PT-测井曲线解释部分
PT-测井曲线解释部分
测井/地层编辑器的工具栏
添加数据 编辑数据 删除数据
打开测井曲线
选择测井曲线
3种方法
选择测井曲线
从左到右依次为添加、删除、上移、下移
选择储藏特性
3种方法
选择储藏特性
显示/隐藏数据表
显示/隐藏测井曲线数据表
显示/隐藏地层参数数据表
根据测井数据计算地层参数
根据测井数据计算地层参数
使用一个测井曲线, 自动来进行分层。
Φ Φsst
5
S w S w,sst Vshale S w,shale S w,sst
测井曲线分析向导
仅有伽玛曲线
单一曲线的运算: 为了给出单一曲线的比例和幂选定这个复选框。
A * X + Bn = Y 式中:A是乘数因子, X是输入曲线, B是附加常数,n是幂,Y是输出曲线。
含 水饱 和度 、 渗 透率
深度电阻率曲线
伽玛曲线
Vs hal e
断裂韧性
测井曲线分析向导
仅有伽玛曲线 伽玛曲线
测井曲线分析向导
仅有伽玛曲线
0.33 22GRI 1 Vshale 0.083 23.7GRI 1
估算一个初始值,若E> 500000psi(35000MPa), 则选择固结的;若E< 500000psi (35000MPa), 则选择松散的。
在定义地层之前必须使用 DataConvertPT 把 测井曲线转换成 FracproPT (*.dbd)格式,或
者是LAS文件格式。
调用方式
1.可以从 FracProPT2007 主菜单上通过选定视图>地层/测井编辑器调用; 2.可以从F9屏幕中的测井/地层数据编辑器中调用。
测井曲线特征及综合应用
一、介绍测井曲线的用途电测内容探测对象曲线特征主要用途影响因素使用条件梯度电极系测井视电阻率⒈底部梯度在高阻层上底部有极大值顶部有极小值⒉顶部梯度在高阻层上顶部有极大值底部有极小值⒈确定地层的电阻率。
⒉确定岩性,根据地层电阻率。
⒊分层⒈本层屏蔽效应。
⒉高阻邻层屏蔽效应淡水泥浆油基泥浆咸水泥浆下过套管井不使用电位电极系测井视电阻率曲线以地层中心为对称,高阻层上有高值,低阻层上有低值,岩层界面位于曲线的半幅点上⒈确定地层电阻率。
⒉确定岩性根据地层电阻率高低⒊分层以半幅点影响较小淡水泥浆对于下过套管的井不使用微电极测井井壁内附近深浅两个不同部分的电阻率⒈高阻层上曲线有高值,低阻层上曲线有低值。
⒉渗透层上有幅度差,非渗透层上无幅度差。
⒊半幅点对应于岩层界面。
⒈确定岩层渗透性,其它条件一致的情况下,幅度差大,渗透性好,反之则小。
⒉特别用于分层。
⒊确定岩性,视电阻率大小,井壁发育情况。
⒈矿化度差,是指地层水矿化度泥浆滤液矿化度的不等。
同一砂层来讲矿化度大幅度差大。
⒉灰岩井段的幅度差虚假。
⒊有些灰质泥岩出现反常的负异常微梯度大于微电位。
⒈淡水泥浆。
⒉对于下过套管井不使用。
电测内容探测对象曲线特征主要用途影响因素使用条件自然电位直接测量地层水和钻井液中离子浓度的差异及各种岩性的泥质含量。
⒈地层水矿化度大于泥浆滤液矿化度时,渗透层上负异常。
⒉地层水矿化度小于泥浆滤液矿化度时,渗透层上正异常。
⒊在非渗透层上无异常。
⒋地层中心为对称曲线的半幅点对于岩层的界面。
⒈用于划分渗透层凡是有自然电位异常的通常都是渗透层。
⒉判断地层矿化度高低。
⒊分层(半幅点)大于4倍井径时半幅点小于4倍井径向曲线峰部移动。
⒈地层水矿化度与泥浆滤液矿化度有差时,渗透层上才有异常,地层水矿化度随井的不断加深而变化。
⒉含泥量对同一砂层来讲,随泥质含量的增加其异常幅度变小。
⒊工业迷散电流的影响。
⒈淡咸水泥浆都可以。
⒉下过套管的井不使用。
感应测井地层的电导率或地层的电阻率⒈以地层的中心为对称。
测井曲线ppt课件
随钻测井技术
要点一
总结词
随钻测井技术能够在钻井过程中实时获取测井数据,有助 于及时调整钻井参数和优化钻井方案。
要点二
详细描述
随钻测井技术是一种将测井设备安装在钻头上的技术,能 够在钻井过程中实时获取地层的测井数据。这使得在钻井 过程中能够及时了解地层信息和调整钻井参数,提高了钻 井效率和成功率。同时,随钻测井技术还可以减少钻后测 井的时间和成本,为石油勘探和开发节省了资源。
