洛必达法则在高考解答题中的应用
新人教版高中数学《洛必达法则在高考中的应用》精品PPT课件
注意:lim6x 2 为已定式,不能再用洛必达法则。
x1 6 x
例5.若f(x0 )
2
,求lim h0
f(x0
2h) 5h
f(x0
h)
解析:l i m h0
f(
x0
2 h ) 5h
f
( x0
h)
lim 2f(x0
h0
2
h ) 5
f( x0
h)
3 5
f( x0
2a
g(3) 9a 1 0
①若g(1) a 1 0 a 1 时,
g(t)
则 g(t) 在 [1,3]必有唯一零点t0
所以 y(t) 在[1, t0 ] 减,[t0 ,3]增
1 t0 3
又y(1) 0 ,所以 y(t0 ) 0不适合。
②若g(1) a 1 0 a 1时,
若 x (0,),则
ax 1 0 ax 1 x f (x)
a
1 1 ex
1 x
xex ex 1 x(ex 1)
h(x)恒成立。
下面求 h(x),x (0,) 的最小值或最小极限值。
用导数法判断单调性难以解决,所以猜测最小
极限值点在0或 位置,由洛必达法则:
g(x) xe x 2e x x 2 0(x 0)
因为 g(x) xex ex 1 ,g (x) xe x 0
所以 g(x) 在(0,) 增
g(x) g(0) 0 所以 g(x) 在(0,)增
g(x) g(0) 0 h(x) 1
利用洛必达法则来处理高考中的恒成立问题
利用洛必达法则来处理高考中的恒成立问题河南省偃师高中 高洪海2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
一.洛必达法则法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A ∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0;(3)()()limx f x l g x →∞'=', 那么 ()()limx f x g x →∞=()()limx f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞; (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a-→洛必达法则也成立。
最新洛必达法则在高考解答题中的应用(高二下)复习课程
导数结合洛必达法则巧解高考压轴题一.洛必达法则:法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞;(2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围.3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围. 4.设函数xx x f cos 2sin )(+=。
洛必达法则在高考解答题中的应用(高二下)
洛必达法则在高考解答题中的应用(高二下)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN导数结合洛必达法则巧解高考压轴题一.洛必达法则:法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a g x →=∞;(2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.○2洛必达法则可处理00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限. ○4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解1. 函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.2. 已知函数xb x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π∈x 恒成立,求实数a 的取值范围. 4.设函数xx x f cos 2sin )(+=。
2023届高考数学专项练习洛必达法则含解析
洛必达法则思路引导“洛必达法则”是高等数学中的一个重要定理,用分离参数法(避免分类讨论)解决成立、或恒成立命题时,经常需要求在区间端点处的函数(最)值,若出现00型或∞∞型可以考虑使用洛必达法则。
法则1 若函数f(x)和g(x)满足下列条件:(1)limx→a f(x)=0及limx→ag(x)=0;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)limx→a f′xg′x=A,那么limx→af xg x=limx→af′xg′x=A.法则2 若函数f(x)和g(x)满足下列条件:(1)limx→a f(x)=∞及limx→ag(x)=∞;(2)在点a的某去心邻域内,f(x)与g(x)可导且g′(x)≠0;(3)limx→a f′xg′x=A,那么limx→af xg x=limx→af′xg′x=A.例题讲解类型一:用洛必达法则处理00型函数【例1】已知函数f(x)=x(e x-1)-ax2,当x≥0时,f(x)≥0,求a的取值范围.【方法总结】用洛必达法则处理00型函数的步骤:1.可以分离变量;2.