力学

力学
力学

力学的历史发展及分类

力学的一个分支,也是科学史的一个分支,它记述和研究人类从自然现象和生产活动中认识和应用物体机械运动规律的历史

力学本身的发展有悠久的历史,但是关于力学历史的著作是在经典力学臻于完善以后才出现的,其中著名的是E.马赫的《力学的一般批判发展史》。当代力学史专著有R.杜加斯的《力学史》(1950),其中把力学作为物理学的一部分。运用历史唯物主义观点阐明力学史的有以Н.Д.莫伊谢耶夫为代表的莫斯科大学学派的著述,如A.T.格里戈良所写《力学,从古到今》。力学的专科史有I.托德亨特和K.皮尔孙的《弹性理论和材料强度学史》两卷,S.P.铁木辛柯的《材料力学史》。中国从50年代起开始把力学史作为物理学史的一个组成部分,对力学史单独的、系统的研究则刚刚开始。

力学发展在历史年代顺序上和学科逻辑顺序上大体相同,这种发展反映出人类认识由简单到复杂逐步深化的过程。牛顿运动定律的建立是力学发展过程中的重要里程碑。经典力学从此奠定基础并根据学科自身的逻辑规律发展着。在近代和现代,力学随着研究内容的深入和研究领域的扩大逐渐形成各个分支,近年来又出现了跨分支、跨学科综合研究的趋势。

力学的发展是分析和综合相结合的过程。从总的发展趋势来看,牛顿运动定律建立以前力学研究的历史大致可分为两个时期:①古代,从远古到公元5世纪,对平衡和运动有初步的了解;②中世纪,从6世纪到16世纪,这个时期对力、运动以及它们之间的关系的认识已有进展,为牛顿运动定律的建立作了准备。牛顿运动定律的建立和从此以后力学研究的历史大致可分为四个时期:①从17世纪初到18世纪末,经典力学的建立和完善化;②19世纪,力学各主要分支的建立;③从1900年到1960年,近代力学,它和工程技术特别是航空、航天技术密切联系;④1960年以后,现代力学,力学同计算技术和自然科学其他学科广泛结合。

静力学的发端人类在生产劳动和对自然现象观测基础上积累了力学知识,逐渐形成一些概念,然后对一些现象的规律进行描述。这种描述,先是定性的,而后是定量的。中国春秋时期墨翟及其弟子的著作《墨经》(公元前4~前3世纪)中,有涉及力的概念、杠杆平衡、重心、浮力、强度和刚度的叙述。古希腊阿尔库塔斯的著作中也有关于静力学的记录。在亚里士多德的著作中有关于杠杆平衡的见解:距离支点较远的力容易移动重物,因为它画出一个较大的圆。为静力学奠定科学基础的是阿基米德,他在研究杠杆平衡、平面图形重心位置时,先建立一些公设,而后用数学论证的方法导出一些定理,成果之一是用类似求和数再取极限的方法,求出一个抛物线和它们两平行弦线(与抛物线斜交)所围成平面图形面积的重心位置。阿基米德关于杠杆公设之一是:不等距的等重不能平衡,杠杆将向距离较大一侧倾斜。亚里士多德关于画圆大小的见解和阿基米德这个公设略有不同,它们分别是静力平衡条件的运动学方法和几何学方法的开端。约公元1世纪,亚历山大的希罗把亚里士多德的提法明确为平衡时“运动着的力和所经历的时间成反比”。经过一千多年的发展,运动方法演化为虚位移原理,几何方法演化为用力矩表达的平衡条件。阿基米德还用推理方法证明了关于浮体或潜体的浮力定律和抛物线回转浮体平衡稳定性条件。古罗马的帕普斯在古希腊成果的基础上论证了平面图形重心位置和由这图形回转而得体积之间的关系,这个结果在一千多年后为P.古尔丁重新获得。

生产技术和力学古代的建筑工程和器物制造反映出当时的力学水平。阿基米德制造过能牵动船只的机械、车水用的螺旋、表示日月运行的机构,但他认为这不能和纯科学相提并论。这种把以数学为根据的力学理论和在工程技术中应用的力学分离开来的观点在后世时隐时现。

西罗马帝国灭亡后,欧洲进入了中世纪。中世纪的科学技术发展有自己的特点。古希腊罗马的科学通过阿拉伯人得以继承和发展。欧洲的科学进展迟缓,到文艺复兴时期才有回升。在同一时期,中国的科学技术沿袭原有传统,并在12~13世纪达到高峰。这些特点也反映在力学中。

近二百年中,欧洲的资本主义生产方式陆续取代了封建的生产关系。商业和航海的迅速发展,需要科学技术。F.培根所倡导的实验科学开始兴起,技术上工匠传统和学者传统结合起来了。17世纪中叶,欧洲各国纷纷成立科学院,创办科学期刊。航海需要天文观测,好几个国家悬赏征求解决经度的测定问题,天文观测和对天体运行规律的研究受到重视。哥白尼的《天体运行论》出版后,日心说冲击着托勒密的地心

说。从力学学科本身说,天体的受力和运动比地上物体的受力和运动单纯,天文观测比当时地面上实验室更便于揭示力和运动之间的关系。由于这些原因,力学中的规律往往首先在天体运行研究中被发现。

动力学伽利略对动力学的主要贡献是他的惯性原理和加速度实验。他研究了地面上自由落体、斜面运动、抛射体等运动,建立了加速度的概念并发现了匀加速运动的规律。他采用科学实验和理论分析相结合的方法,指出了传统的亚里士多德的运动观点的错误,并竭力宣扬日心说。他在1638年出版的《关于两门新科学的谈话和数学证明》是动力学的第一本著作。C.惠更斯在动力学研究中提出向心力、离心力、转动惯量、复摆的摆动中心等重要概念。另一方面,开普勒根据第谷的30年天文观测资料总结出行星运动的三定律(1609,1619)。I.牛顿继承和发展了这些成果,提出了物体运动定律和万有引力定律。他的成就收在1687年出版的《自然哲学的数学原理》中。他在本书中给出的运动三定律是:①第一定律:任何一个物体将保持它的静止状态或作匀速直线运动,除非有施加于它的力迫使它改变此状态。②第二定律:物体运动量的改变与施加的力成正比,并发生于该力的作用线方向上。③第三定律:对于任何一个作用必有一个大小相等而方向相反的反作用。

牛顿运动定律是就单个自由质点而言的,J.le R.达朗伯把它推广到受约束质点的运动。J.-L.拉格朗日进一步研究受约束质点的运动,并把结果总结在他的著作《分析力学》中,分析力学从此创立。在此以前,L.欧拉建立了刚体的动力学方程。至此以质点系和刚体的运动规律为主要研究对象的经典力学臻于完善。在这发展过程中,有限自由度运动和振动的理论稍后于弹性弦和杆的振动理论,这是历史顺序和逻辑顺序少有的不一致,其原因是弹性振动研究是由声学促进的。1787年克拉尼作了杆和板振动模态的实验。1788年拉格朗日的《分析力学》中对有限自由度微振动已有完整的论述,后来,К.维尔斯特拉斯于1858年和О.И.索莫夫于1859年分别指出了其中的缺陷。

欧拉是继牛顿以后对力学贡献最多的学者。除了对刚体运动列出运动方程和动力学方程并求得一些解外,他对弹性稳定性作了开创性的研究,并开辟了流体力学的理论分析,奠定了理想流体力学的基础,在这一时期经典力学的创建和下一时期弹性力学、流体力学成长为独立分支之间,他起着承上启下的作用。达朗伯也研究流体的运动,得到运动物体受到的流体阻力为零的结论,即达朗伯佯谬。牛顿关于阻力的公式、达朗伯佯谬以及它们和流体阻力实验结果之间的差别,很长时期内推动流体力学的研究,促进了下一时期流体力学分支的产生。