地质构造识别
测井曲线可以反映地层的构造特征,如断层、褶皱等,有助于地质构造的识别和分类。
地质构造与油气关系
研究地质构造与油气的关系,有助于分析油气聚集的条件和规律,指导油气勘探和开发 。
05
测井曲线的发展趋势与展 望
高分辨率测井技术
总结词
高分辨率测井技术能够提供更精确的地层信息,有助于发现微小地质构造和地层变化。
类。
测井曲线解释实例
砂泥岩地层解释
针对砂泥岩地层的测井曲线,通 过分析曲线形态和参数提取,判 断地层的岩性、物性和含油性。
碳酸盐岩地层解释
针对碳酸盐岩地层的测井曲线,通 过分析曲线形态和参数提取,判断 地层的岩性、裂缝和溶洞等特征。
油气水层识别
利用测井曲线识别油气水层,结合 地质资料和生产动态信息,对油气 水层进行准确判断和评价。
沉积相分析
根据测井曲线反映出的地层结构和岩石物理性质,可以分析沉积相的类型和分布规律。
储层参数计算与流体性质分析
储层参数计算
利用测井曲线可以计算出储层的孔隙度 、渗透率等参数,为储层评价和开发方 案提供依据。
VS
流体性质分析
通过分析测井曲线特征,可以推断出地层 中流体的类型、性质和分布情况。
测井曲线综合解释
密度曲线
总结词
反映岩层密度的曲线
详细描述
密度曲线是通过测量地层对伽马射线的吸收能力来反映岩层的密度。在测井曲线 上,密度较高的岩层通常对应于砂岩或石灰岩,而密度较低的岩层则可能表示泥 岩或页岩。
中子曲线
总结词
反映岩层含氢量的曲线
详细描述
中子曲线是通过测量地层对中子的吸收能力来反映岩层的含氢量。在测井曲线上,中子吸收能力较强 的岩层通常表示含氢量较高的泥岩或页岩,而中子吸收能力较弱的岩层则可能表示含氢量较低的砂岩 或石灰岩。
地层倾角法是通过测量地层的倾斜角 度来判断地层的岩性和物性,该方法 需要使用特殊的测量仪器和数据处理 技术。
交会图法是最常用的方法之一,通过 将不同测井曲线绘制在一张图上,利 用它们的交会关系来判断地层的岩性、 物性和含油性。
模式识别法是一种基于人工智能和机 器学习的方法,通过训练模型来识别 地层的岩性和物性,该方法需要大量 的训练数据和计算资源。
数据噪声干扰
测井数据容易受到多种噪声的干 扰,如环境噪声、设备噪声等, 这些干扰会影响数据的准确性和 可靠性。
数据标准化和归一
化
由于不同测井设备的测量范围和 精度可能存在差异,需要进行标 准化和归一化处理,以确保数据 的可比性和一致性。
多参数综合分析的复杂性
参数间相互影响
测井曲线包含多个参数,这些参数之间可能 存在相互影响和耦合关系,需要进行深入分 析和综合考虑。
根据测井曲线数据,确定该库区存在软弱夹层和 裂隙,可能对水库的稳定性和安全性造成影响。
结论
建议对该库区进行进一步工程地质勘查,加强监 测和维护,确保水库的安全运行。
05
测井曲线综合解释的挑 战与展望
数据处理难度大
常见测井曲线说明
常见测井曲线说明1、所有测井曲线经环境校正后,其前加C:如GR-CGR;CNL-CCNL;LLD-CLLDDEN-CDEN;LLS-CLLS;SNP(井壁中子)-CSNP等;2、易混淆测井曲线的中文名:NLL-中子寿命;SBL-泥岩基线;NEU-中子测井;CALC-微差井径SPEC-能谱曲线;SWN-井壁中子;RA T-来自中子寿命测井的比值曲线UR-铀;THOR-土;K40-钾;TPI-土/钾指数;SGMA-中子寿命;CTS-中子伽马计数率;TC-能谱测井总计数率;G2-中子寿命测井PORS-井壁中子;RA