出现“0”型式子;3.运用洛必达法则求值2023届高考数学专项练习【针对训练】若∀x∈[1,+∞),不等式ln x≤m x-1 x恒成立,求实数m的取值范围.类型二:用洛必达法则处理∞∞型函数【例2】已知函数f(x)=(x+1)ln x-a(x-1),若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【方法总结】用洛必达法则处理∞∞型函数的步骤:1.可以分离变量;2.出现“∞∞”型式子;3.运用洛必达法则求值【针对训练】设函数f(x)=e x-1-x-ax2,若当x≥0时f(x)≥0,求a的取值范围模拟训练1.已知函数f(x)=a ln x+bx(a,b∈R)在x=12处取得极值,且曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直.(1)求实数a,b的值;(2)若∀x∈[1,+∞),不等式f(x)≤(m-2)x-m x恒成立,求实数m的取值范围.2.已知函数f(x)=x(e x-1)-ax2.(1)若f(x)在x=-1时有极值,求函数f(x)的解析式;(2)当x≥0时,f(x)≥0,求a的取值范围.3.已知函数f(x)=a ln xx+1+bx,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0。
高考数学备考之端点效应(洛必达法则)专题
高考数学备考之端点效应(洛必达法则)专题洛必达法制:若函数)(x f 和函数)(x g 满足:①当a x →时 函数)(x f 和)(x g 趋于0②在点a 的去心临域内 )('x f 与)('x g 存在且0)('≠x g③)()()()(''lim lim x g x f x g x f ax a x ===→→ 例如:当0>x 时 求xe x 1-的值.解:由洛必达法制可知11lim 1lim00==-→→xx x x e x e解答:(由题设可得 当0,1x x >≠时 k<22ln 11x xx +-恒成立。
令g (x)=22ln 11x xx+-(0,1x x >≠),则()()()22221ln 121x x x g x x +-+'=⋅- 再令()()221ln 1h x x x x =+-+(0,1x x >≠)则()12ln h x x x x x'=+- ()212ln 1h x x x ''=+-易知()212ln 1h x x x''=+-在()0,+∞上为增函数 且()10h ''= 故当(0,1)x ∈时 ()0h x ''< 当x ∈(1 +∞)时 ()0h x ''>∴()h x '在()0,1上为减函数 在()1,+∞上为增函数 故()h x '>()1h '=0∴()h x 在()0,+∞上为增函数()1h =0∴当(0,1)x ∈时 ()0h x < 当x ∈(1 +∞)时 ()0h x > ∴当(0,1)x ∈时 ()0g x '< 当x ∈(1 +∞)时 ()0g x '>∴()g x 在()0,1上为减函数 在()1,+∞上为增函数由洛必达法则知()2111ln 1ln 1lim 2lim12lim 1210122x x x x x x g x x x →→→+⎛⎫=+=+=⨯-+= ⎪--⎝⎭∴0k ≤ 即k 的取值范围为(-∞ 0]2(个人原创)已知函数322()f x x ax bx a =+++ 当1a =-时 若(,0)x ∀∈-∞ 都有()x f x e ≤恒成立 求b 的取值范围.解答:当0x <时 321xx x bx e -++≤恒成立 等价于321x e x x b x-+-≥恒成立令321()x e x x g x x -+-= 则22(1)(21)'()x x e x x g x x ----=再令2()21x h x e x x =---由'()41x h x e x =--得''()4x h x e =-∴ 当0x <时 ''()4x h x e =-<0, ∴ '()41x h x e x =-- 在(,0)-∞单调递减 ∴ (,0)x ∀∈-∞ '()'(0)h x h >即'()0h x >∴2()21x h x e x x =---在(,0)-∞单调递增 ∴(,0)x ∀∈-∞ ()(0)h x h <即()0h x <∴(,0)x ∀∈-∞ 22(1)(21)'()0x x e x x g x x ----=>∴321()x e x x g x x-+-=在(,0)-∞单调递增∴由洛必达法则可得3201limx x e x x x →-+-320(1)'lim 'x x e x x x →-+-= =2032lim 1x x e x x→-+=1 ∴(,0)x ∀∈-∞ ()g x <1∴要使321x e x x b x -+-≥恒成立 只需1b ≥∴b 的取值范围是[1,)+∞【解析】当(0,)2x π∈时 原不等式等价于3sin x xa x->. 记3sin ()x x f x x -=则43sin cos 2'()x x x xf x x --=.记()3sin cos 2g x x x x x =-- 则'()2cos sin 2g x x x x =+-. 因为''()cos sin cos (tan )g x x x x x x x =-=-'''()sin 0g x x x =-< 所以''()g x 在(0,)2π上单调递减 且''()0g x <所以'()g x 在(0,)2π上单调递减 且'()0g x <.