静力学和运动学静力学和运动学可以看作是动力学的组成部分,但又具有独立的性质。它们是在动力学之前产生的,又可看作是动力学产生的前提。斯蒂文从“永久运动不可能”公设出发论证力的平行四边形法则,他还在前人用运动学观点解释平衡条件的基础上,得到虚位移原理的初步形式,为拉格朗日的分析力学提供依据。G.P.de罗贝瓦尔证明了一般情况下的平行四边形法则。P.伐里农发展了古希腊静力学的几何学观点,提出力矩的概念和计算方法并用以研究刚体平衡问题。力系的简化和平衡的系统理论,即静力学的体系的建立则是L.潘索在《静力学原理》一书中完成的。书中提出力偶的概念并阐明它的性质,对长期得不到解决的罗贝瓦尔的天秤平衡问题作出解答。在运动学方面,在伽利略提出加速度以后,惠更斯考虑点在曲线运动中的加速度。刚体运动学的研究成果则属于欧拉、潘索。虽然平面图形的位移可分解为平移和转动这一命题早已为帕普斯所知,可是刚体一般运动可分解为平移和转动这一定理,则是M.夏莱在1830年给出的。G.G.科里奥利指出旋转参考系中存在附加加速度。物理学家A.-M.安培提出“运动学”一词,并建议把运动学作为力学的独立部分。这些已是19世纪的事了。到此,力学明确分为静力学、运动学、动力学三部分。

固体和流体的物性在建立运动和平衡基本定律的同时,有关物质力学性能的基本定律也在实验基础上建立起来。R.胡克1660年在实验室中发现弹性体的力和变形之间存在着正比关系,他在1676年以字谜形式发表,1678年公布答案。在流体方面,B.帕斯卡指出不可压缩静止流体各向压力(压强)相同。牛顿在《自然哲学的数学原理》中指出流体阻力与速度差成正比,这是粘性流体剪应力与剪应变之间正比关系的最初形式。1636年M.梅森测量了声音的速度。R.玻意耳于1662年和E.马略特于1676年各自独立地建立气体压力和容积关系的定律。以上这些对物性的了解,为后来弹性力学、粘性流体力学、气体力学等学科的出现作了准备。与此同时,有关材料力学、水力学的奠基工作也已开始。继伽利略之后,马略特在1680

年作了梁的弯曲试验,并发现变形与外力的正比关系。丹尼尔第一·伯努利和欧拉在弹性梁弯曲问题中假定弯矩和曲率成正比,丹尼尔第一·伯努利还在流体力学中导出能量关系式,第一次采用水动力学一词。

应用力学许多学者的研究工作是和工匠一起进行的。惠更斯和一些钟表匠一起制造钟表。玻意耳和工匠帕潘一起研制水压机。A.帕伦不仅研究梁的弯曲问题,也研究水轮机的效率问题。许多有工程实用意义的方法产生了,如兰哈尔的半圆拱的计算方法,静力学中伐里农的索多边形方法。

结构力学和弹性力学19世纪中固体方面的力学的发展,除材料力学更趋完善并逐渐发展为杆件系统的结构力学外,主要是数学弹性力学的建立。材料力学、结构力学与当时土木建筑技术、机械制造、交通运输等密切相关,而弹性力学在当时很少有直接的应用背景,主要是为探索自然规律而作的基础研究。

水力学和水动力学这一时期内有关流体方面的力学发展情况类似于固体方面,在实践的推动下水力学发展出不少经验公式或者半经验公式;另一方面在数学理论上最主要的进展是粘性流体运动基本方程,即纳维-斯托克斯方程的建立。纳维继承欧拉的工作,1821年发表不可压缩粘性流体运动方程,其出发点是离散的分子模型。1831年泊松改用粘性流体模型解释并推广了纳维的结果,第一个完整地给出粘性流体的本构关系。G.G.斯托克斯在1845年将离散的分子平均化,采用连续统的模型,假设应力六个分量线性地依赖于变形速度六个分量,得到粘性流体运动基本方程,即现代文献中纳维-斯托克斯方程的直角分量形式。在此以前,G.H.L.哈根于1839年和J.-L.-M.泊肃叶于1840~1841年分别发表了关于管道流动的实验结果和得出的公式,它们成为斯托克斯方程的例证。斯托克斯还曾考虑应力与变形速度之间有一般非线性函数关系的情况,但这种非牛顿流体的研究,无论从理论上或是实用上,只是到了20世纪40年代才有发展。

在可压缩流体或气体的力学方面,根据实验发现不少基本规律。圣维南在1839年给出气体通过小孔的计算公式。在声学理论方面,除上述瑞利的弹性振动理论外,气体的波动理论有很大的发展。对于超声速流动,E.马赫在1887年开始发表的关于弹丸在空气中飞行实验结果,提出流速与声速之比这个无量纲数。后来这个参数被称为马赫数,它的逆正弦被称为马赫角。兰金和P.H.许贡纽分别于1870年和1887年考虑了一维冲击波前后压力和密度的不连续变化规律。

关于从层流到湍流的转捩,以及流动失稳问题的奠基性工作是1883年O.雷诺的管道实验。他在实验中指出流动的动力相似律,而在其中起关键作用的是一个无量纲数,即雷诺数。雷诺还开始了湍流理论的艰难研究。

兰姆在其《流体运动数学理论》中总结了19世纪流体力学的理论成就。但实用中出现的许多流体力学问题,还得依靠水力学中经验公式或半经验公式,如在表征力学能量的伯努利定理中引进若干经验系数以计算阻力的影响,在只适用于均匀管流的哈根-泊肃叶流动公式中加进考虑非均匀性的修正系数等。许多水利工程、水力机械中的力学问题依赖这种办法得到解决,如A.de谢才、R.曼宁的明渠流公式,L.A.佩尔顿,J.B.弗朗西斯,V.卡普兰等为提高水力机械效率而作的许多水力学研究。Н.П.彼得罗夫在1890年关于偏心两圆柱间的流动的研究则是和轴承的润滑问题相联系的。

分析力学及其他分析力学方面的主要成就是由拉格朗日力学发展为以积分形式变分原理为基础的哈密顿力学。积分形式变分原理的建立对力学的发展,无论在近代或现代,无论在理论上或应用上,都具有重要的意义。积分形式变分原理除W.R.哈密顿在1834年所提出的以外,还有C.F.高斯在1829年提出的最小拘束原理。哈密顿另一贡献是正则方程以及与此相关的正则变换,为力学运动方程的求解提供途径。

C.G.J.雅可比进一步指出正则方程与一个偏微分方程的关系。从牛顿、拉格朗日到哈密顿的力学理论构成物理学中的经典力学部分。

20世纪上半叶,物理学发生巨大变化。狭义相对论、广义相对论以及量子力学的相继建立,冲击了经典物理学。前两个世纪中以力学模型来解释一切物理现象的观点不得不退出历史舞台。经典力学的适用范围被明确为宏观物体的远低于光速的机械运动,力学进一步从物理学分离出来成为独立的学科。

近代力学的代表人物有德国学者普朗特,美籍匈牙利学者T.von卡门,英国学者G.I.泰勒,苏联学者Л.И.谢多夫和中国学者钱学森,他们善于从错综复杂的自然现象、科学实验结果和工程技术实践中抓住事物的本质,提炼成力学模型,采用合理的数学工具,从而掌握自然现象的规律或者进而提出解决工程技术问题的方案,最后再和观察结果反复校核直到接近实际为止。他们这一套工作方法逐渐形成应用力学的特殊风

格。

固体力学由古老的材料力学、19世纪发展起来的弹性力学和结构力学、20世纪前期建立理论体系的塑性力学和粘弹性力学融合而成。这个时期,由于地震研究的需要,弹性动力学获得迅速的发展。以兰姆命名的在地表脉冲载荷作用下的弹性波传播问题,在1939年由L.卡尼阿特用积分变换法加以处理和推广,解释了侧面波现象,这一方法成为现代弹性动力学的重要基础。层状介质中弹性波传播问题得到了周详的研究,H.杰弗里斯解释了层间折射震相现象。用地震波来探明地球的内部构造和地层分布,需解决困难的反演问题,即从地表观测数据来反推介质性质和震源机制。在弹性静力学方面,解决了有重要意义的孔附近的应力集中问题,并据此发展出用复变函数处理弹性力学的一般方法。航空工程要求解决轻质蒙皮结构的强度、颤振、疲劳和稳定性问题,板壳理论得到空前的发展。卡门提出了薄板大挠度问题,他又和钱学森一起导出非线性的球壳和柱壳的方程,解决了长期存在的线性屈曲理论和实际不符问题,开创了非线性屈曲理论。后来W.T.科伊特系统地发展了非线性弹性稳定性理论。J.L.辛格和钱伟长应用张量分析建立了极为普遍的板壳理论,根据量级分析把板壳理论按近似程度分成几十种类型,这是迄今最周详的分析。钱伟长还提出了用摄动法解决薄板大挠度一类非线性方程的求解问题。为了寻求难于得出精确解的大量问题的近似解,发展出著名的瑞利-里兹法和伽辽金法。在这个背景上发展了各种变分原理,如赫林格-赖斯纳变分原理和胡海昌-鹫津久一郎变分原理。在结构力学方面,由于桁架的出现而发展了A.本迪克森的转角位移法)。H.克罗斯提出了巧妙的逐步数值解法──力矩分配法,引出了应用较广的松弛法,最后导致有限元法的建立,从而使弹性力学的求解方法出现了重大突破。在有限变形理论方面,M.赖纳在1945年用各向同性张量函数给出了非线性弹性的本构关系,R.S.里夫林给出非线性弹性普遍方程的一些精确解,解释了开尔文效应、坡印亭效应等重要的非线性现象,为后来理性力学学派的复兴作了先导。

