人教版八年级下册数学期末模拟试题2(带答案)

合集下载

最新人教版八年级下册数学期末考试试卷以及答案(2套题)

最新人教版八年级下册数学期末考试试卷以及答案(2套题)

八年级下册数学期末考试试卷一、选择题。

1、若为实数,且,则2020x y )﹣(的值为( ) A .1B .C .2D .2、有一个三角形两边长为4和5,要使三角形为直角三角形,则第三边长为( )A 、3B 、C 、3或D 、3或3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .,,C .3,4,5D .4,,4、如下图,在中,分别是边的中点,已知,则DE的长为()A.3B.4C.5D.65、已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y26、一次函数与的图像如下图,则下列结论:①k<0;②>0;③当<3时,中,正确的个数是( )A.0B.1C.2D.37、某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是()A.23,25 B.23,23 C.25,23 D.25,25二、填空题。

8、函数中,自变x的取值范,是_________9、计算:(+1)2000(﹣1)2000= .10、若的三边a、b、c满足0,则△ABC的面积为____.11、请写出定理:“等腰三角形的两个底角相等”的逆定理:.12、如图,在□ABCD中,对角线AC,BD相交于O,AC+BD=16,BC=6,则△AOD的周长为_________。

13、如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长________.14、如图所示:在正方形ABCD的边BC延长线上取一点E,使CE=AC,连接AE交CD于F,则∠AFC为度.15、是一次函数,则m=____,且随的增大而____.16、已知直线y=2x+8与x轴和y轴的交点的坐标分别是______________;与两条坐标轴围成的三角形的面积是__________.17、一组有三个不同的数:3、8、7,它们的频数分别是3、5、2,这组数据的平均数是_______.18、若一组数据的平均数是,方差是,则的平均数是,方差是.三、计算题(19、5,20、5,21、6共16分)19、(-+2+)÷.20、:.21、先化简后求值.22、(7分)如图,中,于D,若求的长。

最新人教版八年级第二学期下册期末模拟数学试卷【含答案】

最新人教版八年级第二学期下册期末模拟数学试卷【含答案】

最新人教版八年级第二学期下册期末模拟数学试卷【含答案】一、选择题(本大题10小题,每小题3分,共30分)1.下列二次根式中,属于最简二次根式的是()A. B. C. D.2.下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 2,3,4C. 1,1,D. 1,,33.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是()A. 36B. 45C. 48D. 504.下列计算正确的是()A. B. C. D.5.已知正比例函数y=3x的图象经过点(1,m),则m的值为( )A. B. C. 3 D. -36.若代数式有意义,则实数x的取值范围是( )A. x≠-3B. x>-3C. x≥-3D. 任意实数7.如图,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、FD得△DEF,如果△ABC的周长是24cm,那么△DEF的周长是( )A. 6cmB. 12cmC. 18cmD. 32cm8.如图,菱形ABCD中,∠ABC=60°,AB=6,则BD=( )A. B. C. D.9.已知四边形ABCD是平行四边形,下列结论中不正确的是( )A. 当AB=BC时,四边形ABCD是菱形B. 当AC=BD时,四边形ABCD是正方形C. 当AC⊥BD时,四边形ABCD是菱形D. 当∠ABC=90°时,四边形ABCD是矩形10.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是( )A. B. C. D.二、填空题(本大题6小题,每小题4分,共24分)11.化简:=________12.一次函数y=2x-6的图像与x轴的交点坐标为________.13.在△ABC中,∠C=90°,若b=7;c=9,则a=________,14.正比例函数y=kx的图象与直线对y=-x+1线交于的点中点,P(a,2),则k的值是________.15.如图,点O是矩形ABCD的对角线AC的中点,M是AD的中点,若OM=3,BC=8,则OB 的长为________。

最新人教版八年级第二学期下册期末模拟数学试卷【含答案】

最新人教版八年级第二学期下册期末模拟数学试卷【含答案】

最新人教版八年级第二学期下册期末模拟数学试卷【含答案】一、选择题(本大题10小题,每小题3分,共30分)1.下列二次根式中,属于最简二次根式的是()A. B. C. D.2.下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 2,3,4C. 1,1,D. 1,,33.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是()A. 36B. 45C. 48D. 504.下列计算正确的是()A. B. C. D.5.已知正比例函数y=3x的图象经过点(1,m),则m的值为( )A. B. C. 3 D. -36.若代数式有意义,则实数x的取值范围是( )A. x≠-3B. x>-3C. x≥-3D. 任意实数7.如图,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、FD得△DEF,如果△ABC的周长是24cm,那么△DEF的周长是( )A. 6cmB. 12cmC. 18cmD. 32cm8.如图,菱形ABCD中,∠ABC=60°,AB=6,则BD=( )A. B. C. D.9.已知四边形ABCD是平行四边形,下列结论中不正确的是( )A. 当AB=BC时,四边形ABCD是菱形B. 当AC=BD时,四边形ABCD是正方形C. 当AC⊥BD时,四边形ABCD是菱形D. 当∠ABC=90°时,四边形ABCD是矩形10.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是( )A. B. C. D.二、填空题(本大题6小题,每小题4分,共24分)11.化简:=________12.一次函数y=2x-6的图像与x轴的交点坐标为________.13.在△ABC中,∠C=90°,若b=7;c=9,则a=________,14.正比例函数y=kx的图象与直线对y=-x+1线交于的点中点,P(a,2),则k的值是________.15.如图,点O是矩形ABCD的对角线AC的中点,M是AD的中点,若OM=3,BC=8,则OB 的长为________。

新人教版八年级数学下册期末模拟考试(加答案)

新人教版八年级数学下册期末模拟考试(加答案)

新人教版八年级数学下册期末模拟考试(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.4的平方根是 .4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.6.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快_________s后,四边形ABPQ成为矩形.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111xx x-=--(2)31523162x x-=--2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、D6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、13、±2.4、﹣2<x <25、706、4三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=.2、1a b-+,-1 3、8k ≥-且0k ≠.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)略(2)等腰三角形,理由略6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

2022人教版初中八年级数学期末综合素质检测卷(二)含答案

2022人教版初中八年级数学期末综合素质检测卷(二)含答案

八年级数学期末综合素质检测卷(二)含答案一、选择题(每题3分,共30分)1.【教材P104习题T1变式】下列运算正确的是()A.a·a2=a2B.(a5)3=a8C.(ab)3=a3b3D.a6÷a2=a3 2.【教材P4练习T2改编】下列长度的三条线段,不能..构成三角形的是() A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9 3.【教材P147习题T8变式】世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000 000 076 g.将数0.000 000 076用科学记数法表示为()A.7.6×10-9B.7.6×10-8C.7.6×109D.7.6×108 4.【教材P60练习T1拓展】在如图所示的4个图案中,属于轴对称图案的有()A.1个B.2个C.3个D.4个5.如果把分式xyx+y中的x和y都扩大为原来的5倍,那么分式的值() A.扩大为原来的10倍B.扩大为原来的5倍C.不变D.缩小为原来的1 56.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠A=60°,则∠BFC等于()A.100°B.110°C.120°D.150°(第6题)(第9题)(第10题)7.下列各式中,计算结果是x2+7x-18的是()A.(x-1)(x+18) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-2)(x+9)8.已知y2+10y+m是完全平方式,则m的值是()A.25 B.±25 C.5 D.±59.如图,沿过点A的直线折叠这个直角三角形纸片的直角,使点C落在AB边上的点E处,折痕为AD.若BC=24,∠B=30°,则DE的长是() A.12 B.10 C.8 D.610.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.若式子(x-4)0有意义,则实数x的取值范围是______________.12.【教材P117练习T2(3)变式】分解因式:xy-xy3=________________.13.【教材P24练习T2改编】一个多边形的每个内角都是150°,这个多边形是________边形.14.如图,在△ABC和△DEF中,已知CB=DF,∠C=∠D,要使△ABC≌△EFD,还需添加一个条件,那么这个条件可以是____________.(第14题)(第15题)(第18题)15.【教材P56复习题T10改编】如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=________.16.已知点P(1-a,a+2)关于y轴的对称点在第二象限,则a的取值范围是____________.17.已知3x+5y-5=0,则8x×32y的值是________.18.如图,在平面直角坐标系中,点A,B分别在x轴和y轴上,∠BAO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的P点共有________个.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.先化简后求值:(x+3)2-(x-4)(x+4).其中x=-2.20. 解方程:1-xx-2=12-x-2.21.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:∠B=∠D.22.如图,在平面直角坐标系中,每个小正方形的边长都为1个单位长度,△ABC 的顶点都在格点上,点A的坐标为(-3,2).请按要求完成下列问题:(1)把△ABC先向下平移7个单位长度,再向右平移7个单位长度,得到△A1B1C1,画出△A1B1C1;(2)画出△A1B1C1关于x轴对称的△A2B2C2;画出△A1B1C1关于y轴对称的△A3B3C3;(3)求△ABC的面积.23.如图,在△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC 于点F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=12∠ABC.24.某商店老板第一次用1 000元购进了一批口罩,很快销售完;第二次购进时发现每只口罩的进价比第一次上涨了2.5元.老板用2 500元购进了第二批口罩,所购进口罩的数量是第一次购进口罩数量的2倍,同样很快销售完,两批口罩的售价均为每只15元.(1)第二次购进了多少只口罩?(2)商店老板第一次购进的口罩有3%的损耗,第二次购进的口罩有5%的损耗,商店老板销售完这些口罩后是盈利还是亏本?盈利或亏本多少元?25.(1)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,点A,B分别是y 轴,x轴上的两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.①如图①,当点C的横坐标为-1时,求点A的坐标;②如图②,当点D恰好为AC中点时,连接DE,求证:∠ADB=∠CDE.(2)如图③,点A在x轴上,且A(-4,0),点B在y轴的正半轴上,分别以OB,AB为直角边在第一、二象限作等腰直角三角形BOD和等腰直角三角形ABC,且∠OBD=90°,∠ABC=90°,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化,请说明理由;若不变化,请求出BP的长.答案一、1.C 2.D 3.B 4.B 5.B 6.C7.D 8.A 9.C 10.C二、11.x ≠4 12.xy (1+y )(1-y )13.十二 14.AC =ED (答案不唯一)15.8 16.-2<a <1 17.32 18.6三、19.解:原式=x 2+6x +9-(x 2-42)=x 2+6x +9-x 2+16=6x +25,当x =-2时,原式=6×(-2)+25=-12+25=13.20.解:方程两边同时乘(x -2),得1-x =-1-2(x -2),解得x =2.检验:当x =2时,x -2=0,故此方程无实数根.21.证明:∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD .在△ACB 和△ECD 中,⎩⎨⎧∠A =∠E ,AC =EC ,∠ACB =∠ECD ,∴△ACB ≌△ECD (ASA).∴∠B =∠D .22.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2,△A 3B 3C 3即为所求.(3)S △ABC =2×3-12×2×1-12×1×2-12×1×3=6-1-1-32=52.23.(1)解:∵∠AFD =155°,∴∠DFC =25°.∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°.∴∠C =180°-90°-25°=65°.∵AB =BC ,∴∠A =∠C =65°.∴∠EDF =360°-65°-155°-90°=50°.(2)证明:如图,连接BF .∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC , ∠ABF =∠CBF =12∠ABC .∴∠CFD +∠BFD =90°.∵FD ⊥BC ,∴∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴∠CFD =12∠ABC .24. 点方法:利润问题的相关公式及其数量关系:1.相关公式.售价=进价×(1+利润率);售价=标价×折扣;利润率=利润进价×100%.2.基本数量关系.利润=售价-进价;利润=进价×利润率;销售额=销售量×销售单价.进价×(1+利润率)=标价×折扣.解:(1)设第一次购进了x只口罩,则第二次购进了2x只口罩,依题意,得1 000x=2 5002x-2.5,解得x=100.经检验,x=100是原方程的解,且符合题意.则2x=2×100=200.答:第二次购进了200只口罩.(2)[100×(1-3%)+200×(1-5%)]×15-1 000-2 500=805(元).答:商店老板销售完这些口罩后盈利,盈利805元.25.(1)①解:如图①,过点C作CF⊥y轴于点F,则∠CAF+∠ACF=90°.∵∠BAC=90°,即∠BAO+∠CAF=90°,∴∠ACF=∠BAO.又∵∠AFC=∠BOA=90°,AC=BA,∴△AFC≌△BOA(AAS).∴AO=CF=1.∴点A的坐标是(0,1).②证明:如图②,过点C作CG⊥AC,交y轴于点G.∵CG⊥AC,∴∠ACG=90°.∴∠CAG+∠AGC=90°.∵∠AOD=90°,∴∠ADO+∠DAO=90°.∴∠AGC=∠ADO.又∵∠ACG=∠BAD=90°,AC=BA,∴△ACG≌△BAD(AAS).∴CG=AD=CD.∵∠BAC=90°,AB=AC,∴∠ACB=45°.又∵∠ACG=90°,∴∠DCE=∠GCE=45°.又∵CD=CG,CE=CE,∴△DCE≌△GCE(SAS).∴∠CDE=∠CGE.∴∠ADB=∠CDE.(2)解:BP的长度不变化.如图③,过点C作CH⊥y轴于点H.∵∠ABC=90°,∴∠CBH+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBH=∠BAO.又∵∠CHB=∠AOB=90°,BC=AB,∴△CBH≌△BAO(AAS).∴CH=BO,BH=AO=4.∵BD=BO,∴CH=BD.又∵∠CHP=∠DBP=90°,∠CPH=∠DPB,∴△CPH≌△DPB(AAS).∴BP=HP=12BH=2.。

人教初中数学八年级下学期期末考试模拟卷二(附带答案及详细解析)

人教初中数学八年级下学期期末考试模拟卷二(附带答案及详细解析)