TO中子寿命短/长之比另外,还有电测井系列:MNOR-微电位;MINV-微梯度;NL-微电位;ML-微梯度;R1、R2、R3、R4、R6、R8、R45:分别为1米、2米、3米、4米、6米、8米、0.45米梯度测井;R04、R05:为0.4米、0.5米电位测井;3、常见测井解释成果曲线名:孔隙度系列:POR-孔隙度;PORT-总孔隙度;PORF-冲洗带含水孔隙度;PORW-地层含水孔隙度;PORX-流体孔隙度;PORH-含烃重量;POR2-次生孔隙度;EPOR-有效孔隙度;泥质系列:SH-泥质含量;CL-粘土含量;SI-粉砂岩含量;CLD-分散泥质含量;CLS-结构泥质含量;CLL-层状泥质含量TMON-粘土中蒙托石含量;TILL-粘土中伊利石含量;CEC-阳离子交换能力;QV-阳离子交换容量;BWCL-粘土束缚水含量渗透率系列:PERM-渗透率;PIW-水的渗透率;PIH-油的渗透率;KRW-水的相对渗透率;KRO-油的相对渗透率;PERW-水的有效渗透率;PERO-油的有效渗透率饱和度系列:SW-地层含水饱和度;SXO-冲洗带含水饱和度;SWIR-束缚水饱和度ESW-有效含水饱和度;HYCV-地层平均含烃体积;HYCW-地层平均含烃重量特殊岩性:CI-煤指示;BULK-出砂指数;CARB-炭的体积;SAND-砂岩体积;LIME-石灰岩体积;DOLO-白云岩体积;ANHY-硬石膏体积;C1、C2、C3、C4-附加矿物1、2、3、4的体积;。
常用测井曲线含义及测井解释方法
主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时S P为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
测井曲线-地层
测井曲线要素及其常规组合测井曲线地质意义幅度:分为低幅、中幅和高幅三个阶段形态①钟形:反映水流能量向上减弱,它代表河道的侧向迁移或逐渐废弃②漏斗:反映砂体向上部建造时水流能量加强,颗粒变粗分选加好,代表砂体上部受到波浪改造影响,此外也代表砂体前积的结果。
③箱形:反映沉积过程中能量一致,物源充足的供应条件,是河道砂坝的曲线特征。
④对称齿形:常见的一种曲线形态,它多以充刷、充填作用为主,具有正粒序。
⑤反向齿形:常见的一种曲线形态,河水道末稍前积式充填为主具有反粒序。
⑥正向齿形:为充填堆积特征,常代表洪水作用下的堆积具有对称粒序。
⑦指形:代表强能量下的中层粗粒堆积,如海滩、湖滩⑧漏斗-箱形:代表丰富物源供应下的水下沙体堆积,为河口堆积的典型特征。
⑨箱形-钟形:环境为有丰富的物源,但后期由于河道迁移或废弃导致能量衰减,具有河道的均质沉积,到后期正向粒度的沉积。
⑩上为漏斗-箱形,下为漏斗-钟形:代表河道在迁移摆动条件下,有丰富物源供应的水道充填式堆积。
(8)、(9)、(10)统称为复合形,表示由两种或两种以上曲线形态组合,表示一种水动力环境向另一种环境的变化。
各类形态又可进一步细分为光滑形和锯齿形。
不同水动力条件造成了不同环境下的沉积层序在粒度、分选、泥质含量等方面的特征,因而具有不同的测井曲线形态。
它集中反映出的基本形态和特征包括:幅度:幅度的大小反映粒度、分选性及泥质含量等沉积特征的变化,如自然电位的异常幅度变化、自然伽马幅值高低可以反映地层粒度中值的大小,并能反映泥质含量的高低。
能量厚度:能量厚度反映单砂体水动力较强渗透砂体沉积时间(厚度)。
形状:指单砂体曲线形态,有箱形、钟形、漏斗形、菱形和指形等,反映沉积物沉积时能量变化或相对稳定的情况,如钟形表示沉积能量由强到弱的变化。
接触关系:接触关系指砂岩的顶、底界的曲线形态,反映砂岩沉淀初期及末期的沉积相变化。
次级形态:次级形态主要包括曲线的光滑、包络线形态及齿中线的形态,他们帮助提供沉积信息,如齿中线成水平表明每个薄砂层粒度均匀、沉积能量均匀周期性变化。
测井曲线释义
测井曲线基本原理及其应用一.国产测井系列1、标准测井曲线2.5m底部梯度视电阻率曲线。
地层对比,划分储集层,基本反映地层真电组率。
恢复地层剖面。
自然电位(SP)曲线。
地层对比,了解地层的物性,了解储集层的泥质含量。
2、组合测井曲线(横向测井)含油气层(目的层)井段的详细测井项目。
双侧向测井(三侧向测井)曲线。
深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。
0.5m电位曲线。
测量地层的侵入带电阻率。