塑性力学的建立是力学在20世纪的大事。普朗特和A.罗伊斯建立了增量形式的塑性本构关系,H.亨奇等建立了全量形式的塑性本构关系,R.希尔对塑性理论的总结,德鲁克公设和以后的伊柳辛公设为塑性理论的建立奠定了理论基础。60年代塑性力学解决了金属压延和结构强度等大量问题。极限设计理论的提出显示出塑性力学在节约材料中的重大作用。襄雷指出,塑性屈曲中的丧失唯一性和丧失稳定性属于不同的概念,这是塑性屈曲研究的一个里程碑。在第二次世界大战期间,卡门、G.I.泰勒和X.A.拉赫马图林各自独立地建立了塑性波理论,开辟了塑性动力学的新领域。应变率对于塑性性能的影响被发现了,从В.В.索科洛夫斯基,L.E.马尔文起开始探索粘塑性理论。

流体力学在航空、航天事业的推动下,20世纪上半叶流体力学的发展主要在空气动力学方面。

空气动力学最早是由解释和计算机翼举力开始的。F.W.兰彻斯特的《空气动力学》和《空气翱翔学》两书中,已经包含他1894年提出的举力环流理论。以后M.W.库塔和儒科夫斯基也认识到环流和举力的关系,儒科夫斯基还给出可用的计算举力的定理和这个定理的各种应用,解决了有关二元机翼即无限翼展机翼的问题。为现代机翼理论创立实用数学形式的是普朗特。普朗特提出有限翼展的举力线理论,其中把工程师们所关心的举力分布计算归结为一个积分方程,它的解对设计工作提供重要根据。这一理论成为一切中等速度飞机设计的基础。机翼的阻力计算也在19世纪所积累的经验和普朗特边界层理论的基础上得到不同程度的解决。当飞机速度提高时,提出了超声速飞行和跨声速空气动力学问题。E.马赫在19世纪末关于弹丸超声速运动的开拓性研究得到重视和发展。J.阿克莱特建立了二元线性化机翼的超声速举力和阻力理论。这个理论后来由普朗特、钱学森、卡门等作过修正。当马赫数接近1,即飞行速度接近声速时,翼面上有些点的当地速度超过声速,对于这种跨声速的流场,阿克莱特的理论及其修正都不适用了。阿克莱特、H.W.李普曼、钱学森和郭永怀分析了流场中出现的边界层和冲击波的相互作用,成功地解决了跨声速飞行中的空气动力学理论问题。力学上有关理论的建立和工程上后掠机翼的采用,使跨声速飞行成为现实。力学对突破航空中的声障起了关键作用。到了50年代,洲际导弹、航天技术又提出了飞行器再入大气时的加热问题。空气动力学又成功地解决了这问题,产生了当前通用的烧蚀防热办法。除航空、航天技术外,核爆炸技术也提出许多空气动力学问题,对其中的强爆炸问题G.I.泰勒和谢多夫分别用力学中量纲分析的方法提出自模拟理论,该理论和以后的发展是核爆炸技术中计算冲击波强度的主要理论根据。

边界层理论的提出和分析机翼阻力有关,但它的意义不限于空气动力学。普朗特所开创的这一理论,

经过卡门和K.波尔豪森对边界层方程所作的简化和提出的近似计算方法后,一直是流体力学中令人瞩目的课题。它不仅在力学方面的各种问题,如高速边界层、层流边界层、湍流边界层中有不少发展,而且从中提出的数学方法还逐渐形成了奇异摄动法,这种方法适用范围甚至超出力学。雷诺在19世纪末提出流体运动稳定性问题和湍流理论也是流体力学中的重要课题。20世纪以来在热对流的稳定性、平行流动稳定性、同轴两转动圆筒间的流动稳定性的研究方面,都有重要的进展。特别是对最后一种稳定性问题,1923年G.I.泰勒得到失稳的临界参数值。湍流理论在20年代主要是半经验性的,如普朗特考虑到动量传递而提出的混合长度理论。30年代开始的各种理论模型出现,其提出者有G.I.泰勒、周培源、卡门,以及物理学家W.K.海森伯等。但湍流理论至今尚不够完善。

一般力学固体力学和流体力学形成力学分支的同时,力学中余下部分也受到航空、航天等技术的促进而继续发展。它们的研究对象是质点、质点系、刚体、多刚体系统等具有有限自由度的离散系统。从这类较简单模型得到的有关理论和所采用的概念、方法又往往能推广用于连续介质,即用于固体力学和流体力学,如把有限自由度振动理论推广到弹性体振动问题,运动稳定性理论应用于流体运动稳定性问题。因而以离散系统为主要研究对象的力学被笼统地称为一般力学。20世纪上半叶一般力学中最重要的发展是非线性振动理论。1918年G.杜芬发表关于有非线性恢复力系统的受迫振动的论著。在无线电技术方面的振荡器研究中,1926年范德坡耳提出自激振动方程。1929年А.А.安德罗诺夫阐明了自激振动的机理和数学根据。在30年代,非线性振动理论在苏联蓬勃发展起来,如H.H.博戈留博夫等提出一套有效的渐近方法。除非线性振动理论外,与无线电技术和机器调节相关的,有反馈系统的动力学。这一分支迅速成长为自动调节理论,逐渐从力学中分离出去,它对20世纪下半叶发展起来的控制论和系统论提供了力学方面的背景。航空、航天事业对导航控制装置及其他机械装置的需要促进了陀螺仪和复杂刚体系统力学的研究,使刚体动力学从19世纪出现的纯数学领域转向工程实用。以上几个方面在理论上和应用上都提出不少有关运动稳定性的课题,促使这方面的理论在庞加莱和里雅普诺夫成果的基础上发展起来。

60年代以来,力学进入新的时代──现代力学时代,由于电子计算机的飞跃发展和广泛应用,由于基础科学和技术科学各学科间相互渗透和综合倾向的出现;以及宏观和微观相结合的研究途径的开拓,力学出现了崭新的面貌。

计算机的冲击电子计算机自1946年问世以后,计算速度、存储容量和运算能力不断提高,过去力学工作中大量复杂、困难而使人不敢问津的问题,因此有了解决的门路。计算机改变了力学的面貌,也改变了力学家的思想方法。有限差分方法很早被用于强爆炸冲击波计算,还随着出现了人工粘性、激波装配等克服间断性困难的办法。1963年J.E.弗罗姆和F.H.哈洛成功地计算了长方形柱体的绕流问题,给出柱体尾流涡街的形成和随时间的演变过程,并以《流体力学中的计算机实验》为题作了介绍,这一事件被看作是Link title计算流体力学兴起的标志。弹塑性动力学问题也用差分法作了有效的计算。在计算的实践中还创立了很多新概念,从运用传统的拉格朗日方法和欧拉方法等算法,发展到在差分格子里讨论质量、动量和能量的输运和均衡,建立了所谓离散力学。最令人鼓舞和惊叹的还是60年代有限元法的兴起。有限元法发源于结构力学。一个连续体结构经离散化为杆件(有限元)的组合后,计算机可以轻巧地对这种复杂杆件系统作出计算。有限元法一出现就显示出无比的优越性,它迅速的占领了整个弹性静力学。经过一段关于有限元法的数学基础和收敛性问题的深入讨论之后,认清了有限元法和变分原理的关系。力学家们自觉地以各种变分原理为基础建立了不同形式的杆元、板元、壳元、夹层板元、三维应力元、半无限元、奇异元、杂交元等,发挥了有限元法的巨大威力。随后它又冲出弹性静力学的范围,被广泛应用于弹性动力学、瞬态分析、塑性力学、流场分析,并向传热学、电磁场等非力学领域渗透,显示了极为光辉的前途。