第 1 页 共 13 页……外………………装……………订…………______姓名:___________考号:________人教初中数学八年级下学期期末考试模拟卷二数学考试一、填空题1.若n ﹣2与n +4互为相反数,则n 的值为________.2.因式分解: 4x 2y −8xy +4y = ________.3.如图,AB ∥CD ,∠B=68°,∠E=20°,则∠D 的度数为________.4.分式 x −2x+2 有意义,则x 的取值范围是________.5.如图,AE ,BD 交于点C ,BA ⊥AE 于点A ,ED ⊥BD 于点D ,若AC=4,AB=3,CD=2,则CE= ________.6.如图,已知平行四边形ABCD 中,∠B=60°,AB=12,BC=5,P 为AB 上任意一点(可以与A 、B 重合),延长PD 到F ,使得DF=PD ,以PF 、PC 为边作平行四边形PCEF ,则PE 长度的最小值________.二、选择题7.下列汽车标志的图案中,是中心对称图形的是( )A. B. C. D.8.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于210°,则∠BOD 的度数为( )A. 30°B. 35°C. 40°D. 45° 9.若 a >b ,则下列一定成立的是( )A. a −2<b −2B. 2a >bC. a 2>b2 D. 3−a >3−b10.如图,依据尺规作图的痕迹,计算∠α=( )A. 56°B. 68°C. 48°D. 64°11.已知函数y=kx(k≠0)的大致图象如图所示,则函数y=kx-k 的图象大致是( )○…………外………○…………内………第 2 页 共 13 页A.B.C.D.12.在下列说法中:① 10 的平方根是 ±√10 ;② −2 是 4 的一个平方根;③ 49 的平方根是 23 ;④ 0.01 的算术平方根是 0.1 ;⑤ √a 4=±a 2 ,其中正确的有( ) A. 1 个 B. 2 个 C. 3 个 D.4 个 13.如图, △ABC 是 ⊙O 的内接三角形,且 AB =AC , ∠ABC =56° , ⊙O 的直径 CD 交 AB 于点E ,则 ∠AED 的度数为( )A. 99°B. 100°C. 101°D. 102°14.如图,正方形ABCD 的面积S 1=2,以CD 为斜边,向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边,向外作正方形,其面积标记为S 2 , ………按照此规律继续下去,则S 2016的值为( )A. (12)2014 B. (12)2015 C. (√22)2014 D. (√22)2015三、解答题15.解下列不等式(组):(1)x+52−1<3x+22(2){3x +2≤2(x +3)2x−13>x2 .16.化简并求值: m 2−5m+6m −3m•(m +mm−2) ,其中 m =√5−1 .17.“新型冠状病毒”的爆发,疫情就是命令,防控就是使命.全国各地驰援武汉的医护工作者,践行医者仁心的使命与担当舍小家,为大家,用自己的专业知识与血肉之躯构筑起全社会抗击疫情的钢铁长城.如图是 2 月 9 日当天全国部分省市支援武汉医护工作者的人数统计图(不完整).第 3 页 共 13 页………○…………订…_________班级:___________考号:请解答下列问题:(1)上述省市 2 月 9 日当天驰援武汉的医护工作者的总人数为________人;请将图①条形统计图补充完整;(2)①图②扇形统计图中“山西”所对应扇形的圆心角度数为________; ②上述省市支援医护工作者的人数的中位数是________;(3)本次山西驰援武汉的医护工作者中,有 4 人报名去重症区,王医生和李医生就在其中,若从报名的 4 人中随机安排 2 人,请用树状图法或列表法求同时安排王医生和李医生的概率.18.如图1,方格图中每个小正方形的边长为1,点A 、B 、C 都是格点.(1)画出△ABC 关于直线MN 对称的△A 1B 1C 1; (2)直接写出AA 1的长度;(3)如图2,A 、C 是直线MN 同侧固定的点,D 是直线MN 上的一个动点,在直线MN 上画出点D ,使AD+DC 最小.(保留作图痕迹)19.某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40 000元购进A 型号电脑的数量与用30 000元购进B 型号电脑的数量相同,请解答下列问题:(1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2 500元,每台B 型号电脑售价为1 800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36 000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.20.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AE 平分∠BAC ,分别与BC 、CD 交于E 、F ,EH ⊥AB 于H ,连结FH.求证:四边形CFHE 是菱形.21.如图,直线 y =kx +b 分别交x 轴于点 A(4,0) ,交y 轴于点 B(0,8) .…装…………○……※※要※※在※※装※※订※※线…装…………○……第 4 页 共 13 页(1)求直线 AB 的函数表达式.(2)若点 P(2,m) ,点 Q(n,2) 是直线 AB 上两点,求线段 PQ 的长.22.某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?23.如图,已知△ABC 中,∠ACB=90°,AC=15,BC=20.动点P 在线段CB 上,以1cm/s 的速度从点C 向B 运动,连接AP ,作CE ⊥AB 分别交AP 、AB 于点F 、E ,过点P 作PD ⊥AP 交AB 于点D .(1)线段CE=________;(2)若t=5时,求证:△BPD ≌△ACF ; (3)t 为何值时,△PDB 是等腰三角形; (4)求D 点经过的路径长.第 5 页 共 13 页答案解析部分一、填空题 1.【答案】 -1【考点】相反数及有理数的相反数,实数的相反数 【解析】【解答】解:根据题意得:n ﹣2+n+4=0, 移项合并得:2n =﹣2, 解得:n =﹣1,故答案为:﹣1.【分析】互为相反数,说明加和为零:n ﹣2+n+4=0,jiechu 即可 2.【答案】 4y(x −1)2【考点】提公因式法与公式法的综合运用 【解析】【解答】 4x 2y −8xy +4y=4y(x 2−2x +1)=4y(x −1)2 ,故答案为: 4y(x −1)2.【分析】先利用提公式法提取公因式,再用完全平方公式因式分解即可. 3.【答案】 48°【考点】平行线的性质,三角形的外角性质【解析】【解答】因为AB ∥CD ,∠B=68°,所以∠CFE=∠B=68°,又∠CFE=∠D+∠E, ∠E=20°,所以∠D=∠CFE-∠E=68°-20°=48°.【分析】根据两直线平行同位角相等,可得∠CFE=∠B=68°,利用三角形外角的性质可得∠D=∠CFE-∠E ,据此计算即可. 4.【答案】 x ≠−2【考点】分式有意义的条件【解析】【解答】分式 x −2x +2 有意义,则 x +2≠0 ,所以 x ≠−2 .故答案为: x ≠−2 .【分析】使分式有意义,即是使分母不为0,据此解答即可.5.【答案】 52【考点】勾股定理,相似三角形的判定与性质 【解析】【解答】解:∵BA ⊥AE 于点A ,ED ⊥BD ,∴∠A=∠D=90°,且∠ACB=∠DCE , ∴△ABC ∽△DEC , ∴BCCE =ACCD ,在Rt △ABC 中,AC=4,AB=3,可求得BC=5, ∴5CE =42 ,解得CE=52 . 故答案为:52 .【分析】利用条件可证明△ABC ∽△DEC ,根据相似三角形的对应边成比例可求得CE . 6.【答案】 15√32【考点】平行四边形的性质,相似三角形的判定与性质,解直角三角形,四边形-动点问题 【解析】【解答】解:如图,记PE 与CD 交点为G ,∵四边形PFEC 为平行四边形, ∴PF ∥CE ,∴∠DPE =∠CEP ,∠PDC =∠ECD , ∴△PGD ∽△EGC , ∵DF =PD ,∴PD = 12 PF = 12 CE , ∴ DGCG =PGEG =PD EC=12 ,∴ PGPE =PGPG+EG =13 ,………○…………※※请※※不※………○…………第 6 页 共 13 页∴PE =3PG ,要求PE 的最小值,只要求PG 的最小值即可,PG 的最小值为当PG ⊥CD 时, 过点C 作CH ⊥AB 于点H ,在Rt △CBH 中,∵∠B =60°,BC =5, ∴sin ∠B = CHBC ,即 CH 5=√32,∴PG =CH =5√32,∴PE =3PG =3× 5√32= 15√32, 故答案为:15√32.【分析】先记PE 与CD 交点为G ,由四边形PCEF 为平行四边形和DF=PD 以及相似三角形的判定和性质,证得PE=3PG ,再根据“垂线段最短”可知当PG ⊥CD 时PG 取得最小值,PE 也取得最小值,过点C 作CH ⊥AB 于点H ,易证得CH=PG 的最小值,由 ∠B=60° , BC=5 ,解直角三角形BHC 即可求得CH ,进而得到 PE 长度的最小值 . 二、选择题 7.【答案】 B【考点】中心对称及中心对称图形【解析】【解答】解:A 、是轴对称图形,不是中心对称图形,不符合题意; B 、是中心对称图形,符合题意;C 、既不是轴对称图形,也不是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意。

人教版八年级数学第二学期期末测试卷(含答案)

人教版八年级数学第二学期期末测试卷(含答案)

八年级数学第二学期期末测试卷、选择题 (每题 3分,共 30分)函数 y = x 的自变量 x 的取值范围是 ( ) x -2 6.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月 (30 天)每天健步走的步数 (单位:万步 ),将记录结果绘制成了如图所示的统计图.在每 天健步走的步数这组数据中,众数和中位数分别是 ( )7.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:1.2. 3. 5.A .x ≥0且 x ≠ 2B .x ≥0列二次根式中,最简二次根式是A. 2B. 12C .x ≠2 C.D .x >2D. a 2列运算正确的是A. 2+ 7= 3 B .2 2×3 2= 6 2 A .13B .13或 119C .13 或 15D .15B .1.4,1.3C .1.4,1.35D .1.3,1.3C. 24÷ 2= 2 3 D .3 2- 2=3 4.若直角三角形两边长为 12和 5,则第三边长为 (A .1.2,1.3甲26778乙23488关于以上数据,说法正确的是()8.如图,在△ABC中,点D、E、F 分别是边AB、AC、BC的中点,要判定四边形DBFE 是菱形,9.如图,点P是边长为1的菱形ABCD 对角线AC上的一个动点,点M、N分别是AB、BC边上的中点,则MP+PN的最小值是()1A.2B.1 C. 2 D.21110.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为2,2m ,则不等式组mx-2<kx+1<mx的解集为()1 1 3 3 3A .x> 2 B.2<x<2C.x<2D.0<x< 2二、填空题(每题3分,共24分) 11.计算:27-31=.12.如图,要使平行四边形ABCD 是正方形,则应添加的一组条件是(添加一组条件即可).13.若x,y 满足x+2+|y-5|=0,则(3x+y)2 019=_____ 14.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4 的比计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是_______ 分.15.一组数据5,2,x,6,4 的平均数是4,这组数据的方差是 _____ .A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差列所添加条件不正确的是()C.BE 平分∠ ABC D.EF=CF16.一次函数y=(2m-1)x+3-2m 的图象经过第一、二、四象限,则m 的取值范围是 _______ .17.如图,两个大小完全相同的矩形ABCD 和AEFG 中AB=4 cm,BC=3 cm,则FC = _______ .18.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行 2 400 m,先到终点的人原地休息.已知甲先出发 4 min,在整个步行过程中,甲、乙两人的距离y(m)与甲出发的时间t(min)之间的关系如图所示,以下结论:① 甲步行的速度为60 m/min ;②乙走完全程用了32 min;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m,其中正确的结论有_______ (填序号).三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.计算:(1)(3 2+48)(18-4 3);(2)(2-3)2 020·(2+3)2 019-2 -23-(-2)0.20.已知a,b,c 满足|a-7|+b-5+(c-4 2)=0.(1)求a,b,c 的值;(2)判断以a,b,c 为边能否构成三角形,若能够成三角形,此三角形是什么形状?21.如图,已知一次函数y=kx+b 的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y 轴于点 D.(1)求该一次函数的解析式;(2)求△AOB 的面积.22.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016 年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表:(1) ______ ,该中位数的意义是 ___________________________________________________(2)这天部分出行学生平均每人使用共享单车约多少次(结果保留整数)?(3) 若该校某天有 1 500名学生出行,请你估计这天使用共享单车次数在 3 次以上(含3 次)的学生有多少人?23.如图,在四边形ABCD中,∠ BAC=90°,E是BC的中点,AD∥ BC,AE∥ DC,EF⊥ CD 于点F.(1)求证:四边形AECD 是菱形;(2)若AB=6,BC=10,求EF 的长.24.某医药公司把一批药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收 4 元;方式二:使用快递公司的火车运输,装卸收费820元,另外每千米再加收 2 元.(1)请你分别写出邮车、火车运输的总费用y1(元),y2(元)与路程x(km) 之间的函数解析式;(2)你认为选用哪种运输方式较好,为什么?25.已知四边形ABCD是正方形,F是边AB,BC上一动点,DE⊥DF,且DE =DF ,M 为EF 的中点.(1)当点F在边AB上时(如图① ).①求证:点 E 在直线BC 上;②若BF=2,则MC 的长为_____ .BF(2)当点F 在BC 上时(如图② ),求CM的值.答案1.A2.A3.C4.B5.B6.B 7. D 8.A 9.B1 1 1 110.B 点拨:把 2,2m 代入 y 1=kx + 1,可得 2m =2k +1,解得 k = m -2, ∴y 1=(m -2)x +1.令 y 3= mx - 2,则:当 y 3<y 1时, mx -2<(m -2)x +1,3 解得 x < 32;当 kx +1<mx 时, (m -2)x +1<mx ,1解得 x >2.13∴不等式组 mx -2<kx +1<mx 的解集为 21<x <32. 11.8 3 11. 312.AB =BC ,AB ⊥BC(答案不唯一 ) 13.- 1 14.88 15.2116.m < 2 17.5 2cm18.① 点拨:由图象知,甲 4 min 步行了 240 m ,∴甲步行的速度为 2440=60(m/min),∴结论①正确;∵乙用了 16-4=12(min)追上甲,乙步行的速度比甲快 12 =20(m/min), ∴乙的速度为 60+20=80(m/min),从而结论③不正确;乙到达终点时,甲走了 34 min ,甲还有 40- 34=6(min)到达终点,离终点还有 60×6=360(m), ∴结论②④不正确.∵甲走完全程需要 2 40060 =40(min), 乙走完全程需要 2 400 80 =30(min),三、 19.解:(1)原式= (3 2+4 3)(3 2-4 3)=(3 2)1 2-(4 3)3 4= 18-48=- 30; (2)原式= [(2- 3)(2+ 3)]2 019·(2- 3)- 3-1=2- 3- 3-1=1-2 3.20.解:(1)∵a ,b ,c 满足|a - 7|+ b -5+(c -4 2)2=0,∴|a - 7|=0, b -5=0,(c -4 2)2=0, 解得 a = 7,b =5, c =4 2.(2)∵a = 7,b =5, c =4 2,∴a +b = 7+ 5>4 2.∴以 a ,b ,c 为边能构成三角形. ∵a 2+b 2= ( 7)2+52=32=(4 2)2=c 2, ∴此三角形是直角三角形.- 2k + b =- 1, 21.解:(1)把 A(-2,- 1),B(1,3)的坐标代入 y = kx +b ,得k +b =3,4 k =3,解得5b =3.45(2)把 x =0 代入 y =3x + 3,得 y = 53,5∴点 D 的坐标为 0, 3 .28+ 18+5(3)1 500 1×1+ 15+23+28+18+5=765(人).估计这天使用共享单车次数在 3次以上(含 3次)的学生有 765人.1 5 1 5 5∴S △AOB =S △AOD +S △BOD =2×3×2+2×3×1=2.22.解:(1)3;3;表示这部分出行学生在这天约有一半人使用共享单车的次数在 3次以上(含 3次)0×11+1×15+2×23+3×28+4×18+5×5 (2)∴一次函数的解析式为45 y =3x+3.≈ 2次( ).11+15+23+28+18+5 这天部分出行学生平均每人使用共享单车约 2 次.23.(1)证明:∵ AD∥BC,AE∥DC,∴四边形AECD 是平行四边形.∵在Rt△ABC 中,∠ BAC=90°,E是BC的中点,∴BE=EC=AE.∴四边形AECD 是菱形.在Rt△ABC中,∠ BAC=90°,AB=6,BC=10,由勾股定理得AC=8.11再根据面积关系,有S△ABC=2BC·AH=2AB·AC,24∴AH=254.∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5.∵S菱形AECD=CD·EF=CE·AH,∴EF=AH=24.524.解:(1)由题意得:y1=4x+400,y2=2x+820.(2)令4x+400=2x+820,解得x=210,所以当运输路程小于210 km 时,y1<y2,选择邮车运输较好;当运输的路程等于210 km 时,y1=y2,两种方式一样;当运输路程大于210 km时,y1>y2,选择火车运输较好.25.(1)①证明:如图①,连接CE.∵DE⊥DF,∴∠FDE=90°.∵四边形ABCD 是正方形,∴∠ADC=∠DAF=∠DCB=90°,DA=DC.∴∠ ADC -∠ FDC =∠ FDE-∠ FDC,即∠ADF=∠CDE.又∵DF=DE,∴△DAF≌△DCE(SAS).∴∠DAF=∠DCE=90°,∴∠DCE+∠DCB=180°.∴点 E 在直线BC 上.②2(2)解:如图②,在DC 上截取DN=FC,连接MN,DM ,设EF,CD 相交于点H.∵△FDE 为等腰直角三角形,M为EF的中点,1 ∴DM=2EF=FM,DM⊥EF.∴∠ DMF =∠ FCD =90°.∴∠ CDM +∠ DHM =∠ MFC +∠CHF.∴∠CDM=∠MFC. ∴△DNM≌△FCM(SAS).∴MN=MC,∠DMN=∠FMC. ∴∠DMN+∠FMN=∠FMC+∠FMN,即∠ DMF =∠ NMC=90°.∴△CNM 是等腰直角三角形.∴ CN=2CM. 又∵DC=BC,DN=CF,∴CN=BF.∴ BF=2CM.BF∴=2.CM。