因此()g x 在(0,)2π上单调递减且()0g x < 故4()'()0g x f x x =< 因此3sin ()x x f x x -=在(0,)2π上单调递减. 由洛必达法则有320000sin 1cos sin cos 1lim ()limlim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====即当0x →时 1()6g x → 即有1()6f x <.故16a ≥时 不等式3sin x x ax >-对于(0,)2x π∈恒成立. 【评注】通过以上例题的分析 我们不难发现应用洛必达法则解决的试题应满足: ①可以分离变量③ 用导数可以确定分离变量后一端新函数的单调性③出现“00”型或∞∞型式子.解:由题设0x ≥ 此时()0f x ≥.①当0a <时 若1x a >- 则01x ax <+ ()1xf x ax ≤+不成立 ②当0a ≥时 当0x ≥时 ()1x f x ax ≤+ 即11x xe ax --≤+若0x = 则a R ∈若0x > 则11xxe ax --≤+等价于111x e x ax --≤+ 即1x x x xe e a xe x -+≤-. 记1()x x x xe e g x xe x -+=-则2222221'()=(2)()()x x x xx x x x e x e e e g x e x e xe x xe x ---+=--+--. 记2()2x x h x e x e -=--+ 则'()2x x h x e x e -=-- ''()+20x x h x e e -=->. 因此 '()2x x h x e x e -=--在(0)+∞,上单调递增 且'(0)0h = 所以'()0h x > 即()h x 在(0)+∞,上单调递增 且(0)0h = 所以()0h x >.因此2'()=()0()xx e g x h x xe x >- 所以()g x 在(0)+∞,上单调递增. 由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+ 即当0x →时 1()2g x →即有1()2g x > 所以12a ≤.综上所述 a 的取值范围是1(,]2-∞.5 (2010年全国新课标理)设函数2()1x f x e x ax =--- 若当0x ≥时()0f x ≥ 求a 的取值范围.解:当0x =时 ()0f x = 对任意实数a,均在()0f x ≥当0x >时 ()0f x ≥等价于21x e x a x --≤令()21x e x g x x --=()0x >,则322()x x xe e x g x x -++'=令()()220x x h x xe e x x =-++> 则()1x x h x xe e '=-+ ()0x h x xe ''=>知()h x '在()0,+∞上为增函数 ()()00h x h ''>= 知()h x 在()0,+∞上为增函数()()00h x h >= ()0g x '∴> g(x)在()0,+∞上为增函数。
洛必达法则在高考解答题中的应用
一.洛必达法例:法例 1. 若函数f (x)和g (x)知足以下条件: (1) lim f x0 及 lim g x0 ;x a x a(2) 在点a的去心邻域内, f (x) 与 g(x) 可导且 g '( x)0 ;f xl ,那么f x f xl .(3) lim lim= limx a g x x a g x x a g x法例 2. 若函数f (x)和g (x)知足以下条件: (1)lim f x及 lim g x;x a x a(2) 在点a的去心邻域内, f (x) 与 g(x)可导且 g' ( x)0 ;f xl ,那么f x f xl .(3) lim lim= limx a g x x a g x x a g x利用洛必达法例求不决式的极限是微分学中的要点之一,在解题中应注意:○1 将上边公式中的x a , x换成 x, x, x a, x a 洛必达法例也建立.○2 洛必达法例可办理0 ,, 0, 1,, 00,型.0 ,○3 在着手求极限从前,第一要检查能否知足,0, 1 ,0,00,型定式,不然滥用洛必达法例会犯错.当不知足三个前提条件时,就不可以用洛必达法例,这时称洛必达法例不合用,应从此外门路求极限.○4 若条件切合,洛必达法例可连续多次使用,直到求出极限为止.二.高考例题解说1.函数 f ( x)e x 1 x ax2.(Ⅰ)若 a0 ,求 f ( x)的单一区间;(Ⅱ)若当 x0 时f ( x)0 ,务实数 a 的取值范围.2. 已知函数aln x by f (x) 在点(1, f (1))处的切线方程为f ( x)1,曲线x xx 2 y 30 .(Ⅰ)求 a 、b的值;(Ⅱ)假如当 x0 ,且 x 1时, f ( x)ln x k,求 k 的取值范围.x 1x3. 若不等式sin x x ax3关于x (0,) 恒建立,务实数 a 的取值范围.24. 设函数 f ( x)sin x 。
洛必达法则(高考题)
洛必达法则(高考题)洛必达法则洛必达法则是微积分中的重要概念之一。
它用于求解未定式的极限,主要包括三个法则。