主要内容

工程力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,工程力学主要借助统计力学的方法。

工程力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;

三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。

工程力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。

物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。

近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,工程力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。

中国科学院力学研究所岗位管理实施办法

中国科学院力学研究所岗位管理实施办法 (力发人教字〔2007〕134号) 第一章总则 第一条根据中国科学院《关于印发〈中国科学院岗位管理实施办法〉的通知》(科发人教字〔2007〕207号)的有关规定,为实现我所人力资源管理的科学化、规范化、制度化,结合我所科技发展的规划,制定本办法。 第二条围绕我所科技发展规划的要求,遵循按需设岗、职数控制、结构合理、动态优化、管理规范的原则,按照院核定的岗位总量和结构比例科学设置各类岗位。 第三条本办法适用于我所在岗人员。所级领导干部按照干部人事管理权限的有关规定执行。 第二章岗位类别与岗位等级 第四条我所设置创新岗位和项目聘用两种岗位,分别包括科技、支撑和管理三类岗位。 第五条科技岗位是指各实验室(研究部)从事基础研究和战略高技术研究工作,具有相应专业技术水平和能力要求的工作岗位。我所科技岗位包括自然科学研究系列、工程技术系列专业技术岗位。 科技岗位执行自然科学研究系列或工程技术系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 第六条支撑岗位是指为我所科技工作提供技术支撑和辅助性工作的岗位,主要设置在实验平台技术支撑、实验室(研究部)学术与行政助理、网络与图书信息保障、学会期刊出版等岗位。 支撑岗位主要执行专业技术系列中的工程技术系列、实验技术系列、图书资料和出版系列等专业技术岗位,也包括工勤技能系列岗位。 对兼有管理职责要求的支撑岗位,确因工作需要,也可执行职员系列。 支撑岗位的等级设置按照《中国科学院岗位管理实施办法》规定(见附

表1)。 第七条管理岗位是指职能部门承担领导职责或管理职责的工作岗位。管理岗位主要执行职员系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 对兼有专业技术职责要求的科技管理岗位,根据工作需要,可设置为相应的专业技术岗位。会计、审计等国家有职业资格要求的岗位,设置相应的专业技术岗位。 第八条项目聘用岗位系列的设置与等级同上述创新岗位,但原则上,不设置正高级专业技术岗位和五级及以上职员岗位。 第三章岗位结构比例 第九条创新岗位中科技、支撑与管理三类岗位的宏观结构比例为70%、20%、10%。 第十条创新科技岗位(含执行专业技术系列的管理岗位)中,高级科技岗位(专业技术一至七级岗位)的比例占科技岗位总数的70%,正高级岗位(专业技术一至四级岗位)不超过高级科技岗位总数的40%。其中:正高级科技岗位中,专业技术一级岗位为国家专设的特级岗位,由国家实行总量控制和管理,专业技术二级、三级、四级岗位之间的宏观结构比例为2:4:4; 副高级科技岗位中,专业技术五级、六级、七级岗位之间的结构比例为3:4:3; 中级科技岗位中,专业技术八级、九级、十级岗位之间的结构比例为4:4:2; 初级科技岗位中,专业技术十一级、十二级岗位之间的结构比例为8:2。 第十一条创新支撑岗位中,高级支撑岗位(专业技术三至七级岗位)不超过支撑岗位总数的50%,正高级支撑岗位(专业技术三至四级岗位)不超

系统动力学(自己总结)

系统动力学 1.系统动力学的发展 系统动力学(简称SD—system dynamics)的出现于1956年,创始人为美国麻省理工学院的福瑞斯特教授。系统动力学是福瑞斯特教授于1958年为分析生产管理及库存管理等企业问题而提出的系统仿真方法,最初叫工业动态学。是一门分析研究信息反馈系统的学科,也是一门认识系统问题和解决系统问题的交叉综合学科。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。 系统动力学的发展过程大致可分为三个阶段: 1)系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2)系统动力学发展成熟—20世纪70-80 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3)系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 2.系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相

力学中常见的“突变”问题

力学中常见的“突变”问题 一、由静到动引起的“突变” 例1如图1所示,把一个质量为m的物体放在一块粗糙的木板上,将木板一端缓缓抬起,板和水平面的夹角α由零逐渐增大,试分析物体所受摩擦力f和倾角α之间的函数关系,并用f-α图表示出来。 图1 分析:①当木板处于水平时,α=0°,物体受摩擦力f=0。②当α由零逐渐增大,物体有下滑的趋势但仍可静止(相对),此时,受到沿斜面向上的静摩擦力,其大小为f=mgsinα,且f随α增大而增大。③当mgsinα >(最大静摩擦力)时,物体将会滑动,静摩擦力“突变”为滑动摩擦力μmgcosα。设此时α=。④当α>时,物体将沿木板加速下滑,f=μmgcosα,且随α增大而减小。⑤当α=90°时,木板竖直,N=O,摩擦力f=0。 具体情况见图2(注意由“突变”形成的“落差”)。 图2 二、由动到静引起的“突变” 例2如图3所示,把一个质量为m的物体用水平力F压在竖直墙面上,F由零逐渐变大,图4中能表示出物体所受摩擦力f和压力F之间的函数关系是: 图3 分析:①当F=0时,N=0,所以f=0。物体开始加速下滑。 ②随着F逐渐变大,根据f=μN=μF可知:f随F的变大而成正比地变大。但物体仍为加速运动,只不过加速度越来越小。

图4 ③当f>mg时,物体开始做减速运动,且加速度越来越大。 ④当物体的速度减为零时,滑动摩擦力“突变”为静摩擦力。根据平衡条件,静摩擦力大小恒等于mg。且以后并不随F的变化而变化。 故应选择:D。(在该图中,由于“突变”留下的“尖峰”清晰可见。) 图5 三、由半径变化引起的“突变” 例3如图5所示,轻绳一端系小球,另一端固定于O点,在O点正下方的P点有一颗钉子,将悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时,则 A.小球的瞬时速度突然变大。 B.小球的加速度突然变大。 C.小球的角速度突然变大。 D.悬线所受的拉力突然变大。 分析:当悬线碰到钉子时,运动的小球正过最低点的瞬间,小球的速度大小不变。这是本题的关键所在, 有了这个结论,根据v=ωR,因为R突然变小,角速度发生了“突变”;变大;同样,根据,加速度也发生了“突变”:变大;同样,根据,加速度也发生了“突变”:变大;根据T-mg=ma,T 也“突然”变大了,这也是为什么此时容易断绳的缘故。 综上所述,应选B、C、D。 四、由力的变化引起的“突变” 例4起重机的钢索将重物由地面吊到空中某一高度,其速度——时间图像如图6所示,则钢索拉力的功率随时间变化的图像在图7中可能的是: 分析:由图6可知,物体做的运动是: ①:物体做匀加速直线运动。根据-mg=ma,所以,>mg。

中科院力学所科技成果——高速列车系列技术

中科院力学所科技成果——高速列车系列技术2008年科技部与原铁道部签订了两部联合行动计划即《中国高速列车自主创新行动计划》,启动了国家支撑计划重大项目“高速列车关键技术研究及装备研制”,目标是研制最高运行时速380公里的新一代高速列车。在此背景下,初步形成了目前的高速列车空气动力学科研团队。 团队核心成员主要围绕高速列车气动性能和气动噪声评估、气动优化设计、动模型气动实验技术、列车结构静/动强度评估和设计、气动对车辆运行安全性和舒适性影响等开展研究。涉及空气动力学、结构动力学、车辆动力学、噪声工程、实验技术等多学科系统耦合问题。该团队参与了我国已研制和在研的所有高速列车气动性能评估和气动定型设计,具有较强的团队精神、科研攻关能力,对我国高速列车设计技术提升和高铁产业的发展起到了不可替代的作用。 技术介绍及特点 在国家科技支撑计划重大项目“中国高速列车关键技术研究及装备研制”的资助下,中国科学院力学研究所高速列车团队形成了较完备的高速列车空气动力学设计技术。建立了优化设计方法和动模型实验平台,形成了我国高速列车空气动力学研究体系。其主要特点有: 1、基于压缩空气加速、磁涡流非接触制动、实验快速恢复等发明技术,研制了世界上规模最大、实验速度最高的双向运行高速列车动模型实验平台。同时,研制了具有弹性隔振支撑、加减速段限位和实验段自动切换的车载六分量测力天平,填补了动模型气动力测量的