人教版八年级第二学期下册期末模拟数学试卷答案

人教版八年级第二学期下册期末模拟数学试卷答案

最新人教版八年级第二学期下册期末模拟数学试卷【答案】一、选择题(共10小题,每小题4分,满分40分x1 x 2)有意义,则.要使式子的取值范围是(A.x>0 B.x≥﹣2C.x≥2 D.x≤2D答案:)b.判断下列三条线段a,,c组成的三角形不是直角三角形的是( 2 =24 25,cb5A.a =4,b=,c=3B.a=7,=13 ,.,40,b=50c=60Da=5,b=12c=.Ca=C答案:3).下列各式计算正确的是(答案:Bnn 4n48).已知是整数,则是正整数,的最小值是(A.1B.2C.3D.4答案:C5.一次函数y=kx﹣b,当k<0,b<0时的图象大致位置是()答案:A6.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差答案:B7.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是)平行四边形的是(.A.AB∥DC,AD∥BC B.AB∥DC,AD=BCBCAD=AB=DC,,BO=DO D.AOC.=COB:答案8.在平面直角坐标系中,把直线y=3x向左平移2个单位长度,平移后的直线解析式是()A.y=3x+2 B.y=3x﹣2C.y=3x+6D.y=3x﹣6C答案:11xlykxy9l5Am3xkx﹣)和(:,则不等式=.如图,已知两直线,:=﹣≥相交于点2122 5)的解集为(≤3D.x≥A.x6B.≤6 Cx≥3.xB:答案10.如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为()2D B9C8 A10....41B:答案20二、填空题(每小题5分,满分分)12xyx 11y .﹣.一次函数,函数值=随的增大而32答案:减小ABCEABC12DBCFABAC的周长为、、、分别是的中点,如果△.如图,在△中,点、DEF20+23.,那么△的周长是3 10+:答案,分别在边、E点ABCD在平行四边形如图,13.中,F请添加一个条件上,、BCAD使四边形AECF是平行四边形(只填一个即可).答案:AF=CE;14.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA 的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.答案:(2,4)或(3,4)或(8,4);三.(本大题共2小题,每题8分,满分16分)2 2+1121512333))﹣(﹣.计算()(﹣42 112412133-+-解:原式=-)=-(16.在等边三角形ABC中,高AD=m,求等边三角形ABC的面积.a,:等边三有形边长为解1222ma?a?,勾股定理,得:423m?a331232mm???m=S面积为:323四.(本大题共2小题,每题8分,满分16分)17.(8分)我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦.苇的长度分别是多少?x 尺,如下图,解:设水的深度为OBOAx1 )尺,=+=(根据题意,芦苇长:RtOCB 中,在△222 5xx1)++=(x12 ,解得:=x113=+1213 尺。

新人教版八年级第二学期下册期末模拟数学试卷(含答案)

新人教版八年级第二学期下册期末模拟数学试卷(含答案)

新人教版八年级第二学期下册期末模拟数学试卷(含答案)一、选择题(共8小题;共40分)1. 在下列各式中,不是二次根式的有① ;② ;③ (,同号且);④ ;⑤ .A. 个B. 个C. 个D. 个2. 要使代数式有意义,则的A. 最大值是B. 最小值是C. 最大值是D. 最小值是3. 下列计算结果正确的个数是① ;② ;③;④当时,.A. B. C. D.4. 下列式子中为最简二次根式的是A. B. C. D.5. 下列计算正确的是A. B.C. D.6. 算式的值为A. B. C. D.7. 若是整数,则正整数的最小值是A. B. C. D.8. 甲、乙两人计算的值,当的时候得到不同的答案,甲的解答是;乙的解答是.下列判断正确的是A. 甲、乙都对B. 甲、乙都错C. 甲对,乙错D. 甲错,乙对二、填空题(共9小题;共45分)9. 若,则.10. 已知,则.11. 把进行化简,得到的最简结果是(结果保留根号).12. 计算:等于.13. 在实数范围内分解因式:.14. 对于任意不相等的两个数,,定义一种运算“”如下:.如,那么.15. 设,,则.16. 若实数,在数轴上的对应点的位置如图所示,则的化简结果为.17. 若,则.三、解答题(共6小题;共78分)18. 计算:Ⅰ;Ⅱ.19. 已知,求的值.20. 已知,,求下列代数式的值:Ⅰ;Ⅱ.21. 已知,,满足.Ⅰ求,,的值.Ⅱ以,,为边能否构成三角形?若能构成,求出三角形的周长;若不能构成,请说明理由.22. 已知是的小数部分,求的值.23. 阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为,,,记,则三角形的面积,此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得,,,你能求出李大爷这块菜地的面积吗?试试看.答案第一部分1. B2. A3. B4. A5. C6. D7. B8. D第二部分9.10.11.12.13.14.15.16.17. 答案:解析:.第三部分18. (1)(2)19. ,,,..20. (1).,..(2)原式变形为.,..21. (1),,,.,,.(2)以,,为边能构成三角形,其周长为.22. .,.23. ,,,李大爷这块菜地的面积为.新八年级下册数学期末考试试题(含答案)一.选择题(共12小题)1.下列方程中是关于x的一元二次方程的是()A.x=x2﹣3 B.ax2+bx+c=0C.D.3x2﹣2xy﹣5y2=02.为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为,,,则麦苗高度最整齐的是()A.甲B.乙C.丙D.都一样3.已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A.m<2 B.C.D.m>04.方程3x2﹣7x﹣2=0的根的情况是()A.方程没有实数根B.方程有两个不相等的实数根C.方程有两个相等的实数很D.不确定5.关于x的方程x2+(m2﹣2)x﹣15=0有一个根是x=3,则m的值是()A.0 B.2 C.2或﹣2 D.﹣26.已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是()A.5 B.7 C.15 D.177.抛物线y=x2﹣4x+5的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,5)D.(﹣2,5)8.对于抛物线y=﹣(x+2)2﹣1,下列说法错误的是()A.开口向下B.对称轴是直线x=﹣2C.x>﹣2时,y随x的增大而增大D.x=﹣2,函数有最大值y=﹣19.一次函数y=3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形11.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=1712.如图,正方形ABCD中,AB=12,点E在边CD上,将△ADE沿AE对折至△AFE,延长EF 交边BC于点G,且BG=CG,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是()A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题3分,共18分)13.已知菱形ABCD的对角线长度是8和6,则菱形的面积为.14.把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式.15.设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=.16.如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B 的坐标是.17.如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是.18.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.三、解答题(本大题共8小题,共66分)19.解下列方程式:(1)x2﹣3x+1=0.(2)x2+x﹣12=0.20.如图,直线l1解析式为y=2x﹣2,且直线l1与x轴交于点D,直线l2与y轴交于点A,且经过点B(3,1),直线l1、l2交于点C(2,2).(1)求直线l2的解析式;(2)根据图象,求四边形OACD的面积.21.为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(Ⅰ)本次抽测的男生人数为,图①中m的值为;(Ⅱ)求本次抽测的这组数据的平均数、众数和中位数;(Ⅲ)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.22.如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.23.长沙市的“口味小龙虾”冠绝海内外,如“文和友老长沙龙虾馆”订单排队上千号.某衣贸市场甲、乙两家农贸商店售卖小龙虾,甲、乙平时以同样的价格出售品质相同的小龙虾,“中非贸易博览会”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)请求出y甲,y乙关于x的函数关系式;(2)“中非贸易博览会”期间,如果你是龙虾馆采购员,如何选择甲、乙两家商店购买小龙虾更省钱?24.已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.25.已知关于x的方程x2﹣kx+k2+n=0有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=0.(1)求证:n<0;(2)试用k的代数式表示x1;(3)当n=﹣3时,求k的值.26.图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,点在抛物线上,求的最小值.参考答案与试题解析一.选择题(共12小题)1.下列方程中是关于x的一元二次方程的是()A.x=x2﹣3 B.ax2+bx+c=0C.D.3x2﹣2xy﹣5y2=0【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:A、由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;B、当a=0时,该方程不是一元二次方程,故本选项错误;C、该方程不是整式方程,故本选项错误;D、该方程属于二元二次方程,故本选项错误;故选:A.2.为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为,,,则麦苗高度最整齐的是()A.甲B.乙C.丙D.都一样【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S丙2=6.3>S甲2=4.1>S乙2=3.5,方差最小的为乙,所以麦苗高度最整齐的是乙.故选:B.3.已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A.m<2 B.C.D.m>0【分析】根据y随x的增大而减小可知2m﹣1<0,解不等式即可.【解答】解:∵函数值y随自变量x的增大而减小,∴2m﹣1<0,∴m<.故选:C.4.方程3x2﹣7x﹣2=0的根的情况是()A.方程没有实数根B.方程有两个不相等的实数根C.方程有两个相等的实数很D.不确定【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,所以方程有两个不相等的实数根.故选:B.5.关于x的方程x2+(m2﹣2)x﹣15=0有一个根是x=3,则m的值是()A.0 B.2 C.2或﹣2 D.﹣2【分析】把x=3代入方程x2+(m2﹣2)x﹣15=0得9+3m2﹣6﹣15=0,然后解关于m的方程即可.【解答】解:把x=3代入方程x2+(m2﹣2)x﹣15=0得9+3m2﹣6﹣15=0,整理得m=±2.故选:C.6.已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是()A.5 B.7 C.15 D.17【分析】先根据算术平均数的定义求出x1+x2+x3的值,进而可得出结论.【解答】解:∵x1,x2,x3的平均数是5,∴x1+x2+x3=15,∴===17.故选:D.7.抛物线y=x2﹣4x+5的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,5)D.(﹣2,5)【分析】先把抛物线的解析式配成顶点式得到y=(x﹣2)2+1,然后根据抛物线的性质求解.【解答】解:y=x2﹣4x+5=(x﹣2)2+1,所以抛物线的顶点坐标为(2,1).故选:A.8.对于抛物线y=﹣(x+2)2﹣1,下列说法错误的是()A.开口向下B.对称轴是直线x=﹣2C.x>﹣2时,y随x的增大而增大D.x=﹣2,函数有最大值y=﹣1【分析】根据二次函数的性质可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵y=﹣(x+2)2﹣1,∴该抛物线的开口向下,顶点坐标是(﹣2,﹣1),对称轴为直线x=﹣2,当x=﹣2时,函数有最大值y=﹣1,当x>﹣2时,y随x的增大而减小,故选项C的说法错误,故选:C.9.一次函数y=3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k、b的值确定一次函数y=3x﹣4的图象经过的象限.【解答】解:k=3>0,图象过一三象限;b=﹣4<0,图象过第四象限,∴一次函数y=3x﹣4的图象不经过第二象限.故选:B.10.下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形【分析】分别利用矩形、菱形、正方形及平行四边形的判定方法判定后即可确定正确的选项.【解答】解:A、对角线互相平分且相等的四边形是平行四边形,故A错;B、对角线互相平分的四边形是平行四边形,故B正确;C、对角线互相平分且垂直的四边形是菱形,故C错;D、对角线互相垂直平分且相等的四边形是正方形,故D错误;故选:B.11.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=17【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果游客人数的年平均增长率为x,根据2015年约为12万人次,预计2017年约为17万人次,即可得出方程.【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.12.如图,正方形ABCD中,AB=12,点E在边CD上,将△ADE沿AE对折至△AFE,延长EF 交边BC于点G,且BG=CG,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是()A.2个B.3个C.4个D.5个【分析】依据HL即可判定Rt△ABG≌Rt△AFG;依据∠BAG=∠FAG,∠DAE=∠FAE,即可得到∠EAF=∠BAD;依据勾股定理列方程,即可得到DE=4,CE=8,进而得出CE=2DE;依据三角形外角性质,即可得到∠AGB=∠GCF,即可得到AG∥CF;根据GF=6,EF=4,△GFC和△FCE等高,即可得到S△GFC=×S△GCE=.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质得:AF=AD,∠AFE=∠D=90°,∴∠AFG=90°=∠B,AB=AF,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故①正确;∴∠BAG=∠FAG,由折叠可得,∠DAE=∠FAE,∴∠EAF=∠BAD=45°,故②正确;由题意得:EF=DE,BG=CG=6=GF,设DE=EF=x,则CE=12﹣x.在直角△ECG中,根据勾股定理,得CE2+CG2=GE2,即(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=4,CE=8,∴CE=2DE,故③正确;∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∵∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF,故④正确;∵S△GCE=GC•CE=×6×8=24,∵GF=6,EF=4,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=×24=,故⑤正确.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.已知菱形ABCD的对角线长度是8和6,则菱形的面积为24 .【分析】根据菱形ABCD的面积等于对角线乘积的一半进行解答即可.【解答】解:∵菱形的对角线长的长度分别为6、8,∴菱形ABCD的面积S=BD•AC=×6×8=24.故答案为24.14.把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式y=2x2+3 .【分析】先利用顶点式得到抛物线y=2(x﹣1)2+1顶点坐标为(1,1),再根据点平移的坐标特征得到点(1,1)平移后所得对应点的坐标为(0,3),然后根据顶点式写出平移后的抛物线的解析式即可.【解答】解:抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,3),所以平移后的抛物线的解析式为y=2x2+3.故答案是y=2x2+3.15.设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=﹣3 .【分析】根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn 中即可求出结论.【解答】解:∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,∴m+n=﹣2,mn=﹣1,则m+n+mn=﹣2﹣1=﹣3.故答案为:﹣3.16.如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B 的坐标是(﹣1,0).【分析】利用点B与点A关于直线x=1对称确定B点坐标.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=﹣1对称,而对称轴是直线x=1,点A的坐标为(3,0),∴点B的坐标是(﹣1,0).故答案为(﹣1,0).17.如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是x<2 .【分析】根据一次函数的性质和图象,可以写出x的取值范围,本题得以解决.【解答】解:由图象可知,当x=2时,y=0,该函数图象y随x的增大而增大,∴当y<0时,x的取值范围是x<2,故答案为:x<2.18.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为﹣.【分析】由点A1、A2的坐标,结合平移的距离即可得出点A n的坐标,再由直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,即可得出点A n+1(4n,0)在直线y=kx+2上,依据依此函数图象上点的坐标特征,即可求出k值.【解答】解:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴A n(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点A n+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=﹣.故答案为:﹣.三、解答题(本大题共8小题,共66分)19.解下列方程式:(1)x2﹣3x+1=0.(2)x2+x﹣12=0.【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴x2﹣3x+=,∴(x﹣)2=,∴x=;(2)∵x2+x﹣12=0,∴(x+4)(x﹣3)=0,∴x=﹣4或x=3;20.如图,直线l1解析式为y=2x﹣2,且直线l1与x轴交于点D,直线l2与y轴交于点A,且经过点B(3,1),直线l1、l2交于点C(2,2).(1)求直线l2的解析式;(2)根据图象,求四边形OACD的面积.【分析】(1)利用直线l1的解析式令y=0,求出x的值即可得到点D的坐标;把点C的坐标代入直线l1的解析式求出m的值,即可得解;根据点B、C的坐标,利用待定系数法求一次函数解析式解答;(2)先求出点A的坐标,再求出AD的长,然后利用三角形的面积公式列式进行计算即可得解.【解答】解:(1)∵点D是直线l1:y=2x﹣2与x轴的交点,∴y=0,0=2x﹣2,x=1,∴D(1,0),∵点C在直线l1:y=2x﹣2上,∴2=2m﹣2,m=2,∴点C的坐标为(2,2);∵点C(2,2)、B(3,1)在直线l2上,∴,解之得:,∴直线l2的解析式为y=﹣x+4;(2)∵点A是直线l2与x轴的交点,∴y=0,即0=﹣x+4,解得x=4,即点A(4,0),∴AD=4﹣1=3,四边形OACD的面积=S△ADC+S△AOD=×3×2+×4×1=5.21.为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(Ⅰ)本次抽测的男生人数为50 ,图①中m的值为28 ;(Ⅱ)求本次抽测的这组数据的平均数、众数和中位数;(Ⅲ)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.【分析】(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m 即可;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.【解答】解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=28%,所以m=28,故答案为:50、28;(Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;(Ⅲ)×350=252,答:估计该校350名九年级男生中有252人体能达标.22.如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.【分析】(1)因为∠1=∠2,所以BO=CO,2BO=2CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;(2)在△BOC中,∠BOC=120°,则∠1=∠2=30°,AC=2AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.【解答】(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:在△BOC中,∵∠BOC=120°,∴∠1=∠2=(180°﹣120°)÷2=30°,∴在Rt△ABC中,AC=2AB=2×4=8(cm),∴BC=(cm).∴四边形ABCD的面积=.23.长沙市的“口味小龙虾”冠绝海内外,如“文和友老长沙龙虾馆”订单排队上千号.某衣贸市场甲、乙两家农贸商店售卖小龙虾,甲、乙平时以同样的价格出售品质相同的小龙虾,“中非贸易博览会”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)请求出y甲,y乙关于x的函数关系式;(2)“中非贸易博览会”期间,如果你是龙虾馆采购员,如何选择甲、乙两家商店购买小龙虾更省钱?【分析】(1)利用待定系数法即可求出y甲,y乙关于x的函数关系式;(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.【解答】解:(1)设y甲=kx,把(2000,1600)代入,得2000k=1600,解得k=0.8,所以y甲=0.8x;当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000a=2000,解得a=1,所以y乙=x;当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得,解得.所以y乙=;(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.24.已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【分析】(1)由“ASA”可证△ABM≌△FDM,可得AB=DF,可得BE=DE,可得∠EBD=45°=∠FCE,可得结论;(2)由题意可得BE=DE=a,可得△BDE是等腰直角三角形,BD=a,由等腰直角三角形的性质可求BM,ME的长;(3)延长AB交CE于点D,连接DF,延长FE与CB交于点G,连接AG,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM =ME;【解答】证明:(1)如图1,延长BM交EF于点D,∵∠ABE=∠ABC=∠CEF=90°,∴AB∥EF∴∠DFM=∠BAM,且AM=MF,∠AMB=∠DMF∴△ABM≌△FDM(ASA)∴AB=DF,BM=DM∵在等腰直角△ABC和等腰直角△CEF中,AB=BC,EC=EF,∠FCE=45°∴DF=AB=BC∴EC﹣BC=EF﹣DF∴BE=DE,且∠BED=90°∴∠EBD=45°=∠FCE∴BM∥CF(2)由(1)可知:AB=BC=DF,BM=DM∵CB=a,CE=2a,∴BE=DE=a,且∠CEF=90°∴△BDE是等腰直角三角形,BD=a,且BM=DM∴BM=EM=BD=a,(3)如图2,延长AB交CE于点D,连接DF,延长FE与CB交于点G,连接AG,∵△ABC是等腰直角三角形∴AB=BC,∠BAC=∠BCA=45°,∠ABC=90°∵∠ECB=45°∴∠BDC=45°=∠ECB=∠CAB∴BD=BC,AC=CD∵AB=BD,点M为AF中点,∴BM=DF.同理可得:CF=CG,ME=AG.在△ACG与△DCF中,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.25.已知关于x的方程x2﹣kx+k2+n=0有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=0.(1)求证:n<0;(2)试用k的代数式表示x1;(3)当n=﹣3时,求k的值.【分析】(1)方程有两个不相等的实数根,则△>0,建立关于n,k的不等式,结合不等式的性质,证出结论;(2)根据根与系数的关系,把x1+x2=k代入已知条件(2x1+x2)2﹣8(2x1+x2)+15=0,即可用k的代数式表示x1;(3)首先由(1)知n<﹣k2,又n=﹣3,求出k的范围.再把(2)中求得的关系式代入原方程,即可求出k的值.【解答】证明:(1)∵关于x的方程x2﹣kx+k2+n=0有两个不相等的实数根,∴△=k2﹣4(k2+n)=﹣3k2﹣4n>0,∴n<﹣k2.又﹣k2≤0,∴n<0.解:(2)∵(2x1+x2)2﹣8(2x1+x2)+15=0,x1+x2=k,∴(x1+x1+x2)2﹣8(x1+x1+x2)+15=0∴(x1+k)2﹣8(x1+k)+15=0∴[(x1+k)﹣3][(x1+k)﹣5]=0∴x1+k=3或x1+k=5,∴x1=3﹣k或x1=5﹣k.(3)∵n<﹣k2,n=﹣3,∴k2<4,即:﹣2<k<2.原方程化为:x2﹣kx+k2﹣3=0,把x1=3﹣k代入,得到k2﹣3k+2=0,解得k1=1,k2=2(不合题意),把x2=5﹣k代入,得到3k2﹣15k+22=0,△=﹣39<0,所以此时k不存在.∴k=1.26.图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,点在抛物线上,求的最小值.【分析】(1)由已知抛物线顶点D可设抛物线顶点式,再把点A代入即求得二次项系数a 的值.(2)由点B、D坐标可求BD的长.设点P坐标为(0,t),用t表示BP2,DP2.对BP=BD、DP=BD、BP=DP三种情况进行分类讨论计算,解方程求得t的值并讨论是否合理.(3)由点B、C坐标可得∠BCO=45°,所以过点P作BC垂线段PQ即构造出等腰直角△PQC,可得PQ=PC,故有MP+PC=MP+PQ.过点M作BC的垂线段MH,根据垂线段最短性质,可知当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小,即需求MH 的长.连接MB、MC构造△BCM,利用y轴分成△BCD与△CDM求面积和即得到△BCM面积,再由S△BCM=BC•MH即求得MH的长.【解答】解:(1)∵抛物线顶点为D(1,﹣4)∴设顶点式为y=a(x﹣1)2﹣4∵A(﹣1,0)在抛物线上∴4a﹣4=0,解得:a=1∴抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3(2)在y轴的负半轴上存在点P,使△BDP是等腰三角形.∵B(3,0),D(1,﹣4)∴BD2=(3﹣1)2+(0+4)2=20设y轴负半轴的点P坐标为(0,t)(t<0)∴BP2=32+t2,DP2=12+(t+4)2①若BP=BD,则9+t2=20解得:t1=(舍去),t2=﹣②若DP=BD,则1+(t+4)2=20解得:t1=(舍去),t2=﹣﹣4③若BP=DP,则9+t2=1+(t+4)2解得:t=﹣1综上所述,点P坐标为(0,﹣)或(0,﹣﹣4)或(0,﹣1)(3)连接MC、MB,MB交y轴于点D,过点P作PQ⊥BC于点Q,过点M作MH⊥BC于点H ∵x=0时,y=x2﹣2x﹣3=﹣3∴C(0.﹣3)∵B(3,0),∠BOC=90°∴∠OBC=∠OCB=45°,BC=3∵∠PQC=90°∴Rt△PQC中,sin∠BCO==∴PQ=PC∴MP+PC=MP+PQ∵MH⊥BC于点H∴当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小∵M(﹣,m)在抛物线上∴m=(﹣)2﹣2×(﹣)﹣3=∴M(﹣,)设直线MB解析式为y=kx+b∴解得:∴直线MB:y=﹣x+∴MB与y轴交点D(0,)∴CD=﹣(﹣3)=∴S△BCM=S△BCD+S△CDM=CD•BO+CD•|x M|=CD•(x B﹣x M)=××(3+)=∵S△BCM=BC•MH∴MH=∴MP+PC的最小值为最新人教版数学八年级下册期末考试试题【含答案】一、选择题:(每小题3分,共36分,每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卡相应的位置上.)1.下列图形中,可以看作是中心对称图形的是( )答案:A考点:中心对称图形。

