高数ⅡA卷答案

合集下载

高数A2试题参考答案

高数A2试题参考答案

高数A2试题参考答案一、填空题:1. 2222xdx ydy x y ++ ;2. 110(,)dy f x y dx ⎰;; 4. (3,3)- 5. 22x Ce -+二、选择题:1).D 2).A 3) C . 4).C 5).B 三、计算题:(共21分)1、略解:123uyf f f x∂'''=++∂ 221112132232332222uy f yf yf f f f x∂''''''''''''=+++++∂ 2、略解:D⎰⎰ 220sin d d πππθρρρ=⎰⎰=26π-3、略解:补上曲面1∑:0,z =(,)x y ∈22:x y R +≤xy D ,取上则 有高斯公式得333x dydz y dzdx z dxdy ∑++⎰⎰ =11333333x dydz y dzdx z dxdy x dydz y dzdx z dxdy ∑+∑∑++-++⎰⎰⎰⎰=-32222222()03sin Rx y z dv d d d ππθϕρρϕρΩ++-=-⎰⎰⎰⎰⎰⎰ 565R π=-4、略解:补上OA:0,y x =从0到4。

设L 与OA 所围成的区域为D , 则2222(2)(2)(2)(2)LL OAy xy dx x x y dy y xy dx x x y dy +++++=++++⎰⎰-22(2)(2)OAy xy dx xx y dy ++++⎰=4[22(21)]0Dx x dxdy dx +-+-⎰⎰⎰2Ddxdy π==⎰⎰5、略解:方程20y y y '''--=的特征方程为2r -r-2=0,其根为121,2r r =-=, 故微分方程20y y y '''--=的通解为212x x y C e C e -=+1λ=不是特征方程的根,故设x y ae *=,代入原方程可得1a =- 22x y y y e '''--=的一个特解为x y e =-6、略解:从点A (1,1)到点B (2,2)的方向的方向余弦为cos 22sin αα==在点A (1,1)处4,2,z zx y∂∂==∂∂cos sin z z zl x xαα∂∂∂=+=∂∂∂ (1,1)|42grandz i j =+7、略解:(1)lim1(1)n n n n n ρ→∞-==+ ,∴级数的收敛半径11R ρ==。

高中数学人教a版必修2试题及答案

高中数学人教a版必修2试题及答案

高中数学人教a版必修2试题及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = \frac{1}{x} \)在点x=2处的导数为\( f'(2) \),则\( f'(2) \)的值为:A. 0.5B. -0.5C. 2D. -22. 已知数列\( \{a_n\} \)是等差数列,且\( a_1 = 3 \),\( a_4 =10 \),则\( a_7 \)的值为:A. 17B. 15C. 13D. 113. 设函数\( g(x) = x^3 - 3x + 1 \),若\( g(2) = 3 \),则\( g(-2) \)的值为:A. -3B. 3C. -1D. 14. 圆的方程为\( (x-2)^2 + (y-3)^2 = 9 \),该圆的半径为:A. 3B. 6C. 9D. 125. 向量\( \vec{a} = (1, 2) \)和向量\( \vec{b} = (3, 4) \),则\( \vec{a} \cdot \vec{b} \)的值为:A. 5B. 8C. 11D. 146. 函数\( h(x) = x^2 - 4x + 3 \)的顶点坐标为:A. (2, -1)B. (4, -1)C. (2, 1)D. (4, 1)7. 已知集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 直线\( y = 2x + 1 \)与直线\( y = -x + 4 \)的交点坐标为:A. (1, 3)B. (3, 1)C. (-1, 3)D. (3, -1)9. 函数\( f(x) = \sin(x) \)的周期为:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \frac{2\pi}{3} \)10. 若\( \lim_{x \to 0} \frac{\sin(2x)}{x} = 2 \),则\( \lim_{x \to 0} \frac{\sin(3x)}{x} \)的值为:A. 3B. 6C. 9D. 12二、填空题(每题4分,共20分)1. 若\( \cos(\theta) = \frac{1}{3} \),则\( \sin(\theta) \)的值为______。