法则1:若函数f(x)和g(x)满足一定条件,那么它们的极限相等。
法则2:若函数f(x)和g(x)满足一定条件,且在正负无穷处极限存在,那么它们的极限相等。
法则3:若函数f(x)和g(x)满足一定条件,且在某一点的去心邻域内极限存在,那么它们的极限相等。
在使用洛必达法则求解极限时,需要注意以下几点:1.检查是否满足前提条件,否则结果可能不正确。
2.可以连续多次使用洛必达法则,直到求出极限为止。
3.若不满足前提条件,不能使用洛必达法则,需要从其他途径求解。
XXX在高考中也经常出现,例如以下题目:1.设函数f(x) = e^(-1-x-ax)/(x^2),求f(x)的单调区间和a的取值范围。
解:根据洛必达法则,当a = 1时,f(x) = e^(-1-x),f'(x) = e^(-1)。
当x∈(-∞,0)时,f'(x)。
0.因此,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增。
又因为f(x)≥1/x^2,所以当x≥1时,f(x)≥1/e。
因此,a的取值范围为a≤1/2.经过格式修正和改写,文章变得更加清晰易懂。
首先,将文章中的数学符号进行修改,使其符合规范。
然后,删除掉明显有问题的段落,比如第一段中的“于是当x时,f(x).”这句话没有明确的意义。
最后,对每段话进行小幅度的改写,使其更加清晰易懂。
具体修改如下:首先,对于函数 $f(x)$,当 $f'(x) \geq 0$($x \geq 0$)时,有 $f(0) = 2$。
因此,当 $x \geq 0$ 时,$f(x) \geq 2$。
由不等式 $e。
1+x$($x \neq 0$)可得 $e^x - x。
1 -x$($x \neq 0$)。
因此,当 $a。
1$ 时,有:2f'(x) < e^x - 1 + 2a(e^{-x} - 1) = e^{-x}(e^x - 1)(e^x - 2a)$$因此,当 $x \in (0.\ln(2a))$ 时,$f'(x) < 0$,而 $f(0) = 2$,因此当 $x \in (0.\ln(2a))$ 时,$f(x) < 2$。
利用洛必达法则来处理高考中的恒成立问题
利用洛必达法则来处理高考中的恒成立问题高考中的恒成立问题是一类常见的数学问题,其中包括利用洛必达法则(L'Hôpital's Rule)解决的问题。
洛必达法则是一种处理极限的方法,通过对函数的导数进行求导,来求解一些特定的极限。
在高考中,经常出现的恒成立问题包括函数的极限和导数的求解等。
首先,我们来了解一下洛必达法则的基本思想。
洛必达法则适用于以下形式的不定式极限:lim[f(x)/g(x)],其中x趋向于a,f(x)和g(x)为可导函数。
当直接计算极限的方式不可行或不方便时,洛必达法则可以帮助我们找到极限的解。
洛必达法则的常见形式有三种:0/0型、∞/∞型和∞-∞型。
接下来,我们将分别介绍这三种形式的洛必达法则,并举例说明如何应用。
第一种形式是0/0型,即函数f(x)和g(x)在极限点a处的函数值都趋于0。
洛必达法则的核心思想是对函数f(x)和g(x)同时求导,然后再求极限。
如果求导后的函数依然满足0/0型的形式,我们可以继续应用洛必达法则,直到求导后的函数不再满足0/0型为止。
例如,我们来计算极限lim[(1-cosx)/x],其中x趋向于0。
这个极限的形式是0/0型,我们无法直接计算。
首先,对分子和分母同时求导,得到lim[sinx/1],依然是0/0型。
再次应用洛必达法则,继续求导,得到lim[cosx/0],这时分母变为0,不再满足0/0型。
因此,我们可以得出极限的结果为1第二种形式是∞/∞型,即函数f(x)和g(x)在极限点a处的函数值都趋于无穷大。
处理这种形式的洛必达法则与0/0型类似,只需对函数f(x)和g(x)同时求导,并再次应用洛必达法则,直到求导后的函数不再满足∞/∞型。
例如,我们来计算极限lim[(x^2+1)/(2x^2+3)],其中x趋向于无穷大。
这个极限的形式是∞/∞型,我们无法直接计算。
首先,对分子和分母同时求导,得到lim[2x/(4x)],依然是∞/∞型。
教师与学霸专用:高中数学洛必达法则与泰勒公式在解高考题中的应用
导数结合洛必达法则巧解高考压轴题第一部分:历届导数高考压轴题(全国2理)设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.(全国1理)已知函数()11ax x f x e x-+=-.(Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围.(全国1理)设函数()e e x x f x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.(全国2理)设函数sin ()2cos x f x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.(辽宁理)设函数ln ()ln ln(1)1x f x x x x=-+++.⑴求()f x 的单调区间和极值;⑵是否存在实数a ,使得关于x 的不等式()f x a 的解集为(0,)+∞?若存在,求a 的取值范围;若不存在,试说明理由.(新课标理)设函数)(x f =21x e x ax ---.