0.45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。
补偿声波测井曲线。
测量声波在地层中的传输速度。
测时是声波时差曲线(AC)井径曲线(CALP)。
测量实际井眼的井径值。
微电极测井曲线。
微梯度(RML),微电位(RMN),了解地层的渗透性。
感应测井曲线。
由深双侧向曲线计算平滑画出。
[L/RD]*1000=COND。
地层对比用。
3、套管井测井曲线自然伽玛测井曲线(GR)。
划分储集层,了解泥质含量,划分岩性。
中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。
校正套管节箍的深度。
套管节箍曲线。
确定射孔的深度。
固井质量检查(声波幅度测井曲线)二、3700测井系列1、组合测井双侧向测井曲线。
深双侧向测井曲线,反映地层的真电阻率(RD)。
浅双侧向测井曲线,反映侵入带电阻率(RS)。
微侧向测井曲线。
反映冲洗带电阻率(RX0)。
补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。
反映地层的致密程度。
补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。
补偿中子测井曲线(CN)。
测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%)自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。
划分岩性,反映泥质含量多少。
井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。
测井曲线综合解释课件
测井曲线综合解释应用
04
通过分析测井曲线,可以确定油气层在地下的大致位置和厚度。
确定油气层位置
评估油气储量
指导钻井和完井
通过测井曲线数据,可以估算油气储量,为后续的开采计划提供依据。
测井曲线可以指导钻井工程师选择合适的钻井位置和完井方式,提高油气开采效率。
03
02
01
测井曲线可以用于研究地下水的分布、流动和水质等特性。
测井曲线综合解释课件
CATALOGUE
目录
测井曲线综合解释概述测井曲线基础知识测井曲线综合解释技术测井曲线综合解释应用测井曲线综合解释案例分析测井曲线综合解释发展趋势与展望
测井曲线综合解释概述
01
测井曲线:在钻井过程中,通过测量井壁或钻孔中的物理参数(如电阻率、声波速度、自然伽马等),并将这些参数转换为相应的曲线,用于描述井壁或钻孔周围的地质特征。
通过综合分析,确定了油气藏的分布范围、储层物性、含油饱和度等信息,为油气田勘探开发提供了重要依据。
本案例表明,测井曲线综合解释在油气田勘探开发中具有重要作用,应加强技术研发和应用,提高油气勘探开发效率。
测井曲线综合解释方法
案例分析结果
结论与建议
结论与建议
本案例表明,测井曲线综合解释在水文地质调查中具有重要作用,应加强技术研发和应用,提高水资源管理和保护水平。
测井曲线是石油、天然气等矿产资源勘探、开发中的重要资料,能够提供地层岩性、孔隙度、含油性等信息,有助于评估和预测矿产资源的分布和储量。
油藏模拟与预测
建立油藏模型,模拟油藏的动态变化,预测油藏的产能和开发效果。
储层参数计算
利用测井曲线数据,计算地层的孔隙度、渗透率等储层参数。
地层对比与划分
测井曲线及含义
测井曲线及含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的―正‖、―负‖以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
(整理)测井曲线说明