0910高等数学A(二)答案

0910高等数学A(二)答案

0910高等数学A(二)答案第一篇:0910高等数学A(二)答案济南大学2009~2010学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学A(二)任课教师:张苏梅等一、填空题(每小题3分,共18分)1.yzez-xy;2.y=2x3-x2;3.2xdx+2ydy;π∞(-1)n(2x)2n4.0;5.2;6..12(1-n∑=0(2n)!),(-∞,+∞)二、选择题(每小题3分,共18分)C;D;C;B;A;B.三、计算题(每小题8分,共32分)1.解:∂z∂x=1ycosxy;.....4分∂2z1xxx∂x∂y=-y2cosy+y3siny.....8分2.解:⎰⎰xydσ=⎰2dx⎰xxydy.....4分D0=12⎰20x3dx=2.....8分 3.解:dS=+x2x2+y+y2x2+ydxdy=2dxdy.....2分⎰⎰zdS=⎰⎰x2+y22dxdy.....5分∑Dxy=⎰2πdθ⎰2r2dr=π.....8分 4.解:⎰⎰(x2+y2+z2)dxdy=dxdy=πa4...........8分∑D⎰⎰axy四、应用题(每小题8分,共16分)1.解:由椭球的对称性,不妨设(x,y,z)是该椭球面上位于第Ⅰ卦限的任一点,内接长方体的相邻边长为2x,2y,2z(x,y,z>0),其体积为:V=8xyz构造拉格朗日函数F(x,y,z,λ)=8xyz-λ(x2y2a+b+z2c-1)......4分∂F∂x=8yz-λ2xa2=0令∂F2y∂y=8xz-λb2=0........6分∂F∂z=8xy-λ2zc2=0求得(x,y,z)=⎛a,b,c⎫⎪,V=8xyz=8abc......8分⎝33⎪⎭332.解:Iz=⎰⎰⎰(x2+y2)dv.........3分Ω=⎰2π2430dθ⎰0dr⎰r2rdz.........6分=2π⎰2r3(4-r2)dr=03π.........8分五、(8分)解:因为limana=limn=1,所以收敛半径为1.n→∞n+1n→∞n+1又x=±1时,级数均发散,故级数的收敛域为(-1,1).....3分n=1∑nx∞n=x∑nxn=1∞n-1=x(∑xn)'......6分 n=1∞xx=x()'=,x∈(-1,1).........8分 21-x(1-x)六、(8分)解:① 设u=x2+y2,则∂zx=f'(u);∂xu∂2zx21x2=()f''(u)+f'(u)-3f'(u)........2分 2uu∂xuy21y2同理,2=()f''(u)+f'(u)-3f'(u)uu∂yu由∂2z∂2z∂x2+∂2z∂y2=0⇒f''(u)+1f'(u)=0.....4分 u② 设f'(u)=p,f''(u)=dp,du则原方程化为:dp1dpdu+p=0⇒=-duupu积分得:p=CC,即f'(u)=,........6分 uu由f'(1)=1,得C=1.于是f(u)=ln|u|+C1代入f(1)=0得:C1=0.函数f(u)的表达式为:f(u)=ln|u|.......8分第二篇:1112高等数学B(二)答案济南大学2011~2012学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学B(二)任课教师:一、填空题(每小题2分,共10分)1、2dx+dy,2、-5,3、1,4、⎰10dy⎰1yf(x,y)dx5、1二、选择题(每小题2分,共10分)1、A2、B3、C4、C5、D三、计算题(每小题8分,共40分)1、解:令F=x2+y2+z2-2z,则Fx=2x,Fz=2z-2.....2分∴∂zFx∂x=-xF=z.....4分z1-∂2z∂x(1-z)2+x2∴∂x2=∂x(1-z)=(1-z)3.....8分2、解:⎰⎰(x+6y)dxdy=⎰1dx5x76D0⎰x(x+6y)dy=3.....8分π3、解:⎰⎰+x2+y2dxdy=D⎰2dθ⎰1+r2rdr=π(22-1).....8分4、解:ux(2,1,3)=4,uy(2,1,3)=5,uz(2,1,3)=3 方向lϖ=(3,4,12)cosα=313,cosβ=413,cosγ=12 .....6分∂z∂l=uu68xcosα+ycosβ+uzcosγ=13.....8分5、解:收敛域为(0,2).....2分∞∞令S(x)=∑(n+1)(x-1)n=(1)n+1)'.....6分n=0∑(x-n=0S(x)=(x-12-x)'=1(2-x)2x∈(0,2).....8分四、解答题(每小11分,共33分)ϖ1、解:交线的方向向量为nϖiϖjkϖ=1-4=(-4,-3,-1).....8分2-1-5所求直线方程为x+3y-2z-54=3=1.....11分2、解:令f(x)=xx-1,则f'(x)=-1-x2x(x-1)<0x>1 所以un单调递减且limn→∞un=0∞所以级数∑(-1)nnn=2n-1.....6分n∞由于limn→∞=1,且∑1发散n=2nn∑∞(-1)n所以级数n.....11分n=2n-13、解:旋转曲面方程为z=x2+y2.....3分投影区域D:x2+y2≤1.....5分V=⎰⎰(1-x2-y2)dxdy=⎰2πdθ⎰1π(1-r)rdr=D.....11分五、证明题(每小题7分,共7分)ff(x,0)-f(0,0)x(0,0)=lim证:x→0x=0f(0,0)=limf(x,0)-f(0,0)xx→0x=0所以函数f(x,y)在(0,0)处可导.....3分lim∆z-fx(0,0)∆x-fy(0,0)∆yρ→0ρ=limf(∆x,∆y)∆x∆yρ→0∆x2+∆y2=limρ→0∆x2+∆y2取∆y=k∆x,得极限为k1+k,说明极限不存在所以函数f(x,y),在(0,0)点不可微.....7分第三篇:专升本高等数学(二)成人高考(专升本)高等数学二第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。

高等数学A(二)试卷及答案

高等数学A(二)试卷及答案

高等数学A (二)考试试卷一、 填空题(每小题5分,共25分)1. 设2u 1sin ,2xu e x y x y π-=∂∂∂则在(,)处的值为_________。

2. 改变二次积分10(,)x I dx f x y dy =⎰⎰的积分次序,则I=_______________。

3. 设平面曲线Γ为下半圆周y =22()x y ds Γ+⎰=___________。

4. 若级数1n n u∞=∑的前n 项部分和是:1122(21)n S n =-+,则n u =______________。

5. 设)2,5,3(-=a ,(2,1,4)b =,(1,1,1)c =,若c b a ⊥+μλ,则λ和μ满足 。

二、 计算题(每小题10分,共70分)1. 求由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分。

(10分)2. 设21()x t f x e dx -=⎰,求10()f x dx ⎰。

(10分) 3. 计算xzdxdydz Ω⎰⎰⎰,其中Ω是由平面0,,1z z y y ===以及抛物柱面2y x =所围成的闭区域。

(10分)4. 计算dy xy ydx x L22+⎰,其中积分路径L 是xoy 平面上由点(2,0)A -顺次通过点(0,2)B 、(2,2)C 到点(2,4)D 的折线段。

(10分) 5. 把函数xx f 431)(+=展为1-x 的幂级数,并确定其收敛域。

6. 求点)3,2,1(-关于平面014=-++z y x 的对称点。

(10分)7. 要建造一个表面积为108平方米的长方形敞口水池,尺寸如何才能容积最大.。

(10分)三、证明题(5分)若0lim =∞→n n na ,且∑∞=+-+11])1[(n n n na a n 收敛于常数A ,试证明级数∑∞=1n n a 收敛。

答案课程名称:高等数学A(二) 试卷编号:5一、填空题。

(每小题5分,共25分)1.22e π,2.101(,)y dy f x y dx ⎰⎰,3.π,4.1(21)(21)n n -+, 5. 076=+μλ二、 计算题。