(Ⅰ)若0=a ,求)(x f 的单调区间;(Ⅱ)若当x ≥0时)(x f ≥0,求a 的取值范围.(新课标文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.(全国大纲理)设函数()1x f x e -=-.(Ⅰ)证明:当1x >-时,()1x f x x ≥+;(Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围.(新课标理)已知函数ln ()1a xbf x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1xkf x x x >+-,求k 的取值范围.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围第二部分:泰勒展开式1.2311,1!2!3!!(1)!n n xx x x x x x e e n n θ+=+++++++ 其中(01)θ<<;2.231ln(1)(1),2!3!!n n n x x x x x R n -+=-+-+-+ 其中111(1)()(1)!1n n n n x R n xθ++=-++;3.35211sin (1)3!5!(21)!k k n x x x x x R k --=-+-+-+- ,其中21(1)cos (21)!k k n x R x k θ+=-+;4.24221cos 1(1)2!4!(22)!k k n x x x x R k --=-+-+-+- ,其中2(1)cos (2)!k k n x R x k θ=-;第三部分:洛必达法则及其解法洛必达法则:设函数()f x 、()g x 满足:(1)lim ()lim ()0x a x af xg x →→==;(2)在()U a 内,()f x '和()g x '都存在,且()0g x '≠;(3)()lim ()x a f x A g x →'='(A 可为实数,也可以是±∞).则()()lim lim ()()x ax a f x f x A g x g x →→'=='.1.(新课标理)已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围.常规解法(Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x=++,所以22ln 1(1)(1)()())11x k k x f x x x x x x ---+=+--.考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x x h x x -++=.(i)当0k ≤时,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x ⋅>-;当(1,)x ∈+∞时,()0h x <,可得21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x k f x x x >+-;(ii)当01k <<时,由于当1(1,)1x k ∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k ∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾.(iii)当1k ≥时,'()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,.注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.洛必达法则解法当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x k x x x x +>++-,也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x x g x x =+-,0x >,且1x ≠则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+,记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>,从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增.由洛必达法则有2211112ln 2ln 2ln 2lim ()lim(1)1lim 1lim 0112x x x x x x x x x g x x x x→→→→+=+=+=+=---,即当1x →时,()0g x →,即当0x >,且1x ≠时,()0g x >.因为()k g x <恒成立,所以0k ≤.综上所述,当0x >,且1x ≠时,ln ()1x k f x x x >+-成立,k 的取值范围为(0]-∞,.注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x x g x x=+-求导,研究其单调性、极值.此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.2.(新课标理)设函数2()1x f x e x ax =---.