技术空白。利用该平台,已为我国多种高速列车研制提供了气动实验支撑数据。 2、发展了多目标优化设计方法,构建了高速列车气动优化设计平台。以气动阻力、尾车升力和远场气动噪声为设计目标,通过优化,得到了性能更优的标准动车组气动方案。大西线线路考核试验表明,中国标准动车组具有更加优良的气动性能。 3、本项目发展的高速列车气动优化设计技术,已用于我国CRH380系列、中国标准动车组、更高速度等级高速列车、城际列车等研制,为中国高速铁路发展做出了突出贡献。参与“京沪高速铁路工程”项目获2015年国家科学技术进步特等奖。主持“高速列车空气动力学优化设计及评估技术”项目分别获2016年中国力学科技进步一等奖和2014年第五届中国侨界创新成果贡献奖。参与“设计时速380公里高速动车组技术研发及应用”项目获2012年铁道科技进步特等奖。 应用领域 1、高速列车的气动特性评估 2、高速列车动模型试验 3、高速列车外形优化设计 技术成熟度及应用案例 1、CRH380系列高速列车气动定型设计 针对新一代CRH380A高速列车研制,完成了多种头型方案无横风和不同强度横风运行场景下的气动性能和气动噪声评估;完成了单

土壤-机器系统力学

土壤-机器系统力学 研究机器在作业和行驶中与土壤相互作用的力学问题的一门学科。或称耕作与行驶土壤动力学。其任务是探明机器作用于土壤和土壤所起反应的规律;在土壤基础行为属性水平上建立相互关系的数学模型,以期能预测机器的行驶性能、作业质量、效率、能耗和经济性,以及土壤在机器通过和作业后的性能变化、压实、水土流失等问题,从而合理研制和设计机器的结构形态,优化机器和机器系统的设计和运用,保护土壤生态系统和农业资源。 概述在农业机械领域内,土壤-机器系统力学的研究包括两部分:一是由土壤支承并借土壤对机器的反作用而产生驱动力的行走理论,即土壤-车辆系统力学,其研究对象是拖拉机和农业机械的行走装置;二是对土壤进行机械作业的耕作理论,即土壤耕作力学,其研究对象是土壤耕作机械和农田建设机械中的土方作业机械。 土壤-机器系统力学所涉及的,一般是深度在几十厘米以内的耕作层或地面土壤,而且机器是在广阔的地面上、在不同的季节以较高的速度对小范围饱和或非饱和的各种土壤施加复杂的载荷,使土壤在短时间内产生较大的变形。这与经典土力学所处理的建筑物地基与土壤的相互作用有较大的差异,后者是长年在固定地点以相当大的静载荷或地震波作用于较大范围、深达几十米的土壤,使土壤产生缓慢而相对微小的变化。因而不能完全采用经典土力学和土动力学的某些相类似的假定、理论、公式和方法。对于土壤物质的多样性和性质的多变性,机器作用力的复杂性,土壤反应因应力路径、载荷历史而不同的特性,以及速率效应、机器振动等的特点,结合耕作、土方工程和越野行驶的技术要求进行的研究,要以19世纪末至20世纪30年代苏联的Β.Π.戈里亚奇金和美国的M.L.尼科尔斯的研究为开端。至第二次世界大战末期,特别是50年代以后,土壤-机器系统力学逐步形成一门独特的新学科,它的形成和发展与机器力学、土壤物理、土力学、土动力学、连续介质力学、流变学、系统力学、随机过程和数理统计,以及新的分析方法和数值方法的发展有密切联系。 中国这方面的研究始于20世纪50年代中期。首先是建立室内试验土槽进行了拖拉机水田叶轮的研究;60年代初设计了贝氏仪,发展了船式拖拉机浮式和半浮式工作原理;进行了电渗犁的试验和犁耕土垡运动和阻力的分析;70年代初研制了水田土壤剪切仪、静载式和动载式水田土壤承压仪和水田土壤外附力/内聚力测定仪;并应用这些仪器对水田土壤参数与不同行走装置性能的关系进行了研究,提出了由土壤内聚力产生的推进力和由于沉陷、壅泥、积泥等外应力产生的行走阻力计算公式。70年代末至80年代初,还进行了水田土壤流变及触变性质的研究,提出了水田土壤的应力-应变-时间模型和水田土壤含水量与触变率之间的函数关系;进行了犁体曲面数学模型和优化。80年代以来进行的有土壤对金属表面粘附的机理研究与测定,履带和轮胎附着、驱动、压实性能和精确喷印网格法的研究,土壤切削的二维和三维有限元分析等。 研究内容在农业机械领域内,土壤-机器系统力学研究的主要内容包括:①各种土壤参数(材料特性、静力学特性、动力学特性、物理量传导特性、行为属性、综合特性等)的测试技术和田间快速测定技术及分布规律;②土壤行为属性机理、应力-应变模型、本构关系、失效理论;③典型行走装置(钢轮、叶轮、胎轮、金属履带、橡胶履带等)与土壤相互作用的基础工艺过程,其接地压强、沉陷量、驱动力、行驶阻力、滑行率间的定性定量关系,行走装置构型和设计的优化;④拖拉机及其机组、各种自走式农业机械在各种土壤和地面条件下的牵引性能、通过性能、越障性能、转向操纵性、振动特性、行驶稳定性和运输效率; ⑤土壤耕作机械和土方作业机械在以不同方式切削、挖掘、推移、破碎和抛置土壤的作业过程中,土壤的变形、破坏、移动、受力和能耗与土壤参数、机器结构参数和作业参数间的定性、定量关系,工作部件构型和设计的优化;⑥拖拉机和各种田间作业机械对土壤的压实、水土流失与土壤参数、机器结构参数、作业参数之间的定性、定量关系,以及机组结构形态

【科普】经典力学中的变分法(物理吧版)

【科普】经典力学中的变分法(物理吧版) 经典力学中的变分法,这个标题对于初学者来说可能足够吓人,但是其内涵是很清楚的,而且并不难理解。 我们都知道,一个粒子从A点运动到B点,原则上可以选取无穷多种路径,但事实上宏观粒子只会选择一个路径来走,这一点与量子力学的费曼路径积分不同(路径积分是说,粒子实际走过所有路径,但是在走向宏观的路上,依靠相位差来消去相位差较大的路径,从而得到宏观的那一条路径)。 如果你将宏观的真实路径稍微变一下,譬如说,真实路径的坐标是x,你将它变一下,增加一个量: x+δx 就叫做对坐标x的变分。其实就是将路径的曲线稍微“拨弄”了一下。 变分算符δ和微分算符d的运算法则完全一样,现在我们来讨论一下,在计算中,δ与求导符号d/dt到底是否可以互换: δ(dx/dt)=(δ(dx)dt-dxδ(dt))/〖dt〗^2 =δ(dx)/dt-dxδ(dt)/〖dt〗^2 =d(δx)/dt-dxd(δt)/〖dt〗^2 如果δ与d/dt可以互换,就必须有: δ(dx/dt)=d(δx)/dt 但是我们看到,δ(dx/dt)等于d(δx)/dt还要再减去一项dxd(δt)/〖dt〗^2,这就是说,一般情况下,δ与d/dt不满足互换的条件!那么怎样才能满足它呢?我们只需要多余的一项等于0: dxd(δt)/〖dt〗^2=0 那么也就只能有: δt=0 因为我们不可能要求dx或dt总是等于0,所以只要选择δt=0。这就是说,一旦确定了运动起点的时间,运动终点的时间也就确定了,所以在这里,时间t根本没有变分的余地!每走过一条路径(不论是真是假)所花费的时间都是相同的!这叫做“等时变分”。 通过一般的物理系理论力学教程我们知道,引入拉格朗日函数L=T-V,并利用等时变分: δ∫Ldt=0……哈密顿原理 我们可以得到拉格朗日方程: d/dt(?L/(?q`))-?L/?q=0 这是与牛顿方程等价的方程。