高等数学二本(A)参考答案

高等数学二本(A)参考答案

一、填空题(每一小题2分,共10分)1.设()1(1)sin ,11,1x x f x x x a x ⎧-≠⎪=-⎨⎪+=⎩,若()x f 在()+∞∞-,上是连续函数,则a 1- .2.设()0f x '存在,则()()0003limx f x x f x x∆→+∆-=∆ 3()0f x ' .3.函数x xe y =的n 阶导数()=n y x e n x )(+ .4.x x f ln )(=在区间[]e ,1上满足拉格朗日中值定理的条件,则定理结论中的ξ=__ 1-e ____ _. 5.反常积分2122dx x x +∞-∞++⎰=_____π_________.二、求下列极限(每一小题5分,共20分)6.x x x x 3)1212(lim -+∞→ 7.xx x 11lim 20-+→解:6.原式xx x 3)1221(lim -+=∞→ 2分 .)1221(lim 3126212e x x xx x =-+=-⋅-∞→ 5分 7.原式.011lim )11(lim 20220=++=++=→→x xx x x x x 5分8.222111lim ()12n n n n n n →∞++++++ 9.2050cos lim xx x t dtx →-⎰ 解:8.令)12111(222nn n n n x n ++++++= ,则有 n n n n n n x n +=+>12,又.11222n n n n n x n +=+< 2分 且.11lim 1lim22=+=+∞→∞→n n n nn n所以由夹逼准则得222111lim ()12n n n n n n→∞++++++.1= 5分 9.利用洛必达法则,有2050cos lim xx x t dtx →-⎰4205cos 1lim xx x -=→ 3分 .10140cos 4lim 20sin 2lim 20320===→→x x x x x x x x 5分三、求下列函数的导数或微分(每一小题5分,共20分)10.设(x y e x =,求.dy解:10.dx x x e dy x ])1([2'++= 2分.)111(22dx x x x x e x +++++= 5分11.设函数()x y y =由方程()x y x y x sin ln 32+=+确定,求.0=x dx dy解:方程两边对x 求导得.cos 32322x dx dy x y x yx dx dyx ++=++3分所以有.1)cos 3)((23522-+++-=y x x x y x y x x dx dy 且.10==x y从而.110)0cos 0)(10(00=-++-==x dx dy 5分 12.已知2ln(1)tan x t y t arc t⎧=+⎨=-⎩,求dx dy ,22d y dx .解:.21211122t t t t dx dy =++-= 3分 22d y dx .411221)(22t t t t dt dx dx dy dt d +=+== 5分 13. 求函数(1)x y x =+的导数y '.解:(1)x y x =+.)1ln(+=x x e 2分].1)1[ln()1(]1)1[ln()1ln(++++=+++='+x xx x x x x e y x x x 5分四、求下列积分(每一小题5分,共20分)14. dx xx e x ⎰++)2cos 32(解:原式dx xdx x dx e x ⎰⎰⎰++=2cos 32 2分.2sin 2ln 32C xx e x +++= 5分15. ⎰-232)1(x dx解:法(1) 原式)1()1(21)1(1)1(1223221223222x d x xdx x dx x x x ----=-+-=⎰⎰⎰212212)1(1)1(1x d x dx x -+-=⎰⎰ 3分 .1)1(11)1(122122212C x x dx x x x dx x +-=---+-=⎰⎰ 5分 法(2) 令).2,2(,sin ππ-∈=t t x 则.cos tdt dx = 2分原式.1tan sec cos cos 223C xx C t tdt t tdt +-=+===⎰⎰5分 16. arctan x xdx ⎰解:原式⎰=2arctan 21xdx 3分 .arctan arctan 211arctan 212222C x x x x dx x x x x ++-=+-=⎰ 5分 17.21e ⎰解:令.ln 1t x =+ 则dt dx x=1,且当1=x 时,1=t ;2e x =时,.3=t 3分所以有原式).13(223131-===⎰t tdt5分五、综合题(每一小题6分,共24分)18.设0>x ,证明: ()x x x x <+<-1ln 22. 证明: 法(1) 由于函数()x x f +=1ln )(在),1(∞+-内3阶可导,于是由泰勒公式得()21221)1(2!2)(!1)0()01ln(1ln ξξ+-=''+'++=+x x x f x f x ,其中).,0(1x ∈ξ 2分 ()3232322)1(32!3)(!2)0(!1)0()01ln(1ln ξξ++-='''+''+'++=+x x x x f x f x f x ,其中 ).,0(2x ∈ξ由于当0>x 时,有0)1(2212>+ξx ,.0)1(3323>+ξx 所以 ()x x x x <+<-1ln 22. 5分法(2) 令()().1ln )(,21ln )(2t t t g t t t t f +-=+-+=则)(),(t g t f 在),0(∞+内可导,且.01111)(,01111)(2>+=+-='>+=+-+='ttt t g t t t t t f 3分即)(),(t g t f 在),0(∞+内严格递增,又)(),(t g t f 在0=t 处连续,所以)(),(t g t f 在),0[∞+内严格递增,从而当0>x 时有).0()(),0()(g x g f x f >> 即().1ln 22x x x x <+<- 5分19.设()x f 在[]1,0上可导,且()10<<x f ,对于任何()1,0∈x ,都有()1≠'x f ,证明:在()1,0内,有且仅有一个数0x ,使()00f x x =. 证明:令.)()(x x f x g -= 先证)(x g 在()1,0内,有一个零点。

高数a2下期末考试题及答案

高数a2下期末考试题及答案

高数a2下期末考试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在区间(a, b)上可导,则下列说法正确的是:A. f(x)在(a, b)上一定连续B. f(x)在(a, b)上一定单调C. f(x)在(a, b)上一定有极值D. f(x)在(a, b)上一定有最大值和最小值答案:A2. 若函数f(x)=x^3+3x^2+3x+1,则f'(x)为:A. 3x^2+6x+3B. x^3+3x^2+3C. 3x^2+6xD. 3x^2+6x+3x+1答案:A3. 设函数f(x)=ln(x+√(1+x^2)),则f'(x)为:A. 1/(1+x^2)B. 1/(1+x+√(1+x^2))C. 1/(1+√(1+x^2))D. 1/(1+x+√(1+x^2))^2答案:B4. 若函数f(x)=x^2-4x+c,且f(1)=-3,则c的值为:A. 0B. 1C. -2D. 2答案:B二、填空题(每题5分,共20分)1. 若函数f(x)=x^3-3x+2,则f''(x)=_________。

答案:6x-32. 设函数f(x)=e^x+ln(x+1),则f'(x)=_________。

答案:e^x/(x+1)3. 若函数f(x)=x^2-6x+10,则f(x)的最小值为_________。

答案:-24. 设函数f(x)=x^3-3x^2+2x-1,则f(0)=_________。

答案:-1三、计算题(每题10分,共30分)1. 求函数f(x)=x^3-3x+2的一阶导数和二阶导数。

答案:f'(x)=3x^2-3,f''(x)=6x-32. 求函数f(x)=e^x*sin(x)的导数。

答案:f'(x)=e^x*sin(x)+e^x*cos(x)3. 求函数f(x)=ln(x+√(1+x^2))的导数。

答案:f'(x)=1/(1+x+√(1+x^2))四、解答题(每题15分,共15分)1. 已知函数f(x)=x^3-6x^2+11x-6,求其在x=1处的切线方程。