(Ⅰ)若0a =,求()f x 的单调区间;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.应用洛必达法则和导数(Ⅱ)当0x ≥时,()0f x ≥,即21x e x ax --≥.①当0x =时,a R ∈;②当0x >时,21x e x ax --≥等价于21x e x a x --≤.记21()x e x g x x --=(0+)x ∈∞,,则3(2)2'()x x e x g x x -++=.记()(2)2x h x x e x =-++(0+)x ∈∞,,则'()(1)1x h x x e =-+,当(0+)x ∈∞,时,''()0x h x xe =>,所以'()(1)1x h x x e =-+在(0+)∞,上单调递增,且'()'(0)0h x h >=,所以()(2)2x h x x e x =-++在(0+)∞,上单调递增,且()(0)0h x h >=,因此当(0+)x ∈∞,时,3()'()0h x g x x =>,从而21()x e x g x x --=在(0+)∞,上单调递增.由洛必达法则有,20000111lim ()lim lim lim 222x x x x x x x e x e e g x x x →→→→---====即当0x →时,1()2g x →,所以当(0+)x ∈∞,时,所以1()2g x >,因此12a ≤.综上所述,当12a ≤且0x ≥时,()0f x ≥成立.例题:若不等式3sin x x ax >-对于(0,)2x π∈恒成立,求a 的取值范围.应用洛必达法则和导数当(0,2x π∈时,原不等式等价于3sin x x a x ->.记3sin ()x x f x x-=,则43sin cos 2'()x x x x f x x --=.记()3sin cos 2g x x x x x =--,则'()2cos sin 2g x x x x =+-.因为''()cos sin cos (tan )g x x x x x x x =-=-,'''()sin 0g x x x =-<,所以''()g x 在(0,2π上单调递减,且''()0g x <,所以'()g x 在(0,)2π上单调递减,且'()0g x <.因此()g x 在(0,)2π上单调递减,且()0g x <,故4()'()0g x f x x =<,因此3sin ()x x f x x -=在(0,)2π上单调递减.由洛必达法则有3200000sin 1cos sin cos 1lim ()lim lim lim lim 3666x x x x x x x x x x f x x x x →→→→→--=====,即当0x →时,1()6g x →,即有1()6f x <.故16a ≥时,不等式3sin x x ax >-对于(0,)2x π∈恒成立.通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:1可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“00”型式子.(海南宁夏文)已知函数2()(1)x f x x e ax =--.(Ⅰ)若()f x 在1x =-时有极值,求函数()f x 的解析式;(Ⅱ)当0x ≥时,()0f x ≥,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数当0x ≥时,()0f x ≥,即2(1)x x e ax -≥.①当0x =时,a R ∈;②当0x >时,2(1)x x e ax -≥等价于1xe ax -≥,也即1x e a x -≤.记1()x e g x x -=,(0,)x ∈+∞,则(1)1'()x x e g x x-+=.记()(1)1x h x x e =-+,(0,)x ∈+∞,则'()0x h x xe =>,因此()(1)1x h x x e =-+在(0,)+∞上单调递增,且()(0)0h x h >=,所以()'()0h x g x x =>,从而1()x e g x x-=在(0,)+∞上单调递增.由洛必达法则有0001lim ()lim lim 11x x x x x e e g x x→→→-===,即当0x →时,()1g x →所以()1g x >,即有1a ≤.综上所述,当1a ≤,0x ≥时,()0f x ≥成立.(全国大纲理)设函数()1x f x e -=-.(Ⅰ)证明:当1x >-时,()1x f x x ≥+;(Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数由题设0x ≥,此时()0f x ≥.①当0a <时,若1x a >-,则01x ax <+,()1x f x ax ≤+不成立;②当0a ≥时,当0x ≥时,()1x f x ax ≤+,即11x x e ax --≤+;若0x =,则a R ∈;若0x >,则11x x e ax --≤+等价于111x e x ax --≤+,即1x x x xe e a xe x-+≤-.记1()x x x xe e g x xe x -+=-,则2222221'()=2)()()x x x x x x x x e x e e e g x e x e xe x xe x ---+=--+--.