2.5米梯度M2.25A0.5R25梯度电极M2.25A0.5BR25 自然电位SP 井径CAL微电极A0.025M0.025N-A0.05M ML1、ML2井温TEMP 声波时差AC感应测井COND 自然伽码GR声波幅度CBL 0.4米A0.4M2.25N R04 0.4米A0.4M2.35N R04 0.5米B2.25A0.5R054米A3.75M0.5N R44米M3.75A0.5B R4 0.45米M0.4A0.1B R045 RT深侧向电阻率RT RXO浅侧向电阻率RXO中子伽码NGR DEN密度DEN CNL井壁中子CNL RXO1微球形聚焦电阻率RXO1伽马-伽马GR流体电阻率RT微测向RMLL七测向LLD7、LLS7中感应RILM 深感应RILD 八测向RFOC 井斜DEV 方位角AZIM 激发电位人工电位补偿声波BHC声波衰减率ATC常用测井曲线名称测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马5700系列的测井项目及曲线名称Star Imager 微电阻率扫描成像CBIL 井周声波成像MAC 多极阵列声波成像MRIL 核磁共振成像TBRT 薄层电阻率DAC 阵列声波DVRT 数字垂直测井HDIP 六臂倾角MPHI 核磁共振有效孔隙度MBVM 可动流体体积MBVI 束缚流体体积MPERM 核磁共振渗透率Echoes 标准回波数据T2 Dist T2分布数据TPOR 总孔隙度BHTA 声波幅度BHTT 声波返回时间Image DIP 图像的倾角COMP AMP 纵波幅度Shear AMP 横波幅度COMP A TTN 纵波衰减Shear A TTN 横波衰减RADOUTR 井眼的椭圆度Dev 井斜AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子AR10 方位电阻率AR11 方位电阻率AR12 方位电阻率ARO1 方位电阻率ARO2 方位电阻率ARO3 方位电阻率ARO4 方位电阻率ARO5 方位电阻率ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATA V 平均衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1号极板方位AZ1 1号极板方位AZI 1号极板方位AZIM 井斜方位BGF 远探头背景计数率BGN 近探头背景计数率BHTA 声波传播时间数据BHTT 声波幅度数据BLKC 块数BS 钻头直径BTNS 极板原始数据C1 井径C2 井径C3 井径CAL 井径CAL1 井径CAL2 井径CALI 井径CALS 井径CASI 钙硅比CBL 声波幅度CCL 磁性定位CEMC 水泥图CGR 自然伽马CI 总能谱比CMFF 核磁共振自由流体体积CMRP 核磁共振有效孔隙度CN 补偿中子CNL 补偿中子CO 碳氧比CON1 感应电导率COND 感应电导率CORR 密度校正值D2EC 200兆赫兹介电常数D4EC 47兆赫兹介电常数DAZ 井斜方位DCNT 数据计数DEN 补偿密度DEN_1 岩性密度DEPTH 测量深度DEV 井斜DEVI 井斜DFL 数字聚焦电阻率DIA1 井径DIA2 井径DIA3 井径DIFF 核磁差谱DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线DIP2 地层倾角微电导率曲线2DIP2_1 极板倾角曲线DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线DIP5 极板倾角曲线DIP6 极板倾角曲线DRH 密度校正值DRHO 密度校正值DT 声波时差DT1 下偶极横波时差DT2 上偶极横波时差DT4P 纵横波方式单极纵波时差DT4S 纵横波方式单极横波时差DTL 声波时差DTST 斯通利波时差ECHO 回波串ECHOQM 回波串ETIMD 时间FAMP 泥浆幅度FAR 远探头地层计数率FCC 地层校正FDBI 泥浆探测器增益FDEN 流体密度FGAT 泥浆探测器门限FLOW 流量FPLC 补偿中子FTIM 泥浆传播时间GAZF Z轴加速度数据GG01 屏蔽增益GG02 屏蔽增益GG03 