高等数学a2期末考试题及答案

高等数学a2期末考试题及答案

高等数学a2期末考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2在x=0处的导数是()。

A. 0B. 1C. 2D. 0答案:B2. 定积分∫(0,1) x^2 dx的值是()。

A. 1/3B. 1/2C. 1D. 2答案:A3. 极限lim(x→0) (sin(x)/x)的值是()。

A. 0B. 1C. -1D. 2答案:B4. 函数y=e^(-x)的不定积分是()。

A. -e^(-x)B. e^(-x)C. -e^xD. e^x答案:A5. 微分方程dy/dx = y的通解是()。

A. y = Ce^xB. y = Cxe^xC. y = CxD. y = C/x答案:A二、填空题(每题3分,共15分)6. 函数f(x)=ln(x)的二阶导数是______。

答案:1/x^27. 曲线y=x^3-3x^2+2在x=1处的切线斜率是______。

答案:-48. 定积分∫(0,π) sin(x) dx的值是______。

答案:29. 极限lim(x→∞) (1+1/x)^x的值是______。

答案:e10. 微分方程d^2y/dx^2 + 4dy/dx + 4y = 0的特征方程是______。

答案:r^2 + 4r + 4 = 0三、计算题(每题10分,共30分)11. 计算定积分∫(0,2) (x^2-2x+1) dx,并给出结果。

解:∫(0,2) (x^2-2x+1) dx = [1/3x^3 - x^2 + x](0,2) = (8/3 -4 + 2) - (0) = 2/312. 求函数f(x)=x^3-6x^2+9x的极值点。

解:f'(x)=3x^2-12x+9,令f'(x)=0,解得x=1或x=3。

经检验,x=1为极大值点,x=3为极小值点。

13. 解微分方程dy/dx - 2y = 4e^(2x)。

解:y=e^(2x)(Ce^(-2x) + 2),其中C为常数。

大学-高等数学(Ⅱ)试卷题(A)+参考答案

大学-高等数学(Ⅱ)试卷题(A)+参考答案

大学-高等数学(Ⅱ)试卷题(A )一、选择题:(每小题2分,共10分)1. 函数 ),(y x f z =在点),(00y x 处偏导数 ),(00y x f x ,),(00y x f y 存在是函数z在点),(00y x 存在全微分的( );A.充分条件;B.必要条件;C.充分必要条件;D.既非充分又非必要条件.2.下列级数发散的是( );A .;(1)n nn n ∞=+- B.2(1)ln(1);1n n n n ∞=-++∑ C .222sin();n a π∞=+∑ D.1.1nn n ∞=+ 3.级数1sin (0) n nxx n ∞=≠∑!,则该级数( );A.是发散级数;B.是绝对收敛级数;C.是条件收敛级数;D. 仅在)1,0)(0,1(-内级数收敛,其他x 值时数发散。

4. 双曲抛物面22x y z p p-=.(p >0,q >0)与xOy 平面的交线是( );A.双曲线B.抛物线C.平行直线D.相交于原点的两条直线. 5.322(,)42,f x y x x xy y =-+-函数下列命题正确的是。

A.点(2,2)是f(x,y)的极小值点B. 点(0,0)是f(x,y)的极大值点C. 点(2,2)不是f(x,y)的驻 点D.f(0,0)不是 f(x,y)的极值.二、填空题:(每小题3分,共30分 )1.222ln()1z x y x y =-++-的定义域为 ;2.曲面2221ax by cz ++=在点()000,,x y z 的法线方程是 ;3.设(,)ln()2yf x y x x=+,则 '(1,0)y f = ;4.已知D 是由直线x +y =1,x -y =1及x = 0所围,则Dyd σ⎰⎰= ;5. 3(,)ydy f x y dx ⎰⎰交换积分次序得 ;7.1(2),n n n u u ∞→∞=+=∑n 若级数收敛则lim ;8.微分方程y / + P(x)y = Q(x)的积分因子为_____________(写出一个即可); 9.设y z x dz ==,则;10.设P(x,y)、Q(x,y)在曲线L 围成的单联通区域内具有一阶连续偏导数。