人教版八年级数学下册期末测试卷含答案

人教版八年级数学下册期末测试卷含答案

人教版八年级数学下册期末测试卷含答案人教版八年级数学下册期末测试卷02一、选择题(每小题3分,共30分)1.在函数y=(x+2)/(x-1)中,自变量x的取值范围是()A。

x≥-2且x≠1B。

x≤2且x≠1C。

x≠1D。

x≤-22.下列各组二次根式中,可以进行合并的一组是()A。

12与72B。

63与78C。

8√3与22√xD。

18与63.下列命题中,正确的是()A。

梯形的对角线相等B。

菱形的对角线不相等C。

矩形的对角线不能互相垂直D。

平行四边形的对角线可以互相垂直4.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长为()A。

20B。

24C。

28D。

405.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A。

AE=CFB。

BE=FDC。

BF=DED。

∠1=∠26.已知一次函数y=kx+b(k≠0)的图象经过两点,则它不经过(2,-1)的象限是()A。

第一象限B。

第二象限C。

第三象限D。

第四象限7.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据。

若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是()A。

20B。

28C。

30D。

318.园林队在某公园进行绿化,中间休息了一段时间已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A。

40平方米B。

50平方米C。

80平方米D。

100平方米9.如图,在△ABC中,AC=BC,D、E分别是边AB、AC 的中点,△ADE≌△CFE,则四边形ADCF一定是()A。

矩形B。

菱形C。

正方形D。

梯形10.XXX骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合XXX行驶情况的大致图象是()无法提供图象)二、填空题(每小题3分,共30分)11.计算:(48-327)÷3=_________.12.一次函数y = (m+2)x + 1,若y随x的增大而增大,则m的取值范围为什么?答案:m。

新人教版八年级第二学期下册期末模拟数学试卷(含答案)

新人教版八年级第二学期下册期末模拟数学试卷(含答案)