屏蔽增益GG04 屏蔽增益GG05 屏蔽增益GG06 屏蔽增益GR 自然伽马GR2 同位素示踪伽马HAZI 井斜方位HDRS 深感应电阻率HFK 钾HMRS 中感应电阻率HSGR 无铀伽马HTHO 钍HUD 持水率HURA 铀IDPH 深感应电阻率IMPH 中感应电阻率K 钾KCMR 核磁共振渗透率KTH 无铀伽马LCAL 井径LDL 岩性密度LLD 深侧向电阻率LLD3 深三侧向电阻率LLD7 深七侧向电阻率LLHR 高分辨率侧向电阻率LLS 浅侧向电阻率LLS3 浅三侧向电阻率LLS7 浅七侧向电阻率M1R10 高分辨率阵列感应电阻率M1R120 高分辨率阵列感应电阻率M1R20 高分辨率阵列感应电阻率M1R30 高分辨率阵列感应电阻率M1R60 高分辨率阵列感应电阻率M1R90 高分辨率阵列感应电阻率M2R10 高分辨率阵列感应电阻率M2R120 高分辨率阵列感应电阻率M2R20 高分辨率阵列感应电阻率M2R30 高分辨率阵列感应电阻率M2R60 高分辨率阵列感应电阻率M2R90 高分辨率阵列感应电阻率M4R10 高分辨率阵列感应电阻率M4R120 高分辨率阵列感应电阻率M4R20 高分辨率阵列感应电阻率M4R30 高分辨率阵列感应电阻率M4R60 高分辨率阵列感应电阻率M4R90 高分辨率阵列感应电阻率MBVI 核磁共振束缚流体体积MBVM 核磁共振自由流体体积MCBW 核磁共振粘土束缚水ML1 微电位电阻率ML2 微梯度电阻率MPHE 核磁共振有效孔隙度MPHS 核磁共振总孔隙度MPRM 核磁共振渗透率MSFL 微球型聚焦电阻率NCNT 磁北极计数NEAR 近探头地层计数率NGR 中子伽马NPHI 补偿中子P01 第1组分孔隙度P02 第2组分孔隙度P03 第3组分孔隙度P04 第4组分孔隙度P05 第5组分孔隙度P06 第6组分孔隙度P07 第7组分孔隙度P08 第8组分孔隙度P09 第9组分孔隙度P10 第10组分孔隙度P11 第11组分孔隙度P12 第12组分孔隙度P1AZ 1号极板方位P1AZ_1 2号极板方位P1BTN 极板原始数据P2BTN 极板原始数据P2HS 200兆赫兹相位角P3BTN 极板原始数据P4BTN 极板原始数据P4HS 47兆赫兹相位角P5BTN 极板原始数据P6BTN 极板原始数据PAD1 1号极板电阻率曲线PAD2 2号极板电阻率曲线PAD3 3号极板电阻率曲线PAD4 4号极板电阻率曲线PAD5 5号极板电阻率曲线PAD6 6号极板电阻率曲线PADG 极板增益PD6G 屏蔽电压PE 光电吸收截面指数PEF 光电吸收截面指数PEFL 光电吸收截面指数PERM-IND 核磁共振渗透率POTA 钾PPOR 核磁T2谱PPORB 核磁T2谱PPORC 核磁T2谱PR 泊松比PRESSURE 压力QA 加速计质量QB 磁力计质量QRTT 反射波采集质量R04 0.4米电位电阻率R045 0.45米电位电阻率R05 0.5米电位电阻率R1 1米底部梯度电阻率R25 2.5米底部梯度电阻率R4 4米底部梯度电阻率R4AT 200兆赫兹幅度比R4AT_1 47兆赫兹幅度比R4SL 200兆赫兹电阻率R4SL_1 47兆赫兹电阻率R6 6米底部梯度电阻率R8 8米底部梯度电阻率RAD1 井径(极板半径)RAD2 井径(极板半径)RAD3 井径(极板半径)RAD4 井径(极板半径)RAD5 井径(极板半径)RAD6 井径(极板半径)RADS 井径(极板半径)RA TI 地层比值RB 相对方位RB_1 相对方位角RBOF 相对方位RD 深侧向电阻率RFOC 八侧向电阻率RHOB 岩性密度RHOM 岩性密度RILD 深感应电阻率RILM 中感应电阻率RLML 微梯度电阻率RM 钻井液电阻率RMLL 微侧向电阻率RMSF 微球型聚焦电阻率RNML 微电位电阻率ROT 相对方位RPRX 邻近侧向电阻率RS 浅侧向电阻率SDBI 特征值增益SFL 球型聚焦电阻率SFLU 球型聚焦电阻率SGAT 采样时间SGR 无铀伽马SICA 硅钙比SIG 