高等数学试卷2及答案

高等数学试卷2及答案

1高等数学(A2)试卷(二)答案及评分标准一、选择题(本大题共8小题,每题4分,共32分)1. B,2. D,3. B,4. C,5. D,6. B,7. D,8. B.二、计算题(本大题共4小题,没题7分,共28分)1. 设),(y x z z =是由方程333a xyz z =-确定的隐函数, 求dz . 解: 方程两边对x 求导,得03332='--'x x z xy yz z z (1分)解得 xyz yzz x -='2(3分) 方程两边对x 求导,得 xyz xzz y -='2(5分) 所以, )(2xdy ydx xyz zdz +-= (7分) 2. 求⎰⎰-=Ddxdy y x I 22, D 由1,==x x y 及x 轴围成.解: x y x D ≤≤≤≤0,10:, 故有 ⎰⎰-=1022x dy y x dx I (2分)令t x y cos =, 则有⎰⎰=102022sin πtdt dx x I (6分)12π=(7分) 3. 求函数)1ln()(432x x x x x f ++++=的麦克劳林展开式及收敛区间.解: xx x f --=11ln )(5 (2分)由∑∞=-≤<--=+11)11()1()1ln(i nn t nt t , 可得 (4分) ∑∞=<≤--=-155)11()1ln(i nx n x x (5分) ∑∞=<≤--=-1)11()1ln(i nx nx x (6分) 所以, ∑∑∞=∞=<≤--=151)11()(i ni n x n x n x x f (7分) 4. 求微分方程1cos 1222-=-+'x xy x x y 满足1)0(=y 的特解. 解: 方程两边同乘1)(2122-=⎰=--x e x dxx xμ得 (2分)x y x dxdcos ])1[(2=-, c x y x +=-sin )1(2 (4分) 通解为, 1sin 2-+=x cx y (5分) 由1)0(=y 得1-=c , 所求特解为11sin 2--=x x y (7分) 三、计算题(本题8分)用高斯公式计算⎰⎰∑++=dxdy z dzdx y dydz x I 222, 其中∑为立体c z b y a x ≤≤≤≤≤≤Ω0,0,0:的表面外侧.解: 由高斯公式可得2⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩ++=++=zdxdydzydxdydz xdxdydz dxdydzz y x I 222)222( (2分)又因,⎰⎰⎰⎰⎰⎰Ω==bcabc a xdx dz dy xdxdydz 0222 (4分) 同理有, ⎰⎰⎰Ω=c ab ydxdydz 22,⎰⎰⎰Ω=22abc ydxdydz (6分) 所以, )(c b a abc I ++= (7分)四、计算题(本题8分)确定b 并求出曲线32121,,:t z t y t x =-==Γ的切线, 使之与平面4:=++∏z by x 垂直.解: 设Γ上点)121,,(302000t t t M -处的切线与平面∏垂直 Γ在0M 处的切向量为, )41,2,1(200t t -=τ (2分)与平面∏的法向量, )1,,1(b n =平行, 即14121120tb t =-=, 解之得 (4分) )1,4,1(),32,4,2(,4,200=±-±=±=τM b t (6分)得切线方程, )4(1324412-=-=-+=-b z y x)4(1324412=+=+=+b z y x (8分)五、证明题(本题8分)证明曲线积分⎰+-=Cdy x dx x xy I 22cos )sin 2(在xoy 面上与路径无关,并计算积分值, 其中C 为椭圆12222=+by a x 的右半平面)0(≥x 部分, 从),0(b A -到),0(b B .证明: 因为22sin 2)sin 2(x x x xy yy P -=-∂∂=∂∂22sin 2)(cos x x x xx Q -=∂∂=∂∂ 所以曲线积分I 在xoy 面上与路径无关 (4分)又因)cos (cos sin 2222x y d dy x dx x xy =+- (6分)所以b x y x y d I b b C2|cos )cos (),0(),0(22===-⎰(8分)六、计算题(本题8分)若)(22y x f z +=满足方程02222=∂∂+∂∂yzx z , 求z , 其中)(r f 有连续的二阶导数.解: 记22y x r +=, 则有3222222)()(,)(r x r r f r x r f x z r x r f x z -'+''=∂∂'=∂∂ 3222222)()(,)(ry r r f r y r f x z r y r f y z -'+''=∂∂'=∂∂ 代入方程得 0)(1)(='+''r f rr f (4分) 解之得 rcr f =')( (6分) 0ln )(c r c r f z +== (8分)3七、应用题(本题8分)要建造一个上部为半球型下部为圆柱型的不锈钢储水罐, 要求容积为A , 问球体和圆柱半径r 与圆柱高h 为何时, 可以使用料最省?解: 当所求储水罐的表面积最小时, 可以使用料最省, 用),(h r S 表示储水罐的表面积, 则有)0,0(23),(2>>+=h r rh r h r S ππ (2分) 由要求容积为A , 得h r ,的约束关系A h r r =+2332ππ, 解之得)32(132r A r h ππ-=(4分)代入),(h r S 得 rAr r h r S r 238))(,()(2+==πϕ令 02316)(2=-='r A r r πϕ, 解得驻点310)83(πAr = (6分) 又因0)(0>''r ϕ, 故)(r ϕ在0r 处取得极小值. 由于只有唯一极小值点,所以即为所求最小值点, 此时有002r h = (8分) 故r ,h 分别取00,h r 时, 可以使用料最省.。

2023年全国新高考Ⅱ卷数学试题答案

2023年全国新高考Ⅱ卷数学试题答案

2023年全国统一高考数学试卷(新课标Ⅱ卷)(适用地区:辽宁、重庆、海南)注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,(1+3i)(3-i)对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】(1+3i)(3-i)=6+8i,故对应的点在第一象限,选A.2.设集合A={0,-a},B={1,a-2,2a-2},若A≤B,则a=A.2B.1C.D.-1【答案】B 【解析】若a-2=0,则a=2,此时A={0,-2},B={1,0,2},不满足题意;若2a-2=0,则a=1,此时A={0,-1},B={1,-1,0},满足题意.故选B.3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有.C0·C2D.C40·C₂0【答案】D【解析】根据按比例分配的分层抽样可知初中部抽40人,高中部抽20人,故选D.为偶函数,则a=A.-1B.0【答案】B.D.1C C【解析】发现是奇函数,而f(x)=(x+a)g(x)为偶函数,有f(-x)=(-x+a)g(-x)=-(-x+a)g(x)=(x+a)g(x)=f(x),故x-a=x+a,则a=0,选B.5.已知椭圆、右焦点分别为F,F₂,直线y=x+m与C交于A、B两点,若△FAB的面积是△F₂AB的面积的2倍,则m=....【答案】C【解析】由依题意可知s△n4B=2s△A₈,设椭圆的左、右焦点分别为F,F2到直线y=x+m的距离分别为d、d₂,且-2<m<0,所以有,即d₁=2d₂,将,,代入上式解得,故选C6.已知函数f(x)=ae'-Inx在区间(1,2)上单调递增,则a的最小值为A.e²B.eC.e¹D.e²【答案】C【解析】由题意可知在区间(1,2)上恒成立,即,设g(x)=xe',;则在xe(1,2)上恒有g(x)=(x+1)e²>0,所以g(x)m=g(1)=e,则,即a≥e⁻¹,故选C7.已知α为锐角,,则:A.B.C.D.【答案】D【解析】由半角公式si 解得,故选D DCBAB站:魔术大师-信信8.记S,等比数列{a,}的前n项和,若S₄=-5,S₆=21S₂,S=A.120B.85C.-85D.-120【答案】C【解析】由等比数列的性质可得S,S₄-S₂,S-S,成等比数列,因此(S₄-S₂)²=S₂(S₆-S₄),将S₄=-5,S₆=2IS₂代入上式解得S₂=-1(舍),此时,由等比数列性质可知S₄-S₂,S₆-S₄,S-S₆为等比数列,解得S=-85,故选C.二、多选题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆锥的顶点为P底面圆心为O,AB为底面的直径,∠APB=120°,AP=2,点C在底面圆周上,且二面角P-AC-O=45°,则A.该圆锥的体积为πB.该圆锥的侧面积为4√3πc.AC=2√2 D.△PAC的面积为√3【答案】AC【解析】由∠APB=120°,AP=2可知,底面直径AB=2√3,高PO=1,故该圆锥的体积为π,所以A对;该圆锥的侧面积为2√3π,所以B错.连接CB,取AC中点为Q,连接QO,PQ,易证二面角P-AC-O=45°的平面角为∠PQO=45°,所以QO=PO=1,PQ=√2,所以BC=2,所以AC=2√2,故C对;,故D错.10.设O为坐标原点,直线y=-√3(x-1)过抛物线C:y²=2pr(p>0)的焦点,且与C交于M、N两点,l为C的准线,则A.p=2B.C.以MN为直径的圆与l相切D.△OMN为等腰三角形【答案】AC【解析】直线y=-√3(x-1)与x轴的交点为(1,0)可知,抛物线的焦点的坐标为(1,0),所以p=2,故A选项正确;由kay=-√3可知直线MN的倾斜角为120°,所以,故B选项错误.过点M作准线l的垂线,交l于点M',过点N 作准线l的垂线,交l于点N';并取MN的中点为点P,过点P作准线l的垂线,交l于点P',连接MP'、NP',由抛物线的定义知MF=MM',NF=NN',所以MN|=|MM'+|NN',所以由梯形的中位线可知所以PP'=MP=PN,所以以MN为直径的圆与l相切,故C对,由图观察可知,△OMN显然不是等腰三角形,故D错.11.若函既有极大值又有极小值则:A.bc>0B.ab>0 c.b²+8ac>0 D.ac<0【答案】BCD【解析】由题可知f x的定义域为(0,+αo),。