新人教版八年级第二学期下册期末模拟数学试卷(含答案)一、选择题(共8小题;共40分)1. 在下列各式中,不是二次根式的有① ;② ;③ (,同号且);④ ;⑤ .A. 个B. 个C. 个D. 个2. 要使代数式有意义,则的A. 最大值是B. 最小值是C. 最大值是D. 最小值是3. 下列计算结果正确的个数是① ;② ;③;④当时,.A. B. C. D.4. 下列式子中为最简二次根式的是A. B. C. D.5. 下列计算正确的是A. B.C. D.6. 算式的值为A. B. C. D.7. 若是整数,则正整数的最小值是A. B. C. D.8. 甲、乙两人计算的值,当的时候得到不同的答案,甲的解答是;乙的解答是.下列判断正确的是A. 甲、乙都对B. 甲、乙都错C. 甲对,乙错D. 甲错,乙对二、填空题(共9小题;共45分)9. 若,则.10. 已知,则.11. 把进行化简,得到的最简结果是(结果保留根号).12. 计算:等于.13. 在实数范围内分解因式:.14. 对于任意不相等的两个数,,定义一种运算“”如下:.如,那么.15. 设,,则.16. 若实数,在数轴上的对应点的位置如图所示,则的化简结果为.17. 若,则.三、解答题(共6小题;共78分)18. 计算:Ⅰ;Ⅱ.19. 已知,求的值.20. 已知,,求下列代数式的值:Ⅰ;Ⅱ.21. 已知,,满足.Ⅰ求,,的值.Ⅱ以,,为边能否构成三角形?若能构成,求出三角形的周长;若不能构成,请说明理由.22. 已知是的小数部分,求的值.23. 阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为,,,记,则三角形的面积,此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得,,,你能求出李大爷这块菜地的面积吗?试试看.答案第一部分1. B2. A3. B4. A5. C6. D7. B8. D第二部分9.10.11.12.13.14.15.16.17. 答案:解析:.第三部分18. (1)(2)19. ,,,..20. (1).,..(2)原式变形为.,..21. (1),,,.,,.(2)以,,为边能构成三角形,其周长为.22. .,.23. ,,,李大爷这块菜地的面积为.最新八年级(下)数学期末考试题【含答案】一、选择题(共16小题,每小题2分,满分38分)1.若二次根式有意义,则x的取值范围是()A.x≤﹣B.x≥﹣C.x≥D.x≤2.已知是整数,则正整数n的最小值是()A.4B.6C.8D.123.直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是()A.5B.6C.6.5D.134.下列函数中,表示y是x的正比例函数的是()A.y=﹣0.1x B.y=2x2C.y2=4x D.y=2x+15.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或6.如图,矩形ABCD中,对角线AC=8cm,△AOB是等边三角形,则AD的长为()cm.A.4B.6C.4D.37.如图,E是平行四边形内任一点,若S=8,则图中阴影部分的面积是()平行四边形ABCDA.3B.4C.5D.68.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()A.甲B.乙丙C.甲乙D.甲丙9.下列描述一次函数y=﹣2x+5图象性质错误的是()A.y随x的增大而减小B.直线与x轴交点坐标是(0,5)C.点(1,3)在此图象上D.直线经过第一、二、四象限10.甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲B.乙C.丙D.丁11.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选①③C.选②④D.选②③12.如图,直线y=x+b与直线y=kx+b交于点P(3,5),则关于x的不等式x+b>kx+6的解集是()A.x>3 B.x<3 C.x≥3 D.x≤313.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.1014.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.415.如图,一直线与两坐标轴的正半轴分别交于A、B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为20,则该直线的函数表达式是()A.y=x+10B.y=﹣x+10C.y=x+20D.y=﹣x+20 16.如图,正方形ABCD的边长为1,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)17.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是(用数学概念作答)18.如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为.19.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是.20.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形A n B n∁n C n﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为,点B n的坐标是.三、解答题(共6小题,满分67分)21.(10分)(1)计算:3﹣×+(2)已知:x=+1,求x2﹣2x的值.22.(8分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.23.(11分)如图,直线y=x+3与x轴、y轴分别相交于A、C两点,过点B(6,0),E (0,﹣6)的直线上有一点P,满足∠PCA=135°.(1)求证:四边形ACPB是平行四边形;(2)求直线BE的解析式及点P的坐标.24.(12分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=,b=.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.25.(12分)2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品.已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.若买x个笔袋需要y1元,买x筒彩色铅笔需要y2元.请用含x的代数式表示y1、y2;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.26.(14分)如图,矩形ABCD中,对角线AC、BD相交于点O,点P是线段AD上一动点(不与与点D重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若AB=6cm,AD=8cm,P从点A出发.以1cm/秒的速度向点D匀速运动.设点P运动时间为t秒,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.参考答案与试题解析一、选择题(共16小题,每小题2分,满分38分)1.解:依题意得,2x﹣1≥0,解得x≥.故选:C.2.解:∵,且是整数,∴是整数,即6n是完全平方数;∴n的最小正整数值为6.故选:B.3.解:由题意得,斜边=,所以斜边上的中线=×13=6.5.故选:C.4.解:A、y=﹣0.1x,符合正比例函数的含义,故本选项正确.B、y=2x2,自变量次数不为1,故本选项错误;C、y2=4x是x表示y的二次函数,故本选项错误;D、y=2x+1是一次函数,故本选项错误;故选:A.5.解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选:D.6.解:∵△AOB是等边三角形,∴∠BAC=60°,∴∠ACB=30°,∵AC=8cm,∴AB=4cm,在Rt △ABC 中,BC =cm ,∵AD =BC ,∴AD 的长为4cm . 故选:C . 7.解:设两个阴影部分三角形的底为AD ,CB ,高分别为h 1,h 2,则h 1+h 2为平行四边形的高,∴S △EAD +S △ECB=AD •h 1+CB •h 2=AD (h 1+h 2)=S 四边形ABCD=4.故选:B .8.解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选:C .9.解:A 、因为k =﹣2<0,则y 随x 的增大而减小,所以A 选项的说法正确;B 、因为x =0,y =5,直线与y 轴交点坐标是(0,5),所以B 选项的说法错误;C 、因为当x =1时,y =﹣2+5=3,所以点(1,3)在此图象上,所以C 选项的说法正确;D 、因为k <0,b >0,直线经过第一、二、四象限,所以D 选项的说法正确.故选:B .10.解:∵==9.7,S 2甲>S 2丙,∴选择丙.故选:C .11.解:A 、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD 是正方形,正确,故本选项不符合题意;B、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;C、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意.故选:D.12.解:根据图象得当x>3时,x+b>kx+6.故选:A.13.解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.14.解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=(小时),1+3,∴乙先到达B地,故④正确;正确的有3个.故选:C.15.解:设点P的坐标为(x,y),∵矩形的周长为20,∴|x|+|y|=10,即x+y=10,∴该直线的函数表达式是y=﹣x+10,故选:B.16.解:∵正方形ABCD的边长为1,∴面积标记为S2的等腰直角三角形的直角边长为,则S2=()2==,面积标记为S3的等腰直角三角形的直角边长为×=,则S3=()2==,……则S2018的值为:,故选:B.二、填空题(共4小题,每小题3分,满分12分)17.解:根据题意知:对商场经理来说,最有意义的是销售数量最多衬衫的数量,即众数.故答案为:众数.18.解:在Rt△ABC中,∠A=30°,BC=1,∴AB=2BC=2,∵点D,E分别是直角边BC,AC的中点,∴DE=AB=1,故答案为:1.19.解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,==×6×8=24cm2,∴S菱形ABCD=BC×AE,∵S菱形ABCD∴BC×AE=24,∴AE==cm.故答案为:cm.20.解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵四边形A2B2C2C1为正方形,∴点B2的坐标为(3,2).同理可得:点A3的坐标为(3,4),点B3的坐标为(7,4),点A4的坐标为(7,8),点B4的坐标为(15,8),…,∴点B n的坐标为(2n﹣1,2n﹣1).故答案为:(7,4),(2n﹣1,2n﹣1).三、解答题(共6小题,满分67分)21.解:(1)3﹣×+===2;(2)∵x =+1, ∴x 2﹣2x=x (x ﹣2)=(+1)(+1﹣2)=(+1)(﹣1)=5﹣1=4. 22.解:∵BD 2+AD 2=62+82=102=AB 2,∴△ABD 是直角三角形,∴AD ⊥BC ,在Rt △ACD 中,CD ===15,∴S △ABC =BC •AD =(BD +CD )•AD =×21×8=84,因此△ABC 的面积为84.答:△ABC 的面积是84.23.(1)证明:∵直线y =x +3与x 轴、y 轴分别相交于A 、C 两点,∴点A 的坐标为(﹣3,0),点C 的坐标为(0,3),∴OA =OC .∵∠AOC =90°,∴∠CAO =45°.∵∠PCA =135°,∴∠CAO +∠PCA =180°,∴AB ∥CP .∵点B 的坐标为(6,0),点E 的坐标为(0,﹣6),∴OB =OE .∵∠BOE =90°,∴∠OBE =45°,∴∠CAO =∠ABE =45°,∴AC ∥BP ,∴四边形ACPB 为平行四边形.(2)解:设直线BE的解析式为y=kx+b(k≠0),将B(6,0)、E(0,﹣6)代入y=kx+b,得:,解得:,∴直线BE的解析式为y=x﹣6.∵AB∥CP,∴点P的纵坐标是3,∴点P的坐标为(9,3).24.解:(1)总人数=6×1+2×3+3×3+4+5=30人,a%==10%,b=100﹣10﹣6.7﹣23.3=60,故答案为10,60.(2)中位数为21、众数为20.(3)奖励标准应定为21万元,理由:如果要使得营业员的半数左右能获奖,应该以这些员工的月销售额的中位数为标准.25.解:(1)设每个笔袋原价x元,每筒彩色铅笔原价y元,根据题意,得:解得:所以每个笔袋原价14元,每筒彩色铅笔原价15元.(2)y1=14×0.9x=12.6x,当不超过10筒时:y2=15x;当超过10筒时:y2=12x+30,(3)当y1<y2时,有12.6x<12x+30,解得x<50,因此当购买同一种奖品的数量少于50件时,买笔袋省钱.当y1=y2时,有12.6x=12x+30,解得x=50,因此当购买同一种奖品的数量为50件时,两者费用一样.当y1>y2时,有12.6x>12x+30,解得x>50,因此当购买同一种奖品的数量大于50件时,买彩色铅笔省钱.∵奖品的数量为95件,95>50,∴买彩色铅笔省钱.26.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,在△POD和△QOB中,,∴△POD≌△QOB(ASA),∴OP=OQ;又∵OB=OD∴四边形PBQD为平行四边形;(2)答:能成为菱形;证明:t秒后AP=t,PD=8﹣t,若四边形PBQD是菱形,∴PD=BP=8﹣t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8﹣t)2,解得:t=.即点P运动时间为秒时,四边形PBQD是菱形.新人教版数学八年级下册期末考试试题(含答案)一、选择题(共10小题,30分)1x的取值范围是()A、x<﹣2B、x≤-2C、x>-2D、x≥﹣22的值是()A、在2和3之间B、在3和4之间C、在4和5之间D、在5和6之间3.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A、方差B、平均数C、中位数D、众数4.在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A、3种B、4种C、5种D、6种5.下列式子一定成立的是()6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数x与方差s2如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A、甲B、乙C、丙D、丁7.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A、中位数是12.7%B、众数是15.3%C.平均数是15.98%D、方差是08.菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A、52B、48C、40D、209.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()10.如图,在▱ABCD中,AB=4,BC=6.以点C为圆心,适当长为半径画弧,交BC于点E,交CD于点F,再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点P,射线CP交BA的延长线于点Q,则AQ的长是()A、1B、112C、2D、212二、填空题(共5小题,15分)11.已知直角三角形的两边的长分别是3和4,则第三边长为.12.如图,一次函数y=﹣x+1与y=2x+m的图象相交于点P(n,2),则关于x的不等式﹣x+1>2x+m>0的解集为.13.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是.14.已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF 相交于点G,点H为BF的中点,连接GH,则GH的长为.15.如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD,AE=,则AC=.三、解答题(8个小题,共75分)16.(8分)计算下列各式的值:(1(2)(12﹣2|.17.(8分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.18.(9分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).(1)补全条形统计图;(2)求出扇形统计图中册数为4的扇形的圆心角的度数;(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了人 .19.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,4),且与x 轴相交于点B ,与正比例函数y =2x 的图象相交于点C ,点C 的横坐标为1. (1)求一次函数y =kx +b 的解析式; (2)若点D 在y 轴上,且满足S △COD ═12S △BOC ,请直接写出点D 的坐标.20.(10分)如图,▱ABCD中,点E是CD的中点,连接AE并延长交BC延长线于点F (1)求证:CF=AD;(2)连接BD、DF,①当∠ABC=90°时,△BDF的形状是;②若∠ABC=50°,当∠CFD=°时,四边形ABCD是菱形.21.(10分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?22.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产.已知A、B两城分别有肥料210吨和290吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)设从A城运往C乡肥料x吨①用含x的代数式完成下表②设总运费为y元,写出y与x的函数关系式,并求出最少总运费;(2)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时从A城运往C乡肥料多少吨时总运费最少?23.(11分)(1)问题背景:如图1,△ABC中,AB=AC,点D是BC的中点,∠BAC=120°①若AB=AC=2,则BC=;②若AB=AC=a,则BC=.(用含a的式子表示);(2)迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;(3)拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.若AE=6,CE =3,请直接写出BF的长,BF=.最新八年级(下)期末考试数学试题(答案) 一.选择题(本大题共8小题,每小题3分,共24分)1.(3分)要使二次根式有意义,字母x的取值必须满足的条件是()A.x≥1B.x≤1C.x>1D.x<12.(3分)下列调查中,不适合普查但适合抽样调查的是()A.调查年级一班男女学生比例B.检查某书稿中的错别字C.调查夏季冷饮市场上冰淇凌的质量D.调查载人航天飞船零件部分的质量3.(3分)如图所示的数字图形中不是中心对称图形的有()A.B.C.D.4.(3分)下列说法正确的是()A.明天会下雨是必然事件B.不可能事件发生的概率是0C.在水平的桌面上任意抛掷一枚图钉,一定针尖向下D.投掷一枚之地近月的硬币1000次.正面朝下的次数一定是500次5.(3分)下列分式中,是最简分式的是()A.B.C.D.6.(3分)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y27.(3分)如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连接BD,若∠DAC=∠DBA,则∠BAC为()A.32°B.35°C.36°D.40°8.(3分)如图两张长相等,宽分别是1和3的矩形纸片上叠合在一起,重叠部分为四边形ABCD,且AB+BC=6,则四边形ABCD的面积为()A.3B.C.9D.二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)使式子的值为0,则a的值为.10.(3分)分式,,的最简公分母是.11.(3分)化简:(2+)(2﹣)=.12.(3分)下表是对某地生活垃圾处理情况的分析,可以选择统计图进行分析比较.13.(3分)在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性摸出红球可能性.(填“等于”、“小于”或“大于”)14.(3分)若反比例函数y=的图象在其每个象限内,y随x的增大而减小,则k的值可以是.(写出一个值即可).15.(3分)若关于x的方程=﹣3有增根,则增根为x=.16.(3分)如图,在矩形ABCD中,∠ABC的平分线交AD与点E,AB=2,BC=3,则CE=.17.(3分)如图,直线y=mx与双曲线y=交于A、B两点,D为上x轴一点,连接BD 交y轴与点C,若C(0,﹣2)恰好为BD中点,且△ABD的面积为6,则B点坐标为.18.(3分)如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有.(只填写序号)三、解答题(本题共9小题,共96分.解答时写出必要的文字说明、证明过程或演算步骤)19.(16分)计算与化简:(1)﹣(2)(3+)2(3)+(4)÷(x﹣)20.(10分)解下列方程:(1)=(2)=1﹣21.(8分)先化简,再求值:1﹣÷,其中a=2020,b=2019.22.(8分)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)画出一个面积最小的▱P AQB.(2)画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.23.(8分)某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:请根据上图完成下面题目:(1)抽查人数为人,a=.(2)请补全条形统计图;(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?24.(10分)为加快城市群的建设与发展,在徐州与连云港两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km缩短至180km,城际铁路的设计平均时速要比现行的平均时速快200km,运行时间仅是现行时间的,求建成后的城际铁路在徐州到连云港两地的运行时间.25.(10分)如图,在平行四边形ABCD中,点E、F在对角线BD上,且BF=DE (1)求证:△ADE≌△CBF;(2)若AE=3,AD=4,∠DAE=90°,该判断当BE的长度为多少时,四边形AECF 为菱形,并说明理由.26.(12分)如图,一次函数y=2x+b的图象经过点A(﹣1,0),并与反比例函数y=(x >0)的图象交于B(m,4)(1)求k1的值;(2)以AB为一边,在AB的左侧作正方形ABCD,求C点坐标;(3)将正方形ABCD沿着x轴的正方向,向右平移n个单位长度,得到正方形A1B1C1D1,线段A1B1的中点为点E,若点C1和点E同时落在反比例函数y=的图象上,求n的值.27.(14分)已知结论:在直角三角形中,30°所对的直角边是斜边的一半,请利用这个结论进行下列探究活动.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,D为AB中点,P为AC上一点,连接PD,把△APD沿PD翻折得到△EPD,连接CE.(1)AB=,AC=.(2)若P为AC上一动点,且P点从A点出发,沿AC以每秒一单位长度的速度向C运动,设P点运动时间为t秒.①当t=秒时,以A、P、E、D、为顶点可以构成平行四边形.②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.2018-2019学年江苏省连云港市东海县八年级(下)期末数学试卷参考答案与试题解析一.选择题(本大题共8小题,每小题3分,共24分)1.【解答】解:根据题意,得x﹣1≥0,解得,x≥1;故选:A.2.【解答】解:A.调查年级一班男女学生比例适合普查;B.检查某书稿中的错别字适合普查;C.调查夏季冷饮市场上冰淇凌的质量适合抽样调查;D.调查载人航天飞船零件部分的质量适合普查;故选:C.3.【解答】解:A、是中心对称图形,不符合题意;B、是中心对称图形,不符合题意;C、是中心对称图形,不符合题意;D、不是中心对称图形,符合题意;故选:D.4.【解答】解:A.明天会下雨是随机事件,此选项错误;B.不可能事件发生的概率是0,此选项正确;C.在水平的桌面上任意抛掷一枚图钉,不一定针尖向下,此选项错误;D.投掷一枚之地近月的硬币1000次.正面朝下的次数可能是500次,此选项错误;故选:B.5.【解答】解:A.,不是最简分式;B.,不是最简分式;,C.,不是最简分式;,D.,是最简分式;故选:D.6.【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.7.【解答】解:设∠BAC=x,由旋转的性质,可得∠DAE=∠BAC=x,∴∠DAC=∠DBA=2x,又∵AB=AD,∴∠ADB=∠ABD=2x,又∵△ABD中,∠BAD+∠ABD+∠ADB=180°,∴x+2x+2x=180°,∴x=36°,即∠BAC=36°,故选:C.8.【解答】解:依题意得:AB∥CD,AD∥BC,则四边形ABCD是平行四边形.如图,过点A作AE⊥BC于点E,过点A作AF⊥CD于点F,∴AE=1,AF=3,∴BC•AE=AB•AF,∴BC=3AB.又∵AB+BC=6,∴AB=1.5,BC=4.5∴四边形ABCD的面枳=4.5×1=故选:D.二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.【解答】解:∵式子的值为0,∴2a﹣1=0,解得:a=.故答案为:.10.【解答】解:分式,,的最简公分母是6x.故答案为6x.11.【解答】解:原式=22﹣()2=4﹣3=1.12.【解答】解:由统计图的特点可知:想用统计图记录垃圾的处理比例,就用扇形统计图;故答案为:扇形统计图.13.【解答】解:∵一只不透明的袋子中有2个红球、3个绿球和5个白球,这些球除颜色外都相同,∴P(红球)==,P(绿球)=,P(白球)==,∴摸到白球的可能性大于摸到红球的可能性.故答案为:大于;14.【解答】解:根据题意,k﹣1>0,解得k>1;∴k=5(答案不唯一).15.【解答】解:∵原方程有增根,∴最简公分母(x+2)(x﹣2)=0,解得x=2或﹣2.故答案为:±2.16.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,BC=AD=3,∠D=90°,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴AB=AE=CD=2,在Rt△EDC中,CE===.故答案为.17.【解答】解:过点B作BE⊥y轴,垂足为E,∴∠BEC=∠DOC=90°∵点C是BD的中点,∴BC=DC∵∠OCD=∠ECB∴△BEC≌△DOC∴BE=OD EC=OC=2∵S△ABD=6=OD×OE∴OD=∴A(﹣,4)B(,﹣4)故答案为:B(,﹣4)18.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠B=∠BAD=90°,BC∥AD,∴∠ECO=∠F AO,∵∠EOC=∠FOA,∴△EOC≌△FOA(ASA),∴OE=OF,∵AO⊥EF,∴AE=AF=EC,∵EC∥AF,∴四边形AECF是平行四边形,∵AE=AF,∴四边形AECF是菱形,故①正确,∵AE=AF,AO⊥EF,∴∠EAO=∠F AO,∵∠BAE=∠EAO,∴∠BAE=∠EAO=∠OAF=30°,∴∠EAF=60°,∵BC∥AD,∴∠AEC+∠EAD=180°,∴∠AEC=120°,故②正确,∵AB=2,∴AO=OC=2,OE=OF=,∴S菱形AECF=•AC•EF=•4×=,故③正确,设BE=a,则AE=EC=2a,AB=a,∴AB:BC≠1:2,故④错误,故答案为:①②③.三、解答题(本题共9小题,共96分.解答时写出必要的文字说明、证明过程或演算步骤)19.【解答】解:(1)原式=2﹣=;(2)原式=9+10+6=19+6;(3)原式=+==;(4)原式=÷=•=.20.【解答】解:(1)去分母得:3x+2=5,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.21.【解答】解:1﹣÷=1﹣=1﹣==,当a=2020,b=2019时,原式==2019.22.【解答】解:(1)如图①所示:(2)如图②所示:。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。