中国科学院流固耦合系统力学重点实验室

中国科学院流固耦合系统力学 重点实验室 Key Laboratory for Mechanics in Fluid Solid Coupling Systems Institute of Mechanics, Chinese Academy of Sciences 季报 2019年第1期(总第17期) 目录 中科院流固耦合系统力学重点实验室现场评估工作顺利完成 (2) 中科院流固耦合系统力学重点实验室召开2019年室务会 (3) 中国航空学会空气动力学分会飞行载荷专业工作会在扬州召开 (6) 圆柱阵列波浪力幅值的波动现象和预报公式 (8) 轻质金属点阵圆柱壳结构制备与力学性能研究进展 (9) 力学所提出一种大幅提升3D打印点阵结构力学性能的新方法 (11) 雾化稠油掺稀降粘技术研究进展 (12) 南海天然气水合物试采安全评价研究进展 (14) 油气水多相流量计研究进展 (15) 空化致板间液滴界面稳定性研究获得多个奖项 (16) 空泡与柔性膜的流固耦合研究获得2019度中国力学大会优秀墙报奖. 18

中科院流固耦合系统力学重点实验室现场评估工作顺利完成 7月15日,中科院前沿科学与教育局、中科院重点实验室现场评估专家组一行14人莅临中科院力学所,对依托力学所建设的流固耦合系统力学重点实验室进行现场评估。专家组组长顾逸东院士主持了评估会议并宣布了现场评估的议程安排。力学所所长秦伟,党委书记、副所长刘桂菊,副所长魏宇杰,副所长尹明及流固耦合系统力学重点实验室学术委员会主任、实验室主任参加会议。 实验室主任黄晨光做实验室主任工作报告,围绕发展定位与研究方向、科研任务与代表性成果、队伍建设与人才培养、开放交流与运行管理等方面,向专家组汇报了评估期内的发展成果和工作成效。杨国伟研究员、王展研究员分别做“高速列车气动设计与流固耦合动力学特性研究”和“极端海洋环境及其与工程结构的流固耦合理论”代表性成果报告。专家组肯定了实验室取得的成绩以及工作亮点,并就汇报和自评估报告中的存疑事项进行了交流。 现场评估专家组还查看了高速列车动模型试验平台、海洋流固土耦合实验室、多相流体力学实验室、冲击与耦合效应实验室的科研仪器建设、大型科研仪器设备使用共享等情况,同时,参观了实验室的展板窗口。在此基础上,专家组召开会议,根据现场考核情况对实验室进行打分,并初步形成了评估意见。 经过努力,实验室顺利完成了此次中科院重点实验室现场评估工作,并在评估中充分展现了自身的优势和特色,最终取得良好的评估成绩。 在国家科技创新基地优化整合的背景下,实验室将积极适应新形势和新要求,进一步加强实验室建设和运行管理工作,全面提升科研平台建设水平和运行效率,为加快科技创新提供良好的条件支撑。 (流固耦合系统力学重点实验室供稿)

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术 我国生活垃圾处理方式主要是填埋和焚烧。填埋不仅侵占大量土地,还污染地下水,是不得已而为之的选择。尽管如此,对于土地资源紧张的地区已没有多少场地可供填埋使用。焚烧法虽然减容比高,并能回收能量,但却因二噁英等污染问题遭到公众强烈反对,急需发展新一代的绿色环保、节能降耗的替代焚烧技术。 等离子体是物质第四态,具有许多异于固态、液态和气态的独特的物理化学性质,如温度和能量密度都很高、可导电和发光、化学性质活泼并能加强化学反应等,环保性能优良。通过电弧放电产生高达7000 C的等离子体,将垃圾加热至很高的温度,从而迅速有效地摧毁废物。可燃的有机成分充分裂解气化,转化成可燃性气体,可以用于能源回收,一般称为“合成气”(主要成分是CO+H )。不可 2 燃的无机成分经等离子体高温处理后成为无害的渣体。 采用等离子体处理垃圾是目前减容效果最显著、无害化最彻底、资源化程度最高的绿色环保技术。与焚烧法相比,等离子体技术最突出的优点有: (1)处理温度高:有害物质摧毁更彻底,二噁英前驱体被彻底破坏分解; (2)可采用还原性气氛或部分氧化性气氛,采用电能作为外加热源,二次污染物排放比焚烧低2-3个数量级,裂解底渣是无害的; (3)合成气流量约为焚烧烟气量的5-10%,易于净化,后处理设备尺寸大大减小,节约了投资成本; (4)能源回收效率高,将筛上物制成合成气,后续利用气体发动机发电,发电效率可高达39%,而焚烧法采用蒸汽轮机,发电效率很难超过22%; (5)等离子体系统可快速启动与停机,等离子体核心工艺灵活,可根据不同的处理目的搭配不同的配套系统; (6)整套设备紧凑,占地小,经济效益好。

力学中的数学方法-变分法

变分法

取极值必须满足z 1696年瑞士数学家约翰、贝努里提出的“最速降线问题”,发表于《教师学报》,引起广泛关注。z 1697年该杂志刊登了牛顿、莱布尼兹、洛比达和贝努里兄弟的解法,殊途同归! z 虽蕴含着天才思想,但还是不能建立起变分法!z 历史安排了大数学家尤拉,1734年解决了更广泛的最速降线问题,但他还不满意。最终他找到了,1736年的论文: §4.1 变分法基本概念与基本理论历史往事——导致变分法建立的著名问题: [()](,,)b a J y x F x y y dx ′=∫ d ()0d F F y x y ???=′??z 拉格朗日改进了尤拉证明,非常简洁,1755年告诉了尤

一. 基本概念 变分法就是求泛函极值的方法.变分问题即是求泛函的极值问题. 1. 泛函 变分法研究的对象是泛函,泛函是函数概念的推广.先看一个例题:

考虑著名的最速降线落径问题。如图1 所示,已知A和B为不在同一铅垂线和不同高度的两点,要求找出A、B间的这样一条曲线,当一质点在重力作用下沿这条曲线无摩擦地从A滑到B时,所需的时间T最小. y x A B(x,y)

此时质点的速度是 d 2d s gy t =从A 滑到B 所需的时间为 d B A t t T t =∫21+[()]d 2B A y T y x x gy ′=∫d 2B A s gy =∫21+d 2B A y x gy ′= ∫

y ′x T ()y x ()y x [()]T y x 式中代表对求一阶导数.我们称上述的为的泛函,而称为可取的函数类,为泛函的定义域。简单地说,泛函就是函数的函数(不是复合函数的那种含义). 泛函定义:一般来说,设C 是函数的集合,B 是实数或复数的集合如果对于C 的任一元素 ()y x 在B 中都有一个元素J 与之对应,所谓泛函不过是更广泛意义下的函数关系罢了! J ()y x [()] J J y x =则称为的泛函,记为

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

应用力学原理分析沙漏重量随时间变化关系

龙源期刊网 https://www.360docs.net/doc/7113562394.html, 应用力学原理分析沙漏重量随时间变化关系作者:王徽石杰洋 来源:《科学与财富》2019年第23期 摘要:沙漏中沙子下落时,沙漏的重量并不是保持不变的,通过观察实验现象可将该过 程分为六个阶段。本研究主要利用微元法、牛顿定律、动量守恒定律对实验现象进行理论分析,最终分析出每个阶段沙漏重量的变化原因。 关键词:沙漏;重量;超重与失重;微元法 沙漏也叫做沙钟,是一种测量时间的装置,它由两个玻璃球和一个狭窄的连接管道组成的。通过充满了沙子的玻璃球从上面穿过狭窄的管道流入底部玻璃球所需要的时间来对时间进行测量。但沙漏在运行时的重量却不是保持不变的,沙子正在下落的部分使其变轻,而沙子对底部的撞击却会使其变重,本文将对此问题展开研究,详细解释沙漏工作过程中其重量变化的问题。 1 理论分析 当沙漏工作时沙子会从上部的锥形瓶通过狭窄的通道进入下部的锥形瓶,可按照其工作顺序逐步将其分解为六个阶段,除此以外,为了对沙漏工作时的重量和时间的关系进行分析,建立以下三点假设:(1)沙子的体积相较于锥形瓶的体积足够小。(2)沙子落入下部锥形瓶后将均匀分散于底部,即忽略其形成的锥形沙堆的影响。(3)沙子下落的初速度为零,且沙子下落时均匀连续。 用M表示整个沙漏的质量,D和H分别表示沙漏中间部位的直径和到底部的高度,ρ表示沙子的密度T表示沙子下落的时间,Fi表示第i阶段沙漏重量。 1.1 第一阶段与第二阶段 第二阶段是沙漏开始工作,沙子刚好开始下落,但没有落到底部的过程。此时可将下落的沙子看作是下落的圆柱。设沙子经过时间T=t1落到底部,沙子末端下落的速度为u,下落过 程中沙子的质量为m。则根据牛顿第二定律可以求出 所以当下落时间为t时,有质量为m的沙子处于完全失重的状态,此时沙漏整体的重量为 可以看出第二阶段沙漏的重量小于静止时候的重量,且随着时间的增加会不断减小。 1.2 第三阶段与第四阶段