2022-2023学年下学期高数A(2)-A卷答案

2022-2023学年下学期高数A(2)-A卷答案

2022-2023学年下学期高等数学A(2)-A 卷参考答案与评分标准一、填空题(每题4分,共40分) 1. 32−; 2. 2; 3. 22249936x y z −−=; 4. 14− ; 5.1x ;6.1233dz dx dy =+; 7.125241x y z −−−==−; 8. 不是;9. 4102(,)xdx f x y dy ⎰⎰;10. 2x y C +.二、计算题(每题7分,共21分)11.解:已知直线的方向向量为()12416,14,11352i j ks =−=−− ……………(5分) 由于平面与直线垂直,所求平面法向量可取n s =,则 所求平面方程:()()162141130x y z −−+++= 即161411650x y z −−−=……………(7分) 12. 解:令(,,)ln x zF x y z z y=−,则 222111,,x y z y z x y x zF F F zz y yz z y z⎛⎫+==−⋅−==−−⋅=− ⎪⎝⎭…………(3分) 21x z F z zz x z x F x z z ∂=−=−=+∂+− ……………(5分) ()221y z F z z yx z y F y x z z−∂=−=−=+∂+ ……………(7分) 13. 解:222x y xye+关于x ,y 均是奇函数,则12,D D 关于x 轴对称,34,D D 关于y 轴对称221220x y D D xyedxdy ++=⎰⎰223420x y D D xyedxdy ++=⎰⎰……………(3分)所以11123x DI ydxdy dx ydy −−===−⎰⎰⎰⎰ ……………(7分)三、计算题(每题7分,共21分) 14.解:2()2zf x y xy x∂=⋅∂ ………(4分) 2222()2()2zf x y x xy f x y x x y∂'=⋅⋅+⋅∂∂ =3222()2()x yf x y xf x y '+ …………(7分)15.解:22220cos sin RI d d r r dr ππθϕϕϕ=⋅⎰⎰⎰ ………(4分)25012cos sin 5d R ππϕϕϕ=⋅⎰5415R π= …………(7分)16.解:12L L I =+⎰⎰11222L L e ds e π==⋅⎰⎰…………(3分)222220222|2(1)xx x L e dx e dx e e −====−⎰⎰⎰…………(6分)2222(1)I e e π=+−…………(7分)四、综合应用题(每题6分,共18分) 17.解:,()xyP e y Q e x =+=−+ 1,1P Qy x∂∂==−∂∂ 补线1L :0,:11y x =→−,则1111()L L L L L L I −++=−=−−⎰⎰⎰⎰……(2分)()()()1()2xy L L Dey dx e x dy dxdy π−++−+=−=−⎰⎰⎰ ……(4分)()()1111xyx L ey dx e x dy e dx e e −−+−+==−⎰⎰……(5分)1I e e π−=−+ ……(6分)18、解:原式=()()424z y y dv z y dv ΩΩ−+=−⎰⎰⎰⎰⎰⎰ ……….(3分)4zdv ydv ΩΩ=−⎰⎰⎰⎰⎰⎰1111114dx dy zdz dx ydy dz =−⎰⎰⎰⎰⎰⎰ ……….(5分)32= ……….(6分)19. 解:记1∑为锥面z =()01z ≤≤,2∑为圆面1z =()221x y +≤,它们在xOy 面上投影为22:1xy D x y +≤,在1∑上ds =,则()(12122222xyD x y ds x y d d πθρρρ∑+=+=⋅=⎰⎰⎰⎰⎰ ……….(3分) 在2∑上dS dxdy =,则()()221222220012xyD x y ds x y dxdy d d πθρρρπ∑+=+=⋅=⎰⎰⎰⎰⎰⎰ ……….(5分) 故 原式+12π。