2. 如果x=2,那么x²等于______。

3. 如果a=4,b=2,那么a+b等于______。

4. 如果x=3,那么x²等于______。

三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。

2. 计算:3x²2y²=5,其中x=3,y=2。

3. 计算:2a²+3b²=6,其中a=4,b=2。

五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。

2. 证明:如果x²=y²,那么x=y。

六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。

2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。

七、简答题(每题10分,共20分)1. 简述方程的基本概念。

2. 简述不等式的基本概念。

八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。

人教版八年级数学下册期末测试卷(二)(原卷+解析)

人教版八年级数学下册期末测试卷(二)(原卷+解析)

人教版八年级数学下册期末测试卷(二)一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12 2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.23.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B 4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=度.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为分.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是.(填序号)16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在组;(2)4月份生产的该产品抽样检测的合格率是;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.2021年人教版八年级数学下册期末测试卷(二)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【分析】首先分别根据绝对值的和算术平方根的定义可求出a,b的值,然后把a,b的值代入|a+b|=a+b中,最终确定a,b的值,然后求解.【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.【点评】此题主要考查了绝对值的意义:即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.也利用了算术平方根的定义.2.(3分)一组数据3、2、1、2的方差是()A.0.25B.0.5C.1D.2【分析】先求出这组数据的平均数,然后代入方差公式求出即可.【解答】解:这组数据的平均数为:(3+2+1+2)÷4=2;则方差为:S2==,故选:B.【点评】此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.3.(3分)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B【分析】利用平行线的判定与性质结合平行四边形的判定得出即可.【解答】解:如图所示:∵AB∥CD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故AD∥BC,则四边形ABCD是平行四边形.故选:C.【点评】此题主要考查了平行线的判定与性质以及平行四边形的判定,得出AD∥BC是解题关键.4.(3分)已知关于x的一次函数y=(k2+1)x﹣2图象经过点A(3,m)、B(﹣1,n),则m,n的大小关系为()A.m≥n B.m>n C.m≤n D.m<n【分析】由偶次方非负可得出k2+1>0,利用一次函数的性质可得出y值随x值的增大而增大,再结合3>﹣1可得出m>n,此题得解.【解答】解:∵k2≥0,∴k2+1>0,∴y值随x值的增大而增大.又∵3>﹣1,∴m>n.故选:B.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x 的增大而减小”是解题的关键.5.(3分)一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【分析】根据抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.【解答】解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.【点评】本题考查了函数图象,利用抽水时间确定剩下的水量是解题关键,注意两台抽水机同时工作的剩余水量迅速减少.6.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:依题意有x﹣3>0且x﹣5≠0,解得:x>3且x≠5.故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.7.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是()A.96分、98分B.97分、98分C.98分、96分D.97分、96分【分析】利用众数和中位数的定义求解.【解答】解:98出现了9次,出现次数最多,所以数据的众数为98分;共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.8.(3分)下列各组线段中,不能构成直角三角形的是()A.1、、B.、、C.2、、D.1、2、【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=()2,故能构成直角三角形;B、()2+()2=()2,故能构成直角三角形;C、22+()2≠()2,故不能构成直角三角形;D、12+()2=22,故能构成直角三角形.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9.(3分)如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长【分析】证明EF为三角形AMC的中位线,那么EF长恒等于定值AC的一半.【解答】解:连接AC,如图所示:∵E,F分别是AM,MC的中点,∴EF=AC,∵C是定点,∴AC是定长,∴无论M运动到哪个位置EF的长不变,故选:A.【点评】此题考查的是进行的性质、三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.10.(3分)如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB 上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是()A.1.2B.1.5C.2.4D.2.5【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【解答】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=AB×CM=AC×BC,∴CM===2.4,∴CP=EF=CM=1.2,故选:A.【点评】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.(3分)计算(+2)2的结果等于7+4.【分析】根据完全平方公式可以解答本题.【解答】解:(+2)2=3+4+4=7+4,故答案为:7+4.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.12.(3分)如图,把一张平行四边形纸片ABDC沿BC对折,使点D落在E处,BE与AC 相交于点O,若∠DBC=15°,则∠BOC=150度.【分析】由折叠易得∠OCB=∠DBC=15°,由平行四边形对边平行易得∠ACB=∠DBC =15°,利用三角形内角和即可求得所求的角的度数.【解答】解:∵△BEC是△BDC翻折变换的三角形,∴△BEC≌△BDC,∠EBC=∠DBC=15°,∵AC∥BD,∴∠OCB=∠DBC=15°,∴∠BOC=180°﹣∠OCB﹣∠EBC=180°﹣15°﹣15°=150°.故答案为150.【点评】本题考查的是经过翻折变换后的图形与原图形全等的性质,及平行四边形的性质.13.(3分)李刚师范大学毕业后参加了某市教育局组织的教师招聘考试,这次考试包括笔试、面试两项,其笔试、面试成绩按3:7的比例确定各人的最终成绩.考试结束后他笔试、面试的成绩分别为90分、96分,那么李刚参加这次招聘考试的最终成绩为94.2分.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:李刚参加这次招聘考试的最终成绩为=94.2(分).故答案为:94.2.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.14.(3分)已知直线y=kx+b在y轴上的截距为3,且经过点(1,4),那么这条直线的表达式为y=x+3.【分析】根据“在y轴上的截距为3”计算求出b值,然后代入点(1,4)即可得解.【解答】解:∵直线y=kx+b在y轴上的截距为3,∴b=3,∴y=kx+3,∵经过点(1,4),∴4=k+3,∴k=1,∴这条直线的解析式是y=x+3.故答案是:y=x+3.【点评】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.15.(3分)如图,E,F,M分别是正方形ABCD三边的中点,CE与DF交于N,连接AM,AN,MN对于下列四个结论:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN.其中正确的是①②③.(填序号)【分析】①通过证明四边形AMCE是平行四边形,可得AM∥CE;②由“SAS”可证△DCF≌△CBE,可得∠BCE=∠CDF,由直角三角形的性质可求∠CND=90°;③由直角三角形的性质可得DM=MN,由等腰三角形的性质可得AM垂直平分DN,可得AN=AD=BC;④由等腰三角形的性质和余角的性质可得∠ADN=∠DCN=∠AND=∠CNM,即可求解.【解答】解:∵E,F,M分别是正方形ABCD三边的中点,∴AE=BE=BF=CF=DM=CM,CD∥AB,∴四边形AMCE是平行四边形,∴AM∥CE,故①正确;在△DCF和△CBE中,,∴△DCF≌△CBE(SAS),∴∠BCE=∠CDF,∵∠DCE+∠BCE=90°,∴∠CDF+∠DCN=90°,∴∠CND=90°,∴DF⊥CE,故②正确;∵DF⊥CE,DM=CM,∴DM=MN=CM,∵AM∥CE,∴AM⊥DN,∴AM垂直平分DN,∴AD=AN,∴AN=BC,故③正确;∵AN=BC,∴∠ADN=∠AND,∵DM=MN=CM,∴∠DNM=∠NDM,∠MCN=∠MNC,∵∠ADN+∠CDN=90°,∠CDN+∠DCN=90°,∴∠ADN=∠DCN=∠AND=∠CNM,故④错误,故答案为:①②③.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.16.(3分)如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=.【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【解答】解:如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ﹣AE=.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.三.解答题(共8小题,满分72分)17.(8分)计算:(1)﹣﹣;(2)×÷;(3)(﹣3)÷2.【分析】(1)先化简二次根式,再合并同类二次根式;(2)按二次根式的乘除法法则计算求值即可;(3)先算括号里面的,再除法运算.【解答】解:(1)原式=3﹣×3﹣2=﹣;(2)原式===;(3)原式=(4﹣9)÷2==﹣.【点评】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解决本题的关键.18.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?【分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=1.5代入AB段图象的函数表达式,求出对应的y值,再用156减去y即可求解.【解答】解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.【点评】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.19.(8分)如图,一次函数y1=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y2=﹣x图象交于点C(﹣2,n).(1)求m和n的值;(2)求△OAC的面积;(3)问:在y轴上,是否存在一点P,使得S△BCP=S△OAC?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)直接利用待定系数法可先确定n的值,然后再把C的坐标代入一次函数y =﹣x+m可得m的值;(2)首先确定A点坐标,进而可得AO的长,再集合C点坐标可得△OAC的面积;(3)根据题意可得S△BCP=PB•|x C|=S△OAC=6,解出PB的值,进而可得P点的坐标.【解答】解:(1)∵点C(﹣2,n)在正比例函数y2=﹣x图象上,∴n=﹣×(﹣2)=3,∴点C的坐标为(﹣2,3).∵点C(﹣2,3)在一次函数y=﹣x+m的图象上,∴3=﹣(﹣2)+m,解得:m=2,∴一次函数解析式为y=﹣x+2.∴m的值为2,n的值为3.(2)当y=0时,0=﹣x+2,解得x=4,∴点a的坐标为(4,0),∴S△OAC=OA•y C=×4×3=6.(3)存在.当x=0时,y=﹣x+2=2,∴B(0,2),∵S△BCP=PB•|x C|=S△OAC=6,∴PB•2=6,∴PB=6,∴点P的坐标为(0,8)或(0,﹣4).【点评】此题主要考查了两直线相交问题,关键是掌握待定系数法求函数解析式,掌握凡是函数图象经过的点必能满足解析式.20.(10分)如图,在▱ABCD中,∠BAD,∠ADC的平分线AF,DE分别与线段BC交于点F,E,AF与DE交于点G.(1)求证:AF⊥DE,BF=CE.(2)若AD=10,AB=6,AF=8,求DE的长度.【分析】(1)根据平行四边形的性质和平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的性质推知∠DAE+∠ADF=∠BAD+∠ADC=90°,即∠AGD=90°.证得∠BAF=∠AFB,由等腰三角形的判定可得出AB=BF,同理可得CD=CE,则可得出结论;(2)过点C作CK∥AF交AD于K,交DE于点I,证明四边形AFCK是平行四边形,∠AGD=∠KID=90°,得出AF=CK=8,由勾股定理求出DI,则可得出答案.【解答】(1)证明:在平行四边形ABCD中,AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAF=∠AFB,又∵∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF,同理可得CD=CE,∴BF=CE;(2)解:过点C作CK∥AF交AD于K,交DE于点I,∵AK∥FC,AF∥CK,∴四边形AFCK是平行四边形,∠AGD=∠KID=90°,∴AF=CK=8,∵∠KDI+∠DKI=90°,∠DIC+∠DCI=90°,∠IDK=∠IDC,∴∠DKI=∠DCI,∴DK=DC=6,∴KI=CI=4,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CE=CD,∵CI⊥DE,∴EI=DI,∵DI===2,∴DE=2DI=4.【点评】本题考查了平行四边形的判定与性质,平行线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握平行四边形的判定与性质是解题的关键.21.(8分)某工厂生产某种产品,3月份的产量为6000件,4月份的产量为9000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)4月份随机抽取的若干件产品中位数在80<x≤90组;(2)4月份生产的该产品抽样检测的合格率是98.4%;(3)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【分析】(1)根据频数分布直方图中的数据,可以得到4月份随机抽取的若干件产品中位数在哪一组;(2)根据频数分布直方图中的数据,可以得到4月份生产的该产品抽样检测的合格率;(3)根据统计图中的数据,可以分别计算出3月和4月不合格的件数,然后比较大小即可解答本题.【解答】解:(1)4月份随机抽取的产品数为:8+132+160+200=500,则4月份随机抽取的若干件产品中位数在80<x≤90这一组,故答案为:80<x≤90;(2)4月份生产的该产品抽样检测的合格率为:×100%=98.4%,故答案为:98.4%;(3)4月的不合格件数多,理由:由题意可得,3月的不合格件数为:6000×2%=120,4月的不合格件数为:9000×(1﹣98.4%)=144,∵144>120,∴4月的不合格件数多.【点评】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,在△ABC中,AB=AC,∠ABC的角平分线交AC于点D,过点A作AE ∥BC交BD的延长线于点E.(1)若∠BAC=50°,求∠E的度数.(2)若F是DE上的一点,且AD=AF,求证:BF=DE.【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;(2)根据AAS先证明△ABD≌△AEF,根据全等三角形的对应边相等得出BD=EF,再根据等式的基本性质证出BF=DE.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=50°,∴∠ABC=(180°﹣∠BAC)=65°,∵BD平分∠ABC,∴∠CBD=∠ABC=32.5°,∵AE∥BC,∴∠E=∠CBD=32.5°.(2)∵BD平分∠ABC,∴∠ABD=∠CBD,∵AE∥BC,∴∠AEF=∠CBD,∴∠ABD=∠AEF,∵AD=AF,∴∠ADF=∠AFD,∵∠ADB=180°﹣∠ADF,∠AFE=180°﹣∠AFD,∴∠ADB=∠AFE,在△ABD与△AEF中,,∴△ABD≌△AEF(AAS),∴BD=EF,∴BD+DF=EF+DF,∴BF=DE.【点评】本题考查了等腰三角形的性质,平行线的性质,角平分线的定义,三角形全等,考核学生的推理能力,证明三角形全等是解题的关键.23.(10分)(1)观察猜想:如图1,在△ABC中,tan B=1,AB=AC=3,AD是∠BAC的平分线,以CD为一边作正方形CDEF,点E与点A重合,则=.(2)类比探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE、CE、AF,(1)中的结论是否成立?请按图2加以证明.(3)问题解决:当正方形CDEF旋转到B、E、F三点共线时,请直接写出线段AF的长.【分析】(1)先判断出△ABD为等腰直角三角形,进而得出AB=AD,即可得出结论;(2)先利用三角函数得出,证明夹角相等即可得出△ACF∽△BCE,进而得出结论;(3)分两种情况计算,当点E在线段BF上时,如图3,先利用勾股定理求出EF=CF =CD=,BF=,即可得出BE的长,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.【解答】解:(1)=,理由是:在Rt△ABC中,AB=AC,根据勾股定理得,BC=AB,又∵点D为BC的中点,∴AD⊥BC,∴AB=AD,∵四边形CDEF是正方形,∴AF=EF=AD,∴AB=AF,即=,故答案为:;(2)(1)中的结论成立.证明:∵tan B=1,∴∠ABC=45°,∵AB=AC=3,∴∠ABC=∠ACB=45°,∴∠BAC=90°,∴sin45°=,∴,∵四边形CDEF是正方形,∴∠FEC=45°,∴sin45°==,∴,∵∠FCA=∠ECB,∴△ACF∽△BCE,∴;(3)或.如图2,当点E在线段BF上时,由(1)知CF=EF=CD=,∵在Rt△BCF中,CF=,CB=3,∴BF==,∴BE=BF﹣EF==.由(2)知,∴BE=AF,∴=AF,∴AF=,如图3,当点E在线段BF的延长线上时,同理可得BE=BF+EF=,∴,∴AF=,综上所述,当正方形CDEF旋转到B,E,F三点共线时,线段AF的长为或.【点评】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,熟练掌握正方形的性质及相似三角形的性质是解题的关键.24.(12分)如图,平面直角坐标系xOy中,直线y=﹣x+3交x轴于点A,交y轴于点B,点P是线段OA上一动点(不与点A重合),过点P作PC⊥AB于点C.(1)当点P是OA中点时,求△APC的面积;(2)连接BP,若BP平分∠ABO,求此时点P的坐标;(3)设点D是x轴上方的坐标平面内一点,若以点O,B,C,D为顶点的四边形是菱形,求点D的坐标及此时OP的长.【分析】(1)连接BP,先求出点A(4,0),点B(0,3),可得AO=4,OB=3,由勾股定理可求AB的长,由面积法可求PC的长,由勾股定理可求AC的长,即可求解;(2)由“AAS”可证△BOP≌△BCP,可得BO=BC=3,OP=CP,由勾股定理可求OP 的值,即可求点P坐标;(3)分OB为边和OB为对角线两种情况讨论,利用菱形的性质两点距离公式先求出点C坐标,再求出CP解析式,即可求解.【解答】解:(1)如图,连接BP,∵直线y=﹣x+3交x轴于点A,交y轴于点B,∴点A(4,0),点B(0,3),∴AO=4,OB=3,∴AB===5,∵点P是OA中点,∴AP=OP=2,∵S△ABP=×AP×OB=×AB×CP,∴CP=,∴AC===,∴S△APC=×AC×PC=;(2)∵BP平分∠ABO,∴∠OBP=∠CBP,又∵BP=BP,∠BOP=∠BCP=90°,∴△BOP≌△BCP(AAS),∴BO=BC=3,OP=CP,∴AC=AB﹣BC=5﹣3=2,∵AP2=PC2+AC2,∴(4﹣OP)2=OP2+4,∴OP=,∴点P(,0);(3)若OB为边,如图2,设点C(a,﹣a+3),连接OD,∵四边形OCDB是菱形,∴OC=CD=BD=OB=3,BO∥CD,OD⊥BC,∴(a﹣0)2+(﹣a+3﹣0)2=9,∴a1=0(不合题意舍去),a2=,∴点C(,),∵BO∥CD,OB=CD=3,∴点D(,),∴直线OD解析式为:y=x,∵PC∥OD,∴设直线PC解析式为y=x+b,∴=×+b,∴b=﹣3,∴直线PC解析式为y=x﹣3,∴当y=0时,x=,∴点P(,0),∴OP=;若OB为对角线,如图3,设点C(a,﹣a+3),连接CD,∵四边形OCBD是菱形,∴OB与CD互相垂直平分,∴点C在OB的垂直平分线上,∴=﹣a+3,∴a=2,∴点C(2,),∵BO垂直CD,∴点D(﹣2,),设直线PC解析式为y=x+b,∴=×2+b,∴b=﹣,∴设直线PC解析式为y=x﹣,当y=0时,x=,∴点P(,0),∴OP=;综上所述:当OP=时,点D(﹣2,)或当OP=时,点D(,).【点评】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,勾股定理,菱形的性质等知识,利用分类讨论思想解决问题是本题的关键.。