井周成像特征值SIGC 俘获截面SIGC2 示踪俘获截面SMOD 横波模量SNL 井壁中子SNUM 特征值数量SP 自然电位SPER 特征值周期T2 核磁T2谱T2-BIN-A 核磁共振区间孔隙度T2-BIN-B 核磁共振区间孔隙度T2-BIN-PR 核磁共振区间孔隙度T2GM T2分布对数平均值T2LM T2分布对数平均值TEMP 井温TH 钍THOR 钍TKRA 钍钾比TPOR 核磁共振总孔隙度TRIG 模式标志TS 横波时差TT1 上发射上接受的传播时间TT2 上发射下接受的传播时间TT3 下发射上接受的传播时间TT4 下发射下接受的传播时间TURA 钍铀比U 铀UKRA 铀钾比URAN 铀V AMP 扇区水泥图VDL 声波变密度VMVM 核磁共振自由流体体积VPVS 纵横波速度比WA V1 第一扇区的波列WA V2 第二扇区的波列WA V3 第三扇区的波列WA V4 第四扇区的波列WA V5 第五扇区的波列WA V6 第六扇区的波列精品文档精品文档。
常规测井曲线说明
O1-2y层段: 异常显示 不代表裂 缝特征
18
O3q以上层段含沙量明显增加、含沙量与GR具有对应关系,AL、SI、FE、 GD等与VSH/GR也具有对应关系。
ECS
图22. T760井ECS元素俘获分可析编图辑ppt
19
本段O3l-O3q:GR/VCL/LLD与含沙-含泥量 -含碳酸盐具有对应性
总自然伽玛(GGR):一般泥值充填洞穴高值,灰岩低值,含放射性物质段(铀等)高值。
钾钍和(KTH):反映泥质含量情况。
常
能谱 钾(K):反映地层钾含量情况。
规
参
铀(U):反映地层铀含量情况。
考
钍(TH):反映地层钍含量情况。
测
井
说明:一般U=GGR-KTH,如果某段地层呈现GGR高值,KTH值不高,U值高,说明改段地
算求得地层倾角与倾斜方位角(张占松)。
具体应用请看专门的倾角多媒体资料
可编辑ppt
8
二、碳酸盐岩常规测井曲线
碳酸盐岩常规测井曲线包括八条,具体如下:
自然伽玛(GR):一般泥值充填洞穴高值,灰岩低值,含放射性物质段(铀等)高值。
岩性 自然电位(SP):看不出规律。
井径(CAL):灰岩段缩径或者不扩径,泥值充填洞穴或者洞穴处扩径。
三孔隙度增大。
可编辑ppt
11
二、碳酸盐岩常规测井曲线
常
规
PE值在4左右,偏离灰岩
测
值(5),因此岩性的。
线
图
可编辑ppt
12
二、碳酸盐岩特殊测井项目
碳酸盐岩特殊测井项目主要包括:
特
殊
1. 地层微电阻率成像测井(FMI);
测井主要曲线的基本原理和相关应用
测井主要曲线的基本原理 和相关应用
补偿中子和中子伽马测井
•ห้องสมุดไป่ตู้本原理
中子源快中子地层介质热中子 补偿中子测井(CNL ):测量地层对中子的减速能力,测量结果 主要反映地层的含氢量。
中子伽马测井( NG ):测量热中子被俘获而放出中子伽马射线的强 度。
两者均属于孔隙度测井系列。
测井主要曲线的基本原理 和相关应用
补偿中子和中子伽马测井
•应用 1、确定储集层孔隙度。 2、划分岩性。 3、判断气层。 4、套管井中子伽马推移测井寻
找气层。
测井主要曲线的中基子本伽原马理推移测井气层识别图 和相关应用
6.微电极曲线测井(RMG/RMN)
原理:
在视电阻率测井的基础上,为了细 分层,减少上下邻层、泥浆及井径对曲 线的影响,改装电极系,使电极系靠井 壁测量岩层电阻率。这样,大大缩小了 电极之间的距离的电阻率测井。
深双侧向电阻率测
井
Rs shallow investigate double lateral resistivity log
浅双侧向电阻率测
井
RMLL
micro lateral resistivity log
微侧向电阻率测井
CON
induction log
感应测井
AC
acoustic
声波时差
DEN
density
测井主要曲线的基本原理 和相关应用
配合其它测井资料或地质录 井资料综合解释确定岩层岩性。 泥岩曲线幅度值高,砂岩显示低 幅度值,对于含泥质岩层,根据 泥质含量多少界于上述两者之间 。