高等数学AⅡ参考答案

高等数学AⅡ参考答案

1、1.设是平面上以三点和为顶点的三角形区域,是的第一象限部分,则( A )。

(A);(B);(C);(D)。

2.下列级数中发散的级数是(C )。

(A);(B);(C);(D)。

3.设幂级数在处条件收敛,则该级数在处是( A )。

(A)绝对收敛;(B)条件收敛;(C)发散;(D)以上结论都不对。

4.设在展开成正弦级数为,且,则( C )。

(A);(B);(C);(D)以上结论都不对。

二 5.设闭区域由曲线与所围成,则。

6. 设曲线方程为,则。

7. 将展开成的幂级数为。

8. 设,则。

三9.分别用先二后一和柱坐标的方法计算三重积分,其中是由曲面及所围成的闭区域。

解先二后一1柱坐标的柱坐标为,则=10.设为锥面及平面所围成闭区域的边界曲面,计算。

解:如图,其中,故=+=+11. 设为从点沿曲线到点的弧,其中 为正的常数,计算。

解;作辅助线,若设与所围闭区域为,则,故12. 设是球面的上侧,计算。

解;作曲面,朝下。

则其中(先二后一)由,朝下,有,故13. 求幂级数的收敛域及和函数。

解由,可知幂级数收敛半径为1,且与均发散,故幂级数收敛域为。

当时故当时四、(10分)。

14.常数取什么值使得在平面存在二元函数满足,且,并求出函数。

解(1)设,故取值使得等式成立,即成立时存在二元函数满足条件,故,且O(0,0)B(x,y)A(x,0)其中五、(每小题4分,共8分)。

15.计算积分,其中为圆周。

解:注意到,取做曲线方向为逆时针,设曲线围成复连通区域为,显然在满足格林公式条件,故,可得,其中为所围区域。

16.判别级数的敛散性,并给出理由。

解:显然级数是正项级数且注意到,故收敛,故也收敛。

描述[←1]。

高数下册期末a卷考试题及答案

高数下册期末a卷考试题及答案

高数下册期末a卷考试题及答案一、选择题(每题5分,共30分)1. 以下哪个函数不是周期函数?A. \( \sin(x) \)B. \( \cos(x) \)C. \( e^x \)D. \( \tan(x) \)答案:C2. 函数 \( f(x) = x^2 \) 在 \( x=1 \) 处的导数是:A. 0B. 1C. 2D. 3答案:C3. 以下哪个选项是 \( \int_0^1 x^2 dx \) 的正确计算结果?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A4. 以下哪个选项是 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值?A. 0B. 1C. 2D. 3答案:B5. 以下哪个选项是 \( \int \frac{1}{x} dx \) 的原函数?A. \( \ln|x| + C \)B. \( x + C \)C. \( e^x + C \)D. \( \sin x + C \)答案:A6. 以下哪个选项是 \( \int e^x \cos x \, dx \) 的正确积分结果?A. \( \frac{1}{2} e^x (\cos x + \sin x) + C \)B. \( \frac{1}{2} e^x (\cos x - \sin x) + C \)C. \( \frac{1}{2} e^x (\cos x + \sin x) - C \)D. \( \frac{1}{2} e^x (\cos x - \sin x) - C \)答案:B二、填空题(每题5分,共20分)1. 函数 \( f(x) = \ln(x) \) 的定义域是 \( ______ \)。

答案:\( (0, +\infty) \)2. 函数 \( f(x) = \sqrt{x} \) 的导数是 \( ______ \)。

高数(二)答案(A卷)

高数(二)答案(A卷)

高数(二)答案(A 卷)一.填空题:(每空格5分,共40分) 1.连续区间是),1()1,0()0,(+∞-∞ ,2.21, 3.(1)0y =,(2)2x = 4.1,0-==b a ,5.(1)y x r 2-,(2)xy23.1.解:令)1ln(ln 2+-=x x x y ,(3分)则xx x x x x x x x y )1)](1ln(1)12([222'+-+-++--=(7分) 2.解:)43(432'-=-=x x x x y ,驻点为34,021==x x (2分)(法一)46''-=x y ,04)0(''<-=y ,1)0(=y (极大值),(5分)04)34(''>=y ,275)34(-=y (极小值).(7分)(5分)当0=x 时,1=y (极大值),当34=x 时,275-=y (极小值)(7分)3.解:(法一)利用莱布尼兹公式x e x x dxfd ]66[233++=(7分) (法二)xe x x xf )2()(2'+=,(3分) x e x x x f )24()(2''++=, x e x x x f)66()(2)3(++=(7分)4.解:)1sin()1(lim 1--+-→x x e e x x =)1cos(1lim 1-+→x e x x =1+=e5.解:⎰+dx ex211==+-+⎰dx e e e x xx 22211(3分) ++-=)1ln(212x e x C (7分)6.解:⎰-+12)2(dx e x x x ==+--+⎰dx e x ex x x x 10102)12()2((3分)=2-⎰+1)12(dx e x x=2-)13(-e +102x e==e e e -=-+-12233。

(7分) 7.解:()22,220F x y x xy y =++=2222222233422202(2)2()021()()(1)()()()220()()dy dy x y xy dx dxdyx y x y dxdy x y x dx x y x y x dy x y x x x x y x d y x y dx dxx y x y x y x x xy y x y x y ∴+++=⇒+++=+⇒=-=--+++-+++-++=-=-++++++=-=-=++(3分)(7分)8.解:])21()1()21()21(211[21]2111[211132 +--++---+--=-+=+=n n x x x x x x y=∑∞=+--012)1()1(n n n n x ,(5分) 收敛区间为(-1,3).(7分)9.解:xxx y 2cos sin )'cos (=(5分) 1cos +=x C y (其中C 为任意常数)(7分) 10.解:直线1=x 与圆422=+y x 的交点是)3,1(),3,1(21-P P ,(2分) 右面部分绕y 轴旋转一周的所得几何体的体积.⎰---=332]1)4[(dy yV π(5分)=ππ34)33(233=-y y (7分) 四.综合题:1.解:⎰π0cos cos mxdx nx =⎰-++π0])cos()[cos(21dx x m n x m n (3分)=⎪⎪⎩⎪⎪⎨⎧≠==≠=mn m n m n ,00 ,0 ,2ππ(10分)2.证明:证明:(1)考虑函数dx cx bx ax x F +++=234)(,(2分) )(x F 在[0,1]上连续,在(0,1)内可导,0)1()0(==F F ,(4分) 由罗尔定理知,存在)1,0(∈ξ,使得0)('=ξF ,即0)()('==ξξf F ,就是=)(ξf 023423=+++d c b a ξξξ, 所以函数)(x f 在(0,1)内至少有一个根.(7分)(2)c bx ax x F x f 2612)()(2'''++==因为ac b 832<,所以0)83(129636)2)(12(4)6(222<-=-=-ac b ac b c a b ,)('x f 保持定号,)(x f 函数)(x f 在(0,1)内只有一个根.(10分)声明:此资源由本人收集整理于网络,只用于交流学习,请勿用作它途。

高中人教版数学必修二a版试题及答案

高中人教版数学必修二a版试题及答案

高中人教版数学必修二a版试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = sinxD. y = cosx答案:B2. 已知函数f(x) = 2x - 3,那么f(-1)的值为()A. -5B. -1C. 1D. 5答案:A3. 函数y = 2x + 1的图像经过点()A. (0, 1)B. (1, 3)C. (2, 5)D. (3, 7)答案:B4. 函数y = x^2 - 4x + 4的最小值是()A. 0B. 1C. 2D. 4答案:A5. 已知a > 0,b > 0,且a + b = 1,则ab的最大值是()A. 1/4B. 1/2C. 1D. 2答案:A6. 函数y = 3x - 2的图像与x轴的交点坐标是()A. (2/3, 0)B. (3, 0)C. (2, 0)D. (0, 2)答案:B7. 函数y = x^2 + 2x + 1的图像的对称轴是()A. x = -1B. x = 1C. x = 0D. x = 2答案:B8. 函数y = 1/x的图像经过点()A. (1, 1)B. (-1, -1)C. (2, 1/2)D. (-2, -1/2)答案:A9. 函数y = 2x^3 - 3x^2 + 4x - 5的图像与y轴的交点坐标是()A. (0, -5)B. (0, 5)C. (0, -3)D. (0, 4)答案:A10. 函数y = sinx + cosx的图像在区间[0, π]上是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:C二、填空题(每题4分,共20分)1. 函数y = 2x + 3的图像与直线y = -x + 1平行,那么它们的斜率之比是______。