记2()2x x h x e x e -=--+,则'()2x x h x e x e -=--,''()+20x x h x e e -=->.因此,'()2x x h x e x e -=--在(0)+∞,上单调递增,且'(0)0h =,所以'()0h x >,即()h x 在(0)+∞,上单调递增,且(0)0h =,所以()0h x >.因此2'()=()0()xx e g x h x xe x >-,所以()g x 在(0)+∞,上单调递增.由洛必达法则有000011lim ()lim lim lim 122x x x x x x x x x x x x x x xe e xe e xe g x xe x e xe e xe →→→→-++====-+-+,即当0x →时,1()2g x →,即有1()2g x >,所以12a ≤.综上所述,a 的取值范围是1(,]2-∞.(全国2理)设函数sin ()2cos x f x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>;当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭(k ∈Z )是减函数.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数sin ()2cos x f x ax x=≤+若0x =,则a R ∈;若0x >,则sin 2cos x ax x ≤+等价于sin (2cos )x a x x ≥+,即sin ()(2cos )x g x x x =+则222cos 2sin sin cos '()(2cos )x x x x x x g x x x --+=+.记()2cos 2sin sin cos h x x x x x x x =--+,2'()2cos 2sin 2cos cos 212sin cos 212sin 2sin 2sin (sin )h x x x x x x x x x x x x x x x =---+=--+=-=-因此,当(0,)x π∈时,'()0h x <,()h x 在(0,)π上单调递减,且(0)0h =,故'()0g x <,所以()g x 在(0,)π上单调递减,而000sin cos 1lim ()lim lim (2cos )2+cos sin 3x x x x x g x x x x x x →→→===+-.另一方面,当[,)x π∈+∞时,sin 111()(2cos )3x g x x x x π=≤≤<+,因此13a ≥.。
洛必达法则在2024年高考中的应用
首先,在心理学考试中,有一道题目是关于人们在面临压力时的反应。
题目问:“当人们面临压力时,他们会表现出什么样的行为?”选择题选项包括直接逃避、积极应对、寻求支持和消沉。
根据洛必达法则,人们的行为往往是对内在需要和外在环境的综合反应。
在面临压力时,不同的人会有不同的应对方式,有些人会选择逃避,有些人会积极应对,有些人会寻求支持,而有些人会消沉。
这道题目考察了学生对洛必达法则的理解和应用。
其次,在社会学考试中,有一道题目是关于个人选择与社会期望的关系。
题目问:“个人选择受到社会期望的影响吗?如果有,如何解释这种现象?”根据洛必达法则,人们的行为往往受到社会期望的影响。
社会期望是一种外在环境因素,它对个人的行为有一定的引导作用。
人们在做出选择时往往会考虑社会期望,尽量符合社会的标准和价值观。
这道题目考察了学生对洛必达法则在社会领域的应用。
最后,在经济学考试中,有一道题目是关于人们在购买决策中的行为模式。
题目问:“人们在购买决策中会考虑哪些因素?请结合洛必达法则解释。
”根据洛必达法则,人们在购买决策中往往会同时考虑内在因素和外在环境。
内在因素包括个人需求、喜好和价值观,外在环境包括信息获取和社会影响。
人们在购买决策中会考虑自己的需求和偏好,并尝试获得更多的信息来做出决策,同时也会受到社会的影响。
这道题目考察了学生对洛必达法则在经济领域的应用。
总结来说,在2024年高考中,洛必达法则被应用于心理学、社会学和经济学等科目,用来解释人类行为的模式和机制。
这些题目考察了学生对洛必达法则的理解和应用能力,同时也拓宽了学生的思维和知识面。
利用洛必达法则解决导数问题(解析版)—2025年新高考数学一轮复习
0
一、 型及 型未定式
0 1、定义:如果当 x ® a (或 x ® )时,两个函数 f (x) 与 g(x) 都趋于零(或都趋于无
f (x)
f (x)
.通常把这种极限
x®a g(x)
x® g(x)
0
称为 型及 型未定式.
x®1
ln x x2 1
=
()
A. 3
8
B.
1 2
C.1
D.2
【答案】B
学科网(北京)股份有限公司
【分析】
根据题意利用洛必达法则求解即可
【详解】由题意得
lim
x®1
ln x x2 1
=
lim
x®1
ln x
x2 1
1
=
lim
x®1
x 2x
=
lim
x®1
1 2x2
=1, 2
故选:B 2.(23-24 高二下·广东佛山·阶段练习)两个无穷小之比或两个无穷大之比的极限可能存在, 也可能不存在,为此,洛必达在 1696 年提出洛必达法则,即在一定条件下通过对分子、分母
【详解】由题意可得: lim ex ex = lim ex ex = lim ex + ex = 2 .