2022—2023年人教版八年级数学下册期末模拟考试带答案

2022—2023年人教版八年级数学下册期末模拟考试带答案

2022—2023年人教版八年级数学下册期末模拟考试带答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.已知:20n 是整数,则满足条件的最小正整数n ( )A .2B .3C .4D .54.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,56.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.如图,在△ABC 中,∠C=90°,AC=BC=2,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B 的长为( ).A .1B .31-C .2D .222-9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.6.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行_______cm .三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12.3.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.4.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE 的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、C6、D7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、k<6且k ≠33、如果两个角互为对顶角,那么这两个角相等4、180°5、21x y =⎧⎨=⎩.6三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)4989x y ⎧=-⎪⎪⎨⎪=⎪⎩.2、4ab ,﹣4.3、m >﹣24、(1)证明略;(2)证明略;(3)10.5、(1)略;(2)8.6、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.。

人教版数学八年级下册期末达标测试卷(二)(含答案)

人教版数学八年级下册期末达标测试卷(二)(含答案)

人教版数学八年级下册期末达标测试卷(二)时间:90分钟满分:120分得分:__________一、选择题(本大题10小题,每小题3分,共30分)1.式子x-4在实数范围内有意义,则x的取值范围是()A.x≥0 B.x≤4 C.x≥-4 D.x≥42.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取7株水稻苗,测得苗高(单位:cm)分别是:23,24,23,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25 B.23,23 C.23,24 D.24,243.在▱ABCD中,若∠A=30°,则∠C的度数是()A.150°B.60°C.30°D.120°4.下列计算错误的是()A.62×3=66B.27÷3=3C.32-2=32D.(2-3)(2+3)=15.点D,E,F分别为△ABC三边的中点,若△DEF的周长为3,则△ABC的周长为() A.12 B.9 C.6 D.1.56.若函数y=kx+b是正比例函数,且y随x的增大而减小,则下列判断正确的是() A.k>0 B.k<0 C.b>0 D.b<07.已知△ABC的三边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是() A.a=5,b=12,c=13 B.a∶b∶c=1∶3∶2C.a2+b2=c2D.∠A∶∠B∶∠C=3∶4∶58.一次函数y=ax+b与y=cx+d的图象如图1所示,则不等式ax-d≥cx-b的解集是()图1A .x ≥-2B .x ≤-2C .x ≥4D .x ≤49.如图2,在△ABC 中,∠C =90°,AB =10,AC =8,BC =6,线段DE 的两个端点D ,E 分别在边AC ,BC 上滑动,且DE =4,若点M ,N 分别是DE ,AB 的中点,则MN 的最小值为( )图2A .2B .3C .3.5D .410.如图3①,点P 从菱形ABCD 的顶点A 出发,沿A →D →B 以1 cm/s 的速度匀速运动到点B ,图3②是点P 运动时,△PBC 的面积y (cm 2)随时间x (s)变化的关系图象,则a 的值为( )图3A .5B .103C .256D .253二、填空题(本大题5小题,每小题3分,共15分) 11.化简:(-5)2 =__________.12.一次函数的图象经过第一、二、四象限,请写出一个符合该条件的一次函数关系式:__________.13.数学老师计算同学们一学期的最终成绩时,将平时、期中和期末的成绩按3∶3∶4的比例计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学最终成绩是__________分.(成绩均为百分制)14.如图4,在矩形ABCD中,BD =25,AB在x轴上.且点A的横坐标为-1,若以点A为圆心,对角线AC的长为半径作弧交x轴的正半轴于点M,则点M的坐标为__________.图415.如图5,正方形纸片ABCD的边长为2 cm,E,F分别为边AB,CD的中点,沿过点D的折痕将∠A翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=__________cm.图5三、解答题(一)(本大题3小题,每小题8分,共24分)16.计算:(1)27-8×23;(2)(32+1)(32-1).17.如图6,矩形ABCD的边AB在x轴上,OA=OB,点D坐标为(-2,3),求直线AC 的解析式.图6318.如图7,已知四边形ABCD是平行四边形.(1)作∠A的平分线交BC于点E;(用尺规作图,保留作图痕迹,不用写作法)(2)在(1)中,若AD=6,EC=2,求▱ABCD的周长.图7四、解答题(二)(本大题3小题,每小题9分,共27分)19.用四个全等的直角三角形拼成如图8①所示的大正方形,中间也是一个正方形,它是美丽的弦图,其中四个直角三角形的直角边长分别为a,b(a<b),斜边长为c.(1)结合图8①,求证:a2+b2=c2.(2)如图8②,将这四个全等的直角三角形无缝隙无重叠地拼接在一起,得到图形ABCDEFGH.若该图形的周长为48,OH=6.求该图形的面积.图8520.为了庆祝伟大的中国共产党第二十次全国代表大会召开,某校开展了“爱祖国·跟党走”的知识答题竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析.(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x <95,D.95≤x≤100)下面给出了部分信息:七年级10名学生的竞赛成绩是:90,81,90,86,99,95,96,100,89,84八年级10名学生的竞赛成绩在C组中的数据是:90,94,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9191中位数90b众数 c 100方差5250.4图9根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握的相关知识较好?请说明理由.(写一条理由即可)(3)该校七、八年级分别有1 200人和1 600人参加了此次答题竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?21.甲、乙两个批发店销售同一种香梨,甲批发店每千克香梨的价格为5元,乙批发店为了吸引顾客制定如下方案:当一次性购买不超过10千克时,每千克价格为6元,超过10千克时,超过部分每千克价格为3元.设小王在同一批发店一次性购买香梨x千克(x>0).(1)若在甲批发店购买需花费y1元,在乙批发店购买需花费y2元,分别求y1,y2关于x 的函数解析式;(2)请结合x的范围,计算并说明在哪个批发店购买更省钱.7五、解答题(三)(本大题2小题,每小题12分,共24分)22.如图10,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),且与x轴、y=x+1的图象分别交于点C,D,点D的坐标为(1,n).(1)则k=__________,b=__________,n=__________;(2)求四边形AOCD的面积;(3)若点P是y轴上一动点,当△PCD的周长最小时,求点P的坐标.图1023.如图11,正方形ABCD的边长为8 cm,点E在AD边上,AE=6 cm,动点P从点A出发,以2 cm/s的速度沿A→B→C→D运动,设运动时间为t s.(1)BE=__________cm;(2)当点P在BE的垂直平分线上时,求t的值;(3)当t=__________时,PE平分∠BED,试猜想此时PB是否为∠EBC的平分线,并说明理由.图11备用图备用图9。

2023年人教版八年级数学(下册)期末模拟试卷及答案

2023年人教版八年级数学(下册)期末模拟试卷及答案

2023年人教版八年级数学(下册)期末模拟试卷及答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若999999a =,990119b =,则下列结论正确是( ) A .a <b B .a b = C .a >b D .1ab =2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解6.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A .4B .6C .7D .10 7.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( )A .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100D .80(1+x 2)=1008.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm=,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°二、填空题(本大题共6小题,每小题3分,共18分)1.关于x的分式方程12122ax x-+=--的解为正数,则a的取值范围是_____.2.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.若分式1xx-的值为0,则x的值为________.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:(x+y )(x-y )-(4x 3y-8xy 3)÷2xy ,其中x=-1,y=12.3.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m的值.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、D5、C6、B7、A8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、﹣33、1.4、113y x =-+5、26、40°三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、223x y -+,14-. 3、(1)-4;(2)m=34、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

新人教版八年级数学下册期末模拟考试【参考答案】

新人教版八年级数学下册期末模拟考试【参考答案】

新人教版八年级数学下册期末模拟考试【参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .1 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40° 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.分解因式:22a 4a 2-+=__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。