答案:22. 函数y = x^2 - 4x + 4的顶点坐标是______。

答案:(2, 0)3. 函数y = 3x - 2的图像与直线y = 3x + 1的交点坐标是______。

高等数学A(二)答案详解

高等数学A(二)答案详解

一、单项选择题(每小题3分,共30分)请将答案填在下面表格内!切记!题号 1 2 3 4 5 6 7 8 9 10 答案 A A B B C A C A D D 得分1、已知向量(1,1,0)MA = ,(1,0,1)MB =,则AMB ∠=( )。

(A) 3π (B)6π (C) 4π (D) 2π2、函数()y x f ,在点()00,y x 处可微分是()y x f ,在该点处连续的( )条件。

(A) 充分 (B) 必要 (C) 充分必要 (D) 既不充分也不必要3、函数22y x z -=在点)1,1(沿方向(1,3)的方向导数为( )。

(A )31+ (B )31- (C )6 (D )74、曲面22214x y z ++=在点(1,2,3)处的切平面方程为( ) (A )23140x y z +++= (B )23140x y z ++-= (C )2370x y z +++=(D )2370x y z ++-=5、设()y x f ,为连续函数,则二次积分⎰⎰11),(ydx y x f dy 交换积分次序后为( )。

(A) dy y x f dx x⎰⎰112),( (B) ⎰⎰11),(dy y x f dx (C) dy y x f dx x ⎰⎰201),( (D) ⎰⎰110),(ydy y x f dx6、Lxds =⎰( )其中L 为抛物线2y x =上01x ≤≤的弧段。

(A)()155112- (B) 551- (C)112 (D)()15518- 7、设∑为球面2222R z y x =++,则曲面积分=++⎰⎰∑dS z y x )(222( )。

(A)4R π (B)42R π (C)44R π (D)46R π 8、下列级数中,条件收敛的是( )。

(A )()-+-=∞∑124131n n n n (B )()-⎛⎝ ⎫⎭⎪-=∞∑12311n nn(C )()--=∞∑11121n n n (D )()--=∞∑11211n n n n 9、幂级数20n n n e x ∞=∑的收敛半径=R ( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东海洋大学2014—2015学年第二学期
《高等数学Ⅱ》课程试题参考答案(A 卷)
一、填空题(每空3分,共21分)
1. 若)()(x g x f 是的一个原函数,则⎰=dx x g )(C x f +)( .
2. =⎰x x
dt t dx d sin 22cos 42cos 2)cos(sin cos x x x x -⋅ . 3. 已知⎰+=C x F dx x f )()(,则=--⎰dx e f e x x )(C e F x +--)(
4. 设x x f sin )(=时,则='⎰dx x
x f )ln (C x +)sin(ln 5. 设是连续的奇函数,)(x f 则=⎰-dx x f l l )( 0
6. 改变二次积分的积分次序,⎰⎰=100),(y dx y x f dy ⎰⎰101),(x dy y x f dx
7. 方程032=-'-''y y y 的通解是x x e c e c y -+=231
二、计算下列积分(每小题6分,共36分)
1. 解:C x x x d x
dx x x +==⎰⎰ln ln )(ln ln 1ln 1 …………(6分) 2. 解:C x x x x x x dx +-+-=--+-=-+⎰⎰)2
1(ln 31)211131)2)(1(( (或 C x x ++-=)1
2(ln 31
) …………(6分) 3. 解: dx x e e x e d x xdx e x x x x ⎰⎰⎰----+-=-=cos sin )(sin sin …(3分) = )(cos sin x x e d x e
x --⎰-- ………(4分) =xdx e e x x x x x sin cos sin ⎰------e ………(5分)
所以,C x x e xdx e x x ++-=--⎰)cos (sin 2
1sin ………(6分) 4. 解: dt t dx t x t x 2333,22=-==+,则令 ……(1分)
C x x x C
t t t dt t t t dt t x dx +++++-+=+++-=++-=+=++⎰⎰⎰3332222321ln 323)1(2
31ln 332311131321)(……(6分)
5. 解:2sin sin cos cos cos 2220200
=-=-=⎰⎰⎰πππππππ
x x xdx dx x dx x (6分) 6. 解:1sin 2sin 2cos 20)cos sin (1
0101
12==+=+⎰⎰-x dx x dx x x x …(6分) 三、计算下列各题(每小题5分,共15分).
1.xy e z xy sin +=,求y
z x z ∂∂∂∂,. 解:xy y ye x
z xy cos +=∂∂ …………(3分) cos xy z xe x xy y
∂=+∂ …………(5分) 2.)2ln(y
x z +=,求 22x z ∂∂和y x z ∂∂∂2. 解:2221y
x y y z y x x z +=∂∂+=∂∂, …………(2分) 2222222(2(1)
,)y x y y x z y x x z +-=∂∂∂+-=∂∂ …………(5分) 3. )643ln(z y x u -+=,求du . 解:dz z y x dy z y x dx z y x du 643664346433-+-+-++-+=
…(5分) 四、计算重积分(每小题5分,共10分).
1. ⎰⎰-+D
dxdy x y x )(22,其中D 是由直线2=x 、x y =及x y 2=所围成的
区域.
解:原式=⎰⎰-+x x dy x y x dx 22220)( ………(3分) =dx x x )3
10(2320-⎰ ………(4分) =3
32 ………(5分) 2. dxdy y x D
⎰⎰+22sin ,其中}4),({2222ππ≤+≤=y x y x D .
解:原式 =220sin d r r dr πππθ⎰⎰ ………(3分)
= -26π ………(5分)
五、求解微分方程(8分). 解:3)1()(1
2)(+=+-=x x q x x p , ………(2分) 利用公式法,得所求微分方程的通解为:
])1([12312C dx e
x e y dx x dx x +⎰+⎰=+-+⎰ ………(6分) )2
1()1(22C x x x +++= ………(8分) 六、三个正数之和为21,问三个数为何值时才使三者之积最大(10分) 解:设三个正数分别为z y x ,,,依题意得:xyz u =,满足21=++z y x 设)21(),,(-+++=z y x xyz z y x L λ ………(4分)
因为⎪⎪⎩⎪
⎪⎨⎧=-++==+==+==+=02100L 0z y x L xy L xz yz L z y x λλλλ 得7===z y x ………(9分)
由于只有一个驻点,所以当7===z y x 时,三者之积u 最大。

…(10分)。

相关文档
最新文档