x®0 sin x x®0 sin x x®0 cos x
故答案为: 2 . 2.(23-24 高二下·四川成都·期中)1696 年,洛必达在他的著作《无限小分析》一书中创造 了一种算法,用以寻找满足一定条件的两函数之商的极限,法则的大意为:在一定条件下通
lim ex + ex 2 = lim ex + ex 2 = lim ex ex = lim ex ex = lim ex + ex = 2 ,
利用洛必达法则解决导数问题(学生版)-高中数学
利用洛必达法则解决导数问题命题规律及备考策略【命题规律】本节内容是新高考卷的选考内容,设题稳定,难度较大,分值为15-17分【备考策略】1能用导数解决函数问题2能用洛必达法则解决极限等问题【命题预测】洛必达法则只是一个求极限的工具,是在一定条件下通过对分子分母分别求导再求极限来确定未定式极限值的方法。
详细的洛必达法则应用是大学高等数学中才介绍,这里用高中生最能看懂的方式说明,能备考使用即可.知识讲解洛必达法则:法则1若函数f(x)和g(x)满足下列条件:(1)limx→a f x =0及limx→ag x =0; (2)在点a的去心邻域内,f(x)与g(x)可导且g'(x)≠0; (3)limx→a f xg x=l,那么limx→a f xg x=limx→af xg x=l。
00型法则2若函数f(x)和g(x)满足下列条件:(1)limx→a f x =∞及limx→ag x =∞; (2)在点a的去心邻域内,f(x)与g(x)可导且g'(x)≠0; (3)limx→a f xg x=l,那么lim x →a f x g x =lim x →af xg x=l 。
∞∞型注意:1. 将上面公式中的x →a ,x →∞换成x →+∞,x →-∞,x →a +,x →a -洛必达法则也成立。
2. 洛必达法则可处理00,∞∞,0⋅∞,1∞,∞0,00,∞-∞型。
3. 在着手求极限前, 首先要检查是否满足00,∞∞,0⋅∞,1∞, ∞0,00,∞-∞型定式, 否则滥用洛必达法则会出错。
当不满足三个前提条件时, 就不能用洛必达法则, 这时称洛必达法则不适用, 应从另外途径求极限。
4. 若条件符合, 洛必达法则可连续多次使用, 直到求出极限为止。
lim x →af (x )g (x )=lim x →a f (x )g (x )=lim x →a f (x )g (x ), 如满足条件, 可继续使用洛必达法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.洛必达法则:
法则1.若函数)(x f 和)(x g 满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x a
g x →=; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;
(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()
lim x a f x l g x →'='. 法则2.若函数)(x f 和)(x g 满足下列条件:(1) ()lim x a f x →=∞及()lim x a
g x →=∞; (2)在点a 的去心邻域内,)(x f 与)(x g 可导且0)('≠x g ;
(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()
lim x a f x l g x →'='. 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:
○
1将上面公式中的a x →,∞→x 换成+∞→x ,-∞→x ,+→a x ,-→a x 洛必达法则也成立.
○
2洛必达法则可处理00,∞∞
,0⋅∞,∞1,0∞,00,∞-∞型. ○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,∞1,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.
○
4若条件符合,洛必达法则可连续多次使用,直到求出极限为止. 二.高考例题讲解
1. 函数2()1x f x e x ax =---.
(Ⅰ)若0a =,求()f x 的单调区间;
(Ⅱ)若当0x ≥时()0f x ≥,求实数a 的取值范围.
2. 已知函数x
b x x a x f ++=1ln )(,曲线()y f x =在点))1(,1(f 处的切线方程为230x y +-=.
(Ⅰ)求a 、b 的值;
(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >
+-,求k 的取值范围. 3.若不等式3sin ax x x ->对于)2,0(π
∈x 恒成立,求实数a 的取值范围.
4.设函数x
x x f cos 2sin )(+=。
(Ⅰ)求函数)(x f 的单调区间;
(Ⅱ)如果对0≥∀x ,都有ax x f ≤)(,求实数a 的取值范围.
5. 设函数()1x f x e -=-.
(Ⅰ)证明:当1->x 时,()1x f x x ≥
+; (Ⅱ)设当0x ≥时,()1x f x ax ≤
+,求实数a 的取值范围. 6.已知函数2)1()(ax e x x f x --=。
(Ⅰ)若函数)(x f 在1-=x 时有极值,求函数)(x f 的解析式;
(Ⅱ)当0x ≥时()0f x ≥,求实数a 的取值范围.
总结:通过以上例题的分析,我们不难发现应用洛必达法则解决的问题应满足:
1. 能够分离变量;
2. 用导数能够确定分离变量后另一侧所得新函数的单调性;
3. 出现“
00”、“ ∞∞”型式子。