人教版八年级下学期期末考试数学试卷及答案额二

人教版八年级下学期期末考试数学试卷及答案额二

人教版八年级下学期期末考试数学试卷及答案一、选择题:共48分,在每小题给出的四个选项中,只有一项是正确的,请选出正确选项,每小题选对得4分,选错、不选或多选均记零分.1.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数x(cm)375350375350方差s212.513.5 2.4 5.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁2.函数y=√x+1x−1中,自变量x的取值范围是()A.x>﹣1B.x≥﹣1C.x>﹣1且x≠1D.x≥﹣1且x≠13.如图,点E为菱形ABCD边上的一个动点,并沿A→B→C→D的路径移动,设点E经过的路径长为x,△ADE 的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.4.一元二次方程y2−y−34=0配方后可化为()A.(y+12)2=1B.(y−12)2=1C.(y+12)2=34D.(y−12)2=345.下表是某校12名男子足球队队员的年龄分布:年龄(岁)13141516频数1254该校男子足球队队员的平均年龄为()岁A.13B.14C.15D.166.一元二次方程x2﹣3x+1=0的两个根为x1,x2,则x12+3x2+x1x2−2的值是()A.10B.9C.8D.77.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.2√2C.√10D.48.下面说法正确的是()A.√14是最简二次根式B.√2与√20是同类二次根式C.形如√a的式子是二次根式D.若√a2=a,则a>09.将直线y=x﹣1向上平移2个单位长度得到直线y=kx+b,下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小10.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.611.如图,平行四边形ABCD中,∠B=60°.G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF,下列说法不正确的是()A .四边形CEDF 是平行四边形B .当CE ⊥AD 时,四边形CEDF 是矩形C .当∠ABC =120°时,四边形CEDF 是菱形D .当AE =ED 时,四边形CEDF 是菱形12.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,按如图所示的方式放置,点A 1,A 2,A 3…和点C 1C 2C 3…,分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B 的坐标是( )A .(2n ﹣1,2n ﹣1)B .2n ﹣1+12n ﹣1C .2n ﹣12n ﹣1D .(2n ﹣1,n )二、填空题:共24分,只要求填写最后结果,每小题填对得4分 13.−√(−π)2= .14.如图,根据函数图象回答问题:方程组{y =kx +3y =ax +b的解为 .15.如图,在Rt △ABC 中,∠ACB =90°,CD 为中线,延长CB 至点E ,使BE =BC ,连结DE ,F 为DE 中点,连结BF .若AC =8,BC =6,则BF 的长为 .16.如图,要设计一副宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比2:3,如果要使彩条所占面积是图案面积的925,则每个横彩条的宽度是cm.17.如图,在等腰三角形纸片ABC中,AB=AC=5,BC=6,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则能够拼出的平行四边形对角线长度最大值为.18.如图,在▱ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形:⑤S ADE=S BE;⑥AF=CE,这些结论中不正确的是.(填序号)三、解答题:共78分.解答要写出必要的文字说明、证明过程或演算步骤.19.解下列方程:(1)3(2x﹣1)2﹣27=0(2)(x﹣3)2﹣4x(3﹣x)=0计算:(3)(√24+√0.5)−(√18−√6)(4)(3+√5)(3−√5)−(√3−1)220.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=,b=.(2)该调查统计数据的中位数是,众数是.(3)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.21.已知关于x的方程x2﹣(m+1)x+(2m﹣1)=0,(1)求证:无论m取何值时,方程总有实数根.(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.22.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为一海港,且点C与直线AB上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)求∠ACB的度数(2)海港C受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E处时,海港C刚好受到影响,当台风运动到点F时,海港C刚好不受影响,即CE=CF=250km,则台风影响该海港持续的时间有多长?23.某市居民用水实行以户为单位的三级阶梯收费办法:第一级:居民每户每月用水18吨以内含18吨,每吨收水费a元第二级:居民每户每月用水超过18吨但不超过25吨,未超过18的部分按照第一级标准收费,超过部分每吨收水费b元;第三级:居民每户每月用水超过25吨,未超过25吨的部分按照第一、二级标准收费,超过部分每吨收水费c 元;设一户居民月用水x吨,应缴水费y元,y与x之间的函数关系如图所示,(1)根据图象直接作答:a=;b=.(2)求当x≥25时,y与x之间的函数关系式.(3)把上述水费阶梯收费办法称为方案①;假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费.请你根据居民每户月用水量的大小,设计出对居民缴费最实惠的方案.24.如图,矩形ABCD中,AB=4,BC=8,点E、F分别是边BC、AD上的点,且BE=DF,连接AE、CF和AC.(1)求证:四边形AECF是平行四边形;(2)如果四边形AECF是菱形,求该菱形的边长;(3)在(2)的基础上,点P是对角线AC上的一个动点,请在图中用直尺在AC上作出点P,使得PB+PE的值最小,并求出这个最小值.25.如图,在平面直角坐标系中,直线l1:y=−12x+6分别与x轴、y轴交于点B、C,且与直线l2y=12x交于点A.(1)求出点A的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.八年级数学参考答案一、选择题:共48分CDDBC DCACD DC二、填空题:共24分13.-π 14.{x =−1y =215.5216.2 17.√7318. ③三、解答题:共78分.19.(本题满分12分,每题3分)(1) 2,-1(2)3,35 (3)3√6+√24(4)2√3 20.(本题满分10分)(1)17、20;----每空2分,共4分 (2)2次、2次;----每空2分,共8分(3)估计该校学生在一周内借阅图书“4次及以上”的人数为3200012050⨯=人.-----10分 21.(本题满分10分)(1)证明:∵∵=[﹣(m+1)]2﹣4×2(m ﹣1)=m 2﹣6m+9=(m ﹣3)2, ∵(m ﹣3)2≥0∵∵≥0∵无论m 取何值,这个方程总有实数根;-----4分 (2)等腰三角形的腰长为4,将x=4代入原方程,得: 16﹣4(m+1)+2(m ﹣1)=0, 解得:m=5,-----6分 ∵原方程为x 2﹣6x+8=0, 解得:x 1=2,x 2=4.组成三角形的三边长度为2、4、4; 所以三角形另外两边长度为4和2.-----8分22.(本题满分12分) (1)300AC km =,400BC km =,500AB km =,3002+4002=5002222AC BC AB ∴+=,ABC ∆∴是直角三角形,∵∵ACB=90°;-----3分 (2)海港C 受台风影响, 过点C 作CD AB ⊥,-----4分ABC ∆是直角三角形,AC BC CD AB ∴⨯=⨯, 300400500CD ∴⨯=⨯, 240()CD km ∴=,----------7分240<250∴以台风中心为圆心周围250km 以内为受影响区域, ∴海港C 受台风影响.----------8分(3)当250EC km =,250FC km =时,正好影响C 港口,70()ED km ==,-----10分 140EF km ∴=,台风的速度为20千米/小时,140207∴÷=(小时)答:台风影响该海港持续的时间为7小时.-----12分23. (本题满分12分)解:(1)a=54÷18=3, b=(82-54)÷(25-18)=4. 故答案为:3,,4;-----4分(2)设当x≥25时,y 与x 之间的函数关系式为y=mx+n (m≠0),将(25,82),(35,142)代入y=mx+n ,得:25m n 8235m n 142+=⎧⎨+=⎩,解得:m 6n 68=⎧⎨=-⎩,∵当x 25≥时,y 与x 之间的函数关系式为y 6x 68=-.----------8分(3)选择缴费方案②需交水费y (元)与用水量x (吨)之间的函数关系式为y 4x =. 当6x 684x -<时,x 34<; 当6x 684x -=时,x 34=; 当6x 684x ->,x 34>.∵当0≤x <34时,选择缴费方案①更实惠;当x 34=时,选择两种缴费方案费用相同;当x 34>时,选择缴费方案②更实惠.----------12分 (方法不唯一,可以利用图像解决)24. (本题满分10分)(1)证明:∵四边形ABCD 为矩形,BE=DF , ∵AD∵BC ,AD=BC ,∵AF∵EC ,AD -DF=BC -BE ,即AF=EC , ∵四边形AECF 为平行四边形.---------3分 (2)解:设菱形AECF 的边长为x , ∵四边形AECF 为菱形,AB=4,BC=8, ∵AE=EC=x ,BE=8-x ,在Rt∵ABE 中,AE 2=AB 2+BE 2即x 2=42+(8-x )2, 解得x=5,∵菱形AECF 的边长为5.---------6分 (3)∵四边形AECF 为菱形∵E 、F 关于直线AC 对称 连接BF ,交直线AC 于点P, 点P 即为所求,图略---------8分 在Rt∆ABF 中 BF=√AB 2+AF 2=√41所以PB+PE 的最小值为√41---------10分25.(本题满分14分)(1)解方程组16212y xy x⎧=+⎪⎪⎨⎪=⎪⎩,得63xy=⎧⎨=⎩,∵A(6,3);-----4分(2)设D(x,12 x),∵∵COD的面积为12,∵12×6×x=12,解得:x=4,∵D(4,2),-----6分在直线l1:y=﹣12x+6中,当x=0时,y=6,∵C(0,6)设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:624bk b=⎧⎨=+⎩,解得:16kb=-⎧⎨=⎩,∵直线CD解析式为y=﹣x+6;-----8分(3)存在点P,使以O、C、P、Q为顶点的四边形是菱形,坐标为(6,0)或(3,3)或(-).---每种情况2分,共计6分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级下册数学期末测试题2一、细心填一填,一锤定音(每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并将正确选项填入答题卡中)1、同学们都知道,蜜蜂建造的蜂房既坚固又省料。

那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m 。

此数据用科学计数法表示为( )A 、m 4103.7-⨯ B 、m 5103.7-⨯C 、m 6103.7-⨯ D 、m 51073-⨯2、若一个四边形的两条对角线相等,则称这个四边形为对角线四边形。

下列图形不是对角线四边形的是( ) A 、平行四边形 B 、矩形 C 、正方形 D 、等腰梯形3、某地连续10天的最高气温统计如下:这组数据的中位数和众数分别是( )A 、24,25B 、24.5,25C 、25,24D 、23.5,24 4、下列运算中,正确的是( ) A 、b a b a =++11 B 、a b b a =⨯÷1 C 、b a a b -=-11 D 、01111=-----x xx x 5、下列各组数中以a ,b ,c 为边的三角形不是Rt △的是 ( ) A 、a=2,b=3, c=4 B 、a=5, b=12, c=13 C 、a=6, b=8, c=10 D 、a=3, b=4, c=5 6、一组数据 0,-1,5,x ,3,-2的极差是8,那么x 的值为( )A 、6B 、7C 、6或-3D 、7或-37、已知点(3,-1)是双曲线)0(≠=k xky 上的一点,则下列各点不在该双曲线上的是( ) A 、 ),(931- B 、 ),(216- C 、(-1,3)D 、 (3,1) 8、下列说法正确的是( ) A 、一组数据的众数、中位数和平均数不可能是同一个数B 、一组数据的平均数不可能与这组数据中的任何数相等C 、一组数据的中位数可能与这组数据的任何数据都不相等D 、众数、中位数和平均数从不同角度描述了一组数据的波动大小 9、如图(1),已知矩形ABCD 的对角线AC 的长为10cm ,连结各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为( )A 、20cm B 、 C 、 D 、25cm 10、若关于x 的方程3132--=-x mx 无解,则m 的取值为( ) A 、-3 B 、-2 C 、 -1 D 、311、在正方形ABCD 中,对角线AC=BD=12cm ,点P 为AB 边上的任一点,则点P 到AC 、BD 的距离之和为HDA八年级数学共6页 第1页( )A 、6cm B 、7cm C 、26cm D 、212cm12、如图(2)所示,矩形ABCD 的面积为102cm ,它的两条对角线交于点1O ,以AB 、1AO 为邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为邻边作平行四边形22O ABC ,……,依次类推,则平行四边形55O ABC 的面积为( )A 、12cm B 、22cm C 、852cm D 、1652cm 二、细心填一填,相信你填得又快又准13、若反比例函数xk y 4-=的图像在每个象限内y 随x 的增大而减小,则k 的值可以为_______(只需写出一个符合条件的k 值即可)14、某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为79=甲x 分,79=乙x 分,23520122==乙甲,S S ,则成绩较为整齐的是________(填“甲班”或“乙班”)。

15、如图(3)所示,在□ABCD 中,E 、F 分别为AD 、BC 边上的一点,若添加一个条件_____________,则四边形EBFD 为平行四边形。

16、如图(4),是一组数据的折线统计图,这组数据的平均数是 ,极差是 .17、如图(5)所示,有一直角梯形零件ABCD ,A D ∥BC ,斜腰DC=10cm ,∠D=120°,则该零件另一腰AB的长是_______cm;18、如图(6),四边形ABCD 是周长为20cm 的菱形,点A 的坐标是(4,0),则点B 的坐标为 . 19、如图(7)所示,用两块大小相同的等腰直角三角形纸片做拼图游戏,则下列图形:①平行四边形(不包括矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直角三角形,其中一图(7)A B CDE F图(3)第15题图O D CBA y x图(4)BCD56定能拼成的图形有__________(只填序号)。

20、任何一个正整数n 都可以进行这样的分解:t s n ⨯=(s 、t 是正整数,且s ≤t),如果q p ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称q p ⨯是最佳分解,并规定qpF n =)(。

例如:18可以分解成1×18,2×9,3×6,这是就有2163)==n F (。

结合以上信息,给出下列)n F (的说法:①212=)(F ;②8324=)(F ;③327=)(F ;④若n 是一个完全平方数,则1)=n F (,其中正确的说法有_________.(只填序号)三、开动脑筋,你一定能做对(解答应写出文字说明、证明过程或推演步骤)21、解方程482222-=-+-+x x x x x22、先化简,再求值11)1113(2-÷+--x x x ,其中x=223、某校八年级(1)班50名学生参加2007年济宁市数学质量监测考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数和中位数分别是多少?(2)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中偏上水平?试说明理由.24、如图(8)所示,由5个大小完全相同的小正方形摆成如图形状,现移动其中的一个小正方形,请在 图(8-1)、图(8-2)、图(8-3)中分别画出满足以下要求的图形.(用阴影表示) (1)使所得图形成为轴对称图形,而不是中心对称图形;(2)使所得图形成为中心对称图形,而不是轴对称图形; (3)使所得图形既是轴对称图形,又是中心对称图形.25、某青少年研究机构随机调查了某校100名学生寒假零花钱的数量(钱数取整数元),以便研究分析并引导学生树立正确的消费观.现根据调查数据制成了如下图所示的频数分布表. (1)请将频数分布表和频数分布直方图补充完整; (2)研究认为应对消费150元以上的学生提出勤俭节约合理消费的建议.试估计应对该校1200名学生中约多少名学生提出该项建议?(3)你从以下图表中还能得出那些信息?(至少写出一条)26、如图(9)所示,一次函数b kx y +=的图像与反比例函数xmy =的图像交于M 、N 两点。

(1)根据图中条件求出反比例函数和一次函数的解析式; (2)当x 为何值时一次函数的值大于反比例函数的值?分组(元) 组中值(元) 频数 频率 0.5~50.5 25.5 0.1 50.5~100.5 75.5 20 0.2 100.5~150.5 150.5~200.5 175.5 30 0.3 200.5~250.5 225.5 10 0.1 250.5~300.5 275.5 5 0.05 合计 100 图(8-1)图(8-2)图(8-3)频数(人数) 15203025100.5 50.5 200.5 300.5 (元) 150.5 100.5 250.5 频数分布表 频数分布直方图图(8)27、 如图(10)所示,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知AB=8cm,BC=10cm 。

求CE 的长?28、如图(11)所示,在梯形ABCD 中,A D ∥BC ,∠B=90°,AD=24 cm ,BC=26 cm ,动点P 从点A 出发沿AD 方向向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动。

点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动。

(1)经过多长时间,四边形PQCD 是平行四边形? (2)经过多长时间,四边形PQBA 是矩形? (3)经过多长时间,四边形PQCD 是等腰梯形?八年级数学试题答案一、选择题(3分×12=36分)Q图 (11)PDCBA题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BAADACDCABAD二、填空题(3分×8=24分)13、k>4的任何值(答案不唯一); 14、___甲班___; 15、答案不唯一; 16、 46.5 , 31 ; 17、35cm; 18、 (0,3) ; 19、__①③⑤__; 20、 __①③④__.三、开动脑筋,你一定能做对(共60分)21、(6分)解:方程两边同乘)2)(2(-+x x 得:8)2()2(2=+--x x x 解得:2-=x检验:把2-=x 代入)2)(2(-+x x =0 所以-2是原方程的增根, 原方程无解.22、(6分)解: 原式=42+x把x=2 代入原式=823、(8分)(1)众数为88,中位数为86;(2)不能,理由略.24、(6分)25、(9分) (1)略 (2)5401200%451200%10010045=⨯=⨯⨯(名)(3)略26、(8分)解: (1)反比例函数解析式为:xy 6=一次函数的解析式为:33-=x y图(8-1) 图(8-2) 图(8-3)4分6分 4分 6分 6分 8分 4分 7分9分6分(2) 当01<<-x 或3>x 时一次函数的值大于反比例函数的值. 27、(8分)CE=328、(9分)(1)(3分)设经过xs ,四边形PQCD 为平行四边形,即PD=CQ,所以x x 324=- 得6=x(2)(3分) 设经过ys ,四边形PQBA 为矩形, 即A P=B Q,所以x x 326-= 得213=x (3)(3分) 设经过ts ,四边形PQCD 是等腰梯形.(过程略)8分。

相关文档
最新文档