国内研究所排名

国内研究所排名.txt两个人吵架,先说对不起的人,并不是认输了,并不是原谅了。他只是比对方更珍惜这份感情。0201 理论经济学 37 87802 黑龙江省社会科学院 64 0202 应用经济学 69 87802 黑龙江省社会科学院 62 0302 政治学 35 87902 上海国际问题研究所 67 87802 黑龙江省社会科学院 64 0303 社会学 31 87802 黑龙江省社会科学院 64 0403 体育学 27 84601 国家体育总局体育科学研究所 71 0504 艺术学 39 84201 中国艺术研究院 77 84202 中国电影艺术研究中心 65 0601 历史学 39 87802 黑龙江省社会科学院 64 0701 数学 62 80002 中国科学院数学与系统科学研究院 94 0702 物理学 57 80008 中国科学院物理研究所 95 82801 中国原子能科学研究院 70 0703 化学 51 80032 中国科学院化学研究所 96 0704 天文学 11 80025 中国科学院国家天文台 80 80022 中国科学院上海天文台 78 0705 地理学 26 80076 中国科学院寒区旱区环境与工程研究所 86 0706 大气科学 8 80058 中国科学院大气物理研究所 84 85101 中国气象科学研究院 71 0707 海洋科学 12 85301 国家海洋局第一海洋研究所 74 85303 国家海洋局第三海洋研究所 68 0710 生物学 64 80100 中国科学院上海生命科学研究院 81 80103 中国科学院动物研究所 77 0712 科学技术史 10 80029 中国科学院自然科学史研究所 77 0801 力学 42 80007 中国科学院力学研究所 88 0802 机械工程 73 80139 中国科学院长春光学精密机械与物理研究所 70 83303 煤炭科学研究总院(上海分院) 64 83801 铁道部科学研究院 63 0803 光学工程 28 80139 中国科学院长春光学精密机械与物理研究所 85 80142 中国科学院西安光学精密机械研究所 85 0804 仪器科学与技术 27 82932 中国航空研究院(304 研究所) 68 0805 材料科学与工程 72 80144 中国科学院金属研究所 92 82913 中国航空研究院(621 研究所) 75 83801 铁道部科学研究院 64 0808 电气工程 26 80148 中国科学院电工研究所 78 83801 铁道部科学研究院 64 0810 信息与通信工程 42 83000 中国电子科技集团公司电子科学研究院 78 0812 计算机科学与技术 71 83801 铁道部科学研究院 63 0815 水利工程 20 82306 南京水利科学研究院 72 0816 测绘科学与技术 11 86001 中国测绘科学研究院 72 0817 化学工程与技术 41 83310 煤炭科学研究总院(北京煤化所) 64 0818 地质资源与地质工程 20 83306 煤炭科学研究总院(西安分院) 67 0819 矿业工程 15 83311 煤炭科学研究总院(北京开采所) 71 83304 煤炭科学研究总院(抚顺分院) 67

力学实验室简介

一功能介绍 拉压实验室主要开展常规金属材料的拉伸、压缩、硬度检测、冲击实验等。目前开展的有低碳钢拉伸实验、铸铁的拉伸实验、低碳钢压缩实验,拉升弹性模量E测定实验。 二主要设备 WDW—100微机控制电子万能试验机8台 联想计算机8台 相关打印设备8台 三实验面向专业 土木工程、工程管理、安全工程、金属材料工程、机械设计制造及其自动化、材料成型与控制、材料科学与工程、矿物资源工程、冶金工程、给排水工程、交通工程、建筑环境与设备 四可开展实验项目 碳钢拉伸实验 铸铁的拉伸实验 低碳钢压缩实验 拉升弹性模量E测定实验

一功能介绍 扭转实验室主要开展常规金属材料的扭转实验。以完成工程力学教学任务为主,同时可承担生产任务、科研任务。 二主要设备 WNJ—500微机数控扭转试验机6台 联想计算机6台 打印机6台 三实验面向专业 土木工程、金属材料工程、机械设计制造及其自动化、材料成型与控制 四可开展实验项目 低碳钢扭转实验 铸铁扭转实验

剪切模量G测定实验室 一功能介绍 剪切模量G测定实验室主要测定低碳钢的剪切弹性模量,及验证金属材料剪切虎克定律。目前有20台G检验台。可同时供40名学生进行实验。 二主要设备 XH180扭转测G试验台20台 三实验面向专业 土木工程、金属材料工程、机械设计制造及其自动化、材料成型与控制 四可开展实验项目 剪切模量G测定实验

一功能介绍 弯扭组合实验室是综合性、设计性实验室。实验室有12台弯曲试验机。可用于矩形梁纯弯曲试验、偏心拉伸试验、悬臂梁实验、压杆稳定试验。 二主要设备 BDCL材料力学多功能试验台12台 CL—2测力仪12台 三实验面向专业 土木工程、矿物资源工程、机械设计制造及其自动化、安全工程、材料成型与控制、材料科学与工程 四可开展实验项目 梁弯曲正应力电测实验 薄壁圆筒弯扭组合变形主应力的测定

2020年物理高考命题力学电学热点预测20题

2020年物理高考命题力学电学热点预测20题 1.振源A 带动细绳上下振动,某时刻在绳上形成的波形如图甲所示,规定绳上各质点向上运动的方向为x 轴的正方向,当波传播到细绳上的P 点时开始计时,图乙的四个图形中能表示P 点振动图象的是( ) 2.一列简谐横波,某时刻的波形图象如图甲所示,从该时刻开始计时,波上A 质点的振动图象如图乙所示,那么( ) A .假设此波遇到另一列简谐横波并发生稳固干涉现象,那么该波所遇到的波的频率为2.5H Z B .假设该波能发生明显的衍射现象,那么该波所遇到的障碍物尺寸一定比20m 大专门多 C .从该时刻起,再通过△t =0.4s ,P 质点通过的路程为4m D .从该时刻起,质点P 将比质点Q 先回到平稳位置 3.在实验室能够做〝声波碎杯〞的实验。用手指轻弹一只酒杯,能够听到清脆的声音,测得这声音的频率为500Hz 。将这只酒杯放在两只大功率的声波发生器之间,操作人员通过调整其发出的声波,就能使酒杯碎掉。以下讲法中正确的选项是( ) A .操作人员一定是把声波发生器的功率调到专门大 B .操作从员可能是使声波发生器发出了频率专门高的超声波 C .操作人员一定是同时增大声波发生器发出声波的频率和功率 D .操作人员只须将声波发生器发出的声波频率调到500Hz 4.长木板A 放在光滑的水平面上,质量为m 的物块 B 以水平初速度v 0从A 的一端滑上A 的水平上表面,它 -1s -2 2 甲 乙 1 t/s v 甲 乙 A B C D

