF ⊥AE 交CD 于F ,连接AF ,把△AEF 沿AF 翻折到△AGF ,使E 点落在G 处,连接DG ,则DG =_______
17.如图,在正方形ABCD 和正方形CEFG 中,6AD =,22CE =,点F 在CD 上,连接
DE ,连接BG 并延长交CD 于点M ,交DE 于点H .则BH 的长度为
.
18.已知矩形ABCD 中,3AB =,4BC =
,CE 平分ACB ∠交AB 于点E ,M 为CE 的中
点,连接BM ,将B C M △绕点C 顺时针旋转至B CM ''△,B M ''交AD 于Q ,延长CM '
交AD 于P ,若PQ PM '=则PQ =.
G H
A
B
C
D
E
F
G H F
E
D
C
B
A
B′
M′
P Q
M
E
D
C B
A
18.如图,在正方形ABCD
中,AB =,将BAD ∠绕着点A 顺时针旋转α︒(045)α<<︒,
得到B AD ''∠,其中射线AB '与过点B 且与对角线BD 垂直的直线交于点E ,射线AD '与
对角线BD 交于点F ,连接CF ,并延长交AD 于点M ,作BCM ∠的角平分线交AB 于点N
,当满足AEBF CDM S 四形△边时,线段BN 长度为
.
N
M
F
E
D
C
B
A。