从曲线上比较容易选择区域 性对比标准层,所以当其它测井 曲线难以进行地层对比的剖面, 可以用自然伽玛曲线进行。另外 ,曲线可在下套管的井中进行, 因此广泛应用于工程技术测井, 如跟踪定位射孔、测和井相找主关要应套曲用线管的外基本窜原理槽
测井曲线解释
测井曲线解释1.声波时差曲线:在泥砂岩剖面上,砂岩显示低时差,其数值随孔隙度的不同而不同;泥岩一般为高时差,其数值随压实程度的不同而变化;页岩的时差介于泥岩和砂岩之间;砾岩的时差一般都较低,并且越致密声波时差值越低.在碳酸盐剖面上,致密石灰岩和白云岩声波时差最低,如含有泥质时,声波时差增高,若有孔隙和裂缝,声波时差明显增大,甚至出现周波跳跃.石膏岩盐剖面,渗透性砂岩最高?,泥岩(含钙质、石膏多)与致密砂岩相近,泥质含量高时增大,岩盐扩径(井直径)严重,周波跳跃?气体比油水的时差要大的多,岩性一定时候,含气层段出现周波跳跃。
2.自然Gamma曲线:在泥砂岩剖面上,纯砂岩在自然Gamma 曲线上显最底值,泥岩显最高值,粉砂岩和泥质砂岩介于二者之间,并随着岩层中泥质含量增加曲线幅度增加;在碳酸盐剖面上,泥岩和页岩显最高值,纯的石灰岩、白云岩有最低值,而泥灰岩、泥质石灰岩、泥质白云岩自然Gamma测井曲线值介于二者之间,并随泥质含量增加幅值增大.3.微电极测井曲线中砂岩异常幅度差大于粉沙岩异常幅度差.4.泥岩在密度测井曲线上值较高而煤层密度测井值在剖面上看很低5.在淡水泥浆的沙泥岩剖面井中,自然电位测井曲线以大断泥岩层部分的自然电位曲线为基线,此时出现负异常的井段都可认为是渗透性岩层。
在含有泥质的砂岩中由于泥质对溶液产生吸附电动势使总电动势降低。
所以纯砂岩的自然电位异常幅度要比泥质岩石的异常幅度大,而且随着砂岩中泥质含量的增加,自然电位异常幅度会随之减小自然电位与自然伽马对砂岩泥岩都很敏感,但是自然电位容易受到流体性质、岩层厚度的影响,含油气或者薄层时,幅度很低。
粉砂和泥的比值大于1:2,幅度趋于0.自然伽马虽然也受到层厚影响,层厚小于0.8米时才开始显现影响。
以上为一般情况(正常压实),如果欠压实,情况相反,砂岩出现高时差,如渤海湾明化镇组所以具体地区具体问题具体分析(要根据岩心资料建立具体解释模型)6.感应测井为了获取井下地层的原始含油饱和度资料,用油基钻井液钻井;为了不破坏井下地层的渗透率,有时采用空气钻井;这时井中没有导电介质,不能传导电流,为了解决这个问题,发明了感应测井。
常规测井曲线说明
一、碎屑岩常规测井曲线
T903
在泥岩层处, CAL扩径,
具 体 图 例
可编辑ppt
在泥岩层处, SP显示
为基线,电阻率变小。
4、油气层:
CAL不扩径,SP呈副幅 度差,电阻率在1.5- 3.0Ω.m。
水层
CAL不扩径,SP呈副幅 度差,电阻率在0.3- 1.0Ω.m。
5
一、碎屑岩固井
固
碎屑岩固井评价标准:
项
3. 元素俘获测井(ECS)。
目
可编辑ppt
13
二、碳酸盐岩特殊测井项目
闭合裂缝特征
FMI
T760井FMI可成象编裂辑缝p分pt析图
14
ST异常特征反映泥质, 层界面,垮塌等特征
DSI
反
射
渗
系
流
数
差
能
分
力
能
量
T760井D可SI编斯辑通p利pt波分析图
15
DSI
O2yj: ST无异常指示
O2yj: ST弱异常指示 反映岩相特征
3、差油气层: CAL不扩径,SP呈
副幅度差,电阻率在 1-1.3Ω.m,DEN变大,
CNL变小,AC基本不变。
4、油气层:
CAL不扩径,SP呈副幅 度差,电阻率在0.9- 2.0Ω.m,DEN变小,CNL 变大,AC基本不变。
5、水层
CAL不扩径,SP呈副幅 度差,电阻率在0.3- 0.4Ω.m,DEN变小,CNL 变大,AC基本不变。
层段1:O3q-O2yj接触面,铀异常,RT相对高值 GD含量高
层段2:低RT层,GR/GD及含沙量较高—砂泥影响 层段3:低RT层,低GR,GD略高,含沙不明显—非砂泥影响 层段4:相对低RT层,GD含量较高