们在运动过程中的v -t 图线如下图。那么依照图中所给出的数据v 0、t 1及物块质量m ,能够求出的物理量是 ( ) A .木板获得的动能 B .A 、B 组成的系统缺失的机械能 C .木板的最小长度 D .A 、B 之间的动摩擦因数 5.P 、Q 是某电场中一条电场线上的两点,一点电荷仅在电场力作用下,沿电场线从P 点运动到Q 点,过此两点的速度大小分不为v P 和 v Q ,其速度随位移变化的图象如下图。P 、Q 两点电场强度分不为E P 和E Q ;该点电荷在这两点的电势能分不为εP >εQ ,那么 以下判定正确的选项是 ( ) A .E P >E Q , εP <εQ B .E P >E Q , εP >εQ C .E P εQ 6.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速 运动。某时刻小球A 与质量为3m 的静止小球B 发生正碰。两球相碰后,A 球的动能恰好变为原先的1/4。那么碰后B 球的速度大小是 ( ) A .02v B .06v C .0026 v v 或 D .无法确定 7.质量为1kg 的物体静止在水平面上,物体与水平面之间的动摩擦因数为0.2。 对物体施加一个大小变化、方向不变的水平拉力F ,使物体在水平面上运动了3t 0的时刻。为使物体在3t 0时刻内发生的位移最大,力F 随时刻的变化情形应该为下面四个图中的哪一个?( ) 8.如下图是一台理想自耦变压器,在a 、b 之间接正弦交流电,A 、V 分不为理想交流电流表和交流电压表。假设将调压端的滑动头P 向上移动,那么 ( ) A .电压表V 的示数变大 B .变压器的输出功率变大 C .电流表A 的示数变小 D .电流表A 的示数变大 9.测定压力变化的电容式传感器的原理如下图,A 为固定电极,B 为可动电极,A 、B 组成一个 电容可变的电容器。可动电极两端固定,当待测压力施加在可动电极上时,使可动电极发生形变,从而改变了电容器的电容。现将此电容式传感器连接到如图4所示的交流电路中,图中A 为交流电流表,R 为爱护电阻,假设保持交流电的频率及电压的有效值不变,那么 ( ) A .当待测压力增大时,电容器的电容将减小 x v v t/t 0 1 2 3 A t/t 0 1 2 3 B t/t 0 1 2 3 C t/t 0 1 2 3 D U

材料的宏微观力学性能习题及答案..

习题1 1.1弹塑性力学的研究对象、内容是什么?与材料力学比较,有何异同?其基本假设又是什么? 1. 2如图1.21所示的三角形截面水坝,材料的比重为γ,承受着比重为1γ液体的压力,已 求得应力解为 ???? ?? ?--=-+=+=ay dx y dy cx by ax xy yy xx σγσσ,试根据直边及斜边上的表面条件确定系数a ,b ,c 和d 1.3如图1.22所示的矩形板,AB 边只受垂直于边界的面力作用,而CD 边为自由表面,设其 应力分量为 ? ?? ??? ?? ?+-=+-=-=x c qxy c y c qy qy y qx xy y x 122133 2313 2 τσσ,若体积力为零,试求常数1c 和2c ,并画出AB 及BC 边上的面力分布图。 1.4证明 (1) 应力的三个主方向互相垂直;(2) 三个主应力1σ,2σ,3σ必为实根。 1.5判断下述命题是否正确,并简短说明理由: (1) 若物体内一点的位移w v u ,,均为零,则该点必有应变 ===z y x εεε。 (2) 在x 为常数的直线上,若0=u ,则沿该线必有0=x ε。 (3) 在y 为常数的直线上,若0=u ,则沿该线必有0=x ε。 (4) 满足平衡微分方程又满足应力边界条件的应力必为正确解(设该问题的边界条件全 部为应力边界条件)。 1.6假定物体被加热至定常温度场()321,,x x x T 时,应变分量为T αεεε===332211 ; 图1.21 y o D 图1.21

0323112===γγγ,其中α为线膨胀系数,试根据应变协调方程确定温度场T 的函数形式。 1.7试问什么类型的曲面在均匀变形后会变成球面。 1.8将某一小的物体放入高压容器内,在静水压力2 /45.0mm N p =作用下,测得体积应变 5106.3-?-=e ,若泊松比3.0=v ,试求该物体的弹性模量E 。 1.9在某点测得正应变的同时,也测得与它成?60和?90方向上的正应变,其值分别为 6010100-?-=ε,6601050-?=ε,69010150-?=ε,试求该点的主应变、最大剪应变和主应 力(2 5/101.2mm N E ?=,3.0=ν)。 1.10试推导体积变形应变能密度v W 及畸变应变能密度d W 的公式分别为: ()2181 61ii jj ii v K W σεσ= = () ()??? ???-=== 2' '''31414121ii ij ij ij ij ij ij d G G W σσσσσεσ 1.11根据弹性应变能理论的应变能公式ij ij W εσ21 =,导出材料力学中杆件拉伸、弯曲及圆轴 扭转的应变能公式分别为: ()dx dx du EA dx EA x N U l l 2 0022121???? ??=?=拉伸 ()dx dx d EI dx EI x M U l l ????? ??=?=02 22022121ω弯曲 ()dz dz d GI dz GI z M U l P l P 2 0022121??? ???=?=φ扭转 1.12设1s 、2s 、3s 为应力偏量,试证明用应力偏量表示Mises 屈服条件时,其形式为 () s s s s σ=++2 3222123。 1.13设1I 、2I 为应力张量第一、第二不变量,试用1I 、2I 表示Mises 屈服条件。 1.14已知半径50mm ,厚为3mm 的薄壁圆管,保持1=z z στθ ,材料拉伸屈服极限为40kg/mm 2, 试求此圆管屈服时轴向载荷P 和扭矩s M 的值。 1.15续上题,在如下二种情况下,试求塑性应变增量的比。

2019届高三高考物理考前预测押题《力学压轴计算题》测试题(解析版)

绝密★启用前 2019届高三高考物理考前预测押题《力学压轴计算题》测试题 一、计算题(共16小题) 1.如图所示,装置BO′O可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B,C两点,装置静止时细线AB水平,细线AC与竖直方向的夹角θ=37o。已知小球的质量m=1kg,细线AC长L=1m,B点距转轴的水平距离和距C点竖直距离相等。(重力加速度g取10m/s2,sin37o=0.6,cos37o=0.8) (1)若装置匀速转动的角速度为时,细线AB上的张力为0而细线AC与竖直方向的夹角仍为37°,求角速度的大小; (2)若装置匀速转动的角速度为时,细线AB刚好竖直,且张力为0,求此时角速度的大小; (3)装置可以以不同的角速度匀速转动,试通过计算在坐标图中画出细线AC上张力T随角速度的平方变化的关系图像 【答案】(1)角速度ω1的大小为r a d/s;(2)此时角速度ω2的大小为r a d/s;(3)计算见上,在坐标图中画出细线AC上张力T随角速度的平方ω2变化的关系图象如图所示. 【解析】(1)细线AB上张力恰为零时,小球靠重力和拉力的合力提供向心力,根据牛顿第二定律有: 解得: (2)细线AB恰好竖直,但张力为零时,设细线AC与竖直方向的夹角为θ′. 由几何关系得:,得=53° 根据牛顿第二定律得:

解得,rad/s (3)当时,细线AB水平,细线AC上张力的竖直分量始终等于小球的重力:T cos=mg;解得:. ω1≤ω≤ω2时细线AB松弛,细线AC上张力的水平分量等于小球做圆周运动需要的向心力,则有:T sinα=mω2l sinα,T=mω2l ω>ω2时,细线AB在竖直方向绷直,仍然由细线AC上张力的水平分量提供小球做圆周运动需要 的向心力:综上所述:时,T=12.5N不变;ω>ω1时,,T﹣ω2关系图象如图所示 2.风洞实验室能产生大小和方向均可改变的风力.如图所示,在风洞实验室中有足够大的光滑水平面,在水平面上建立xOy直角坐标系.质量m=0.5kg的小球以初速度v0=0.40m/s从O点沿x轴正方向运动,在0~2.0s内受到一个沿y轴正方向,大小F1=0.20N的风力作用;小球运动2.0s后风力方向变为y轴负方向,大小变为F2=0.10N(图中未画出).试求: (1)2.0s末小球在y方向的速度大小和2.0s内运动的位移大小; (2)风力F2作用多长时间,小球的速度变为与初速度相同; 【答案】(1)0.8m/s(2) 【解析】(1)设在0~ 2.0s内小球运动的加速度为a1,则 2.0s末小球在y方向的速度 代入数据解得=0.8m/s 沿x轴方向运动的位移

相关文档
最新文档